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1. INTRODUCTION AND SUMMARY %

In this paper we attempt to give a constructive, affirma-
tive answer to each of the following questions.

l. Given a function £ and an interval I, is it poss-
ible to tell a priori whether or not one can accurately
approximate f via a low degree rational function?

2. Can such a rational function be easily constructed
explicitly, so that one encounters no poles on the interval
of approximation?

3. Can one use the Thiele algorithm to construct or

evaluate this rational function?

4, Can one tel. a priocri, when we can expect the Thiele
algorithm. the g¢-algorithm, or the Padé method to produce an
- accurate low degree rational approximation?

. 5. Does the error of this rational function compare
favorably with the error of the best possible rational approx-
F’ imation of the same degree?

Although we cannot give an affirmative answer to the
above questions in all cases, we shall describe classes of
analytic functions which house nearly all of the cases en-

.5' countered by the author in applications. and for which the

answer to each of the above gquestions is "Yes".

We shall develop a class of rational approximations for ;
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i interpolation over [-1,1], [0O,x] and [-w,®o]. These rational ;

E approximations share many of the features of the sinc methods E

: summarized in [l7]. The interpolation points of these ra- é

F tionals are the same as the sinc points and the classes of :

él functions which low degree rationals approximate accurately ;

: are the same as the classes which the sinc functions approxi- 1

mate accurately. Indeed the error bounds for e.g. approximation i

on [~1,1] of functions analytic on the unit disc are the ;

same as the sinc bounds, i.e. rationals have the same opti- ;

mality properties as sinc methods. 1In using rationals instead H

of sinc functions, we lose many of the simple relations that 5

E

sinc functions satisfy, such as orthogonality and ease of
getting other formulas such as gquadrature, approkimation of
derivatives, methods of solving differential equations, etc.

However, the well-known rational function algorithms of

Thiele [21] (the p-algorithm)., Pade [12],and Shanks [15], Wymn [23] (the

3 ¢-algorithm ) all share simple methods of prediction, which

the sinc functions do not appear to possess. This paper

provides an understanding in that it enables us to tell a-

priori, when we can expect these algorithms to work effectively.

The spaces of functions for which the rationals provide

P

accurate approximations are described precisely in Sec, 2 of

the paper. One such space, consists, roughtly of functions

analytic on an interval with possible singularities at end-
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points of an interval, such that the functions are of class
Lipa(a > 0) on the interval, i.e., functions which one encoun-
ters in nearly all cases in applications.

The rational approximations of this paper have the
following additional features.

(a) There are no poles on the interval of approximation.

(b) The rational functions are linear in £, the func-

tion that is being approximated.
(¢) They are nearly optimal. More precisely, we prove

the following result:

THEOREM 1.1: Let 1 < p < o, let p' = p/(p-1), let U denote

the unit disc in the complex plane, let g be in the Hardy

space Hp(U), and let f(z) = (1 - 2z )g(z). Let P denote the

space of polynomials of degree n and set

(1.1) by = inf sup sup |f(x)-“—13‘-1|.
€42 g€22N+1 geHP(U) s Wg" =] -1<x<1

Then there exist positive constants cl,c2 and No depending

only on p such that for all N > No,

/2y 1/(2p') N_,1/2y

(1.2) C.,N lexpf 'r'(—) exp(- (—-—)

1 < 8y S Gy

The rational functions of this paper are of the form /¢

in (1.1) and they approximate £ on [-1,1] to within an error
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bounded by the right hand side of (1.2),
L A typical approximation result of the present paper is

the following:

THEOREM 1.2: Let f and g satisfy the conditions of Thm.

1.1, and define zj and B(z) by

j z-2z .
-1 N
(1.3) z, =L=1  p(z) = (1-2%) M TS -
J qJ"l"l J— J

If q 4is selected by the formula

(1.4) q = exp[-ﬂ(ig)l/zl-

Then, for all integers N > O,

j=-N (z-zj)B (zj) :

(1.5) max |£(x) - ¢
-1<x<1

‘ 1
< cle/(zp )exp[-n('z-l;—.) /2},

where <, depends only on p.

Due to their simplicity of constructiocn and approximation
properties, the rational function approximations of this paper

play &_5&.”“, role as the interpclation polynomials obtained

by interpolation at the zeros of the Chebyshev polynomials
play for polynomial approximation. In order to describe this
role effectively, we return first to the case of Fourier series.

- Let R > 1, and let AR denote the annular region in the

o 0 N W
e
‘. P
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complex plane T, Ap = {w e C: R-1 < |w| <R}, let F be

analytic in AR’ and let cj be determined from
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- (1.6) €5 = Jn+1 Tk=0 F(¢ e P %% T 2N+l ]

\

N 4
Then ]

. (1.7) max |F(ele) - Z?=—N cjelje| = o(R_N).

] 0<a<2n

The bound on the right hand side is essentially best possible
with regards to order, in that the number R cannot be
F’ replaced by a larger positive number regardless of how the
cj are chosen.

In (1.7) we now consider only those functions F for
which F(z) = F(1/z). Then we obtain a cosine polynomial appro-

ximation. The mapping
1 1
(1.8) z = 2(w + w)

transforms the annulus AR onto the ellipse ER with foci at

z = +1 and sum of semi-axes equal to R. Conversely, if
f(z) is analytic and uniformly bounded in ER then we can use

(1.8) to get a new function F(w) analytic in A_ with Fourier K

R J
series expansion z:s_w ckelkg, and where C_yp = ck' If

n
TN(x) = cos Ng, where X = cos §, and X = cos{ (2k 1)2N]’ then
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f(xk)T (x)
(1.9) max |£f(x) - E _
—1_§xgll k=l (x-x )Ty (xk)l

where once again, the R in the O(R_N) bound on the right
hand side cannot be replaced by a larger number, regardless
of how a polynomial of degree N-1 is chosen to approximate
£f on [-1,1].

Hence, instead of finding the polynomial which best
approximates f on [-1,1], it is much easier to use the
Chebyshev polynomial for which the interpolation points X
are known explicitly to get an approximation which is nearly
as good. The rational functions of this paper share this
feature.

Notice that for the case of polynomial approximation
above, we required a knowledge of a region of analyticity of
f, a property which we can usually determine a priori in

applications. Once we have identified such an ellipse ER

(resp. an annulus AR) we can be certain that polynomial (rsp.

Fourier polynomial) approximation will work very well on
[-1,1] (rsp. on [0,2n]). From the point of view of approxi-
mation in applications, we can thus identify functions
analytic in ER (rsp. AR) with polynomials (rsp. Fourier
polynomials) since they can be very accurately approximated
with polynomials (rsp. Fourier polynomials) of low degree.

Unfortunately there is a drastic change in the rate of
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convergence of polynomial approximation in the case when
the function to be approximated has a singularity on the
interval of approximation, a situation often encountered in
applications. For example, if 0 < @ < 1, we have

(1.10) max |(1-x2)a - Py(®)| > J%
-1<x<1 N

where pN(x) is any polynomial of degree N in x and C
is a constant independent of N. If a = 1/4 we would have

to take N > 106 to get 3 places of accuracy.

While for practical purpcses functions with singularities

on the interval of approximation cannot be identified with

polynomials, there is, nevertheless, a class of functions

with singularities on the interval of approximation which we

describe in this paper, and which lends itself to accurate

rational approximation. Such a class includes the functions

which we can accurately approximate with polynomials and
for practical purposes, we can identify this class with

rational functions. For example, by Theorem 1.2 above,
thevre exists a
given an integer N > g\ratlonal function pzN+2(x)/q2N+l(x)

with pN+1 of degree N+1 in x and qN of degree N in x,

such that

Pon+2 (¥)

a/2 aN, 1/2
|

(1.11) max |(l-x2)a - exp(—n(jf)

< CN
-1<x<1 DoN+1

1.
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We remark that by identifying classes of functions
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which can be approximated accurately by rational functions,

PRSTR 2 DA

we are identifying classes of functions for which we can )

.
b
o

expect the Padé method, the Thiele algorithm or the Epsrs-

4

lon algorithm work well., We shall later in this paper
illustrate this. For example, we would be able to tell a
priori, that the Pade method used in [2] may be expected to

be accurate.

Another practically important use of rational functions
is in analytic continuation. For sake of illustration, let
us momentarily return to the class of functions analytic
and bounded in the ellipse ER described above. Let us assume
that f 1is known on [~1,1], and that we want to evaluate f
at the point % + %(R +'§) in the ellipse. This can be done
by means of the polynomial in (1.9), the rate of convergence
of the error zeroc being O(pN), where

o = [(a+l)/2 +\/a+(a2—3)/4]/R, a= (R + R_l)/2. On the

cther hand, if PN(x) is any polynomial approximation to

11
272

£(x) = c + (1_x2)a on [ ] and we want to approximate

£(1) c by evaluating pN(l), then we may expect [f(l)-pN(l)]

to converge to zero very slowly, indeed, too slowly to be

Y
|
i

of any practical use. Since however, we may identify

b
}.
p £(x) = ¢ + (l-xz)a with a rational function for practical

(]
? purposes, we can accurately evaluate £(1) via a raticnal
-
3 ]
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function, by using values of x on [—%,%] only.

PPN W

As a more sophisticated example, let u = u(x,y) be
harmonic in the right-half plane, and assume that u(0+,y) i
is of class Lipa(a > 0) on a neighborhood of y = 0. It 1
follows, then, that u(x,0) is analytic and bounded on a
sector with vertex at the origin and of class Lipa on [0,A]
where A > 1 is arbitrary. That is, for practical purposes,
we may identify u(x,0) with a rational function, and we
can accurately approximate u(0,0) via a low degree rational 4
function, by using values of u(x,0) on (e.g.) the interval

[1,A].

In the cases when the condition of accurate approxima-
tion are satisfied, it is thus possible to do accurate analy-

tic continuation all the way to the boundary of analyticity,

via a relatively low degree rational function.

it The Lipa property of the function to be approximated

is important from the point of view of applications; if £
approaches zero too slowly in a neighborhood of a singularity,

then it is necessary to choose the degree of the rational

function to be very large, in order to achieve a desired

accuracy. For example, for rational approximation on [0,1].

if £(x) - £(1) ~ o/[log(l-x) 11 as x ~ 1~ then it is just

L}
1
«

P! as difficult to approximate £ on [0,1] by a rational

func.a n it is to approximate (l-xz)a on [-1,1] by a
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polynomial. We remark however, that this difficulty can
often be remedied by means of a transformation. For example,
if we set x = l-exp(-z—l), we get f(l—exp(—z-l)) - £(1)
~ cza, 2z - 0, and we can now approximate the new function of
z defined as the interval [0,»] by a rational function.

We mention that a rational function was previously
constructed by the author [18] of the same degree as that in
(1.5) for approximating f on [-1,1], and moreover the error
bound in [18] is the same as that on the right hand side
of (1.5). However, whereas the interpolation points in [18]

are the points

a2 g - k2 sn(29-1)K/ (2N) 5k]

the evaluation of the gj is more difficult than the evaluation

of the zj in (1.3).

The same points zj defined in (1.3) were also used by
Peaceman and Rachford [13] to approximate the points §j in
(1.12) in their alternating direction iterative method for
obtaining approximate solutions to elliptic partial differ-
ential equations.

For many problems of rational approximation one does
not have analyticity in the unit disc U, but rather in a

smaller region 91

a (see Figure 2.1 in Sec. 2) and we have

therefore also considered this case. Although cur error
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bounds in this case are not as small as the sinc bounds, we
suspect that the rationals of this paper are as accurate as
the sinc approximations for the same problem, and that it
may be possible to improve the bounds of this paper in the
case when 0 < 4 < n/2.

Notice that if N is replaced by 4N in the rational
function in (1.5 ) then every second interpolation point in
the "4N" rational case is the same as the interpolation point
in the "N" rational case, and the "4N" rational approximation
has roughly twice as many correct significant figures as the
"N" rational approximation. This result is of practical
value, particularly when a user is unable to determine a

region 91 (Figure 2.1).

d

Let us now briefly describe the layout of the paper.

In Sec. 2 we give precise statements and proofs of the
results (a), (b), (c) and (d) stated at the beginning of this
section. These proofs would ordinarily be lengthy, and for
this reason some of the details are carried out in appendix
A and B.

In Sec. 3 we illustrate connections of the results with
the well-known approximation algorithms. the Thiele. cr
p-algorithm, the Epsilon algorithm (¢-algerithm) and the

Padé methcd. In view cof the results of Sec. 2, we are able

to determine a priori, when we can expect these algorithms

eS|

C e m P4 Mk A e A A &_A_A A s




to work.

In Sec. 4, we prove Theorem 1.1 above. While the exact
optimal rate of convergence of rational approximation is not

known, we conjecture that, in the notation of (l.1),

1
Cwt AP -

(1.13) in- sup sup |£(x) (%)

weRy , geRy ger(U) . Hg”p=l -1l<x<1
as N » o,

In Appendix A we study bounds on rational functions
related to (1.8). The Jacobi theta functions turn out to be
most convenient for this purpose, since. while it is possible
to obtain similar results via the approximate integration
of the function F(z;t) = t-1 log](z+t)/(z-t)| over 0 < £ £ o
via the trapezoidal (resp. midordinate) rule evaluated at the

3 (rsp. qj-l/z),

points g j =0,+1,+2,..., and using the
concavity of this function for (fixed zd@,m)) as a function
of t, it is possible to achieve more accurate error bcunds
via the theta functions since it is possible to get exact
bounds via known properties of the theta functions. However,
while we use elliptic functions to obtain cur results, the
final results are independent of elliptic functions.

In Appendix B we obtain accurate bounds on contour

integrals encountered in the prcofs in Sec. 2.

We close this sectiocn with a few historical remarks.
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Stietjes [20 ] seems to be the first to identify classes of ]

)

function which may be approximated via truncated forms of %

1

continued fractions. These functions are expressible in ]

.Y

the form l:

P & (¢)

(1.14)  F(z) = | ]

v t-z y

3

and the continued fraction expression obtainable via this "

representation converges uniformly in any closed region of b

"4

the complex plane which does not contain the interval [a,b] 3

(see [7]). Unfortunately given a function F it is not
possible to easily check in applications whether or not F
has a representation of the form (1.14).

In [6] Gautschi gives an excellent summary of the use
of rational functions in numerical analysis. It has long
been suspected and verified in ad hoc cases that a rational
function can do a better job of approximation in a neighbor-
hood of a singularity than a polynomial. The first quantita-

tive result as to exactly how much better a rational function

can be than a polyncmial was cbtained by Newman [10,11].

! Renewed interest has developed in rational functions since

i

) Newman's result. The error of the rational functions of this i
- 1/2 .
- paper have the O(e-cn ) rate of convergence which was -
;. obtained first by Newman. Saff and varga (see [14,22]) have ]
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obtained many beautiful results demonstrating the superior
power of rational functions. Also of interest is the idea of
Gamelius [5], for using the Greens function of a region of
analyticity to obtain rational approximations; indeed the
rational functions of this paper have this property. For

the case of rational approximation on a finite or semi-
infinite interval, the poles of the rational functions of
this paper lie on the real line outside of the interval as is
the case for best approximation of Stietjes transforms--see

Borwein [3].
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2. RATIONAL APPROXIMATION WITH ERROR BOUNDS

This section contains the main approximation theorem
of the paper. While the proofs are complete, we use results
derived in the appendix in order to shorten these proofs.

At the ocutset we cover in detail, the case of rational
approximation on the interval [-1,1]. These results are
then extended to the case of rational approximation with a

rational function of a variable ¢ over a contour P,

15

where ¢ 1is a one-one transformation of P onto the interval

[-1,1]. We then use this generaliized result to obtain two
types of rational approximations over the interval [0,x] and

one over [-w,m].

Rational approximation on the interval [-1,1] is effect-

ive when applied to a certain class of functions that is

analytic in the region

(2.1) mé = {¢ e: ]arg%§§| <d}, 0<dgm,

where T denotes the complex plane. In the case when

d =nr/2, sé is the unit disc. When 0 < d ¢ =»/2, mé is the

intersection of the two discs

(2.2) U ,=(¢et: |gt1icot @f £ |mse df}
s

while if n/2 £ d < =, Sé is the union of the two

DR
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Fig. 2.1. The Region yé of Eq. (2.1). ]
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Fig. 2.2. The Region 2 of Eq. (2.3). ]
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Fig 2.3. The Region 93 of Eq. (2.4).
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discs (2.2). We shall obtain rational approximations for 3
4
functions analytic in m;, and also for functions analytic on ;
the regions. .
2 g
(2.3) g = {z € ¢: |arg z| < 4}, 1
2.4 3 < ' inh a) 3
(2.4) Py = (z e T: |arg sinh z| < &}, ]
"
4 -
(2.5) 9y = {z eT: |Im 2| < 4].
These regions are illustrated in Figs. 2.1-2.4.

2.1 Rational Approximation on [-1,1].

We describe two typical situations of rational approxi-
mation on the interval [-1,1]. The conditions in the first
case are of theoretical interest, particularly when sd is

the unit disc, while the conditions in the second case can

be readily tested in applications.

Given f analytic in 9;, we define F by

3 (2.6) r(g) = S,
: 1-¢

: 1
E3 Assumption 2.la: Let f be analytic in mé, let F _be %
t: defined by (2.6), and for some p in the range 1 < p < », let ?
5 i
' @ ey, = et [ p@ Plaep VP < .
g~d 386 -

;

-
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Let o be either 0 or %, let 0 < g <1, let 7. be defined by

j-o_
(2.8) . ==t

I g

and corresponding to a positive integer N, let B(r) be

defined by
e-¢.
| —1
(2.9) BC) = Tyo n24 1-¢4¢

Theorem 2.la: Let Assumption 2.1la be satisfied, let

0 < d< n/2, and define 1N by

2
o (1-£%)B(£) £(( )
j=-N+2¢

(2.10)  n(g) = £(g) - = :

where B(¢) is defined in (2.9). f g 1is selected by the

formula

(2.11) q = exp{-n(gé)l/z},

where p' = p/(ped), then there exists a constant C depending

——— ————— ——— —

only on p, such that for -1 { g€ < 1,

1/(2p') 2N) 1/2

(2.12) in(g)| < cN exp{-d(;r

HIElS

Procof: It is readily seen that n(g) in (2.10) also has

the representation

2
(2.13) (g =2=F1BLE) ) £(c)dg .
2mt 33, (¢-9) (1-¢*)B(Q)

PPN Y

PP S
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Now, by Thm. A.10 (i), the function |B(;)|—l satisfies the

inequality
-1 nZ-d) + ¢(d,q)
(2.14) max |B({)| = < exp( T )
;ea@d log E

where, by (A.36), we have, for 0 < d £ n/2,

2

d 2
(2.15) Lad) o T gy Eudyy ¢ o
log = log — log = 2ed’
I q 3 q J q

Hence, setting

n -1
(2.16) A= exp(2d e ),

taking absolute values of each term in (2.13) and using (2.6),

we get

2 rE-a)
- \
(2.17) Ine) | < (1-¢ %#B(’”fz\ exp(—2 T |FC-§I l4ac]
log E asd
n@-a) 5
(2.18) < A(l-g )|B(g)|exp{ T)IG(p',4d,8)] el
log =
q

where (2.18) is obtained after applying Holder's inequality
to the integral on the right hand side of (2.17) and then
using the notation of Eq. (B.18) of Appendix B. By

applying Thm. B.1l to bound G(p',d,g), we therefore get

(2.19) In(e)| < A 2 /P’ (gin a) (®'-1)/(2p")  I(p'=1) _,1/p",

-(P—)r(P—)

. _5.4._4' L gl . S A
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(2.19 cont.) , o (E-d) :
(1-g2)1/P |B(g) |exp(—2— ). _4
log 3 ]

We shall now attempt to obtain a uniform bound on »

s - OO

2,1/p' , )

(1-g7) |B(g§)|. To this end, let us select a number £, ]

1

: such that 1
J

N+1/2-¢ )

(2.20) 0<gq <g <1 :

é
P-
L~
3
hY

and let us define I(gl) by

gl-l l-§l
(2.21) I(gl) = [x: T 41 <x< Tve }.
1 1
Then, by Thm. (A.10)
(2.22) max |B(g)| < b(N,q,8,)
geI(g,)
where
ﬂz N
(2.23) b(N,q,gl) = 2 exp{- ——————I(l-q /gl)}.
2 log =
q
Since |B(g)| < 1 on [-1,1], we have
4
. (b(N,q,2,) if ¢ e I(g,)
2.26)  -HYP sy g0, 0Tt L
LY i et
(l+§1)

We now define q by (2.11), £1 by

(2.25) e = Nl/ZqN

. . L. . . e . A Al o fened el
PPN Y v 2 .




4 21 $
to get (2.12), in which we may take C to be i
)

]

p'-1 1 B! :

2p' (I(p'=1) 1

(2.26) c = 23/F (sin a) %P 4 )P’ exp{n[ (2ed) " +(2p') 2.
r(p/z)r(p/z) \

4

.

Remark (i): If d = n/2, the result (2.12) remains the same, B

except that the constant C may be taken to be >

(2.27) ¢ = 2P upini2p')” 1/2][—112—'“—}1/9
r(p,é)r(p/z) :

Remark (ii): From (2.12), the dominant rate of convergence

of the error to zero as N » o is

~ (2.28) r, = exp(- d( 1/2].
¢
The corresponding rate for sinc approximation is
4
(2.29) r, = exp(- (‘LN)l/z] i
This rate r, converges to zero more rapidly than r, if K
s 0<d< n/2, and r, =1, if d = n/2. The author originally g
R
}. expected these rates to be the same for all 4 in the range 3
- E
0 < d £ r/2, but we have so far been unable toc obtain the '
sharper bound of (2.29). J
Remark (iii): It would be interesting to extend Thm. 2.1la
‘ to the case n/2 < d < n. Thm. A.l0 applies to this case;
)

SO

it shows moreover that we must more carefully bound the

D A L A S N N N O N O S T Y T R I R T L T
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E
Eé contour integral (2.13), taking advantage of the fact that
}—
;

whereas ]B(;)|—l is close to 1 in neighborhcods of { = +1,

ai{g/2-4)
log 1/q

of the neighborhoods of +1. We have not done this, due to

it is close to 2 exp{ } on the part of 32; outside

the added complexity of the proofs. However, such an

approach may also lead to an improvement of the bound (2.12)

" ",-‘.,- '.'.. r'r' r'..j..' . '.'. B

for the case when 0 < 4 < /2.

Remark (iv): The Assumption 2.1a is not satisfied if f(¢g)

ap v eyey
’ » . Ce
. h IR

d a’

does not approcach zero as ¢ > +1. However, if g is
g analytic and bounded in Sd and is of class Lipa(ﬁd),
i where ©. denotes the closure of ©.,, then f defined by
n

g (2.30)  £(e) = g(e) - SEg(-1)- g1

satisfies Assumption 2.la, for p < 1/(l-a). After obtairing

a rational approximation for f we add the linear term 1

L

%(l-g)g(-l) + %(l+g)g(l) to get a rational approximation
for gq.

Rather than testing whether or not Assumption 2.la is

VTN -

satisfied, it is often simpler in practice to check whether

1-

or not the following assumption is satisfied. All of the

above remarks, albeit after some obvious mcdifications, apply

also to this case.

[T
- FRERL A
N4

R

Assumption 2.1b: Let £ be analytic in Ed and let ]

PP S I TR R AL 1P G P i Ty W g A ~ PPy
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(2.31)  |£(Q)] < o] 1+ % (1-0)P]

for all ¢ _J'_.g'é)cl.i, where ¢, @ and B8 are positive numbers,

Addasi s oa S

and 0 < a<<1l, 0«B < 1.

Theorem 2,1b: Let Assumption 2.1lb be satisfied, and let

0<d<n/2. Lety = min(a,B), § = max(x,B), and correspond-

Py —
I LT T T

ing to a positive integer n, let g be defined by

(I W

=
(]
o]

(2.32) q= exp[-n-(Zyn)-l/z}.

fy=a, let M and N be defined by

(2.33)

while if y = 3, let M and N be defined by

=
1]
2 oo
2,

(2.34)

4 Saza
2
]
3

‘ ;
- Let ¢j be defined by (2.8), and let B(¢) and 7(f) be defined by i
- £-¢. K
e (2.35)  B(g) = oy —1 ’«?

j==M+20 1-Cjc

RERPOEN

gt

)
o]
[+

T"‘TTt L] L)
L4

]
) :

-
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(1-x2)B(§>f(;j)

-y - N
(2.36) n(g) = £(g) Zi=-M+20

3 .
-c.)(l-¢. ¢ .
(e gj)( gj) B (gj)

Then there exists a constant C depending only on ¢, a,

8 and 4, such that for all = in [-1,1],

/2 /2

(2.37) In(e)] < ¢ n® exp{-d(2yn)

Proof: The identity (2.13) now also defines the n(§) of
(2.36), provided that B(g) is defined by (2.35). Taking
absolute values, replacing |£(¢) | by the right hand side of
(2.31), and using (2.14)-(2.16), we get

m(5-d)

(2.38) Ine)| < AC(l-gz) |B(g) |H(a,5,d,§)exp[———l}.

log =
d q

where H(x,B8,d,g) is defined by Eq. (B.19) of Appendix B.

Using the result of Thm. B.2, we now get

a B (G-
(2.39) In(g)] £ A c c (1+3)7(1-5) " [B(E) |exp(—T],

log —
J q

where the constant cl depends only on a, ® and 4.

We now proceed to obtain 2 uniform bound on

[=]
(l+e)a(l-5)P|B(§)[. To this end let g, and =, be selected
such that
M+1/2-
0 < ¢ T <t
(2.40)
N+1/2-¢

0<gq

£e,<1




4

:

-
5
-
’ -

| ¢

and define I(gl,Ez) by

el-l l-¢
(2.41) I(g,,8,) = (&= 0 < §<15%

2}'
2

Then, by Thm. A.10,

(2.42) max |B(g)| < b(M,N,E_,E,)
rel(e,,E,) 172
; 1732
where
2 L
- —I—71 - -
(2.43) b(M,N,£,,8,) Zexp( - 1l - 3¢
og 1
q
We therefore have, since |B(x)| 1 if -1 < x
20+8 ~
(¥
@y _.yB /
(2.44) (1+g) "(1-8) " |B(®) | £ <« b(M,N,El,gz)
(\2a+26§2

25
o
1}

252
1,

£,-1
if -1<2<

gl+1

if g € I(§1,§Q

l-gz
1+g2

if e,

Now g 1is given by (2.32) and we consider first the case

when y = @ = min(a,8). In this case M = n, N =
we furthermore select g and g, by the formulas
§2 = qNNl/z, then we get the uniform bound (2.37

The argument in the case when y = 2 is simi

omit it.

[an/3]. 1If
1

g, = a2,

).

lar, and we

AP ... . s
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2.2 Rational Approximation on a Contour.

Let 3 be a simply connected domain with boundary

39, let a and b (b # a) belong to 39, and let ¢ be
a conformal map of P onto the region Sé (Eg. (2.1)) such

that p(a) = -1, p(b) = 1. Let § = ¢ denote the inverse

map, and define [ by
(2.45) F={y(g): -1 < ¢ < 1)
Let zj denote the point

(2.46) 2y = w(cj)_.

|
|
:
;
]

where the ;j are defined as in (2.8). Let £ e ana.y*ic

L

in ® and define ¥ by

a s

(2.47) #(z) = 2B "
l-p(2) '

Let B8(z) be defined by

w(z)-¢,
(2.48)  ®(z) = v ——1

j=-M+2¢ l—Cjw(Z)

where ¢ 1is defined as in (2.8).

-

Let one of the following two assumptions be satisfied:

Assumption 2.2a: Let % be defined by (2.47), and for some

p>1l, let -




L aem ek e Sagn ek Shogh Bnd it Seagh i Bhadt g Sl it il SR 4 B

g

»

1 99 4

. 1 1 o

[ (2.49) sl = lim inf= . |5(2)|P|o’ (2)|dz]) 2 ’

: Cm,Cc>ap " Ve -

Assumption 2.2b: Let £ be analytic in 9, and for all g

i 2 €3, let ﬂ
: a

3 (2.50) |£(z)] < A|l-p(z)]| | l+p(2) |‘3 :

. E

where A, o and B are numbers such that A > 0, 0 < a < 1, ?

0<B<1.

Proceeding as in the previous section, we set

2 , ]
(2.51) n(x) = 1- ’2‘1 xf £(z)em' (z)dz - xer, w
i 39 [0 (2z)-0(2)][1-p(2) “]8(2) R
to get 1
q [1-g (x) 1B (x)p" (2,) ]

(2.52) n(x) = £(x) - Zy e Mt20

[¢<x>-cj1[1-c§13-<zj>

The sum on the right hand side is a rational function in

the variable gp(x).

Theorem 2.2a: Let Assumption 2.2a be satisfied, let 0 < d £ /2,

let M = N in (2.48) and (2.52), and let I be defined by

"
'.i
éi.
i
!

F’ (2.47). If q 4is defined by

[ ' 1/2

3 (2.53) q = exp(-n(fﬁ) /2y

L

: "
» where p' = p/(p-1), then there exists a constant ¢

9 -
§ '
! °
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depending only on p such that for all x on T

1/2p' 2N.1/2

(2.54) |ﬂ(x)| < CN exp[—d(;T) ]qwﬁp.

Proof: If we set (z) = ¢ in (2.51), we get (2.7) with
¥(4(2)) = F(z); if we set »(g) = x and »(2) = ¢ in (2.51)
we get (2.13). Hence the proof is identical to the proocf of

Thm. 2.1la.

The proof of the following theorem is also similar to

the proof of Thm. 2.1lb, in view of the above remarks.

Theorem 2.2b: Let Assumption 2.2b be satisfied. and let

0<d< n/2. Let y = min(a,8). § = max(2,8), and correspond-

ing to a positive integer n, let g be defined by

1/2

(2.55) q = exp{-mn(2yn) }.

fy=a, let M and N be defined by

M=n
(2.56)

N

a
[gn]

while if y = 8, let M and N be defined by

M= [gn]
(2.57)
N = n.

P T T T T T T T T T . T T .
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Let Cj be defined by (2.8), zj by (2.46), T by (2.45) and

8(z) and n(x) by

(z)-¢.
_ N 2T
(2.58) 8(2) = Ti__Mi2g 1-¢j0 (2)

and

[L-g (x)218(x) £(2.)e" (2.)
N ] 3
j ==M+2 c

(2.59) n(x) f(x) - ¢

[¢<x)-gj1<1-;§)m'(zj)

Then there exists a constant C depending only on & and 8

such that for all x € T,

(2.60) |n(x)| LcC né/2 exp{-d(2yn)l/2}.

2.3 Ratiocnal Approximation on [O,»]:; the Non-oscillatory Case.

In this case, the region 9 of analyticity is the

sector 92

g °f Eqa. (2.3). The function ¢ and the inverse

function ¢ of the previous section are

-

z-
Z+

(2.61) z = 4(¢) =~ o ¢ = p(z) =

[
|
')
<3
=

Hence corresponding toc the points Ej in (2.8), the pcints zj

are

(2.62) z,. =g ¢ (c = 0 or 1/2).
Thus the product (2.48) becomes

N j-o
(2.63)  ®(z) =m_ . 2= )
T z4q3”C°

IRIT— 1 VRPN

-, .,

PRI




Corresponding to £ analytic in mg the function <% 1in (2.47)

L I

'VJ"',,r,v'

is now defined by

2
(2.64)  %(z) = ilffl—f(z):

the condition (2.49) thus becomes

1 1
(2.65) 15.11(—2—,} P lsr(2)|p _L§£L2_) /P {w, 1 <p<Kw,
20" T 395 (1) | 1+2|

d
where mg(r) = {z e T: |arg(z-¢)[ < d}, while the condition

(2.50) becomes
(2.66)  |£(2)]| < Aj1+2| ¥ %zP,

The error 7, i.e., the difference between £ and the

rational function thus becomes

3

(l+q” 9 £(2,)

(2.67) ) = £0x) - B ST —— .
PRI Tz )0 (2)

It thus follows that if £ is analytic in m;, and

(2.65) is satisfied we take M = N in (2.63) and (2.67), %
1
; and choose gq as in (2.53) to bound 1 on [0,»] according .
%ﬂ to (2.54). If £ 1is analytic in E; and (2.66) is satisfied, i
{
X then by choosing q as in (2.55), we bound 7N on [0,x] _
g according to (2.60). )
2 1
p ! 1
|
.
9
- J
! .
t L R N Y

) bA_‘ it

o
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2.4 Rational Approximation on [0,x];: the Oscillatory Case.

-4 VUPSIT]

1
In this case the region 9 of analyticity is the region
mg of Eq. (2.4). The mapping functions ¢ and ¢ are ]
’
defined by f
. .=l 1+¢
(2.68) (z) = _S_jﬁh__z._-_l' i'(C) L + simh (1‘C)
. ® = N 5 [ = ~ .
sinh z + 1 1 - sinh l(itg) q

We see thers=fore from (2.63) that g(z) takes the form

N sinh z - g3 °

—_ s _ ’
J==M+20 _im oz o+ g °

(2.69) 8(z) =1

i.e., the points zj are given by

(2.70)  z, = sinh Y (q?7%) = 1og{q’ % + J1+g?37°).

If £ is analytic in 93, the corresponding function ¥

r is defined by
:

_ {1+ sinh 2)° £(2) ;
4 sinh 2z ’ "

(2.71) 7(2)

The condition (2.49) becomes \é

I 1

t (2.72) el = limG= [, (s(z) P 2SR EL P ,

& 1 N a Yamy(T) |1+sinh z| v

r 1<pc<w, '
where

q »

Sg(T) = {z ¢ I: |arg sinh(z-7)| < al,

e e e e e & - 2 A Am it &oam AR - el
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and the following condition is equivalent to (2.50):

a, =Bz 3
(2.73) |f(z)| < Az le | zZ € Sd'
The difference. 7, between f and the rationmal function
becomes
(2.74) n(x) = £(x)

. 2(3-0)
_ _sinh x (x) ZN 1+q? © f(zj) 1+q
l+sinh xm

j==M+2 j-o sinh x-2.)8'(z.)
J 4’ ( 378" (2

Either Thm. 2.2a or Thm 2.2b may now be stated to

bound N(x) on [0,»].

2.5 Rational Approximation on [-«,»] Via a Rational Function

£ ex.

The region P of analyticity is the strip mg defined

in Eq. (2.5). The function ¢ and § become
e?-1 1+

(2.75)  ofz) ==,  4(g) = logs.
e +1 .

The product $(z) now takes the form

N ez— i-o
(2.76)  8(2) = m__ o S,
e +q° 7

i.e. the pcints zj are given by

(2.77) zy = (3-¢) log q.

L m e a oM B L P

- .
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Let f be analytic in 23. Then the corresponding function
s of (2.47) is defined by

gl+ez!2
(2.78) %£(z) = . f(z).

4e
The condition (2.49) new becomes
e p, 2e> 1/p

(2.79) HS‘HP = lim ( ; |%(2) |7 |3 114z]) L=, p>1L

>d  3m(r) (1+e”)

The following condition is equivalent to (2.50):

A exp(a Re z2) , 2 € 93, Re z £ O

(2.80) |£(z) | < {

A exp(-B Re 2), 2z € 24

a’ Re z > 0.

The difference between f and the rational function now

becomes
ij-o
% (l+q” ®)f(z.)
(2.81) N(x) = £(x) l+exﬂ(X) Zj=-Mi20

X J= ' ‘
(e -[ )8 (zj)

We may now bound 7(z) on (-«,») via either Thm. 2.2a or Thm.

2.2b.

PR
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3. IMPLICATIONS AND APPLICATIONS.

In this section we study the connection of the results
of the previous section with the Thiele algorithm, the

’

epsilon algorithm, and the Pade method.
3.1 The Thiele Algorithm.

The Thiele, or j algorithm for interpolating f
at m 4 1 distinct points xo,xl,...,xm is described as follows.

Define pi by

3

79 = f(xj) j=0,1, ,m
! 3 x.+l—x.
(3.1) ( Py = —g:ij—% j=0,1,...,m1

% Po “Po

X, _-x. H
J o_ i+ i j+1 j =0,1,...,m¢

NPT 541 5 Pi-2 i=2,3,...,m

Pi-1Pi-1

Then the rational function r(x) which interpclates the data

{x.,f(x.)}w is given by the ccntinued fraction representation
375 %57  3=0 P

- ! - ' - !
x xol b 4 X, | x b S

0 !
(3.2) r(x) = ot *+ 5 lO +.. .4 r—a___jfld
Pl P2 T Pg Pm T Pp-2

The function r(x) has the form

Pn(X)
qn(X)

(3.3) r(x) =

I.L'_' B P S T T . I S T W o . SN P - o

P Y W .

L II‘AA!L_.A'I

.I_.LJ AAAA_LL_‘.‘A!
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if m = 2n, where P, and qn are polynomials of degree n in

x, and it has the form

_ pn+l(x)

(3.4) r(x) q;(x)

ifm=2n + 1. Furthermore, if m = 2n, then

po X+ X 4.4 cC
(3.5) r(x) = 2nn 1n-1 n
X + d4d.x +...+ 4d
1 n
That is
(0] .
(3.6) p = lim r(%,
2n
X>+00

so that the Thiele algorithm provides an excellent method of

carrying out analytic continuation.

For example, if £ 1is analytic and bounded in the
region sfi of Eq. (2.3) and if f is of class Lip_ (3 > 0)
[xo,w], where X, > 0, then we may effectively use the
Thiele algorithm to evaluate f(») via the use of a few
values of f(x)) for finite x. Indeed, this has been done

recently in an ultrasonic tomography algorithm (19].

3.2. Evaluation of the Raticnals of the previous Section

via the Thiele Algorithm.

Let Pn denote the family of polynomials of degree < n,

35
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and consider the evaluation of the raticnal function

pn(X)

(3.7) r(x) = —————v
qn+a(x)

for P, € Pn’ qn+u € Pn+c’ where ¢ = 0 or 1, and such that
rix..) = £(x,,), k =0,1, ,n
2k
.8y {0
L r(x2k_l) = , k=1,2, , n+o.
Then
1
(3.9) p(x) = (%)

can be evaluated via the Thiele algorithm, using the
2n + 1 + g values p(xk) = l/r(xk), k=0,1,...,2n + 1 + &.
Eq. (3.9) then yields r(x) = 1/p(x). 1In general, there seems
to be no guarantee that the , algorithm will always work:
however, interlacing the zerc and non-zero values of o
in the above fashion has worked, in our experience. Since
all of the poles of r(x) have been pre-determined, there
are no unwanted poles.

Let us next consider the evaluation of the rational

function in (2.10) for the case when ¢ = 0, i.e.,

e e e e L o e e 4 e Tt a® % aoa ot a B M. - = — — =

A A o S e inio.

[ S S T ¥ P
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(1-x%)B (x) £(¢,) x-¢ ;

L[ r(x) = $i__y T ¢ B =Dy T 5

?_ (x—;j)(l-gj)B (Cj) 3 3

3 (3.10) 3

' . ]

N _ =4 ~1

G55

L qa’+L

: Since ¢

o = 0 B(x) = p2~+l(x)/q2N(x), where

USRI AR OE:

Ponet € Pone1’ Joy € Bpy Henmce T(X) = p,u ., (X)/q, ()

and it has (l-xz) as a factor. Hence

- <
3 2 p, (x) 4
[e _1-x" _ 2N
is completely determined by the 4N + 1 values j
1
2 h
1-% 4
= —2-N+k - ‘
(Xgy000 (X0 )) = (C_ypype? . )), k = 0,1,...,2N
C_N+k
5_ (1/;_N+k_l,0), k=12,...,N
- Cigrem17P Popeo1) =
[ - (L/¢ _ysx’ @) k = N+1,...,2N
e
- and may thus be evaluated via the Thiele algorithm, as above.
f The raticnal function r(x) may then be computed via (3.11),
g
rd i.e. q
: ) )
. ~X
X r(x) = .
" (%) (x)
¢ :
9
t‘.
¢ "
p
3
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3.3. The e¢-Algorithm and the Padé Approximation.

The ¢-algorithm [15], [23] is described as follows.

Given a sequence of m + 1 numbers sj (j = 0,1,...,m),

define ez by

// eo = SJ » ] = 0,1, .
J o1 . = -
(3.12) 1 =5 5 J=0L....ml
eo -eo
j__ L . 3*L 3 =0,1,...,m
€i T j+1_ 3 ®i-1  i= 2,3,....m
€i-17%i-1

The numbers ei may be used to either predict the limiting

value of a function, or to evaluate Padé approximations [24].

For example, if

d, X " -1
- -l k k 1
(3.13) S(x) =L + Zx=0 e zz=0 dkzx s
if
S, =8 .
j (k).
and if
(3.14) M= Zi:o e
then
0
(3.15) e .= L,
M
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On the other hand, if Sj is defined by
(3.16) s, =13 c.n

then e;k vields a pade approximation [23] i.e.,

n_ Pryx-1 (M

(3.17) €ox = qk(n)

The results of Sec. 2 of this paper together with the
representations (3.13) or (3.16) tell us when we may expect
the approximations (3.15) or (3.17) to be accurate, when
applied to a function F£.

For example, if f(x) - L (L = f(»)) satisfies any of
the conditions in sections 2.4 or 2.5, then by taking
Sj = f(jk), we see from (3.13) and (3.15) that eg will
converge rapidly to L = f(=).

The representation (3.16) may be considered to be an

interpolation of an analytic function f(z), where

oy 3 k
(3.18) £(3k) = S5 = Fop GX -

This representation then shows that f(z) - L (L = £(»)) may
be assumed to satisfy any of the conditions of Secs. 2.4 or

2.5, provided, <4, That

(3.19) e x| = o(e™y, a > 0.

Hence in the case when (3.19) is satisfied, we may expect

(3.17) to converge rapidly to f(w) = zi_ockxk as n -~ wm,
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4. A LOWER BOUND ON THE ERROR OF BEST APPROXIMATION.

Let U denote the unit disc in the complex plane, i.e.

91/2 in the notation of Eg. (2.1). That is
T
(4.1) U={¢eck: |g] <1}

Let £f satisfy the conditions of Thm. 2.la. Then F
defined by (2.6) is in Hp(U), that is, F 1is analytic in
U, and

2 .
s 1 18, ,Py.,1/P
(4.2) llFHp -—r];l{tl (2ﬂf0 |F(re™")|"ds) <

Let S denote the family of all such functions F such

that HFHP < 1. Then, by Anderssen [l] we have

(‘l P (g)
(4.3) c, exp({- (—)1/2‘§ inf  sup| [F(g)-zN—()]dE|

pzN,q2N+l FeS v -1 DN+l

where p’' = p/(p-1) and where C, is a positive constant de-

1
pending only on p, and p2N and Dyl dencte polynomials of
degree 2N and 2N + 1 respectively.

Now if n(g) is defined by (2.10) then the terms in
square brackets on the right hand side of (4.3) is just
n(2)/(1-2%). Hence

1
(4.4) ¢, exp(—w(z—xf)l/z} < Ij .n_u dz|.
P 1 1l-¢

A s oa e

2.

.2,

ISRV, S

: - _
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0
g a1 ’
- |
P We now split the integral on the right hand side into 4
)
an integral over (-5,5), 8§ > O plus an integral over 3
[-1,11 - (-5,8). 3
Then :
(4.5) | —iﬁé dg| < max [n(g) | (1-x") “ax
J-§ l-¢ ge[-1,1! V=8
N L+—§ .!
= nnu 2 109(1 - 6)
while from (2./9) we have ]
3
3 " rl 2.-1/
; (4.6) | U e e, b o1-e?)TMP g
E “[-1,1]-(-5,8) l-g Y8
1
8 1
h <e, [ a-g /Pag
&
— . - p'
= C,p7 (1-3)

where C, is a constant depending on on p. 3

Hence, by (4.4), (4.5) and (4.6), we get :

B Ad ade ben aa o ———
e v
ISR PR

- 1 2N, 1/2 1
, (4.7) i, 2 ——g exel-nEH Y2 o 2t 1-) VP,
[ 2 lo
1-5
g -N
3 Taking 1 - § = e ~, and combining with Thm. 2.la we find >
pr .
: that there exists an NO > 0 such that if N > NO’ then
4 there are constants Cy and C, such that
3
"
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. 4
- ’
J C,N ! exp(-n 2 1/2 j
- P
: P, (F) ]
: (4.8) < inf sup sup |£(2) - EME_) ]
P p2N+2’q2N+1 FeS -1<&<1 2N+1 »
4 1/(2p’ N _\1/2 :
2 S o8 PP explon i) 2 ]
Ll These inequalities show that while the exact lower bound

on the left hand side of (4.8) is not known, the results of

this paper are in the right "ballpark" with respect to their

accuracy.

We therefore conclude with a problem: Given £
analytic in U, F € HP(U)’ where F(z) = f(z)/(l—zz), »
and given N, can a rational approximation pN/qN of
f on [-1,1] which is linear in F be as accurate as the

best rational approximation to f of the form pN/qN? Here

NN SR

Py and qN are polynomials of degree at most N.
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‘“' Appendix A.  BLASCHKE PRODUCT ESTIMATES.

We shall see in what follows that the four rational
approximation results referred to at the outset of Sec. 1
are simply related via elementary conformal transformations.
For example, once we have a rational function approximation
in w over [~1,1] we can readily obtain one in 2z over

(O,») via the transformation

(A.1) w=—(=z=%§“—:)

which is a conformal map of the right half plane onto the
unit disc, and which transforms pn+l(w)/qn(w) into a rational

function P (z)/Qn+l(z). Similarly, starting with a

n+l
rational function of 2z for approximation over [0,x] we
can use the second equation in (A.l) to get a rational
approximation in w over [-1,1].

It is most convenient from the point of view of using

known results for Jacobi theta functions to first consider

approximation over [0,x]. For purposes of interpolation

at the pecints qJ j = -N,...,N, 0 < g< 1l it is natural to

start with the product

- .

» (2) = oy L, 0<z< m
[ 1= 24q?

o

Unfortunately this product dces not have a limit as N -~ «, since
the product changes sign with N as N increases. However

the alternate form

B o g AL AL ALAL RN
Sttt

} PR
st Te
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(3]

-1 rIN 1l - qj(z+1/z) + 023
z+ j=1 23

(A.2) 1(2) =

-

1+ qJ(z+l/z) + q

TR Te TR TTE TE TR T e T e T
. v - B - =

has the same zeros and poles as @ﬁ, and moreover, the product

converges as N -~ «»., Let us set

s I 23
z-1 1l - z+1l/z) +
I=2 1 4+ @I z+l/z) + g

and let us define m(qg) by

A.4) m(q) = sup |&(z,q)].
02

Next, let us use the standard notation for elliptic

functions, for 0 < k < 1,

w
r
~u =u(k) = dt s w = sn(uzk)
0 Ji1-¢2) (1-x2¢3)

cn(uzk) = Jl—snz(u;k), -K<u<K

K = K(k) = u(l)

(A.4)
k. = J1-kx°

Kl

; K(kl)

l

{ g = exp[-n K'/K]
i

\\. q, = exp[-m K/K'].

We then prove

Lemma A.l: If m(q) is defined by (A.5). then

(A. &) m(g?) = ki/z,

PO S Sy SNy ¥ - - A PP g ) - U R G
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Proof: Let us introduce the Jacobi theta functions [9J
8§ (u) = ciéil)l/ssin v n? (l—2q23cosZy+q4j)
s 2,2 i=1
k kl
(A.7) \ u = 25,
"
l6q k . .%
gc(u) = (———5—%}/ cos Vv n;_l(l+2q23cos 2v+q4j).

k

Then, by (A.3) and (A.7) we have

e2iv 2 .. 1/2 gs(u)

(A.8) 3 ( q°) = ik] L

Now, using Egs. (16.36.3) and (16.3.3) of [9] we have

2iv 2. _ ..1/2 sn(usk)
(A.9) sle ,q) = ik, en(uzk)’

However, we are interested in bounding %(z,q) on the
interval 0 < z < ». This means that we want to find the
21 (-iv)

maximum value of |§(e ,q)|, for-« < v { », However,

by Egs. (16.20.1) and (16.20.2) of [9] we have

(. 10) sn(-iu;k) _

on(—iusk) ~ -Lsn(u:kl).
But for u real
(A.1ll) max |sn(u:ki)| =1,

—ooSuSoo

so that
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(A.12) max |§(e2v,q2)l = ki/z.
=V
This completes the proof of Lemma 2.1.
We also introduce the rational function
N 1-q3-1/2(2+1/z) + q23-1
B-13) wye(@) =1, 555 23-1
J 1+qJ (z+1/2) + q
for 2N - point rational approximation at the points
GOV 512, N
Letting N > », we set
0 1 —_qj-l/zgﬂ/z) + 2371
(A- 14) ‘Y(Z,CI) = Hj=1 j_l/z 2j°l,
l+q (2+1/z) + g
and
(A.15) n(q) = sup |w(z,q)|.
0<2<w
We then prove
Lemma 4.2: If n(q) is defined by (A.15), then
(A.16)  n(g’) = ki/z.
Proof: In this case we use the theta functions
2,2
k"k . .
- _ 1,1/12 2j-1 23-2
3d(U) = (IE_E) nj=1(l + 29 cecs 2v + g )
(A.17)
2 . .
3w = (B /22 2 o3ty 0y 4 2372,
n 4 3=]_
16qkl
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and proceed similarly as the proof of Lemma 2.1, using

equations in [9].

Lemma A.3: Let k1 and q be defined as in Egs. (4.5).

Then
2
(A.18) k]1'/2 < 2 exp(- —T—7).
4 log E

Proof: The following series expansion taken from [8, p. 378]

converges for 0 < kl < 1l:s

a.19) 7% = (%)1/2

[1+ 2(1—:)2 + 15(]—‘:)4 + 150(32‘)6 +...1.

Since all of the terms of the series in square brackets are

positive, (4.19) taken together with (A.5) implies that

1/2

1
(A.20) kl/2 <24

Since, however, the last two equations in (A.§) yield
(A.21) (log 1)og L)= ?;
q q

we find, after substituting this result into (A.20) and

using the fact that 0 < g <1, 0 < q, < 1, we obtain (A.18).

Lemma A.4: The functions 3 of (A.4) and vy of (A.14) satisfy

2
(A.22) sup |§(z,q)| < 2 exp{- —F—7]
0<2< 2 log a

. ] B

"

Al
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2
(A.23) sup |v(2,q9)| < 2 exp{- — "]
0<2< 2 log a

Proof: As a consequence of Lemmas A.l1, A.2 and A.3, both
functions @(z,qz) and v(z,qz) are bounded on [0,x] by

2 1 . 2
2 exp[-n /(4 log E)]. Hence, replacing q° by q we get

(A.22) and (A.23).

We remark that while we used elliptic functions to
derive (4.22) and (4.23) these inequalities do not involve

elliptic functions.

Lemma A.5: Let ¢ be either O r1/2. (a) If

12| > £ > @Y%, and it
(A 24) t = ~® _Z_+gj_-_c
. = s s
N j=N+1 z-qJ o
then
2 ml/2-o
(A.25) |t ] < exp{ I }.
N 1 3
4 log —
a
() I£0< |z < ¢ <q V%, ang if

(A.26) - = :” zZ__+a

then

48
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Proof: The proof of (A.27) is almost identical to the proof -

of (A.25), and hence we shall only prove (A.25). We have .

j-o K
_ % 2 = g 2n+1
loglty| = Re T, 701 Zj=N+l( z ) J
)
T 2 5 g 2n+l \
< Zn=0 2n+1 '—N+1(|z|
(A.28) .
oo 2 00 g 2n+1 "
£ Zn=0 2n+1 Zi=n41C g ) N
e ) .;N+1/2"°)2n+1 n+1/2 4
=z =0 2n+1' g 2n+l° J
b l-q 2
N
4
But
n+l/2
(A.29) I - i 1. <7 - 1
l-g 2 sinh|[ (n+3<)log =] (2n+1l)log =
2 q q
Hence
n+l/2- o N+1/2-a 2
(3.30)  log|ty| < C T = — T
g log = (2n+1) £ log =
q q
This is just the logarithmic form of (A.25).
g Lemma A.6: Let |z] >0, -n <8< n, and let z = |z|ele.
Then
* 1 z+t
(A.31) j T logl it = ﬂ(ﬂ lal). ‘
& 0 ),
[ ;
. Proof: Splitting the integral as an integral from O to
{; z plus an integral from !z| to o we have 3
L {
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' 121y z+t 121 2 t,2n+l
;l (A.32) Re Jo o log ;:Edt = ReJo Ezn=0 E;:E(;) dt
= Re Z:=0 _._‘2__2e' (2n+l)isg = 2:=O—L—ZCOS(2H+1)G-
(2n+1) (2n+1)
Similarly,
© t «
(A.33)  Re 5 1 og 24t = 52 cos (2n+1)g.
t t-z n=0 2
|z| (2n+l)
Hence
! +t 2
oo
(A.34) S = loglz—-ldt =2 T —=——cos(2n+l) 2
t z-t n=0 2
0 (2n+1)

- O _
= ﬂ(z ls|)
from Fourier series.

corollary A.7: f =z satisfies the conditions of Lemma

A.C and if @ = (t: t = pe®, o fixed, 0 < p < =}, then

. z+t nz
(A.35) Jgr; 1og;:; dat| < 5

Proof: The proof is similar to the proof of Lemma A.5, by
proceeding along the lines of equations (A.3/) t¢ (A.34),
dropping the real parts, and replacing t by p and

z by |z|.

+15

Lemma A.8: Let 0 < |g] < m, let z = |z] ., and define

e(S,Q) _IZX
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exp (_—ILL-J-“ l) exp(—-—n—(—“—l-‘-l-l-l;i )
nf log E, log E
(A.36) e(g,q) = +
2 l-exp __E.L"L]l:) l_exp(__.ﬂ_(ﬂ_.l_i_u)
log = 1 =
= a og q
If o 4is either 0 or 1/2, then
(A.37) @ - |8} - log= 5 lo |Eiq-j:3 (5,9)
~ I - 18l 9 g Tymmw 199 z-qj"“c” < els,q).

Proof: Without loss of generality, let us fix 4§ in the

range 0 < § < . The function

1 2 + t c
(A.38) £(t) = = log 2+ =L
t c

z - tg

is then an analytic function of t in the sector

8 - g < arg t < 8, it is absolutely integrable along any

ray t = |t|ei@, 0L |t] £ = 8-m< o< 8, and moreover

for t in this sector of analyticity. £(t) = 0(l) as t -~ O,
£(t) = O(t_z) as t > ». Hence if we can apply Thm. 4.3

of {17], Lemma A.6 and Corollary A.7 to get the result /4.36)
for 0 € 53 < . The prcof for the case when -n < 28 < 0

is similar.

Corollary A.9: If z = |z|e*?, where 0 < |8] < m, if c(3,q)

is defined by (A.346) and if ¢ is either 0 or 1/2, then

e e e s ot s i s 1112 e are Bararenmm s reafi e e e B L e S e, O e R
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. L n -
nE-18])-e(e,q) J+o
2 +q
:ﬂ (A.39) expf 1 } < H;-o.._ |z |
1 ==00 Jj+c
log q z-q

mG-lol)+e(s.q)

< exp| 1
log =

9 9q
Theorem A.10: Let z = |z|e ", let ¢(5,q) be defined by

(A.36) and let ¢ be either 0 or 1/2.

(i) I£ 0< |3| <5, then*

3 — - .'II_ ~
N S bl G-1a]) + e(5,q)
(A.40) q._ [-—g'——._ | < exp{
j=-M+2¢ j-c 1
z-q log q

(ii) If n/2 < |8 < m, Llet € and [ be selected such

that

(A.41) qN+1/2-cr <e<c¥ q-(M+l/2—G).

If |z| lies ip the range £ < |z| < ¢. then

- T
e

2 N+l-q’ M#l—f-

- , 2 2
- ) j"—M+2c7' j- c‘ S exp 1
° ~d o9 5

v

(iii) If s = n, and 2z lies in the range ¢

[N

lz] £ ¢,

where ¢ and (¢ satisfy (2.41), then

] a——

I
2’

*1f |9l = the left-hand side of (A.40) is identically 1.
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1
ﬂf 2 N+E-c M+T-o
i3 -+ (g /g +q ¢)
N + 2 4
(A.43) ey ,o 25— < 2 exp( }s
j=M+2¢ Z-qj c log <
Oor equivalently, if € < z £ ¢, then
EE 2 N#%-c M+T-¢o
: I
j-o -+, (q /8 +q ¢)
N zZ- 2 4 :
a.a4) o o 5| < 2 expl }.
J z+ql © log 5
0
Procf: (i) We have
N z+gj-° L z+g3-c z-gj-c
(A.45) nj=_M+2c| 3] © Tjm—cl j-cl”j<-m+2c j>N] el B
z-q z2-q ? 2+q
However since |5| = |arg z| < n/2 each term (z—qj_c)/(z+q3_°)

of the product on the right hand side of (4.45) is at most
1 in magnitude. Hence (A.40) then follows from (A.39).
(ii) This is also a consequence of (A.45), (A.39),
and Lemma A.5.
(iii) Both |8(z,q)| (by taking ¢ = 0) and |¥(z,q)]
(by taking ¢ = 1/2) are expressible by means of the infinite
o] j-: j-O' . N .
product ﬁj__w'(z+q Y/ (z~-q )|. Hence the inequalities

(A.43) and (A.44) follow from Lemmas A.4 and A.S5.

ADA.

PRI Py

PR

. AY e




T TN TIaVTN - - - T — i S At I A SR A e S S et T
v AU AR R i P ~T - N

Ada a2

A 54

P

Appendix B: CONTOUR INTEGRAL ESTIMATES.

a

-

The hypergeometric function

. (@ ()

. (B.1) F(a,brciz) = £ . 7;7;——37 z, lz] <1

ety IS WL ML

N
¥
3
o

may also be expressed via the following integrals provided
. that ¢ > b > 0 )
b c=b
F(a,b;c;
(c) ( 2)
fl b-1 c=-b-1 -a
(B.2) = | t (1-t) (l-zt) "4t
VO
n/2 e -
(B.3) =2 § sin?P™ 1y c0s2°7%P g (1-2 sin? ) 2ae
{ 0
_ n/2 -
(B.4) = 2 f cos2b 19 sin2c 2b le(l-z cos2 5) ade
J
0
(o)
(B.5) = [ «® 1 (1+u)® C[14u(1-2) ] 2au.
vo
If alsoc - b -~ a > 0, then
I({c)T(c-a-b)
B.6 F(a.b;c:l) = . .
(B.6) (@.breil) = Tlca)r(e-b)
Other identities involving the function F(a.b;c;z)
¢ which we shall use are P
(B.7) F(a,b:2b:——&5—5) = (1+z)2aF(a.a-b+%:b+%;22) :
_ (1+2) 1
¢ [8, p. 50] !
1

_a
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a—bE‘(c—a;c--b;c:z)

(B.8) F(a,b;c;z) = (l-z)c—
(8, p. 47]

iuoy _ I{c)T(c-a-b)
(B. 9) F(a,bic:z) = F(c-a)r(c-b)

F(a,b;a+b-c+l:1-2)

c-a-b r(¢)lta+b-c)

+ (l1-2) ~(a)T(b) F(c-a,c-b;c-a-b+1l;1-2)
[6, p. 47]
(B. 10) F(a,bjcsz) = (l-z) 2 LLE2T(b=8) o o habel;—)
: opiciz) = 272) 0 Ty r(cma)k (TR "1z
-b r(c)T(a-b) el L
+ (1-2) r(a)r(c-b)F(b’c ab a+1,l_z)
[8, p. 48]
(B.11) F(a,bjc;z) = (l-z) °F(a,c-b;ci—>=

l-2

-b 4
(1-2) F(?,c—a,c,-l_z

(8, p. 47].

Some gamma function identies will also be convenient:

(8.13)  T(2)r(z +3) = n V2217221 (2z)
- RN « SE
(B. 14) r(z)r(l~2) = sin nz
(B.15) r( + 2)r@ - z) = —0—
) L2 ' =% = stnz):

Let sé be defined by :.-00 (2.1) ( See /-"7.24).
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The Integrals to be Estimated

We shall estimate the integral

PPV SN0

(B.16) G(p',d,x) = é& j ‘\c-x\°p 'd¢l 1 < p' < =,
asd ‘ <
"1 < X < l, .{
\
X
0<d<gn/2 '

for 1 < p' <o, =1 < x <1, and 0 < 4 £ n/2, and we shall

estimate the integral

Y P

1 - -1 -1
- (B.17) H(a,8,d,x) = 5 |1+;|a l|l-g}B bg-x| ldg)
N "
e
= for 0<a<l,0(8<1l, -1<x<1l, and 0 < & < n/2.
& .
T Theorem B.1l: Let G(p',d,x) be defined by (B.16). Then
fﬂ there exists a constant ¢ depending onlvy on p' and 4
9

Such that
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2. 1-
(B.78) G(p',d,x) < C(1l-x") P , 0<x <1,
Proof: Let us set

n

(B.19) G(x) = G(p',z,x)-
Then
1 (2m 2.-p/
(B.20) G(x) = — [1-2%x cos § + x] djg
2m 0
o /2 )
= 2(l+x) P 5 (1 - ——ii—acoszs] P/ﬁ-de
m 0 (14x)
= (1+x)'p'p(%i,3l;1:-£—2) (by (B.4))
(1+x)
= F(%é,%%:l:xz) (by (B.7))
(B. 2¢) = (l-xz)l-p'F(ldgi,1~%£:l7x2) (by (B.8))
(8.22) < (1-xA)P L=l
r&r&n

by (B.6) and the positive coefficient expansion (B.l) of
. 2

F(l1-p/2 ,1-p/2 :1:x°).
This proves (B./§) for the case when d = /2.

We next consider the case of 0 < d < w/2.

The case 0 < 4 £ n/2.

The region Ss is now the intersection of the two discs

(2.2). The contour integral (B./é) is thus an integral

a x> _a - [P - A~ A mA_ A~ e ket . faoam
I f e e - UL P U U P U - .
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over parts of two circles. 1If we replace the integrals
over these parts by the integrals over the whole circles,

we find that

(B.23) G(p',d,x) < =, !C‘J'x2+°°tzd|-p jag|

2
™e|=1

(B.25) = 2(csc d)l-p' G(sin de2+cot2q).

3 (Compare (B./6), (B. )). The . inequality (B./8)
now follows by proceeding as in (B.Z2C) - (B.22).

Let H(a,B,d,x) be defined by (B./7), and let us set

(.20 B0 =5 .f‘ | 1ll"CIOL'lll-cla'l|c-xl'1|dcl'-
C =

Then, setting ¢ = ezie, 0< 5 <, we get
a+8-1 m/2 _ _ _
(B.27) H(x) ='£?I:;7 J cosa 1esin5 ls[1+’—é§—55in2a] 1/2de
v 0 (1-x)
- 2 - B
(5. 26) ) 5a+8-2 T(Z)T(z)F(l B.a48 __4x )
E n(l-x) r(ggﬁ) 2'2° 2 (l_x)z

by (B.3). Then (B.3) vields

a+8-2 r(“—;-l) r(%)

2 18 3-a l+x2
BB = T '-;('a+_— g-l)F(z‘z' P )
(B.29) 2
a+8-2 réhrdsd L2 oasl lex 2
+ 2 (1+x)a-l(l-x)-a 2 2 F(a+e- 2,2+l  l+x

1
T(z)

(B.29) = 2(csc cl)l-p + |¢-sin de2+cot2d!-p'|d;[

2 '2" 2 l-x) )
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m On the other hand, replacing sin 4 by cos ¢ in (B.27]
and then using (B.4), we get
= 2y Bl
N H0x) = ¥*8-2 TRITH )F(_l @,3-8, 1-x,2,
r m(1+x) 1_,(ot+§—l) 2’2 2 " Ml+x
' 2
3 (B.30)
' - 8, . 1=8
3 a@¥P-2 a-1 alTQITEST)  g4a-1 8 841 ,1-x,2
;‘ +—n (1-x) (I4+x) " FOC o5 “1+x) ).
. r)
2

Let us next transform (B./7) by means of the transfor-

&
_r‘ mations
- w-l 1
E‘ 300 C=w *Tun
to get
l-a-
a+p-1 ® 1-a-B

kY - -
P (3.3 meo =200 W lae?) 2 wthe?) /2 44
- 0
.
a-1i,_2
- e r )1*(2)“é 83 2,
e S oom arp-1 = ‘2727 2
" r‘('v-x 2
T o l-a
: a+8- 2y (—
¥ + 2_2(14_“)110;-1”2”!5, @bl 2,041, 2,
E! 1 r(_]._) \ 2 TP
b... 2

from (B.29), and

P I PP T VI WP T W WA WG WU WP VIPUC U SON W W VO Wy wonr S S "V N S N e PP

I P ¥ VU N PN P U R oy oY

P

2.0 AR A -

2 A=

Boa_ . AR L aiace s

RIS

.«




60

. o, . B=1
T u a+B8-1 2’2" 2’
r(———z )
(B. 33)
1-8
a+B=3 . ré& rdsd) - -
. 2 a 8 1(l+w 2 - LF(CHB 1’§'e+1:u 2)’
m r ) 2 2’ 2
]

from (B.50).

The representation (B.32) is convenient on the interval
-1 < x £ 0, while the representation (B.33) is convenient
on the interval 0 ¢ x < 1.

Now if -1 < x < O, (%j—::)z £ 1; by inspection of the

power series of the hypergeometric function in (B.29) and

recalling that 0 < a < 1, 0 < ‘j< 1, we find that each takes

on its max(mum value if (1 + x)2/(1 - x)2 = 1. Hence,
applying (B.;), we get
1- -a-
r@)rdE (2% 2228y 4-p-2
(B.3¢)  H(x) ¢ —t——2—"2 2__ 2
-39 x) < (a+8-1)r(2-a)r,3-a-8) m
e 2 /T
-1 a1 1- —a- -
(-0 r @) (Y r (52) p F222) 0302
+ A . =
22,

if -1<x<K0
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r('-)r 1;B)r( )r(z'g's) ,¥8-2

+ 3-a-
r”ﬁlnf;ﬂﬁ I

(B.3s) H(x) £

(1-x) P r &) r58) (A28 p 2228, 9482

+
" rf?;ﬁ

if 0 x< 1.

Hence, denoting by C the maximum of the right hand side

of (B.3%%) and (B.3s) , we have

(B.3¢)  H(x) < c(l+x)¥ L (1-x)P"1

We now consider the case 0 < d < /2. In this case,
we consider the integral obtained by using (B.3/) in

(B./7),

a+8-1 weld
(B.37)  H(a,B,d,x) = —-—1——1.[

Here, |w|a'-l‘l+w|l—c"-B is a decreasing function of |w| alcng

the path of integration, while |w-u| first increases to

|14 | 17 7P e 7w
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. -1 . . .
(uw sin d) and then decvreases again. Hence, since u sin 4
is the distance from u + i0 to the path of integration, we

have by rearrangement of the functions, that

l1-a-8 1

a+pf ©
(B.3%) H(a,8,4,x) < 2——Ei;igl j w” l[l+w2] 2 [w2+uzsin2d] 2dw
0

l +u

= 2H(u sin d)7 == —"34

where the last identity was obtained using (B.32).

Theorem B.2: Let H(x,B8,d,x) be defined by (B./7), where

0<a<l, 0<B<K1l, 0<dc< n/2. Then there exists a

constant C depending only on «,8 and 4, such that for

-1 <x<1l,

(B. 42) H(a,B,d,x) < c(1+x) ¥ L (1-x) Pt
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