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EXECUTIVE SUMMARY

High-latitude scintillation data from the DNA Wideband satellite
show a conspicuous enhancement that arises from F-region irregularities
with a high degree of spatial coherence in the plane of the local L
shell. This phenomenon is of interest to the Defense Nuclear Agency

for three reasons:

(1) Convective instabilities, which are thought to generate these
irregularities, are also believed to be operative in late-
time nuclear environments.

(2) Propagation disturbances are greatly enhanced along paths
that coincide with axes or planes of enhanced spatial
coherence.

(3) 1Irregularities in the auroral zone, which can be transported
over large distances, are strongly affected by the highly
conducting auroral E laver.

In this report we present the first detailed analysis of the gen-
eral anisotropy of nighttime auroral-zone irregularities obtained from
spaced-receiver measurements. Spaced-receiver measurements are the
only means of unambiguously resolving the irregularity anisotropy. Most
of the previous work has relied on identifying svstematic enhancement of

the amplitude or phase scintillation or both.

The results of our analysis show systematic variations of irregu-
larity anisotropy with invariant magnetic latitude and magnetic time.
The sheet-like irregularities are confined to the zone of east-west
auroral-zone convection. Moreover, at the transition or Harang discon-
tinuity, the sheet-like anisotropy gives way to structures that have a
much smaller cross-field anisotropy. Variations in the rod-1ike aniso-
tropy outside the east-west convection 2zone also show systematic varia-
tions that point to convection, and associated velocity shears, as the

cause of the anisotropy variations.
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I INTRODUCTION

The anisotropy of small-scale, electron-density irregularities is
an important factor both in systems design and instability theory. From
basic principles, irregularities are expected to be elongated along
magnetic field lines because of the high-parallel conductivity. On the
other hand, the various instability mechanisms that cause those irregu-
larities are quite complex. Experimentally, radio-wave diagnostics are
the only practical means of quantitatively measuring irregularity aniso-

tropy.

Radio-wave scintillation is enhanced whenever the propagation path
lies within a plane or along a line of enhanced irregularity spatial

coherence [Briggs and Parkin, 1963; Singleton, 1970; Rino and Fremouw,

1977]. This expected systematic enhancement for rod-like irregularities
as been observed in midlatitude scintillation measurements [Bowhill,
19741, At high latitudes, however, a systematic enhancement also
appears whenever the propagation path lies within the local L shell.

To explain this phenomenon, Martin and Aarons [1977] postulated a second

axis of enhanced spatial-coherence transverse to the magnetic field
along the local L shell. The individual irregularities can then be

considered sheet-like, rather than rod-like structures.

Localized scintillation enhancements are prominent features in
individual data records from the polar-orbiting Wideband satellite

[Fremouw et al., 1977; Rino_and Matthews, 1980; Fremouw and Lansinger,

198la]l. Moreover, through combined satellite and incoherent-scatter
radar observations, the source region of the scintillation has been
identified {Vickrey et al., 1980}, and a comprehensive theory is emerg-
ing [Ossakow and Chaturvedi, 1979; Chaturvedi and Ossakow, 1979;

Keskinen and Ossakow, 1982]. The experimental and theoretical develop-

ments along this line have been reviewed by Rino and Vickrey [1982].




In this report we describe the first comprehensive spatial coher-

ence measurements of irregularity anisotropy in the nighttime auroral
zone. The data were obtained from spaced-receiver measurements made at
the Poker Flat, Alaska, Wideband receiving station. For a detailed

description of the overall experiment see Fremouw et al. [1978]., The

spaced-receiver measurements have been analyzed to extract quantitative
measures of the anisotropy of the diffraction pattern. These are sub-
sequently compared to propagation model predictions to estimate the in

situ anisotropy.

The overall structure and anisotropy of the ionospheric irregulari-
ties can be characterized by a three-dimensional autocorrelation func-
tion. In the simplest model, a surface of constant spatial correlation
is a prolate spheroid. 1In that case, the diffracted field of a radio
wave passing through the irregularities can be characterized in any
plane by a two-dimensional spatial autocorrelation function with ellip-
tical contours of constant correlation. By measuring the correlation
ellipse and observing its variation with changing propagation geometry,
we can determine the anisotropy parameters that characterize the in situ

irregularities.

The power of the method stems from the fact that, although they can
change the shape of the spatial correlation functions that characterize
the amplitude and phase of the diffracted wave field significantly,
diffraction effects do not change the anisotropy. In particular, aniso-
tropy, unlike geometrical scintillation enhancements, 1s invariant to

changes in the perturbation strength.

To characterize the correlation ellipse of the measured diffraction

pattern, we have implemented a method suggested by Armstrong and Coles

[1972], which uses the intersections and peaks of all possible cross-

and autocorrelation functions. An overdetermined set of linear equations
results, which is then solved for the anisotropy coefficients by using
standard least-squares methods. To determine the anisotropy coefficients
of the irregularities, a search through various in situ anisotropies in

a phase-screen model is made until a good match with the data is
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obtained. The details of the method are described in a separate paper
[Rino and Livingston, 1982].

In the analysis, we deal with three generic types of irregularities.
If the structures are extended only in the direction of the magnetic
field, they are referred to as rods. These rods can be characterized
in terms of an axial ratio, a, which is the average along-field dimen-
sion, normalized to the corresponding cross~field dimension. A conven-
ient designation for the rods is, therefore, a:1:1. If the irregulari-
ties have a second symmetrical preferred axis of elongation, perpendic-
ular to the field and along the L shell, they will be referred to as
sheets designated a:a:l. Similarly oriented, but nonsymmetrical irreg-
ularities (a:b:1 where a > b), will be referred to as wings. It will
be shown that for certain propagation geometries an unambiguous distinc-

tion can be made among these three types of anisotropy.

The maximum cross-field dimension against which a and b are nor-
malized is dictated by the measurement frequencv and the rate at which
the irregularities pass through the propagation path. In the Wideband
data used here, the dimension 1s roughly 1 to 2 km. As an aside, we
note that although individual irregularities in this spatial scale
range are below the resolution 1imit of the Chatanika radar, they may

be detectable with the EISCAT system.

The anisotropy analysis and modeling procedure is outlined in
Section II. The results, presented in Section III, indicate convection

dominance of auroral-zone anisotropy. Possible mechanisms for this

anisotropy control are discussed in Section IV.
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IT AURORAL ZONE ANISOTROPY

As noted iIn Section I, there is considerable evidence that scintil-
lation-producing irregularities in the auroral zone are not simple rod-

like structures. Martin and Aarons [1977], using data from Goose Bay

and orbiting beacons, deduced an overall 8:4:1 anisotropy within the

auroral zonme. Fremouw and Lansinger [1981b], using Wideband data,

arrived at a similar 8:5:1 value based upon Wideband satellite data
collected between 1976 and 1978. Both analyses base their conclusions
on the assumption that the average irregularity strength through the
region of geometrical enhancement is uniform, whereby the changes in

everage scintillation strength are strictly geometrically induced.

Moorecroft and Arima [1972) were the first to determine anisotropy

from spaced-receiver measurements in the auroral zone. They deduced
sheet-1like structures, but with a meridional north-south alignment.

Rino and Livingston [1982] first observed the expected di“fraction

pattern for L-shell-aligned, sheet-like irregularities in the 1976
Wideband data from Poker Flat. These data were recorded during a low
solar-flux period of the sunspot cycle. For the current analysis, we
have used a more extensive set of measurements that were made in 1978
during significantly higher solar-flux conditions. It is now well
established that the scintillation-producing irregularities of interest
here are predominantly in the F region. Chatanika radar incoherent-
scatter data taken coincidentally with many of the satellite passes,
show distinct F-layer ionization particularly during the high portion

of the solar cycle.

To demonstrate the procedure we have used to interpret the measured
axial ratio and orientation angle parameters and to illustrate possible
ambiguities in the interpretation of the data, we describe the analysis

of three representative data sets in detail. The data sets are from

moderate elevation, overhead, and low-elevation Wideband passes as
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observed at Poker Flat. For reference, the F-region penetration points

are mapped in Figure 1 for all three cases.

Figure 2 shows the data for the moderate elevation case, which
starts at 1118 UT. Superimposed on the data are the model calculations
for four irregularity types: 1isotropic irregularities, rods, wings,

and sheets.

It is instructive to compare the model predictions with one another.
Both the axial ratio and orientation angle variations show very distinct
changes with time. The Wideband satellite orbit is such that all the
nighttime passes are aligned in geomagnetic north-south direction in the
vicinity of Poker Flat (Figure 1). Field-aligned rods, illuminated by
the satellite when it is low on the horizon, produce a ground shadow
that is highlv extended (axial ratio >> 1) in a magnetic north-south
direction. On the other hand, sheets similarly produce a shadow that
is nearly uniform in space (axial ratio ~ 1). This difference is
clearly evident in Figure 2(b), early and late in the satellite pass.
Near the point of L-shell alignment, however, the situation is reversed.

The rods are now illuminated more nearly along their primarv axis, and

produce a collapsed east-west shadow (axial ratio ~ 1), while the sheets
produce an elongated east-west shadow with a pattern axial ratio only
slightly smaller than in situ (axial ratio > 1). For the isotropic
irregularity predictions, the diffraction pattern axial ratios exceed
unity because the along-field and cross-field irregularity axes are

scanned at different rates.

Our procedure for matching the model to the data is as follows:
For the first third of the pass (up to about 1121 UT or 0100 corrected
local magnetic time) from the orientation angle data alone, the in situ
irregularity shapes cannot be distinguished; however, the axial ratio
data in this segment are best matched by isotropic irregularities or
sheets, To the far south, beyond 1127 UT, the situation is similar,
although the results from the fitting procedure are compromised by

sparse data.
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FIGURE 1 IONOSPHERIC PENETRATION POINT LOCATIONS (350 km) FOR THREE EXAMPLE
PASSES
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In the center portion of the pass, there is a distinct enhancement
in the measured axial ratio, near 1124 UT, which is matched well by a
combination of the 10:5:1 wing and 10:10:1 sheet models. 1In this por-
tion of the pass, the orientation angle data provide a more concise
indicator of irregularity shape, and suggest that a progression of
different anisotropies is being observed. Through 1123 UT, the irregu-
larities are rod-like; near 1124 UT, the irregularity types cannot be
clearly distinguished in orientation, although the axial ratio data
suggest wings or sheets or both; beyond 1124:30 UT, the orientation
data definitely indicate wings followed by sheets near 1126 UT.

Figure 3 shows the data from the nearly overhead pass. A high-
elevation pass such as this provides maximum discrimination among the
three types of in situ anisotropy tvpes. As with the previous example,
a mixture of rods, wings, and sheets seems to match the observed axial
ratio data best, although, in this case, the anisotropv parameters that
provide the best match are smaller than those deduced from the lower
elevation passes. There is a point near 1033 UT at which the observed
axial ratio becomes very large. All-skv photographs show that this
enhancement corresponds te a bright, but stable arc. For our purposes

of anisotropy morphology, it is only of passing interest.

Using both the axial ratio and orientation angle data, we can
identify with some precision a sequence of irregularity types that are
scanned as the satellite moves southward. Up through 1035 UT, the
irregularities are evidently isotropic or low axial-ratio rods. The
increase in observed axial ratio bevond 1035 UT indicates that the in
situ irregularities are extended to about 5:1:]; the orientation angle
clearly shows that they are rod-like in shape. Between 1036:40 and
1037:20, the axial ratio remains high, much as the sheet model would
predict, but the orientation angle still indicates rods. Beyvond this
time, the orientation deviates from the rod signature to that for wings,
and then to sheets., Thus, in this pass, as with Figure 2, we see an in
situ irregularity anisotropy that is a function of latitude and shows a
gradual transition from rods to sheets in a region to the south of Poker

Flat.

12
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As a third example, we have chosen a low-elevation pass, recorded
*~ 90 min after local magnetic midnight. The F-region intercept is well
to the west of Poker Flat. For such a geometry, the sheet and rod sig-
natures remain distinctly different in axial ratio, but are too similar
in orientation angle to allow the types of structures to be unambiguocusly

differentiated.

Figure 4 shows the observed axial ratio and orientation angle for
the low-elevation pass. Up through 1215 UT, 5:1:1 rods match the data
well. Beyond 1215 UT, the large axial ratio enhancement is matched very
well using 10:10:1 sheets in the model. The orientation angle variations
provide very little discrimination, but are consistent with this combina-
tion. There is some suggestion in the orientation data beyond 1219 UT

that sheets occur south of the region of axial ratioc enhancement.

An alternative explanation to the axial ratio variation in Figure 4
could be a sudden change in the in situ structure from 5:1:1 rods to the
north, to 15:1:1 (or larger) rods near overhead. We argue that this is
less likely than the rods-to-sheets progression. First, the rods-to-
sheets progression occurs for other propagation geometries. Second, a
scintillation level enhancement accompanies the axial ratio enhancement

near 1217 UT, which rods alone could not produce.

In sorting the large volume of data that is summarized in the next
section, we have followed the process illustrated in the three examples.
In summary then, for the moderate-to-high elevation passes, for which
the correlation surface orientation is very sensitive to changes in the
model parameters, those data are used to identify the generic irregular-
ity type: 1isotropic, rods, wings, or sheets. A fortunate and useful
result is that for sheet extensions beyond about 3:3:]1 and wings bevond
about 4:2:1, the pattern of orientation-angle variations saturates and
remains unchanged for further increases in a or b or both. For these
same geometries, the axial ratio data are used to establish the actual
degree of anisotropy for the various irregularity types. For the low-
elevation passes, we depend almost entirely on the axial-ratio data, as

our last example illustrated.

14




{£0-158) SSvd

LHOINQIWLSOd NOILYAIT1I-MOT HO4 NOILVIEYA AJOYLOSINVY 1300W ONV G3¥NSVYIW ¢ 3HNOIS
JWIL TVYSHIAINN
zeen ozzi gLzl alzL pLzL zizt oLzt
T T T T T T T 0
B | i I | -
TI —d ¢
- -
-3 w
»r
— —~ -
b 2]
— — a3
— -] o
—— i 91
- L "
—)
oz
T ] T 1 T T ] T
— — 091-
— - m
— —{ g J
| ] |V..
=
IS
0 P-d
= |
S SAQH | LG e —4 08 w
SL133HS L 01L.01——— <
| ] 2
- 091
| | f ® —
| | | M L
$100 0200 6200 0£00 GE00  00VO

JNIL TvDO0T JIL3INDVIN 031034400




=

A formal error analysis of the method used to extract axial ratio
and orientation from the measurements has yet to be performed. It is a
complicated task in its own right because of the number of functional
manipulations involved. We guess that the error estimates for orienta-
tion would be small, based upon the consistency of that parameter over
large portions of each pass. The point we wish to reinforce is that the
method is sensitive enough that even without error bars, we can be con-~
fident in our identification of the generic irregularity: rods, wings,
or sheets., Furthermore, even if the dimensions of each irregularity
type cannot be precisely defined, the relative patterns of extension

are unambiguous,

16




IIT ANISOTROPY MORPHOLOGY

Our anisotropy analysis was performed on data from a large number
of nighttime passes collected during several weeks of observation made
during February and March 1978. The anisotropy behavior for nights of
weak magnetic disturbance (Kp = 1 to 2) have been consolidated in
Figure 5. The data are plotted on a grid of invariant magnetic lati-
tude and corrected magnetic local time for the 350-km altitude of
propagation penetration. This format is convenient, since the aniso-
tropy patterns may be related to auroral-zone dynamics. The locations

of the start and end points of each pass are indicated by arrows.

The contoured portions of the map in Figure 5 indicate regions in
which rod-like irregularities give the best overall fit to the data.
The axial ratio parameter, a, is indicated. The contours include only
the regions within which rods can be clearly identified, either from
the orientation angle variation (for high-elevation look angles), or
from measured axial ratios that are too high to be produced by sheets
(at low-elevation look angles). North of the contoured area, the
observed axial ratios are low enough to be produced by either isotropic
irregularities or sheets, and the orientation angle data is ambiguous.
Other evidence, however, suggests that the irregularities are nearly
isotropic in this region, Measurements at Thule, Greenland, in the
polar cap, collected for nearly the same season as tue Poker Flat data,
but at somewhat shorter cross-field spatial scale sizes, show low-

anisotropic rods or isotropic irregularities.

The cross-hatched portions of Figure 5 indicate the regions for
which sheets or wings give the best fit to the data. For all but the
lowest-elevation angles, at early and late times, this identification
is made using the measured orientation angle progression. The value of
the in situ axial ratio, a, is estimated from the magnitude of the

observed axial ratio. In some cases, e.g., when sheets and wings are

17
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mixed and the sheets fall on the edge of the region of the predicted
axial-ratio enhancement, the sheet dimension cannot be accurately
defined. The sheet dimension is, then, assumed the same as that of the
best-fit wing or wing/sheet combination. For simplicity in fitting the
data, the wings are always assumed to have a cross-field dimension half

that along the field.

At low-elevation look angles to the south of the wing/sheet region
in Figure 5 is another region in which it is difficult to identify the
irregularity type precisely. As was the case with the northernmost
region, the low observed axial ratios and the lack of discrimination in
orientation angle makes definite identification difficult. 1In the
majority of cases, however, the orientation-angle progression leading
into this region suggests that sheets are present. This region corre-
sponds to the low-electron-density trough south of the auroral precipi-

tation zone.

Figure 6 shows the overall anisotropy distribution in latitude-
local time for moderate levels of magnetic-disturbance (Kp = 3 to 4).
It provides a somewhat more uniform sampling of the anisotropy in local

time, but is otherwise very similar in gross features to Figure 5.
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IV DISCUSSION

In the data summarized in Figures 5 and 6, there are distinct sys-
tematic variations in in situ irregularity anisotropy. In the premid-
night and postmidnight data, the north-to-south latitudinal progression
is from nearly isotropic irregularities to rods with increasing elonga-
tion giving way to sheets that abruptly disappear at the scintillation
boundary. Through the midnight sector the anisotropy is generally
reduced. At latitudes at which rods are found, the axial ratio is
reduced, and at latitudes at which sheets are found, the sheets give
way to wings. This structuring suggests the well-known pattern of
nighttime auroral-zone plasma convection, which Figure 7 shows schemat-

ically.

In Figure 7, the Harang discontinuity is the region in which the
i antisunward flow separates into westward and eastward drifts. We have
[ shown the discontinuity as it is usually pictured, tilted in the lati-
tude/local time frame [Heppner, 1972]. The time of occurrence of the
discontinuity is a function of global magnetic-field conditioms, as is,
to some degree, its tilt and shape. The placement of the flow pattern
in Figure 7 in both local time and latitude was chosen using the obser-
vations of Maynard [1972]. Using in situ drift data, he identified the
Harang discontinuity under very quiet and disturbed conditions. Our
moderate Kp conditions lie somewhere between these extremes. Perhaps
as important, the boundary near 62-to-63° invariant latitude is also
the expected equatorward edge of the auroral precipitation zone {[Sheehan

and Caravillano, 1978}, The distinct and stable F-region ionization

buildup at this latitude is a conspicuous feature in the Chatanika radar

data taken during the recent solar maximum [Vickrey et al., 1980].

Presumably, the ionization arises from long-term low-energy particle

precipitation [Winningham et al., 1975]. Recent measurements have

shown, moreover, that the ionization enhancements are structured east-

west, at tens of kilometers and larger scales [Tsunoda and Vickrey, 1982].
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The flow pattern in Figure 7, which is based on independent obser-
vations [Maxnard, 1972], matches the anisotropy patterns in Figures 5
and 6. Proceeding from that model, we can use the first principles of
convective instability theory to explain the detailed anisotropy behav-

ior.

First, let us consider the rod-like irregularity regions in Figures
5 and 6. The contours are not symmetrical in local time, and the overall
pattern is shifted roughly perpendicular to the tilt of the Harang dis-
continuity. In the poleward extension of the Harang discontinuity, the
rods are extended the least, which suggests that the irregularities are
being transported from the polar cap. The anisotropy maximizes immedi-
ately on either side of the Harang discontinuity, at which place the
plasma velocity shear is maximum in both the zonal and meridional direc-
tions. These are also the regions in which the rods, which have been in
the discontinuity flow for the longest time, are deposited. If during
their transport, they are able to extract energv using a convective

instability process, the dimensions of the rods are likely affected.

Within the auroral boundary region, the large-scale density enhance-
ments observed by radar are prone to secondary instability structuring.
In particular, the large no.thward and southward electric fields that
occur pre- and postmidnight will cause any westward or eastward density
gradient to be gradient-drift unstable. Such structuring could produce
the sheet-like kilometer-scale irregularities that we observe, as sche-
matically illustrated in Figure 7. The confinement of the sheets to the
boundary region and the reduction of sheet-like anisotropy in the Harang
discontinuity, as seen in Figures 5 and 6, fit this pattern well. The
neutral wind also undoubtedly plays a role in the structuring process.
Premidnight, the zonal component of neutral wind is a stabilizing force
against the gradient drift instability, as shown in Figure 7. However,
momentum delays the shift in neutral wind direction until well past
midnight. This additional destabilization should make the postmidnight

sheets more prominent than those observed premidnight, which also agrees

with our data.
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In summary, then, our observations strongly point towards convec-
tion dominance of kilometer-scale, F-region irregularity anisotropy.
The specific structuring processes that we suggest need to be theoreti-
cally verified. Keskinen and Ossakow [1982] have recently demonstrated
that large-scale east-west structuring of the auroral boundary can
result from a process similar to the vertical Rayleigh Taylor structur-
ing of the equatorial ionosphere. At much shorter scales, Chaturvedi
and Ossakow [1979] have studied the current convective instability in
the auroral zone. From numerical simulations such as these, at inter-
mediate scales and from recent radar-scintillation measurement campaigns,

details of the anisotropy process should soon emerge.
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