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EXECUTIVE SUMMARY

The flight test evaluation described in this report is part of a Federal Aviation
Administration (FAA) evaluation of Loran-C for aircraft navigational guidance.
Advisory Circular (AC) 90-45A was used as a minimum specification for compliance.
Other aspects of Loran performance not addressed in AC 90~45A were examined,
including propagation anomalies, signal availability, and the local area cali-
bration feature available in some receivers to 1increase accuracy performance.

Helicopter operators are the largest users of Loran-C because it is so well suited
to typical helicopter operations. Loran is usable in remote locations not within
conventional very high frequency omnidirectional radio range (VOR)/distance
measuring equipment (DME) navigational coverage. Helicopter use is predicted to
increase at least through the next decade, with the resultant increase in the need
for instrument flight rule (IFR) operations. Size, weight, accuracy, signal
availability, and the precision for user-definable waypoints make Loran very
attractive to these users. Because of its chacteristics, Loran is useful both as
an en route guidance system and as an instrument approach aid, and the FAA has
decided to investigate its use for nonprecision approaches.

The Loran receiver selected for this flight test was the Teledyne TDL-711, the most

popular airborne receiver in use. A pair of these receivers was instrumented,
along with other aircraft systems, aboard a CH-53 helicopter. One each was
operated in local area calibrated mode and uncalibrated mode. Availability of

various Loran signals and accuracies involved in their use were 1investigated.
VOR/DME data were collected for comparison purposes.

Six airports in the Northeast Corridor were selected and flights coaducted in
simulated IFR conditions. A portable tracking system was developed at the FAA
Technical Center for use during the test. The tracker uses a dynamic ranging
system and a Kalman filter computer routine to resolve position to better than
62 meters.

The report presents statistical and graphiczi data which show the following
results:

1. Signals from only three transmitters are available at all subject airports;
other signals available at two airports do not provide the required accuracy.

2. Accuracy of the uncalibrated receiver met AC 90-45A requirements at only two of
the subject airports, but the local area calibration produced the desired accuracy
at all airports. Also, a calibration made in Atlantic City produced the desired
accuracy when flown at all four airports where data were available. 1In all cases,
the local calibration improved or did not affect accuracy.

It was concluded that Loran-C is usable in the region for nonprecision approaches
from the standpoint of navigational accuracy.
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INTRODUCTION

The flight test evaluation described in this report is part ot an ongoing Federal
Aviation Administration (FAA) evaluation of Loran-C for all phases ol helicopter
navigation. Previous studies have addressed en route accuracies ot Loran-C over
various geographical areas, and results have generally been satisfactory. The next
step 1n the evaluation process involves 1its use for nonprecision area navigation
(RNAV) approaches.

OBJECTIVES.

Specific geals of this project are:

1. To collect data on Loran-C system errors to support decislions relative to the
possible certification of Loran-C for nonprecision approaches 1in the Northeast
Corridor (NEC). Accuracy criteria of Advisory Circular (AC) YU-45A are used to

judge minimum levels of compliance for certification,

2. To obtain data on the flight technical error associated with Loran-¢
nonprecision approaches.

3. To obtain data on area propagation anomalies of Loran signals at various points
in the NEC.

4. To obtain performance and operational data on Loran~C signals at various points
in the NLEC.

5. To examine the portabiiity ot the area calibration teature ot certain Loran-¢
recelvers over a large geographical area.

BACKGROUND .

Recent technological advancements have produced a rapid growth of the helicopter
industry that 1s anticipated to continue into the next decade. A variety of
factors have vontributed to this growth, including advances in helicopter materials
: technologyv, expanded oil drilling and coal mining effort requiring support in
| remote atrcas, and the need for rapid transport from major airports to the downtown
metropolitan areas thev serve. As helicopters become more essential to transporta-

tion and commerce, all-weather capability becomes a necessity. 7

In recognition of this, the FAA is condu~ting an evaluation of helicopter naviga-
tion systems that will be used now and into the next century. Consideration of
costs, accuracy, availability, dependability, and compatabiiitv with the National
Airspace Svstem (NAS) will enter into evaluation of all navigation systems that may
meet user needs. Loran-C meets many of the requirements of helicopter operators
because of i1ts cost, weight, accuracy, availability, and its ability to provide
RNAV to user defined waypoints.




LORAN-C OPERATION,

Loran-C is a hyperbolic radionavigation system created for maritime use, and 1is

finding increased popularity among helicopter operators in remote areas. This
system 1is based on low-frequency (100 kilohertz) transmission of timed, coded
pulses with strictly controlled parameters. Transmitting stations at specific

locations provide coverage of selected areas of the Northern Hemisphere.

Regional coverage 1is provided by groups of three to six transmitting scatioas
called chains. Chains are distinguished by their group repetition interval
(GRI), which corresponds to the period of the transmission sequence of all stations
in the chaia.

Each chain consists of a designated master station and several secondary stations.
A transmission period begins when the master station sends a set of pulses, coded
to identify it as a master. Each secondary then transmits its signal (figure 1) in
turn, after a precisely controlled time delay.

Receiver position is derived by measuring time differences. Once the master signal
is received, a clock is started and runs until the secondary signal 1s received.
This measured time difference corresponds to the distance of the receiver from the
transmitter and lies along a line of position (LOP) of constant time differences.
Measured time differences from a second transmitter provide a second LOP; the
intersection of these lines is the Loran-C position.

Coverage of the Northeast Corridor is provided by the Northeast U.S. Chain,
GRI 9960 (figure 2). This chain consists of a master station in Seneca, New York,
with secondaries 1in Caribou, Maine; Nantucket, Massachussetts; Carolina Beach,
North Carolina; and Dana, Indiana.

AREA CALIBRATION. Area calibration 1s a feature of some Loran-C receivers

(including the TDL-711 used in thiy test) which allows for correction of local
bias 1n received Loran signals so that receiver calculated position coincides
with surveyed position. The correction may be necessary due to propagation
characteristics of Loran-C signals which vary over different types of terrain.
The effect of these variations 1is to change the receiver-measured time difference
(TD), which in turn causes a shift in calculated position. Because the TD to
latitude/longitude (lat/long) model used in the receiver is optimized to certain
propagation characteristics, variation of these characteristics causes a difference
between surveyed lat/long and receiver calculated lat/long.

Correction is accomplished by entering a lat/long and corresponding TD's into the
receiver. TD's may be measured by the receiver at the time of calibration and
entered with the known lat/long at that point, or previously measured sets of
lat/long and TD's which correspond to one geographical point may be input. With
either method, the receiver computes the difference between expected TD's (based on
the known lat/long entered) and the calibration (input) TD's. This bias is then
used as a correction factor which is added to all succeeding TD measurements

before lat/long computation. The position solution is, therefore, optimized to

local propagation characteristics, but possibly degraded in other geographical

areas. Area calibrated mode is not annunciated to the operator by the TDL-711.
2
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RNAV NONPRECISION APPROACH ACCURACY REQUIREMENTS. Criteria for navigation

accuracies are set forth in AC 90-45A, which describes navigation system errors in
terms of total system crosstrack (TSCT), navigation crosstrack (NCT), flight
technical error (FTE), and along-track error (ATE). Each is defined below, and
their relationship is depicted in figure 3.

1. TSCT: This error is defined as the actual aircraft deviation perpendicular to
the desired course in the horizontal reference plane.

2. NCT: This error is defined as the composite error perpendicular to the desired
course in the horizontal reference plane, contcibuted by all navigation equipment
including sensors, receivers, computers, displays, calibration scaling, or inter-
connecting errors peculiar to the system being evaluated.

3. FTE: This error is defined as the indicated aircraft deviation perpendicular to
the desired course in the horizontal reference plane.

4. ATE: This error is defined as the actual aircraft deviation from the indicated
position along the flightpath. ATE results from the total error contributions of
the airborne and ground equipment only., No FTE is used in determining ATE.

As shown in fiyure 3, three system error terms combine 1n the direction perpen-
dicular to the desired track. Statistically, NCT and FTE aie combined in a root
sum ot squares (rss) manner to produce TSCT. The mathematical expression 1is:

TSCT = \/Ncr2 + FTE2

Algebraic manipulation vields an expression by which NCT may be derived when FTE
and TSCT are specified:

NeT = \/Tscr? - FrE?

For the approach phase of flight, AC 90-45A specifies that TSCT must be less than
0.6 nautical mile (nmi), and FTE is budgeted at 0.5 nmi. The maximum allowable
NCT, at the 95 percent confidence level computed in the rss manner described above,
is 0.33 nmi; ATE is required to be less than 0.3 nmi.

DATA COLLECTION

Collection of data was organized into three phases. Development of a portable
precision tracking system with accuracy in the ratio of 10:1 to the allowable
error range of 0.0 to 0.3 nmi was required, along with a geographical survey of
each site to obtain a position reference of sufficient quality to support the
tracking system. Finally, RNAV approaches were flown in an instrumented CH-53
helicopter to collect navigation system accuracy data. The helicopter carried two
instrumented TDL-711 Loran-C receivers manufactured by Teledvne Systems, Inc. and
dual NCS-31 RNAV units manufactured by Collins Avionics. Euch NCS-31 had inputs
provided by a Collins VIR-30A very high frequency omnidirectional radio range (VOR)
receiver and a Collins distance measuring equipment (DME)-40 receiver.

A total of six airports were selected for the flight test: Salisbury-Wicomico
Airport, Salisbury, Maryland; Greater Wilmington Airport, Wilmington, Delaware;




Mercer County Airport, Trenton, New Jersey; Queen City Municipal Airport,
Allentown, Pennsylvania; Rentschler Field, Hartford, Connecticut; and the FAA
Technical Center, Atlantic City Airport, New Jersey. Approaches were flown at each
airport while navigation system and aircraft parameters were recorded in digital
format by an on-board computer.

PORTABLE TRACKING SYSTEM.

The positioning standard used to measure navigation system performance was a
combination of hardware and software functions. A Motorola Mini Ranger IV provided
raw distance measurements to each of four beacons located on the designated
airfields. These data became an input to a Kalman filter post-processing routine
that produced a lat/long position. Tracking system accuracy was previously
determined by comparison of post-processed position with the Technical Center's
precision tracking Nike-Hercules instrumentation radar. The 95 percent contidence
level measured during accuracy tests at the Atlantic City Airport (ACY) was
6] .4 meters.

The four beacons were placed at surveyed points on the airfield so as to maximize
distance between them while maintaining a line-of-sight signal path to the heli-
copter at all points along the approach path.

A Kalman filter computer program ieveloped at the Technical Center provided a
linear mean square estimate of position and velocity vectors. It employed a
dynamic system model of helicopter motion, a measurement model which related
recorded data to states of the dynamic system model, a method of determining
initial state vectors, and statistical knowledge of random processes associated
with each model. A discussion of the model used for the Kalman filter is presented
in appendix A. Accuracy of the tracking system is addressed in appendix B.

SITE SURVEY,

A survey was conducted at each test site to develop a set of reference coordinates
required for the Mini Ranger portable tracking system. Distances from each of the
beacon positions to the reference position (at known lat/long) were required for
Kalman filter processing.

Absolute position fixes in WGS-72 coordinates were obtained with the JMR-4 Sea-Land
Surveyor, manufactured by JMR Instruments. Manufacturer specified accuracy of the
instrument is 5 meters. Relative distance measurements between beacon locations
were made with a Hewlett-Packard laser rangefinder (HP 3810 Total Station), which
measures distances accurately to within 1 1inch. Trigonometric techniques were
employed to determine relative distances between beacons in north-east-up (NEU)
coordinates and one reference point in WGS-72 coordinates. This references point
was then used as an origin for the tracking system which determined helicopter
position 1in NEU coordinates. Lat/long (in WGS-72) was then derived from the
reference position and the aircraft NEU position.

TEST FLIGHTS.
Flight tests were conducted at each of the subject airports under Instrument Flight

Rules (IFR). The paths flown were approved public or private use RNAV approaches.
In most cases the flights took place in visual meteorological conditions (VMC).




However, a screen was placed in front of the pilot's windshield to simulate
instrument meteorological conditions (IMC). The safety pilot and crew kept watch
for VFR traffic.

The flight crew consisted of four members: two pilots and two project personnel.
The pilot tlew the helicopter according to the steering information provided on his

horizontal situation indicator (HSI). The copilot's job was to monitor aircraft
performance, watch for traffic, and communciate with air traffic control (ATC)
personnel, Project team members operated and monitored the Loran units, Mini
Ranger, and data collection equipment. Duties were divided into those related to

safe operation of the aircraft, the responsibility of the pilots, and directing the
flight to achieve project goals, which was accomplished by the project crew.

A minimum of |5 approaches were flown at each airport, using steering information
provided by each of three navigation configurations: the NCS-31 RNAV, Loran-C with
an area calibration accomplished at that airport, and Loran-C with a calibration
accomplished at the Technical Center. At least five approaches were flown in each
configuration. The primary triad, in most cases, was made up of Seneca, Nantucket,
and Carolina Beach. However, when other triads were available they were monitored
during the NCS-31 RNAV approaches. When Loran steering was in use it was providea
bv a calibrated receiver (either local or ACY calibration), and the second TDL-71!
wias operated in the uncalibrated mode. Performance of both Loran units was com-
parable when they were configured similarly. Accuracy differences are, therefore,
attributed to triad and calibration mode selection. Unly one calibration was used
for each configuration, i.e., receivers were not recalibrated for each flight, but
used the same calibration parameters.

DATA ANALYSIS

Data analysis consisted of statistical and graphical characterization of error
“erms associated with each navigation system. Statistical data reduction was
accomplished on a per second basis by summing the various error terms for each
data sample over an entire approach, and expressing each as a mean and standard
deviat ion, Using the tracking system as a reference, the following Loran error
terms were computed for each data sample: TSCT, navigation northing (lat) error,
navigation easting (long) error, NCT, and ATE. Raw sensor errors for VOR/DME were
computed in the north, east, crosstrack, and along-track directions. Data were
also plotted on a CALCOMP 4051 plotter to provide a clearer view of the patterns
and trends of the error terms.

The first step in post~processing the data was to calculate actual aircraft
position at each data point using the Kalman filter and the raw ranges measured in
the aircraft during flight, Filter output was in NEU coordinates, converted to
lat/long by referencing the NEU coordinate system to a known lat/long in WGS-72
coordinates. All calculations (except FTE) were then carried out in WGS-72
lat/long. TSCT was determined by computing the desired course from wavpoint
coordinates and calculating aircraft deviation perpendicular to this course.
Navigation crosstrack and along~track terms were computed by taking differences in
lat/long between each Loran computed position and the actual position, These
differences were rotated into the direction of the desired course to determine NCT
and ATE for each approach. VOR/DME sensor errors were computed similarly, after




first converting distance and angle measurement from known very high frequency
omnidirectional radio range tactical air navigation aid (VORTAC) position to
lat/long.

Once the ecrror terms were expressed as a mean and standard deviation, two-
dimensional (2D) mean and 2 distance root mean squared (drms) values were
calculated. The 2D mean 1s the vector sum of NCT and ATE; the 2 drms is the radius
of a circle containing 95 percent of all possible fixes that can be obtained with a
system at any one place. The mathematical expressions used were:

2D mean =‘\/(;;an NCT)2 + (mean ATE)Z

2 drms 2 x‘V/(&CT standard deviation)? + (ATE standard deviation)2

Then, total navigation system errors were calculated using:

Navigation

system = 2D mean + 2 drms
error
to provide a 95 percent confidence interval. Ninetv-five percent limits were also

calculated for TSCT and FTE using:

TSCT = Mean TSCT + 2o, and
FTE = Mean FTE + 20, respectively,
Since the pilots' HSL needle deflection indicates deviation from the desired

course and is directlv influenced by pilot actions, it provides a direct measure of
FTE. The needle deflection was recorded in microamps and converted to nmi, based
on Loran constant course width of +1.26 nmi.

RESULTS

Accuracv results from each airport are presented in tables 1 through 28. Results
show mean and 20 crosstrack, along-track, northing (lat), and easting (long)
errors, with the numher of samples for each data run (approach) under each flight
test condition. Results are summarized in table 29, which presents 2D navigation
system errors for each airport under each test condition, A Loran TSCT summary
appears in table 30, which presents the mean plus 20 TSCT at each airport under
each test condition. Note that onlv calibrated receiver TSCT is available as it
was the only receiver configured to present guidance information to the pilot.

The sign convention adopted is that a positive NCT error is to the right of the
desired course, FTE, presented as a single number (mean plus 2¢) in table 31 for
each airport in the f{light test, is positive for a fly right command, indicating
that the pilot is left of course,




The abbreviations MXY and MYZ appearing in the tables and text indicate Loran
triads in the GRI 9960 chain. M designates the master station, Seneca. The
secondaries X, Y, and Z correspond to the stations in Nantucket, Carolina Beach,
and Dana, respectively. The designations indicate that these triads were in use
for navigation, and only Loran solutions computed using a particular triad appear
in the data associated with it,.

Representative plots of error terms, descent profiles, and approach plates for each
airport are presented in figures 4 through 15. SNR plots are presented in figures
23 through 28 for each available Loran signal at each airport.

The high degree of consistency from one run to another in the navigation system
errors and SNR's eliminate the need for detailed graphical analysis of each.
Plots are presented to more effectively show the relationships of the various error
terms to each other.

SALISBURY-WICOMICO COUNTY AIRPORT, SALISBURY, MARYLAND.

Statistics for the Salisbury approaches are presented in tables 1 through 5. They
show 2D mean Loran errors using the MXY triad, and VOR/DME sensor errors all on
the order of 0.2 nmi; 2D mean errors involved in use of the MYZ triad are on the
order of 0.5 nmi, Very little variation is shown on different runs or with
different Loran calibrations.

The effect of area calibration is seen in tables 1 through 3. The 2D mean error
exhibits small variations, but the components change with the calibration. The
uncalibrated receiver has a greater component in the crosstrack direction (about
0.2 nmi) than in the along-track direction (0.l14 nmi). The ACY calibration
improves the crosstrack magnitude, but changes the sign of the error. It has
little effect on along-track error, resulting in an overall improvement in the 2D
mean. The local calibration increases the crosstrack slightly, but virtually
eliminates the along-track error; 2D mean is about the same with either calibration
applied.

Use of the MYZ triad caused 2D mean errors on the order of 0.5 ami, as shown in
table 4. The components are approximately 0.4 nmi mean crosstrack and 0.3 nmi
mean in the along-track direction.

VOR/DME 2D mean sensor errors (table 5) are virtually the same as the uncalibrated
Loran. Sensor error in the crosstrack direction is similar to NCT with the
opposite sign, while error in the direction of the track 1is slightly better.
Characteristically, the 2 drms values for VOR/DME are an order of magnitude greater
than those for Loran.

Representative plots of a Salisbury approach appear in figure 4. The crosstrack
plot shows a changing bias for all three receivers, which is actually an angular
error characteristic of the tracking system. The causes and effects of these

characteristics on position determination accuracy are described in appendix C.
The Salisbury approach plate is presented in figure 5.

GREATER WILMINGTON AIRPORT, WILMINGTON, DELAWARE.

Statistical data for the Wilmington approaches are presented in tables 6
through 10. The uncalibrated Loran shows 2D mean errors of about 0.25 nmi,
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predominantly in the along-track direction, Application of the local calibration |
(table 6) causes sign reversals and magnitude reductions in both crosstrack and ‘
along-track error terms, resulting in total mean error of under 0.1 nmi. The ACY
calibration (table 7) shows slightly increased magnitudes in both directions, with
resultant 2D mean still under 0.15 nmi, The MYZ triad data (table 9) show along-
track errors increased in magnitude by about 0.3 nmi over the MXY triad data, and a
large 2 drms in table 9, run 5, due to low Dana SNR. Otherwise, MXY and MYZ 2 drms
values are comparable.

VOR/DME mean sensor errors presented in table 10 were under 0.1 nmi, with the
predominant component in the crosstrack direction. As with Salisbury data, 2 drms

values are much greater for VOR/DME than for Loran.

The Wilmington approach used 1s presented in figure 6, and plots of a representa-
tive approach are presented in figure 7.

MERCER COUNTY AIRPORT, TRENTON, NEW JERSEY.

Statistics characterizing errors measured during the Trenton approaches arce
presented in tables 11 through 14. The uncalibrated receiver (table 13) exhibits
errors on the order of 0.35 nmi for 2D mean, composed of 0.3 nmi crosstrack and
along-track under 0.1 nmi. Entering the ACY calibration (table 12) reduces the
' crosstrack error to about 0.05 nmi and changes ATE by about 0.15 nmi for a 2D mean
position error of approximately 0.09 nmi. The local calibration further reduces
errors to well under 0.1 nmi with symmetrical CTE and ATE, as shown in table 11.

Table 14 shows VOR/DME 2D mean sensor errors under 0.l nmi, with a slightly
greater component in the crosstrack than the along-track direction. Two drms
values are greater than those at Salisbury and Wilmington because at these two
airports the RNAV approaches utilized on field VORTAC's, but the Mercer County
approach used a VORTAC 5 miles from the field.

The Trenton approach plate is presented in figure 8, representative plots are shown
in figure 9.

QUEEN CITY MUNICIPAL AIRPORT, ALLENTOWN, PENNSYLVANIA.

Allentown statistics are presented in tables 15 through 18. \Uncalibrated Loran 2D
means (table 17) were approximately U.17 nmi, almost entirely in the along-track
direction. The ACY calibration (table 16) degraded the position accuracy to about
0.26 nmi (2D mean). The local calibration (table 15) improved mean accuracy to
0.07 nmi, almost totally in the along-track direction,

Allentown was the only test site at which the ACY calibration made the solution
noticeably worse than the uncalibrated solution. 1t is also the only site at which
all three Loran signals traveled primarilv overland to reach the site. Loran
signal propagation characteristics may cause variations in position determination,
based on varving surface conductivity along the propagation path., The reasons for
this are explained in the section on "Comparison of Results."

VOR/DME results (table 18) show 2D means generally under 0.15 nmi, with one
entry of 0.2 nmi. The crosstrack component shows much greater variation than the
along-track. Results were slightly better than the uncalibrated Loran — but not




as good or as repeatable as the Loran with local calibration. Two drms values
were large because the VORTAC used for the approach is 7 miles from the field.
The 2 drms entry for run &4 is extremely large and its source (ground or airborne)
cannot be identified. However, the 2D mean 1s not excessively large.

The approach plate for Allentown 1is shown 1n figure 10, representative plots ol
Allentown data appear in figure 11. A plot of VOR/DML sensor errors could not be

obtained due to in-flight failure of the pilot's navigation switching system.
P g g sy

RENTSCHLER F1ELD, EAST HARTFORD, CONNECTICUT.

Hartford results are presented in tables 19 through 1i. The local calibration
(table 19) produced 2D mean errors under 0.l nmi, equally in the crosstrack and
along-track directions. The uncalibrated receiver (table 20) produced crosstrack
errors of almost 0.2 nmi, small along-track errors, and a 2D mean on the order of
3 0.2 nmi. VOR/DME errors in table 21 show crosstrack near 0.3 nmi and along-track
of about 0.15 nmi, for a 2D mean of up to 0.33 nmi. Data on the ACY calibration
was unavailable because a change made in Mini Ranger beacon geometry to improve
signal reception caused excessive geometrical dilution of precision of the tracking
system.

‘ Figure 12 shows the approach, figure 13 shows representative plots of the Hartford
data.

FAA TECHNICAL CENTER, ATLANTIC CITY AIRPORT, NEW JERSEY.

Statistics on Technical Center approaches are presented in tables 22 through 28.
The uncalibrated receiver (table 23) exhibited an overall error of approximately
0.35 nmi, comprised of a 0.3 nmi crosstrack component aud a 0.14 nmi along-track
component. The local area calibration reduced 2D mean error to 0.04 nmi (as shown
in table 22).

VOR/DME exhibited errors on the order of 0.U4 nmi, with symmetrical components
(table 24).

The ACY approach 1is shown in figure 14, and representative plots in figure 30, |

COMPARISON OF RESULTS. i

Results of the flight test comparing accuracies at each airport with the others are
presented in tables 29 and 30. The total 2D navigation system errors are presented
in table 29. This value is shown at each airport for Loran with the local cali- :
bration applied, with the ACY calibration applied, in the uncalibrated mode, and |
VOR/DME sensor error for comparison purposes. Also presented are 2D navigation
system errors at each airport, with the calibration from the subject airport flown
at ACY, and the distance between the subject airport and ACY. Table 30 shows Loran
TSCT at each airport with local and ACY calibrations, and the subject calibration
flown at ACY. These 95 percent confidence levels provide the comparison for
AC 90-45A compliance. A value of 0.5 nmi was nsed for FTE, as set forth in
AC 90-45A, and combined in an rss manner to produce the values of TSCT presented.

Table 29 shows that the calibrated receiver at all test sites met AC 90-45A
approach accuracy requirements for all directions of flight, regardless of whether




the calibration was local or from ACY. The uncalibrated receiver met these
requirements at Allentown and Wilmington only. VOR/DME results, presented for
comparison, ranged from 0.27 nmi (Wilmington) to 0.84 nmi (Allentown). It must be
stressed, however, that these are raw sensor errors, without the filtering and
smoothing carried out in the RNAV computer. These errors would be encountered when
making a VOR or VOR/DME approach. But the RNAV approach, using a computer and
filtering techniques, allows better accuracy due to its inherently more precise
method of position determination.

As shown 1in table 29, Loran-C in the uncalibrated mode exhibited fairly uniform
accuracies throughout the flight test area, but with some minor variations.
The most likelv explanation lies in the characteristics of the medium along the
propagation path,

Surface conductivities underlying the propagation path affect transmission of
electromagnetic radiation. This effect is accounted for in the Loran receiver by
modeling the earth conductivity in the region between the transmitter and receiver,
and adjusting the position (lat/long) grid accordingly. The factor which affects
propagation the most is the ratio of the transmission path overland to that
overwater, due to the great difference in conductivity.

Figure 16 shows the test airports and the Loran transmitters primarily used in the
flight test. The length of the propagation path and the percentage of it which is
overwater are entered in table 29. These data show that the Seneca and Carolina
Beach signals travel primarily overland to reach each of the test airports. The
Nantucket signal travels primarily overwater, but nearly two-thirds of its path to
Allentown lies overland.

It is this propagation effect which most likely explains the results in Allentown
where the uncalibrated receiver performed best. Results at other airports vary,
generally, with percentages of overwater portions of propagation paths.

Figures |7 through 22 show variation of crosstrack and along-track mean errors with
heading at each subject airport with each of the three Loran configurations:
uncalibrated, with an ACY calibration, and with a local calibration. These f{igures
show directly the effects of area calibration in reducing the magnitude of the
error and changing its phase. They are also useful in estimating crosstrack and
along-track errors which would be encountered in various directions of flight.

Loran TSCT, presented in table 30, is equal to or better than 0.60 nmi within a
95 percent confidence interval with either calibration applied at all airports.
All entries, therefore, met AC 90-45A accuracy requirements for nonprecision
approaches. FTE (table 31} was always less than 0.20 nmi, also meeting AC 90-45A
requirements at the 95 percent confidence level, These numbers should not be
compared directly with 2D system error terms because TSCT does not include, by
definition, any along-track error.

AREA CALIBRATION COMPARATIVE RESULTS.

The portability of an area calibration may be determined by examining differences
between accuracies measured using a local calibration and one from another
location. Results from individual airports show that the ACY calibration usually
improved or did not substantially affect accuracy when compared to the uncalibrated




receiver. Only Allentown showed noticeably degraded accuracy when the calibration
was applied.

Area calibration from subject airports, when flown at the Technical Center,
improved accuracies over the uncalibrated mode in three of four cases, and the
other decreased only 0.04 nmi. Results in table 29 show accuracies involved in the
use of the Salisbury, Trenton, Allentown, and Hartford calibrations.

The Salisbury calibration produced the best results when flown at ACY. However,
the ACY calibration did not produce such good results in Salisbury. Since both
calibrations appear to work equally well at both airports, the area calibration
apparently does not correct for propagation disturbance in the Salisbury area.
This is probably due to low SNR from the Nantucket signal (shown in figure 23).

Table 29 also shows that the area calibration gets noticeably worse as distance
north of ACY is increased. Salisbury, which 1is south of ACY, and Trenton cali-
brations produced errors under 0.17 nmi when flown at ACY. But Allentown and
Hart ford calibratiens produced 0.34 and 0.43 nmi errors, respectively. The ACY
calibration flown at these sites generally gets progressively worse moving away
from ACY, and appears to depend directly on distance from the calibration site.

At all subject airports, the local area calibration was at least as effective as
the ACY calibration flown at that airport. At Trenton, Wilmington, and Salisbury,
the result> were nearly the same for either calibration. At Allentown the improve-
ment is much more pronounced, due to propagation characteristics previously
described.

Data on area calibration of the Seneca, Carolina Beach, Dana triad were not
available. 1t was expected that a calibration would substantially reduce errors
derived for use of this triad. However, the extent of the improvement cannot be
conclusively determined without further testing.

LORAN-C SIGNAL-TO-NOISE RATIO RESULTS.

|

Plots of individual signal-to-noise ratio (SNR) in decibels (dB) are presented in
figures 23 through 28. These plots show a correlation between received signal
strength and distance from the transmitter, which should be ecxpected. The
Salisbury plots (figure 23) show relatively strongetr signals from Seneca and
Carolina Beach, The Nantucket sipnal varies between -5 and -10 dB and is at the
lower limit of the receiver's sensitivity. It can, therefore, affect position
determination accuracy, which depends on an accurate tracking of the third oscil-
lation of the Loran signal waveform. The Dana signal shows lower and more variant
SNR, frequently dropping below -10 dB.

In Wilmington (figure 24) signal strengths improve because the stations, except
for Carolina Beach, are closer. Dana is still available at Wilmington but not at
the airports further north and east.

ACY SNR's (figure 25) show improving Seneca and Nautucket signals. Moving toward
the north produces decreasing Carolina Beach signal and 1increases Seneca and
Nantucket SNR's. The trend 1is apparent in plots from Trenton, Allentown, and
Hart ford (figures 26, 27, and 28, respectively).
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The TDL-711 receiver used in this flight test will operate using signals in the
range of -5 to -10 dB. Operation in this range may, however, cause degradation of
position accuracy. The maximum SNR that can be computed by the receiver before
signal limiting is 5 dB, The Caribou signal was not received at any of the subject
airports.

SUMMARY OF RESULTS.

1. Loran-C in area calibrated mode met AC 90-45A nonprecision approach require-
ments for navigation crosstrack, along-track, and TSCT at all subject airports.
Application of either the local area calibration or the ACY calibration (where data
were available) produced adequate accuracy for compliance.

2. Loran-C in uncalibrated mode met the requirements of AC 90-45A at two of the
six test sites: Greater Wilmington and Queen City Municipal (Allentown).

3. FTE involved in use ot Loran-C for nonprecision approaches was alwavs less
than 0.2 nmi at the Y5 percent contidence level, meeting the limit established by
AC 90-45A.

4, Loran—C signal strengths were adequate tor navigation at all test airports
using the Seneca, Nantucket, Carolina Beach triad. The Seneca, Carolina Beach,
Dana triad is available at Salisbury and Wilmington. Signal strength was dependent
upon signal propagation distance, and no anomalies were observed.

S. Local area calibration improved accuracies over the uncalibrated mode at all
the subject airports,

6. The ACY calibration improved accuracy over the uncalibrated receiver at all
airports except Allentown. This was attributed to terrain differences affecting
propagation of Loran signals at the different alrports.

7. Area calibrations i{rom the test sites flown at Atlantic City produced results
dependent upon distance trom the calibration area., Calibrations made fairly close
to ACY produced good results, while calibrations made further away showed decreased
accuracy, becoming worse than the uncalibrated receiver and exceeding AC 90-45A
limits.

8. Loran TSCT in all cases was at or below the required 0.6 nmi, and both FTE and
navigation crosstrack were at or below the limits established by AC 90-45A.

CONCLUSTONS

1. Loran-C in the area calibrated mode met Advisory Circular (AC) 90-45A non-
precision approach navigation crosstrack, alomg-track, flight technical error
(FTE), and total system crosstrack (TSCI) at all subject airports in the Northeast
Corridor, when using the Seneca, Nantucket, Carolina Beach triad of the group
repetion interval (GRI) 9960 chain.

2. FTFE associated with use of Loran-C is below the 0.5 nautical mile (nmi) limit
established bv AC 90-45A.

12
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3. No Loran-C signal propagation anomalivs were observed at any ot the subject
airports,

4. The Seneca, Nantucket, Carolina Beach triad (MXY) was available at all airports
tested. The Dana signal was available in the western portion of the flignt test
area. Use of the Seneca, Carolina Beach, Dana triad (MYZ) produced much greater
errors than the MXY triad. It is anticipated that an area calibration would reduce
these errors. The MXY triad should be used primarily throughout the flight-test
area because the Dana signal, even when available, has marpinal strength f{or
accurate tracking.

5. The area calibration is effective within a regilonal area, the extent ol which
cannot be determined from the amount of testing done. Accuracy decreases as
distance from the calibration point increases. Also, the calibration may not be
effective in an area which may be nearby but has largely different propagation
characteristics.
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Alrport

Salisbury
Wilmington
Trenton
Allentown
Hartford
Atlantic City

TABLE 30. LORAN TSCT SUMMARY

Sub Ject

Local Calibrated ACY Calibrated Calibrated

Sub ject Alrport Subject Airport ACY

__-Eii_tnmi) _rss (nmi) _Tss (nmi)
Q.60 0.00 0.52
0.5?2 0.54 -
0.52 0.52 0.52
0,51 0.57 0.60
.56 -- 0.66
0.51 -- -

TABLE 31, LORAN FTE AT SURJECT ALRPORTS

Airport

Salisbury
Wilmington
Trenton
Allentown
Hart ford
Atlantic citv

Loran
rss FTE (nmi)
All Calibrations

-0.136
0.32
0.23
.36

-0.31

-0.31
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LEGEND:

® TRANSMITTING
© MONITOR
@& MONITOR (AUTOMATED)

FIGURE 2.

NORTHEAST U.S.

30

U4

Approximate Limits of Coverage --- 1:3 SNR and
% NM Fix Accuracy {(95% 2dRMS)

SENECA

CARIBOU
NANTUCKET
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LORAN-C
INDICATED

/%/ POSITION

DESIRED TRACK

]
o
]

I

WAYPOINT 1

chl

ACTUAL
AIRCRAFT POSITION

Qx ACTUAL TRACK

TSCT = TOTAL SYSTEM CROSS TRACK ERROR

ATE = AIRBORNE EQUIPMENT ALONG TRACK ERROR
NCT = AIRBORNE EQUIPMENT CROSS TRACK ERROR
FTE = FLIGHT TECHNICAL ERROR

82-76-3

FIGURE 3. NAVIGATION SYSTEM ERROR T:ZRMS
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SALISBURY, MD ERROR PLOTS

- STARY TIME - 9:23:26
= STOP TIME - 9:27:44
L [l
z
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wno
hkfpﬁ?ﬂ_nfﬁd_“ﬁav_. —
e
5 e "
o -
o g
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o
=9
P
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UNCALIBRATED LONAN
X
< 7| VOR/OME WMTV
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y e TN e L e e e !
= CALIBRATED LORAN
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VOR/DME !
i
- " “
Z- | 3 q/,f‘ . !
. [ o M
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— -+-
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UNCALIBRATED LORAN

—
Jo

COPRCLSGN MY mp aA oI, A CERTE
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82-76~4

FIGURE 4. SALTSBURY, REPRESENTATIVE PLOT
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SALISBURY, MD.

WICOMICO CO
COPTER LORAN C RNAV Rwy 23
SALISBURY Redio (AAS) [23.6 GRI 9960
VAR B°wW apt e1ov 51°
B ®2ar
®a40'

EXPERIMENTAL

400'e
578'e
224'e
N38 223 W73 159
0476’
Map WALTS
' 1
‘ J045%=  «=-225°
. . NM
: S z000" ¢
X )
t
T02E 50° TN LX) i “,._______l
APT 81°
wmissED approack: Climbing LEFT turn to 2000’ on track of 090° to
W/P ILLAR/INT and hold.
STRAIGNT-IN LANDING RWY 23 { T
MDA 500 (450")
<] T
172 '
82-76-5

FI1GURE 9. SALTSBURY APPROACH
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from W/P MAP

WILMINGTON, DEL.
PHIL ADELPHIA Approach (R} Sea tiret apch chart for treq GREATER WILMINGTON
COPTER LORAN C RNAV Rwy 9
WILWINGTON Tower 126.0 GRI 9960
Qround |2| .7
VAR 9°W Apt Etev 80'
EXPERIMENTAL
—— MAP
| SNM N3o s07 wrs 374 210
from W/P MAP
]
i »360 A208
} 658e 6 O N 1690 \ 50 430A
|

087° = =267° 087°

[ Min =287 2000 5

(1920")

L
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08‘[‘ o Cecil !

: 190
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3ste 261° N39 38.3 W75 81
" ~
HADIN -6
*336’ |nss 34.9 W78 Q
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CissY 6ONM AP

from W/P MAP

(1920) 7 N

I 5NM
from W/P MAP

Rwy W/P
Meight 30"

ittt

TOZE 80'

and hold.

APT.
MISSED APPROACH: Climbing RIGHT turn to 2000’ via 186° track to W/P HADIN

~———
80

STRAIGHT-IN LANDING RWY 9

MDA 420' (340")

172

FIGURE 6.
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WILMINGTON, DE ERROR PLOTS
— STARY TIME - 13:47:40
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FIGURE 7. WILMINGTON, REPRESENTATIVE PLOT
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TRENTON, N.J.
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TRENTON, NJ ERROR PLOTS
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ALLENTOWN,PA.
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HARYFORD ERROR PLOT
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ATLANTIC CITY, N.J.
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ATLANTIC CITY ERROR PLOT
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ATLANTIC CITY.LOCAL CALIDRATION:CRROR VARIATION WITH NEADING
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HARTFORD LOCAL CALIBRATION -ERROR VARIATION Witk HMEADING
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APPENDIX A

PORTABLE TRACKING SYSTEM

The portable tracking system consists of two major elements: the Portable Ranging
System (PRS) and the postprocessing software {(a Kalman filter) which reconstructs
the approach trajectory. The operation of the PRS and the underlying theory of the
postflight trajectory estimation software are discussed in the following sections.

PORTABLE RANGING SYSTEM

OPERATIONAL DESCRIPTION.

The Portable Ranging System is an off-the-shelf item manufactured by Motorola,
Inc., known as the Mini Ranger IIl System. This system consists of a receiver-
transmitter unit with antenna, a range console, and four reference stations with
antennas. These units operate on the basic principle of pulsed radar ranging
systems. The receiver-transmitter interrogates and waits for replies from each
reference station, while the range console times the transmission delay. The range

& console converts the measured time delay to a range measurement, which is available
in a parallel binary coded decimal (BCD) format for use by peripheral equipment.
Range measurement accuracy is claimed to be approximately 3 meters in a static
situation, Dynamic accuracy will be discussed in appendix B. The Mini Ranger
included a four-code commutation option permitting the range console to interro-
gate four reference stations, in groups of two, on alternate measurement cycles.
The original commutation board purchased from Motorola yielded a range measurement
cycle time of 500 milliseconds. A four~code commutation board was designed and
fabricated at the Federal Aviation Administration (FAA) Technical Center to reduce
measurement cvcle time to 200 milliseconds.

During the measurement cycle, the receiver-transmitter sends pulse coded interroga-
tions to two reference stations. These transmissions are decoded by the inter-
rogated reference station, which responds with a coded transmission. When five
sequential interrogations produce five replies from a reference station, the
averaged time count is stored in data interface latches as the range to the
reference station. Range measurements are taken from a group of two reference
stations (codes 1 and 2) for 200 milliseconds, and then from the second group of
two reference stations (codes 3 and 4).

The four range measurements are recorded once every 200 milliseconds through the
interface in the aircraft system's coupler, and stored on a floppy disk or tape
recorder under control of the data collection software resident in the data
collection computer. The program tests the contents of the real~time clock for an
elapsed time of 200 wmilliseconds, thus determining start of a data collection
period. On four consecutive data collection periods, four sets of the system's
range data are collected and temporarily stored in a buffer memory. During the
fifth 200 mi.lisecond period, range data, current time from the airborne time code
generator, and all other airborne data are collected and stored in a buffer memory.
After the fifth data collection period is completed, data are permanently recorded

t and the data collection cvcle is reinitiated. 1Tt is important to note that range
measurement cycles and data collection cycles are asynchronous with each other,
Ramifications of this will be clarified in the next section.
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RANGE DATA PROCESSING

Printouts of the system's range measurements recorded during developmental flight
tests indicated that certain types of problems (exhibited as range errors) occur
which can be eliminated or reduced by postflight processing raw range measurements
prior to updating the Kalman filter. Intermittent multipath, loss of signal, wild
value range measurements, and time skew between the four range measurements are
typical problems which fall into this category.

Time skew between the range updates is a result of the asynchronous operation
between the four-code commutation board and the data collection interface. The
asynchronous range measurement and data collection cycles cause the updated range
measurements to occur randomly throughout the recorded data. Thus, it is necessary
to search backward in time for the most recent range measurements and extrapolate
each forward to the update time (airborne time during fifth collection period).
Range data are searched and time occurrence is estimated based on a nominal
200-millisecond spacing of recorded values. Range selection is accomplished by
comparing measured ranges to predicted ranges computed from extrapolated position
coordinated from the Kalman filter, and substituting the predicted range if

tolerances functionally dependent on ground speed are exceeded. Signal loss is
indicated by two 1identical sequential range measurements and 1is corrected by
inserting a predicted range, Finally, the range measurements are filtered by

an alpha-beta tracking filter which extrapolates the ranges forward in time
with a filtered range rate term. Beta is set to 0.7 to allow for adequate dynamic
response, Initial values for the range tracking filter are set to zero.

Intermittent multipath effects are reduced by this technique. Continued multipath
reception must be eliminated by choosing ground sites to provide unobstructed
line-of-sight along the approach path.

OPTIMAL TRAJECTORY ESTIMATION

KALMAN FILTER.

All measurements necessary to reconstruct approaching helicopter trajectories were
recorded by the Airborne Data Collection System. Eight measurements consisting of
four ranges to known ground reference positions, barometric pressure altitude,
barometric altitude rate, inertially derived track angle and ground speed, and
Kalman filter theory provide an optimal linear filtering technique for estimating
the state vectors (three-dimensional local cartesian position and velocity vectors)
from noisy measurements.

A Kalman filter was developed (in-house at the Technical Center) in the form
of postflight processing software, which provides a minimum error (linear mean
square) estimate of position and velocity vectors.

Development of a specific filter required a dynamic system model of helicopter
motion, a measurement model which related recorded data to states in the dynamic
system model, a method of determining initial state vectors, and statistical
knowledge of random processes associated with each model.
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DYNAMIC SYSTEM MODEL.

Treating motion in three uncoupled coordinate axes simplifies the discrete dynamic
system model. Final specification of the discrete dynamic system model requires a
measure (variance) or random accelerations.

A discrete system model consisting of double integrators driven by zero mean
uncorrelated random acceleration is assumed for each cartesian coordinate axis.
Assumed square root values of acceleration variances are 9.8 m/sec/sec in X, Y
axis and 12.1 m/sec/sec in the Z axes.

MEASUREMENT MODEL.

Choosing a right hand cartesian coordinate system with x and y axes aligned to
north-east directions and origin located at some fixed arbitrary point on the
earth's surface leads to a simplified measurement model. Surveyed geodetic
coordinates of four reference stations are converted to local coordinates (flat
earth approximations are employed) and entered into four simultaneous three-
dimensional nonlinear range equations. Formuiating derivatives of each range
equation with respect to state vectors yields linearized, position-dependent
weighting functions (direction cosines) for a model of range measurement.

Barometric pressure altitude 1is corrected for earth curvature and local pressure

datum, and modeled as a direct measurement of coordinate Z. Barometric pressure
altitude rate is modeled as a direct measurement of Z velocity. Inertial ground
speed is resolved into X and Y velocities by trigonometric functions (sine, cosine)
of 1inertial track angle. Each measurement is treated as containing unbiased,
uncorrelated additive noise. An assumed total error budget is presented in
table A-1.

INITIALIZATION.

Initial position vectors are estimated by solving four simultaneous range equations
in three unknowns (X, Y, Z). The over-determined (more equations than unknowns)
nonlinear set of equations are linearized and solved by Newton's iterative method,
employing pseudoinverses of direction cosine matrices recomputed at each iteration
step. Iteration begins with a guess of the initial position coordinates (X=0, Y=0,
Z=barometric altitude), and terminates upon completion of five iterations, or
sooner if a computed two-dimensional residual position error is less than 305
meters., Upon successful determination of an initial position vector, current
measured values of X, Y, Z velocities become initial velocity vector estimates.
Errors in initial state extimates are assumed to be unbiased and uncorrelated
random variables. An assumed error budget of initialization errors is presented in
table A~2.

SOFTWARE IMPLEMENTATION,

The previously described Kalman filter has been implemented in double precision
FORTRAN and imbedded in the data reduction program which provides the position
error data contained in this report. This implementation is a modified version of
a Kalman filter previously designed and tested at the Technical Center. The newer
version includes earth curvature correction and provides a flag which indicates an
initialization settling period is in effect. During the 2l-second settling time,
the position should not be used for error analysis.
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TABLE A-1. TOTAL MEASUREMENT ERROR BUDGET
Measurement lo
Range 5.0 m
Barometric Altitude 7.6m
Barometric Altitude Rate 3.0 m/s
X, Y Velocity 2.0 m/s

TABLE A-2. INITIAL ESTIMATE ERROR BUDGET

Estimate lo
Position (X or Y) 305 m
Position (Z) 7.6 m

Velocity 3.0 m/s




APPENDIX B

PORTABLE TRACKING SYSTEM PERFORMANCE TESTS

A series of flight tests was conducted at the Federal Aviation Administration (FAA)
Technical Center for the purpose of evaluating the accuracy performance of the
portable tracking system. Early tests consisted of low approaches to runways 4 and
13 at the Atlantic City Airport, with four reference stations placed at surveyed
points at opposite ends of each runway. The results indicated that the system
could provide adequate accuracy with additional hardware/software modifications.
These improvements were implemented and a second series of tests was designed to
simulate conditions typical of remote base operations, These tests were conducted
as full dress rehearsals of operational procedures, thus affording all personnel
the opportunity to become familiar with assigned responsibilities.

Several weeks before the flight tests the ground reference station sites were
surveved with JMR-4 satellite survev sets. Ground sites were chosen to create
baseline geometryv similar to situations encountered at remote airfields. Line-of-
sight is a very important consideration and will often dictate baseline geometry; a

desire to stay within boundaries of small airfields restricts baseline lengths to

a maximum of 2,500 meters in most cases. Two basic patterns were selected, a
diamond-shaped array and a "T'"-shaped array, with no baseline greater than
2,500 meters. A second series of approaches to runway 4 was flown with four

reference stations placed at satellite surveyed sites, which formed a diamond-
shaped configuration when viewed from the approach end of runway 4. The FAA
Technical Center's modified Nike-Hercules radar tracked the helicopter and recorded
its position at a 10 hertz (Hz) rate. Data were collected to perform a preliminary
performance evaluation of the developed system.

Nike-Hercules tracking tapes were processed on the FAA Technical Center's Honeywell
model 66/60 computer to transform azimuth, elevation, and range measurements at the
radar site into the local X, Y, and Z coordinates. Processed radar data were time
merged (+50 millisecond skew tolerance) on a PDP-11-34 Minicomputer (manufactured
by the Digital Equipment Corporation (DEC)) and stored on magnetic tape. Data from
merged data tapes were subsequently transtferred onto magnetic disks for faster
access by data analysis software.

Printouts of processed radar data, airborne data, and merged data were generated
and visually examined to determine start and stop times, which were entered into a
data analysis program. This program searched for the start time, initialized the
Kalman filter algorithm, processed range data, generated filtered estimates of
helicopter position, computed errors (differences) between filtered estimates and
position reference (Nike-Hercules tracking data), and accumulated number of
data points, sums of errors and sums of squared errors. When a stop time was
encountered the data analysis program printed means, standard deviations (sigma)
and root-mean-square (rms) values of the radial distance errors, and terminated
operation. All analysis software was written in FORTRAN using double precision
computations.

The numerical results (table B-1) of this analysis showed that the system was on
the verge of meeting the specified criteria of 6!.4 meters total radial distance
error (95 percent confidence level). This criteria 1is based on one-tenth of
the allowable area navigation (RNAV) system crosstrack error for nonprecision
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approaches (AC 90-45A). 1In fact, an empirical count of errors inside and outside
this bound show the system to be within 61.4 meters 98 percent of the time (2,062
out of 2,106).

These data were examined more closely, and it was determined that a settling
time of 20 iterations of the Kalman filter was necessary to eliminate transient
behavior due to initialization errors. Secondly, an earth curvature correction
model was incorporated into the Kalman filter software. A third change was the
adjustment by 6 meters of the position of one beacon for the second series of
approaches to runway 4. The data were reprocessed with these changes to the
analysis software with very satisfactory results. The numerical results presented
in table B~2 show that the system meets the 61.4 meter criteria by all measurements
considered. Finally, a count of the errors falling inside and outside the
61.4 meter circle shows 1,877 of 1,886 or 99.5 percent of errors fall inside the
specified limit.
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TABLE B-1. PORTABLE TRACKING SYSTEM RADIAL DISTANCE ERROR STATISTICS (METERS)

Runway 13 T Ground Site Geometry

Segment Samples Mean 20 2 rms Mean +2
1 162 22.3 20.0 48.8 42.3

2 169 25.6 49.0(3) 70.7(8) 74 .6(2)
3 216 26 .8 27.9 60.3 54.7
4 166 27.0 24 .1 59.2 51.1
5 93 22.3 14.2 46.8 36.5
Subtotal 806 25.1 30.6 60.0 55.7

Runway 4 Diamond Ground Site Geometry

Segment Samples Mean 20 2 rms Mean +2
6 111 29.7¢1) 18.2 62.1(2) 47,9
7 255 27.5 26.0 60.7 53.5
8 287 28.7 34.7 67.1(2)  3,4(2)
9 275 26.4 24.9 58.2 51.3
10 289 27.8  26.4 61.5¢2) 54,2
11 83 23.2  228.6 54.3 51.8
Subtotal 1300 27.5 27.7 61.6(2) 55,2
j Summary 2106 26.6  28.8  61.0 5.4

i , Worse Case 29.7(1) 49.0(3) 70.7(®) 78.7(5)
|

(I)Worse case mean

2)Fails 61.4 meter criterion
Worse case 2o
)WOrse case 2 rms
)WOrse case mean + worse case 2¢g
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TABLE B-2. MODIFIED KALMAN PORTABLE TRACKING SYSTEM RADIAL DISTANCE ERROR
STATISTICS (METERS)

Runway 13 T Ground Site Geometry

Segment Samples Mean 2a 2 rms Mean +2
1 142 22.1 13.6 46.3 35.7
2 149 21.4 11.0 44 .3 33 .4
3 196 26.8 28.4(2) 60.7(3) 552
4 146 27.9 23.4 60.5 51.3
5 73 22.3 15.4 47.2 37.7

Runway 4 Diamond Ground Site Geometry

Segment Samples Mean 2¢ 2 rms Mean +2 {
6 91 10.1 18.4 27.3 28.5
7 235 10.4 23.8 31.6 34.2
8 267 1z.1 21.7 32.5 33.8
9 255 9.4 17.0 25.3 26 .4
10 269 11.9 11.5 26.4 23.4
11 63 12.8 4.6 26.1 17 .4
Worse Case 27.9C1) 28.4(2) 60.7(3)  56.3(4)

(l)WOrse case
(Z)WOrse case 20
3)WOrse case 2 rms

1

Worse case mean + worse case 2¢




APPENDIX C

PORTABLE TRACKING SYSTEM TEST RESULTS

The tracking system employed for this flight test employed a Motorola Mini
Ranger III and a Kalman filter developed at the Federal Aviation Administration
(FAA) Technical Center. An explanation of error trends involved in use of this
tracking system is given here to facilitate analysis of graphical data presented in
this report.

A prominent effect noticed in some of the crosstrack plots is an angular one in
which crosstrack terms of each of the three navigation systems change as ranges to
the Mini Ranger beacons decrease. Srveral sources of this error exist, which may
act singly or in combination under the different conditions imposed at different
subject airports.

The bandwidth of the Kalman filter affects its settling time and could cause the
angular effect. 1In some beacon configurations and conditions the solution may not
settle completely until the aircraft has traveled several miles along the approach
path. While the optimal filter solution may not be obtained until several hundred
data samples are processed, the induced tracking system error is not great enough
to require discarding the data. Resultant position accuracy is still within the
prescribed error boundary.

Another effect arises from the geometry of the beacon positions and relative

aircraft position. At long distances the relatively short distance between
beacons provides less lateral discrimination of position than when the aircraft
moves closer. This results in relatively poorer determination of crosstrack

distances at longer ranges, while along-track determination remains basically
unaffected.

In addition to the second effect, errors 1in determination of relative beacon
coordinates may combine to produce an angular shift in aircraft position
determination. This will, however, also influence the along-track position error.
Of the three effects, this can potentially cause the greatest position errors.
Surveys of beacon positions witn accuracles better than 15 feet were made to
minimize the effect of this sour:e on position determination accuracy.

Another characteristic of the tracking system may appear as a ramping effect,
predominantly in the crosstrack direction. This may possibly be caused by an
alpha~beta filter extrapolation used in the Kalman filter program which provides
beacon range inputs for the Kalman filter. The alpha-beta tracker provides range
estimates to each beacon at 200-millisecond intervals from the measured, raw
asynchronous ranges measured during flight., The combination of the asynchronous
update and the alpha-beta implementation may cause the ramping effect noted in some
of the data.

Another characteristic of the tracking system results in fairly large excursions in
position determination error during extended beacon dropouts not requiring Kalman
filter reinitialization. During these dropouts, the alpha-beta tracker provides
range estimates for the unavailable beacon. Since the tracker is essentially
nonlinear, it should not be used during beacon dropouts of more than approximately
10 seconds duration, It provides degraded accuracy during periods where position
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determinat ion would otherwise be outside accepted limits. Excessive use of the
tracker-determined range to replace an inactive beacon range will result in
unacceptable degradation of performance. The Kalman filter must then be

reinitialized, with a resultant loss of 20 to 30 seconds of data encountered while
initialization is completed.

Resultant error from all sources has been measured at the FAA Technical Center
using an X-band precision tracking Nike-Hercules instrumentation radar as a

reference. Accuracy was determined to be within 61.4 meters, within a 95 percent
confidence interval,







