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SUMMARY

Verification tests are imposed by satellite system survivability specifi-

cations which require that an SGEMP current injection test be performed on each
Qualification Level Component Box to demonstrate SGEMP hardness.

This report presents the results of an extensive analytical and computa-
tional evaluation of the response of termination loads to cable SGEMP signals driven
in multiwire cable bundles, and the design, development and experimental verification

¢ of a Multipin Current Injection Test (C.I.T.) Method for performing SGEMP hardness
verification tests on electronic component boxes.

This C.I.T. method was ‘developed to meet the technolagy needs for user-
oriented current injection technique using realistic hardware to correctly perform
these SGEMP electrical simulation tests at the individual component box level as
well as at the subsystem and system levels. The purpose of the analytical develop-
ment work was to quantify the dependence of the termination response on the manifold
of parameters which specify the cable SGEMP threat in multiwire cables. This quanti-
. fication is essential for making a rational choice of the drive levels, coupling
factors, and cable characteristic impedances required in the implem:ntation of this
test technique.
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SECTION 1
INTRODUCTION

1-1 BACKGROUND

Systems generated electromagnetic pulse (SGEMP) is a transient radiation
effect produced in the exposure of a hardware system to the pulsed x-radiation and
¥-radiation from a nuclear burst. Electrons are driven from irradiated material
surfaces which generate electromagnetic fields within and about system structure
and drive currents on system surfaces. This electromagnetic environment couples
energy into electrical systems; if sufficiently intense, this coupled energy can

] produce upset or damage in sensitive electronic components.

For satellite systems the SGEMP threat can be classified into four re-
sponse regimes: external SGEMP, internal SGEMP, photon direct drive SGEMP, and
black box SGEMP. These regimes are defined in the following paragraphs.

External SGEMP. Electron emission from irradiated external surfaces of

the satellite produces a space current which drives electric and magnetic fields

in the neighborhood of the satellite and currents on structural surfaces of the
satellite. These currents and fields may couple directly to electrical systems
through coupling into antennas and exposed electrical cabling, or indirectly through
penetration into the satellite and along electrical cabling shields.

Internal SGEMP. Photons which penetrate into the satellite interior drive

electrons from irradiated internal surface producing space current within enclosures.
These cavity space currents drive electromagnetic fields and replacement currents
which couple into electrical cabling.

Photon Direct Drive SGEMP. Photons which penetrate into electrically

shielded cables drive electron emission from the interior surfaces of cable shields
and external surfaces of cable conductors. This charge displacement drives replace-
ment currents on the cable conductors which propogate to interfacing circuitry.
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Black Box SGEMP. Photons which penetrate into electrical component boxes

drive electron emission from internal surfaces of the boxes and external surfaces
of conductors and bulk currents within dielectrics. The currents drive replacement
currents and fields which couple into wiring and printed circuitry. This effect is
particularly significant in component boxes such as RF amplifiers which utilize
high atomic number plating materials in their internal construction.

The net effect of the various SGEMP responses is to establish an electrical
threat to the interface circuits of component boxes which can be analytically repre-
sented as shown in Figure 1 by a number of separate invariant (independent of cable
and load impedances) distributed drive sources. The field coupled threat due to the
external and internal SGEMP can be represented by capacitive and inductive voltage
sources, E. and E; respectively. In the absence of space charge Timiting, the wave-
shape of E. follows the photon threat pulse shape iL while E| follows the time de-
rivative of the photon pulse. The photon direct drive threat, on the other hand,
is represented by a current source whose waveshape also follows the photon pulse. It
is the distributed nature of the threat, the voltage or current source representation
and the specific placement in the transmission line circuit which gives rise to the
unique energy-time transmission line waveshape profile associated with each SGEMP
response regime, and the principal reason for this development program.

_G N T ? WIRE

. SHIELD

Figure 1. General SGEMP wire-to-shield drive source threats




It is possible through implementation of hardening techniques in the
satellite design to strongly reduce the susceptibility of the system to the exter-
nal SGEMP to a level small compared with the response to the internal SGEMP. Ef-
fective techniques are (1) the containment of all mission critical components in
Faraday cage-design enclosures and (2) the routing of all cable runs between enclo-
sures through conduits.

Similarly the system susceptibility to internal SGEMP can be strongly
reduced through implementation of hardened design techniques to a level small com-
pared with the photon direct drive SGEMP. Effective techniques here are (1) the
use of RF-tight design for all mission critical component boxes, (2) the RF shielding
of all cables and connectors interconnecting mission critical components, and (3) use
of low Z coating on all internal surfaces. Therefore, with the excention of black
box SGEMP where the above technigues cannot be applied, the primary concerns of the
SGEMP survivability assessment are photon direct drive SGEMP.

1-2 PHOTON DIRECT DRIVE THREATS !

The consequence of the photon direct drive being the primary SGEMP threat
is that the threat presented to interface circuits shown in Figure 1 is altered such
that the capacitive and inductive voltage sources become negligible. The basic
invariant threat becomes a distributed current source (whose waveshape follows the
photon pulse) driving a wire with transmission line characteristics.

Since satellite cables are comprised of many unshielded wires enclosed by
a common bundle shield, the actual invariant threat presented to component boxes is
as shown in Figure 2 for a general "N" wire cable. This threat consists of "N" in-
dividual distributed current sources; one for each wire, driving wire-to-shield.
The physics of the photon direct drive interactions, though, are such that large
differential mode current distributions are induced in the cable, that is, each wire
has a different value current driver induced in it. This mechanism is such that the

outer layer wires of the cable core on the X-ray incident side have high current
levels induced in them. The source currents induced in the wires as the X-ray pulse
travels through the core become progressively smaller, and even change polarity
sign. Each wire in the cable represents a real wire-to-shield transmission line
situation. The wires on the outer peripheryof the core have the lowest character-
istic impedance, while those on the inner layers have the highest. Each of the "N"
wires on the bundles, however, are also tightly coupled to one another. Hence, the
wires in the cable also represent a real wire-to-wire transmission line situation.

11
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In spite of the apparent complexity of the electrical nature of the
photon direct drive effects, the threat presented to each interface pin can be
conceptually reduced to an equivalent wire-to-shield problem and represented as
shown in Figure 3. The source term current, Ipy, shown here is an equivalent
source term which represents the combination of the actual invariant source term
induced in the wire and the amount of current coupled to or decoupled from the
wire of interest to the other wires in the bundle. A quantatative representation
sach as this for each wire in the bundle reduces a very complex problem to a very
simple task to identify which wire in the bundle represents the maximum energy
threat to be used in a hardness verification test.

The above discussions have alluded to the importance of considering the
transmission line nature of the photon direct drive threat. The significance of
these characteristics, which will be discussed in full in Section 2, are implied
in the typical behavior shown in Figure 4 and 5. This data shows the magnitude of
the threat presented to component box interface pins in terms of the energy level
and delivery time associated with a 1 ampere per meter direct drive threat in a
single wire-to-shield system from a particular photon pulse shape.

It will be shown that as the interface impedance value increases, the
threat energy delivered increases until, at large impedance values, the threat
capability reaches a finite maximum. This maximum energy capability of the line
increases linearly with line length. However, the impedance value at which the
threat capability saturates decreases as line length increases until, the threat
is essentially a constant energy value independent of impedance and is quite simply
02/2C (i.e.: the equivalent charge, Q, produced by the X-ray threat divided by
twice the cable capacitance, C).

It will also be shown in Section 2 that the time it takes to deliver the
threat energy is also markedly effected by interface impedance . For an interface

impedance which is matched to the wire-to-shield characteristic impedance, the threat
eneray is delivered in minimum times which are linearly related to line lenath. Hiaher

and Jower impedance values result in longer times for the threat eneray delivery.

These response characteristics demonstrate the complex nature of the
electrical pulse threat delivered to interface electronics from the photon direct
drive threat. One of the most striking features of the response is that the load
impedance value controls the amount of energy it receives for short line lengths,

13
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Figure 3. Equivalent single wire-to-shield photon direct

drive threat for component box interface pins.
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Transmission line dependence of the SGEMP energy delivered
to component box interfaces from a 1 ampere per neter
photon direct drive threat. The energy values shown are
50% of the final energy delivered.
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Figure 5. Transmission line dependence of the SGEMP energy rate
delivered to component box interfaces from a 1 ampere
per meter photon direct drive threat. The time value
shown is the time in which 50% of the final energy is
delivered.

while for the longer lengths the threat is essentially a constant energy one. The
energy-time characteristics and polarity of a pulsed electrical threat are of par-
ticular importance in determining piece part burnout vulnerability. Hence a correct
simulation test must duplicate the actual energy-time nature of threat. The purpose ‘
of this work was to develop a technique and instrumentation to drive an interface
circuit with the actual waveshape of the invarient wire-to-shield source term which

b st B s =

follows the photon pulse, and with the actual cable length and characteristic
impedance of the cable going to the interface circuit.

1-3 MULTIWIRE CABLE CASE

The threat energy characteristics given in Figure 4 show that the maximum

energy capability of the photon direct drive is limited, as would be expected, to

finite values. It is actually the wire-to-shield characteristic impedance (which
is related to capacitance), dielectric constant, and wire length which control the
SGEMP threat from reaching physically unrealizeable vatues. The maximum energy

capability, in fact, is inversely proportional to dielectric constant and directly
proportional to characteristic impedance, line length and total charge associated
with the direct drive current source. This surfaces a significant, but somewhat
subtle, aspect of the photon direct drive threat.

15
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Recall that the photon direct drive threat is essentially of a wire-to-
shield transmission line nature with large differential mode source terms created
in the cable bundle. Since the maximum energy capability of a particular wire is
not only controlled by the magnitude of the wire's current source term but is also
controlled by the wire-to-shield characteristic impedance, it does not necessarily
follow that the wire with the largest source term represents the maximum threat
condition, since this wire generally has the lowest wire-to-shield characteristic
impedance.

In reality, each wire in the cable has it's own unique maximum energy
capability associated with it. Conceptually, one could describe the variation
in energy threat of the individual wires in the cable core as a function of wire
characteristic impedance, as shown in Figure 6 along with the complete mathematical
expressions for maximum wire-to-shield energy, short circuit current and open circuit
voltage.

The development of such a display is, in fact, what would be required in
order to define the maximum energy threat that the SGEMP direct drive poses to
interface circuits. Furthermore, the definition of the wire-to-shield characteristic
impedance associated with the maximum energy is essential to correctly simulate the
threat, since the indiscriminate use of a Tower or higher impedance value would
result in an undertest or overtest respectively.

The correct threat specification situation is further complicated by the
fact that since satellite cables are comprised of many unshielded wires enclosed by
a common bundle shield, significant interwire coupling occurs which alters the equiva- ]
lent electrical parameters (equivalent drive source level and wire-to-shield character-
istic impedance)} of the transmission line type threat. From a threat specification

standpoint, one could adopt an approach based on defining the maximum threat posed
to component box pins in terms of the total cable core current and some nominal or
worst case characteristic impedance. This is an extremely conservative approach
which is unrealistic but mathematically representative of an upper limit. This
approach, however, is completely intolerable from a satellite system standpoint
since it represents a significant hardware impact design solution to providing
adequate hardening against a realistic threat level.

16
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Hence, to correctly specify and simulate the maximum threat induced by %
the photon direct drive response, Sections 3 and 4 develop analytical techniques

which would allow one to define a realistic set of electrical parameters which are
representative of the realistic maximum energy threat contained in a multiwire
satellite cable.

1-4 REVIEW OF PRESENT SGEMP DIRECT DRIVE SIMULATION METHODS

Since operational testing of the survivability of a satellite is precluded
by the nuclear test ban, simulation experiments must be employed to perform SGEMP
hardness verification tests. Photon simulators with threat level fluences are not

available, however, and recourse must be made to current injection test (C.I.T.)

! techniques are required by the present satellite system survivability specifications.
The various C.I.T. techniques which are presently available under existing techno-
logy for possible use in the hardness verification tests are as follows:

& 1. Direct pin injection from a commercial pulse generator

2. Inductive/Capacitive (L/C) coupling to cable shield
3. Direct injection on cable shield

An advanced development technique, which s described in Section 5 of this report

could also be considered as "direct injection wire-to-shield".

The primary considerations in selecting any candidate C.I.T. technique
are associated with the capability to reproduce the energy-time characteristics
of the photon direct drive threat, the compatability with actual satellite equip-
ments, and the degree of risk inherent with the approach. Detailed evaluations of
each candidate approach have been performed by GE/SD to identify the optimum method
which should be used to perform photon direct drive simulations. The essential
results of these evaluations are shown in Table 1. Direct pin injection from a
single, commercially available pulse generator is not included in the Table. This
technique could conceivably be configured to provide positive current control at
the high SGEMP required threat frequencies even for the high density type (large
number of connector pins) connectors used in satellite systems. This technique,
however, does not come anywhere near being capable of simulating the transmission
line nature of the actual SGEMP threat. The conclusions from the C.I.T. evaluations
are that the C.I.T. technology which has been developed to date does not provide the
means to meet the SGEMP hardness verification specification in design hardened
satellite systems where the SGEMP threat is due to photon direct drive effects.
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Techniques such as those previously developed under EMP programs do not 0
provide a correct simulation of the energy-time nature of the photon direct drive
threat nor do they provide a practical, low risk approach which is compatable with
photon direct drive hardened designs in satellite equipments. Capacitive and induc-
tive coupling techniques, for example, do not correctly simulate the actual trans-
misson line nature of the photon direct drive source term. Furthermore, these tech-
niques do not provide individual, positive contro)l of currents delivered to component
box pins when both long and short wire threats are required to be simultaneously
injected at the same connector interface.

The most desirable approach identified is direct injection wire-to-shield.
This approach is the most desirable from the standpoint of controlling amplitudes
on individual wires, eliminating unintentional overstress situations, and producing ;
the desired waveshapes to simulate the SGEMP direct drive threat. The technology !
development effort required to establish a realistic C.I.T. technique which is
capable of both correctly simulating the electrical nature of the SGEMP photon direct
drive threat with a multipin, simulataneous drive capability, as well as meeting
the practical and hardened design constraints posed by actual satellite electronic
and complex cable harness hardware is described in detail in Section 5.

1-5 THREAT SIMULATION HARDWARE CONSIDERATIONS

Since the severity of the SGEMP photon direct drive threat is controlled
by energy-time transmission line characteristics and specific wire length, hardening
requirements are imposed based on actual cable length in the satellite system for
each interface circuit as well as the quantitatively defineable electrical loads,
not only at the circuit of concern, but at the interfacing circuit at the opposite

end of the wire. In many cases, for example, the presence of a particular low
impedance electrical load or the addition of a single zener diode at one end of a
short-to-medium length wire is sufficient to provide protection to the interfacing
circuits at both ends of the line. For longer length lines, SGEMP hardening is
implemented at both ends of the line consistent with the line length of the trans-

mission line type threat. Hence, many interfacing circuits in a component box are
only SGEMP hardened when all their respective interface component boxes are electri-
cally connnected.

22




An additional design consideration for threat simulation is associated
with the physical nature of the electrical systems {cables and connectors) in actual |
satellites. Satellite cables are unlike re-entry vehicle cables in that they are
not generally straight, two connector cables. Instead, satellite cables are typical-
ly complex configurations comprised of large bundles of upwards of hundreds of !
unshielded wires contained within a common bundle shield with numerous branches and ‘
connector breakouts, with high density (large number of pins) connectors 'sed for |
component box interfaces. Furthermore, the wiring in these cebles consist of wires i
with short total Jengths (low threat level wires which require minimal SGEMP harden-
ing of their respective interface circuits) in a common bundle with wires of long
total lengths (high threat level wires which require extensive interface circuit
hardening).

The consequence of these design aspects are that an SGEMP simulation tech-
nique must not only provide high simulation fidelity of the energy-time transmission r
l1ine nature of the SGEMP threat for multipin, simultaneous drive of component boxes,
but must also be capable of correctly driving a component box whose SGEMP protection
is contained in numerous other component boxes which are not in the test setup, as
well as being capable of simultaneously driving some pins at high levels and others
at Tow levels to accomodate various distributions of long and short wire thre--s at
the same connector interface. This latter requirement also has a significant impact
on the risk potential associated with any potential simulatis~ technia ..

Since the SGEMP hardness verification test is typically perfermed inline at
the latter portion of the total Qualification Cycle (generally before thermal-vacuum
qualification), a low risk simulation approach is required to avoid inadvertent over-
stress levels which could cause spacecraft equipment failures and impact system inte-
gration and, possibly, flight schedules In view of the typical SGEMP hardening
designs employed in satellite systems, one cannot generally affort the luxury of
overdriving some pins at higher levels in order to assure that the minimum required
test levels are properly established in all pins. As such, the simulation method
must also be capable of providing individual positive control of each of the currents
delivered to each of the interface pins to eliminate high current (or voltage) hazards
to both the equipment as well as the operating personnel. An obvious additional
requirement, which is more practically oriented for user test evaluation, is that the
simulation methods be capable of being configured into portable, in-house hardware

¢ readily adaptable to correctly interfacing (both electrically and mechanically) with
actual satellite component boxes and their associated ground test equipments.
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SECTION 2
TWO WIRE TRANSMISSION LINE CHARACTERISTICS

2-1 BACKGROUND AND APPROACH

This section describes a terminated two wire transmission line which has
point current sources distributed along its length from return to signal line. A
number of fundamental transmission line response equations are developed which pro-
vide useful tools for analyzing photon direct drive cable resopnses in a X-ray
radiation environment.

The fundamental equations on which this work rests appear in Schelkunoff
(Reference 1) where the waves produced on a transmission line by point sources are
succinctly described. The work of King (Reference 2) and Weeks (Reference 3) pro-
vide additional development of transmission line theory and point sources which form
the background theory to this section.

The response of a loaded two wire transmission line to distributed point
sources is derived in Section 2-2. The point current sources along the length of
line are assumed to be proporational to a defined waveshape, but with peak amplitude
and start time arbitrarily varying along the length of 1ine. The line is assumed to
be linear, time invariant (Reference 4) and lossy. Loads are also assumed linear and
time invariant. The equations for load currents and for current on the line are
developed with reasonable generality in the frequency domain.

In Section 2-3, the transmission line response with current drivers is
then studied for the corollary case of a cable illuminated by an X-ray with an
arbitrary angle of incidence so that the induced point sources turn on as the X-ray
moves along the cable. Section 2-4 applies the results of Sections 2-2 and 2-3 to
specific applications of load impedance, pulse width and a current source amplitude.

2-2 TRANSMISSION LINE RESPONSE TO DISTRIBUTED CURRENT SOURCES

A two wire transmission line of length S is shown in Figure 7. The line
is loaded by two loads: Z, at z=o0 and Zg at z=s, where z is the distance on the
line from its end. Both line and loads are linear and time-invariant. The
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transmission line is driven by a distributed current source, assumed to be dis-
tributed point sources in the sense of Schelkunoff (reference 1). The point current
source is described mathematically as:

ip (x,t) = A(x) g (t-tx) (2.1)

where A(x) is an arbitary amplitude density function (Amp/m) of source location x,
measured from the end of the line. The function g(t) is assumed to be dimensionless,
normalized and causal, i.e.,

lg(t){max =1 (2.2a)
and
g(t) =0 fort <0 (2.2b)

The parameter t, is an arbitary function of source location x. Thus, the equation
for ig(x,t) is a representation of a point source which exists along the length of
the Tine with an arbitary amplitude A (x) and with an arbitrary start time t,,
dependent on location x from the end of the line.

The Fourier transform of ig(x,t) can now be written as

Io(xsw) = F (i(x,t)) = olx,w) G(a) (2.3)
where

6(u) = F (g(t)) = [gm exp (-jut)dt

and °
i’(xsm) = A(X) exp ('j“’tx)-

For simplicity, the abbreviated notation Iy(x,w) = I (x) and o(x) is introduced.
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Point Current Source Density
io(x,t)=A(x)g(t-t,), Distributed
Along Line

I(z) = Line Current Toward Z; @ Location Z
V(z) = Line Voltage @ Location 2

Figure 7. Transmission line with distributed
point current sources

The standard transmission line notations of reference 2 are introduced:

characteristic impedance Z; ='\’%—$¥%fﬁ§ (2.4a)

VR + juL)(G + juC) (2.4b)

line propogation constant f
Is

- %0 - £ _&s - ¢ (2.4¢)

reflection coefficients o C s =
£y + Zc Zg + 2

series line resistance /M

where

series line inductance H/M
shunt 1ine conductance S/M

[gn BN <p BN aadi> o}
n

shunt line capacitance F/M
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The extensions of 2. and'ﬁ*UJinc]ude skin effects and other high frequency losses
are covered in reference 2.

The objective of this derivation is to compute the current on the line I,
at location z. The current I, can be thought of as the difference of two currents:

I, = 11(2) - 15(2) (2.5)

where 17(2) is the contribution to Iz of all sources to the left of z,
i.e , x<z and I12(2) is the contribution of all sources to the right of z, i.e.,
X>Z.

Using Schelkunoff's development (reference 1), a point source driver at
location x of Zg to location x and where # 1is the reflection of 2, to location x
as indicated in Figure 8A. It is assumed that a differential source term driver
Io(x) dx within a differential length of line dx launches a wave dIg(x) with the

sign convention of Figure 8a indicating plus to the right. Thus, by current division,

d1g(x) = o) 2.6a)
R(x) = Z (x) + Zr(x) (2.6a
where r=
-2
2L(x) = 2 [ii’;p b (2.6b)
[_g
. 1 + 1s exp (-2Y (s-x
Zp(x) = 2, T (: exp (-2¥ [s-x (2.6¢)

Reflecting dIR(x) to location Z gives:

Cexp (Wa)- [s exp [ (25-2
I = exp 1§ [ exp [ (25 TR (2.7)
S
= Rp (2,x) dlp

where differential operator "d" is on x only.

Using the complementary model of Figure 8b for the left current (sources at x>z)
yields
Zp(x)
dIL(X) = ZIY;j‘;“zaIij‘Io(x) dx (2.8)

A ]
T T T ‘IZQ%:H‘; 2 (2.9)

= RL(E,X)dIL




41,0

- o —— ——— - -
\ g

a) Location x<z. Z, z::) ::(«)

Ie)d

Figure 8a.

dL,()

b) Location x>z. 2,

| Figure 8b.

Then from Equation 2.5 Iy is written as:

Z S
I; = Jﬂ dI1 - .[ dI2
0 Z
The integrals are of the form:
Z S
I, = J- Hp (Z,X) T _(X) dx - J. HL (Z,X) IO(X) dx
0 Z
where
Z, (X)
Hp = Rp(Z:X) 2 (X)+ 2 (X)
Z,(X)
' L RN TR
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Contrary to the devastating appearance of these expressions, term
cancellations occur throughout, so that Equation 2.12 is all that remains.
One is careful to note that the direction of I, is assumed to be towards Zs.

I [e'wz-r e-\(2$~z)] Z N
= S e Nar e-YX> o(X)dx
G(-) 2(1-r0rs e'ZYS) J- ( 0

0
[ vZ -yz] S
e'f-r_e ‘ .
- - 9 5 j. (e‘YX+r e~2YS e‘x> o (X)dx
. =2ys s
2(1-1 I e ) 7

oS

(2.12)

Equation 2.12 is the desired transfer function I;/G(w) which relates I,
to the input source pulse shape G(w). The integrands are of simple exponential
formats, with p(x) = A (x) exp (-jutyx). The Fourier spectrum fcr line current I,
is thus easily computed, once p(x) is defined. Time domain histories can be
obtained via standard Fourier inversion for a specified G{w).

The line voltage at location z can now be computed from the line current
I, via superposition from the relation:

v(zZ) = ZR(Z) J- dI1 - ZL(Z) J. dI2 (2.13)

where the functions Zg and Z_have been identified in Equations 2.6b and 2.6c.
The integrals for Iy and 12 are easily identified from Equations 2.10 and 2.12.

The load current in Zg, namely IL2’ is ~imply I, evaluated at Z=S, so:

I (w) ‘ys .. S
L e '7(1-7) ‘ »

) Ty et 2.14
G(w) 2(1-r ; e'z’s) j' (e o e ) p (X)dx (2.14)

The Toad current into 2,5, namely I 7 with the sign convention of Figure 7 is - IZ
evaluated at z=0.

L147 (1-:0) S s
G(.) . e-z‘,s) I(e tho e e )>(X)dx (2.15)

Q
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2-3 APPLICATION TO X-RAY DIRECT DRIVE RESPONSE

The application of Equation 2.12 to cable direct drive resulting from
X-ray illumination is straight forward. The geometry of Figure 9 shows a cable
with an X-ray illumination environment. The distributed current source is assumed
to have the form of equation 2.1:

io(xt) = (t-t) = Ip g(t-t,) (2.16)

where, A(x) = Ip = constant. If the angle of incident illumination is 0, as shown
in Figure 9, the point drivers turn on along the line at time ty = x cosa/Vo where
Vo is the speed of 1ight in M/S and ty is time relative to the time point when
location x=o0 is illuminated.

By taking the Fourier transform of iy, the function of p(x) is identified
as:

p(x) ID exp (-Jjuwx cosg/vo)
(2.17)

ID exp (-Juo cosux)

Thus, for normal incidence, tX=o and the entire cable is driven simultaneously,
resulting in o(x) = ID = constant. For on line incidence, ¢ = 0 and tX = x/vo,
resulting in p(x) = ID exp (—ij/vo).

,b’ MmOVING AT Jp = SPEsED o qu_-
}

TRiIs

Loap
. X Coo
Drver LD(* -3 6 )Amp/m

Figure 9. Cable geometry with radiation ) .
incident at arbitrary angle O'Oié
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In other words, when the fluence propagates along the length of cable,
the X-ray illuminates the cable with sources that turn on at time x/v,. The cable
generates a wave which moves, generally speaking, slower than vy,. Equations 2.14
and 2.15 will now be studied to find out what effects these wave motions have on
load currents.

Whereas, the equations for load currents Iy and Ijp (2.14 and 2.15) are
perfectly general and can be analyzed via numerical Fourier analysis for lossy
cables, the consideration of lossless transmission lines is now taken up. This
restriction is applicable for the analysis of many practical cable configurations.
The 1ossless line also allows for the introduction of simple line parameters, in
particular, the line's one way transit time 1, so as to provide a continuing
physical insight to the meaning of the equations as they are developed. The follow-

ing notation is introduced (R=G=0): ;i
v, = 3 x 10° W/S, speed of Tight (2.18a)
S = length of line in meters (2.18b)
1 = S/v0 = time for light to traverse line length S. (2.18¢)
By = w/V, (2.18d)
vp =1yt (2.18e)
1 = S/vp (Vine delay or one-way cable transit time (2.18f)
of a wave on the line.)
v = JuVTIC = J8 (2.189)
Y = T coso (2.18h)
1, = ttr, cosw (2.181)
I,(w) = F(io(t)) (2.183)
Q) = Slgfd) (2.18k) ‘

The result of substituting . !/x) = exp (-Js, cost x) into the Equation 2.14 for
IL2 yields Equation 2.19, which when factored in yields Equation 3.20. These
equations are valid for 1 > 1 cost,
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- (1'Fs) Q) 1 .
IL2 - 2[1-F01'S exp (- juT)] ?EXp (-Jwro cos)
(2.19a)
‘o : . 1 ‘o .
--g;exp [—Jq(21+TO cos )] -(TT.— TE)QXD (-Jwr)}
A - l—rors exp (-2j.1) (2.19b)
(1-7¢) Qlw) ~Jj.:_ cos- o =2].
== ° %1‘0»—18
17 2
(2.20)

_ (1_ 0'l )e-Ju}
‘2

Considerable algebraic effort is saved in the integral evaluation for I,
by using the solution for I 2 with Zo replaced by Zg in Figure 9 and noting that in

this geometry, (X) = exp (-Jiy (S-X) cos~) (2.21)

Thus, to obtain ILl from Equation 2.20 for ILZ’ “o is replaced by s Zo is
interchanged with Zs{thereby [ is interchanged with TS), :1 is interchanged with
s 1, is replaced by T, and the whole expression is then multiplied by

exp (-jsOS €OS:) = exp (-ijo cos) to yield:

(1-7_)Q() TeTy,  =2]ut et =Jet
[, =———} -2 -(1- ?2)e 2 (2.22)
1 1

with & defined in Equation 2.19b. The student of Fourier theory will immediately
recognize that, for ofo, IL] will start responding before ILZ’ because of the
absence of the phase shift multiplier exp (-jwro cos 0) which occurs in Equation
2.20. That is to say that the current in the load at z=s will be zero for time
tess than (To cos 0), the time at which the X-ray arrives at z=s, whereas, the
current at z=o will commence upon the illumination of that end of the cable.
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For the case of perpendicular incidence, where the line is instantaneously and
uniformly illuminated, v =7/2 and =117, to yield:

(1-1)Qf) _2: s
ILI =—2{’A——— lr_ e 2Jut -(1-r ) e J““} (2.23)
(1-1)Q() 25 ;

where A = l-rors exp (-2ju1) as defined in Equation 2.19b.

The term Q(.) has been defined in Equation 2.18k. This function is
identified as the total charge accreted on the open circuited line.

Qu) = F (q(t)) (2.25)
where
t
q(t) =S J i,(z)de (2.26)
o]

It is interesting to note that the load currents are proportional to line
charge accretion, and that the cable in a sense tries to integrate the waveshape of
the illuminating X-ray. A detailed exposition of the wave structure follows.

2-3.1 Time Domain Response of a Resistively Loaded Lossless Line

The frequency domain equations for IL] and IL2 can be inverted to the
time domain by Fourier theory. The equations for load currents are of the form:

S0 () . Q' (v)
ol A I-T Tg exp (-2jut) (2.27)

Using the binomial series expansion for 1/. (reference 2), IL becomes:

= [ I n .
I = Q' (w) nz=:o (1y7g) exp (-2junt) (2.28)
so that for resistive loads, i.e., FO and YS both real,
. _ - Cw n
1L(t) = ; (1015) f(t-2n1) {2.29)
n=o
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where f(t) is causal so that the upper 1imit of the summation of Eauation 2.29
may be changed fromeo to n , and the followinc definition is implied:

(rors)" =1 for n=o (2.30)

when either FO or Fs or both are zero.

Noting too, that

Q(w) exp (-juty) = F (alt-t)) (2.31)

enables one to write, for the lossless resistively terminated line:

: (1-r)) (n== ]
‘Ll(t) T2t {n=o (r,rg) alt-2nt) i
n=e . T,
| & (ryr's) (1—FS > )q (t-ro cose -(2n+1)r) (2.32)

N Fst)
= Z (FOAS) < T q (t-(2.1+2)r) }

(1-r.) (n==
i, (t) = 3 : n
L, 2t n=o Tolg) a (t-t, cose -2nt)
n=ow r' t
1 )
- (rr )" ( -2 >q t-(2n+1)t (2.33)
no ©° 2 ( ) ‘

1“11
- = (Fofs)n<;—gz——>q <t—ro €0S8 —(2n+2)r> }

izhere. 1t has been cefined in Equation 2.18:

These equations are valid only for t>te €os0). The case of an air line, i.e., 1=1,
is addressed separately below.

The currents in either resistive load are sums of the waveforms as given
in Equation 2.26 for t:0 and g(t)=0 for t<o for the accreted charge.




These summations can be regrouped by introducing two functions, which are dimension-

ally currents:

1a(t) z E%E- {q(t) - Q(t-To cose—r)} (2.34a)
'Ib(t) = zil {q(t—ro €0s8) -q(t-r)} (2.34b)

i (t) = (1-r.) (rra)™ i (t-2n1)
Ly ol &, o S
(2.35)
n=w n
+ (1-r0)rS > (rors) iy (t-1-2nt)
n=o0
]
n=c n
i, (t) = (1-T¢) (r.re) i, (t-2nt)
L2 S n=o © S b
(2.36)
n=w 0
F + (l-rs)ro > (rors) iy (t-1-2n7)
n=o
The structure of Egquation 2.35 allows one to see that the initially
1 incident pulse on load Zo is ia. This pulse is followed by re-reflectance of 'a
off load Zs, plus the reflection of b initially incident on load Zs, plus its
re-reflections.
2-3.2 Resistively Matched Line
Equations 2.35 and 2.36 are vastly simplified when the line is matched
at both ends, i.e., when 14 = rg = 0. In this case, there is no reflection off
either load, and the load currents are equal to the first incident pulse:
. ]
1Ll(t) = 1a(t) = 7, {q(t) -q(t—T0 coso-r)} (2.37)
. . 1
. ILZ(t) = 1b(t) =75;;- q(t—ro cosh) —q(t—r)} (2.38)

again subject to the restriction that 1 > T, COSH.
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$ 2-3.3 The Electrically Short Cable

The case of a uniformly illuminated short cable provides some additional
clarification of the meaning of Equations 2.35 and 2.36 for load currents. For
simplicity, the case where 0=1/p is considered, for which (Equation 2.34) the
incident pulses become:

1a(t) = ib(t) ='§?‘{Q(t) -q(t—r)} (2.39)
where
t
q(t) =S .[ io(; dz with A(x) = constant
0

From Equation 2.35, the current in load 1 becomes:

N=oo
§ iLl(t) = (1-1}) ngo (ryrg)” { i (t-2nt) + I‘Sia(t-T-an)} (2.40)

The current in load 2 is also given by fquation 2.40 with Iy interchanged with TIg,
because the cable is assumed to be instaneously and uniformly illuminated.

Since the one way cable transit time is defined by Equation 2.18f, the
pulse ia strictly goes to zeroas t goes to zero, and therefore, iL] goes to zero

too. However, if orz writes for ia(t) the integral expression
t
i (t) =m=la(t) - alt-0) J=p= | igle)d (2.41)
a FERA 2t 0 > '
t-1
one may approximate the integral by
t
; ~ i 2.42
J. 10(;)dg > 1 10(t) ( )
t-t

if io is slowly varying over the time interval t. This relation provides adefini-
tion of what constitutes an electrically short cable with respect to a drive pulse
ip(t). With this relation, ia(t) simply becomes:

i(t) = 3 (t) (2.43)
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Now if load 1 is matched so that g = 0 and load 2 is open so that

rs = 1, then from Equation 2,40

iL (t) = di_(t) + ia(t-r) (2.44)

independent of cable length. When 1is small so that

. . _S .

1a(t) = 1a(t—r) 5 10(t) (2.45)
then the well known result

iL (t) =S io(t) (2.46)

is obtained.
The case where 1oad 1 and load 2 are equal and resistive is somewhat more
complex, but tractable. In this case Iy = Tg = (q—])/(q+1) where n = R/Z.. Defining

r=ry =T allows one to write from equation 2.40.
i, (1) = 2(#) T 2L (t-2no)4r i (t-r-2ne) (2.47)
1 " /=0 a a

again independent of cable length. Now assuming, for any value of n, thattis
small enough so that

1'a(t-2m) 2 i (t-t-2n1) (2.48)
allows one to write
i (t)=2 1~1~q z % N (14r) i (t-ZnT); (2.49)
1 n=o0

One may, with suitable caution, go further and assume that

ij(t-2nt) = 1 (t) (2.50)
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}
for all times of interest, and then by identifying the binomial expansion for
(]-rz)'] one obtains:
i (t) = 2[== L)V (t) = 1 (1) (2.51)
Ll 1+ I-r} 'a a
With ia(t) = 5/2 10(t) one finally obtains for the short cable
() =34 (t) (2.52)
L1 2 0
This result simply states that the cable source term divides equally
between the two loads. However, the application of Lquation 2.52 to any specific
case depends on load resistance R and pulse shape io' Clearly, for a rapidly vary-
ing io(t), or a bipolar io(t), both 2.42 and 2.50 may be readily violated, and
] effects arising from cable energy storage may become important to the computation

of load current rise time/fall time, as well as to the duration of the trailing
edge of the load current pulse. The effects of r are also implicit in the use of
2.50. As r2N approaches an acceptably small number so that fquation 2.50 need only
be valid for n-N, then 2.52 is an acceptable approximation. Therefore, the closer
r is to zero, the less terms will be necessary in 2.4S for convergence and the more
accurate 2.52 will be for a given io(t) and given « small. But even for small -,

! when |r|~1, Fquation 2.52 is not valid. As r »+1, the cable capacitance determines
the load pulse shape, since the cable will begin to charge faster than charge can
flow thru R. As r »-1, the cable will ring, albeit at a high freugency, because
the energy absorbed per cycle is low, regardless of 1. Clearly, when r = -1, the
cable is truly shorted and being lossless, will ring forever so that 2.52 is not
valid at ail.

| Thus, the derivation of Fquation 2.50 is offered as a heuristic indication
that the more complex expression of Equation 2.40 is consistent with elementary
Kirchoff's laws applied to lumped element representations of the cable source

problem.
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2-4 TLLUSTRATE GENERIC RESULTS

Because the load current pulse waveforms previously derived are quite com-
plex summations of pulses, this section provides some numerical and graphical re-
sults which highlight the nature of cable direct drive.

In Section 2-4.1, important energy relations are provided which relate
the absorbed load energy to load resistance, to time, and to cable length.

In Section 2-4.2, the effects of angle of incidence and cable length for
a square pulse driver on a matched line are developed.

2-4.1 Energy-Time Relations in Various Resistive Loads

An important phenomenon in a cable with distributed current sources is that
the energy which can be extracted from the cable is a strong function of the termina-
tion loads. This section provides some insight as to what these terminal effects are.

Equations 2.23 and 2.24 have been analyzed via a numerical Fourier inverse
with a uniformly distributed critically damped current driver of the form:

i (t) = ID<—ttm—)exp (1-—én—)u(t) (2.53)

where Ip = peak current source in amps per meter, t = time of peak amplitude, and
u(t) = Heaviside unit step function. The cable is assumed to be instantaneously
illuminated, so that © = €/2. The cable is assumed to be loaded at either end
with a resistor R so that Z, = Zg = R and Iy = I'g = r. With Ip normalized to
unity, the energy in each load has been obtained for study by a computation of the
running integral

E (t) = R J 1'L2(r,)d; (2.54)
0

where i (t) is the load current as a function of time. The integration was per-
formed via a simple Simpson's rule from the time trace obtained by the numerical
Fourier inversion of the current spectrum.




The results of these computations are shown in Figure 10 where the
normalized energy has been plotted as a function of ¢ = R/Zc with t = ». E has
been arbitrarily normalized to indicate relative behavior of E versus ¢ and cable
length S. Since S is proportional to cable transit time v (Equation 2.18f), S has
been indicated by t. The time Tgy is a measure of driver pulse duration, and is
equal to the time when the driver pulse delivers 90% of its total energy to a re-
sistive load via the action integral relation:

w T
0.9 I i 2(t)at = I i 2(t)dt (2.55)
0

The results of Figure 10 show that, as cable length is increased, the
total energy absorbed by the loads is increased. Furthermore, Figure 10 shows
that as load impedance is increased, the energy the load absorbs is also increased.
For the geometry analyzed, equal loads at either end, each load receives one-half

the energy delivered by the cable. In the limit, for R>>Z_., the loads absorb all

C’
the energy in the cable when open circuited, namely:

0,°/C (2.56)

where Qp is the total accreted charge and C = t/Z; is the total cable capacitance.
For the pulse shape under consideration Qp is given by:

QD = SID e tm= " q(t) (2.57)

t-+o0

where e is the Napierian base. Since Qp is proportional to cable length, as is
total cable capacitance, the maximum energy available from the cable is also pro-
portional to cable length.

On the other hand, for R<<ZC, the energy absorbed is significantly less
than the total energy available in an open circuited cable. The physical explana-
tion of this phenomenon lies in the fact that low impedance loads suppress the
line voltage as incident waves are reflected, thereby reducing the amount of
energy the cable can provide. It is an important, as well as interesting observa-
tion to note that the current drivers are assumed independent of line voltage and
that consequently, the conservation of charge flow is the controlling law, making
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the available cable energy strictly a function of the voltage level which the
cable is allowed to build up to.

Of interest in Figure 10 is the knee in the energy curve, i.e., the
value of (R/Z;) below which energy falls off as (R/Z.) is decreased. The location
of the knee is a function of the electrical cable length, relative to drive pulse
duration Tgg. A cable possessing a one way transit time t which is signficantly
longer than the duration of the drive pulse iy will almost fully charge before
the effects of end terminations can act to reduce line voltage. Thus, longer
cables are capable of delivering higher energies regardless of termination.

Some specific exampies have been plotted in Figures 11 through 15. The
current driver has been taken as a square pulse with a constant Ip'Tp product of
30 Ans/m. For these figures the cable length has been held constant at 3m with
a dielectric constant equal to 9. The curves were derived from Equation 2.54
using Equations 2.32 and 2.33 as the load currents through pure resistive loads.
The five plots present a family of curves for loads between 0.05Q to 50kn and for
pulse widths between 300ns to 3ns.

The effect of the dielectric constant on the rate of energy absorbed in
the load resistance for values of & between 0.052 to 50k is shown in Figures
16 through 19 for value of ¢=1 (vacuum) to 81 (water). For values of most typical
cable dielectric materials with e between 1 and 3 the variation in energy for H
matched loads is relatively small and increase to nearly a factor of two between
these limits for values of q>>1 or <<1.

The effect of the cable length on the temporal dependence of the energy
absorbed in the load resistance is shown in Figures 20 through 23. As the cable
length increases from 0.3m to 30m

E(t,n)—®E(t,n7T)

(n)—e  (7,-2.)

and ¢

(), E

Emax aXx max

That is the maximum energy in the load impedance becomes independent of the load
impedance for long cables. Furthermore, the maximum energy limit increases as the
cable length increases from 0.033uJ for S = 0.3m to 33uJ for S = 30m.
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Figure 11. Absorbed load energy versus time for ID = 0.1A/m and Tp=300ns (cr=9)
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The effect of the characteristic impedance on the absorbed energy is
shown in Figure 24 for Z¢ = 50 and 5000 and a family of load resistances between
0.005¢ and 500kq.

The energy limit (Emax) which is absorbed in the load impedance is sum-
marized in Figures 25 to 28 as a function of g, the load impedance normalized to
the cable characteristic impedance. The summaries show the variation of Epay
versus n in terms of a set of parametric curves. The parameter variables modeled
are: 1) pulse width (Tp=3 to 300ns) with constant total charge, i.e., IO'Tp =
constant (30A'ns/m) in Figure 25, 2) dielectric constant (e=1 to 81) in Figure 26,
3) cable length (s=0.3 to 30m) for three values of ¢y (1,3,9) in Figure 27 and
4) cable impedance (2¢=5 to 5002) in Figure 28.

Figures 29 and 30 summarize the maximum energy absorbed in the load as
a function of the cable dielrciric constant for a family of normalized load impe-

dances. The two figures consider the :pecial cases for cable characteristic
impedance of 509 and free space (377.). Tiaure 31 shows the variation of absorbed
energy with dielectric constant similar 1o Ficure 29 but with the pulse width
increased from 30ns to 90ns for the same Iy (1A/m). In general the absorbed
energy increases as the pulse width increases at a rate which is higher for larger
n. An analogous situation is illustrated in Figure 32 where the cable length is
shortened from 3m to 0.3m in comparison to the parameters in Figure 29 with the
pulse width held at 30ns.

Equally important as the total energy into each load is the rate at

which the energy is deposited, since energy rate is a measure of dissipated power.
As indicated by the time expansion for i (t) with n=-/5 in Equation 2.40, the load
current is a series of pulses whose shape depends on line delay 1t and reflection
coefficientsrﬂ. Thus, the instantaneous power in each load can be expected to peak
periodically. 1In a real system, the instantaneous power may not be as important

as the total energy accrued in the load by N successive reflections. In order to
measure the energy rate then, an arbitrary time reference is introduced, namely

the time at which 90 percent of the total energy is absorbed by that load, denoted
tgg- The underlying reason for this time reference lies in the fact that, theoreti-
cally, a mismatched cable will have finite, albiet vanishingly small currents for
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times much greater than t90‘ Mathemetically, t90 is obtained from the relationship:
= [+ .58
EL(tgo) 0'9EL( ) (2.58a)

or via the equivalent action integral relation

@0

t9o

J iLZ(t)dt = 0.9 J iLZ(t)dt (2.58b)
0 )

A plot of normalized tgg versus M =R/Z. is shown in Figure 33 for the

same condition from which Figure 10 is obtained. For the longer cables, energy

is deposited in the load most rapidly when the cable is nearly matched, as has

been indicated by D. Tasca, et al (reference 5). When a longer cable is mismatched,
the longer wave transit times induce lengthly oscillatory ringdowns in load currents
so that each reflected wave spends significant time traveling betwen loads. Thus,
the time for the load to absorb energy from the cable increases rapidly as W

varies from the matched condition. Figure 34 shows a plot of normalized tgg (the
time required for load to absorb 50% of the total energy) for a family of curves
with the dielectric constant between 1 and 9 and for ceble lengths between 0.3m

to 30 meters. Figure 35 shows the normalized plot for a family of values of the
drive pulse width.

For electrically short cables, the load current tends to converge to a
wave shape proportional to the driver pulse

as indicated in Section 2-3.4 (Equation 2.52) so that t90 convertes to Tp. It
1s interesting to note that for the cable where 1is approximately equal to Tp,
t90 increases as R gets small. This is exactly the point of caveat of the deriva-
tion of Section 2-3.3, namely, that when the cable delay is a significant fraction
of pulse duration, mismatches produce significant ringdowns. The plots of t90
and t50 exhibit rather broad based minimums in Figures 33 to 35. These minima
are a function of driver pulse shape, as well as the line parameters T andyz .
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2-4.2 Square Pulse Drivers on a Matched Line

Equations 2.35 and 2.36 show that, for a resistively loaded lossless trans-
mission line, the Toad currents consist of sums of fundamental incident pulses which
are reflected and re-reflected off the mismatches. When the transmission line is
matched, 'y = 0 and I'g = 0 so that the load currents become simply:

1L1(t) = 1a(t) = 212 {q(t) - q(t-r0 cose—r)} (2.59)
1L2(t) = ib(t) =-§%:-{q(t-ro cose) - q(t—r)} (2.60)

These equations are useful to study the effects of angle of incidence 8, line
delay t, and X-ray propogation time t,. Important relationships between 7 and 7,
will emerge that help place the concept of an electrically short line on firmer
footing.

For simplicity, assume ig(t) to be square pulse driver, of strength Ip
and width Tp. Then, for an arbitrary angle of incidence 8, line delay t, the load
current waveforms are provided in Figures 36 and 37 by direct application of Equa-
tions 2.59 and 2.60. The peak load currents, rise times, full width-half maximum
durations, and total energies of each waveform are provided in Tables 2 and 3
where the load resistances are equal to the line characteristics impedance because
of the assumed matched condition. Except when 1=t, and B8=0 the waveforms are
trapezoidal. In addition, the rise time of the load currents is, in general, a
function of 1, Tp, and (1, cos 8). The distinction between what constitutes an
electrically long line and a short line is very clearly defined*. Technically
short and long line waveforms are dependent on the load Tocation, since the load
current rise times and pulse amplitudes are a function of where the load is with
respect to illumination. Load 1 (z=0) is assumed to be illumined before Load 2
{z=s) as in the derivations of Section 2-3. However, the line can always be con-
sidered short {(when the line is matched) for a square pulse if

T, > 1 + To cosH

P

* for this special case, see Section 2-3.3 for the general case
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i

and long if

« - 0s6
Tp s T To Cc

Intermediate pulse widths, namely

- < < 1+ coshH
-1, c0so TP T+

result in either "long" or "short" Tine responses, depending on load location. The
total incident charge on one of the two loads may be noted as

QD =S IDTP/Z
and the peak load current is directly proportional to Qp in all cases when t<1,.

The peak current is also a function of line wave velocity Vp when the line is long,
and the faster the wave velocity, the higher the peak current, since the accreted
charge tends to arrive faster. When 1 < T the ratio of short line peak current to
long line peak current in both loads is somewhat less than the ratio of line lengths,
because the longer lines tend to keep somewhat more charge in the lines as a func-
tion of time.

In the limit, when Vo T vp and 6 = 0, Table 3 shows that the peak line
current is independent of t in load 2 and is exactly Tp in duration regardless of
line length. In Joad i, the peak of the long line pulse is Ip Tp vp/4 where Vp = V-
Since Tp < 2t = 25/vqy, the peak current is less than or equal to SIp/2 in load 1 for
the long line.

Thus, it is seen that for very long lines, significant changes in pulse
amplitude and duration can be expected to occur when the line is not instantaneously
illuminated, i.e., when » # n/2. In particular load 1, first illuminated, receives
more energy than load 2 when both loads are matched. However, this is compensated
somewhat in that the pulse duration in load 1 is longer than in load 2.

Because of the complexity of the line voltage equation (Equation 2.13),
little has been said about voltage other than to recommend a numerical Fourier
inverse for its computation. However, the results of Figures 36 and 37 provide Some
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interesting insights to the terminal open circuited voltage for a square pulse
driver. With Q = SID Tp = the final accreted charge, the open circuit cable voltage
is ultimately

) QDZC i} SID Tp ; (2.61)
oc¢ T T C
On the first reflection, the open circuited line terminal voltage is simply
\/'0c = 21 (t)Z; at Load 1 (2.62a)
Voo = 2ip(t)Z; at Load 2 (2.62b)

where the superscript denotes the voltage due to the first incident pulse. For both
loads,
V. <V

0cC 0oC

except in the case of load 2 for a long line (Figure 36f). With v > (Tp+r0 cos8)

SI.T SI.T
peak V! =2 —D b . ; 5D

Z(T-To

cose) ¢’ 1 Zc ) Voc (2.63)
That is to say that the peak open circuited first reflection terminal voltage at
load 2 is greater than the voltage which results from Equation 2.61.

Because of reflections, this voltage peak will occur at terminal 1 on the
second pulse. Since the cable is assumed lossless, the cable will ring ad infinitum
and never settle to a quiescent Voc-

It is stated without proof, that when 8 = /2, Voo = Qp Z¢/t is the maxi-
mum peak terminal voltage and also the peak line voltage.




SECTION 3
GENERAL MULTIWIRE TRANSMISSION LINE THEORY

3-1 BASIC EQUATIONS

A multiwire transmission line is defined as a collection of parallel
conductors, all of which are separated from a reference conductor by dielectric
material. For the cases of interest in this report the transmission-line is as-
sumed to be perturbed by a current source term driven by incident ionizing radia-
tion. In the following sections we will sketch the origin of the defining equations
for a multiwire transmission line and in Appendix I, II and III, we will consider
detailed solutions and the meaning of the various terms that appear in these
equations.

Let us consider a length AX of the multiwire transmission-line consisting
of N conductors and a reference conductor. Each conductor will have an inductance
and a capacitance with respect to the reference conductor and with respect to every
other conductor, which we denote by LAX and EAX, where L and C are inductance and
capacitance per unit length respectively. The voltage drop across X is equal to
the product of the inductance of this length of the transmission line and the time
rate of change of current summed over all conductors and the reference conductor:

AV, = —(L; )X J ' (3.1)

The decrease in current across this length of line is equal to the current that is
shunted across the distributed capacitance plus the current source. The change in
the current is given by the capacitance multiplied by the time rate of change of
the voltage plus the current source:

A

.= - —J
AIl (Cij)Ax %t (ID)i aX

where (Ip)j is the current source per unit length for wire i.
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In the 1imit aX-0, these equations become

i _ ol.
x T Thig 2 (3.3)
51, 3V,
_1i _ _J (3.4)
3% Ci; 3¢ * (Up)y

In the remainder of this section we will adopt a matrix convention and so write the

transmission line equations in the following way

v _ =T 3.5
oX L ot ( )
31 _ = oV . =

3x - Ca3xtIp (3.6)

The starting point of the previous derivation was the assumption that the
line couldberepresented by a collection of segments each with a distributed capa-
citance and inductance along the line. A more rigorous derivation would start with
Maxwell's equations appropriate tc guided waves and by making the assumption that
the electric and magnetic fields are both perpendicular to the direction of propo-
gation and to each other (TEM mode) the previous set of differential equations

would be obtained.

3-2 NATURE OF THREAT

In this section we derive the features of multiwire transmission line solu-
tions which are necessary for arriving at a practical engineering method of specify-
ing current drive levels for the multipoint, multiwire current injection technique
which has been developed. As has been noted in the Section 3-1, the threat to the
interface circuits is the energy arriving at the terminations due to the distributed
current drivers 1lonqg the caple length. The exact wave shape at the termination
depends not only on the parameters of the cable (current drivers, characteristic
impedance matrix, propogation velocity), but also on the ternination impedances
themselves. Similarly, the actual energy which is delivered to any particular load
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also depends both on the cable parameters and the terminations. Thus, to ascertain
the magnitude of the threat to any particular interface. it is necessary to consider
how the signal arriving at that interface depends on all the other parameters of the
problem. That is, a worst case approach must be developed for specifying this threat.
While it is relatively easy to find upper bounds for this threat (put all current

into a single terrination), this naive approach can lead to excessive levels which
will be above any physically realistic possibility. Instead, it has been decided to
look at the multiwire interface threat in detail and extract a physically realizable
worst case; that is, not just an upper bound, but a least upper bound.

It is the purpose of this section to explore the nature of interface
threats due to multiconductor transmission lines driven by X-ray generated current
drivers. The physically realizable worst case will be determined. An engineering
prescription will be developed for specifying the current drive levels required to
realize this worst case when implementing multipoint, multiwire current injection f

on component boxes.

The procedures for developing the prescription relies on the method of
successive complication. An ideal baseline model is chosen for developing the neces-
sary concepts. A definitive solution is presented for this model. Departures from
this ideal are then discussed by successive relaxation of constraints. The same
procedure is followed within the baseline model. First, the nature of the interface
threat for a single-wire to shield transmission line is reviewed. Next, the simplest
multiwire line which includes coupling is discussed, the two-wire to shield line. !
Finally, the general multiwire line is discussed, and the recults related to the pre-
vious discussion. The engineering prescription then becomes apparent.

3-2.1 The Basic Model

The model chosen for the baseline investigation is that of an ideal,
loss-less m:lticonductor transmission line which may be described by the equa-
tions of "quasi-TEM' transmission line theory. Thus, the assumptions are:

i) The propogation may be described by Equations 3.5 and 3.6.

i) The line is combed and uniform,i.e., € and [ are independent
of X and t.

iii) The current driver Ipn is uniform along the line. This cor-
responds to photon i?l
to the cable run.

umipnation uniform and perpendicular




iv) A1l modes of the line have the same propagation velocity v
(see Appendix [). This assumption simplifies the analysis
and is not far from reality. Mathematically, this require-
ment places a constraint on the transmission line matrices,
L and C, i.e.,

where ]1 is the unit matrix.

v} For simplicity, we assume the line to be symmetrically ter-
minated. That is, the reflection matrices for both ends
are identical.

vi} Only passive resistive terminations are considered. Re-
active terminations dissipate no energy and would increase
the scope of the investigation significantly.

vii) A1l terminations are wire-to-shield only. No cross-wire
terminations are considered. This corresponds to the situa-
tion of primary interest in the realistic deployment of such
cables.

With the above assumptions, a closed form analytic solution of the problem
may be obtained. The details of this solution may be found in Appendix II, while
details of the energy deposited in the loads may be found in Appendix III. These
solutions will be used extensively in the following discussion. Additionally,
generalizations of the solution will be used when discussing the relaxation of some
of the basic model constraints.

3-2.2 Single Wire Line

The general solutions given in Appendix Il for a multiwire line of course
also gives the single wire (to shield) solution. Let R be the termination resis-
tance, fc the characteristic impedance of the line, and n = R/Z. the impedance
ratic. The reflection coefficient I 1is given by

[ =

—|—

-n
¥n (3.8)
and varies from -1 for a shorted termination, to +1 for an open termination. For
a current driver Ip (amps/m) in an electrically short cable the current I in the
load is given by

[(t) = - 3z (1-1)

. 2n (3.9)

(AQ(t-2nt) + 1AQ (t-(2n+1)1)
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where 1 = s/v is the cable propagation time, v is the propagation velocity in the
cable, and s is the cable length. The basic pulse iz is given by

AQ(t) = q(t) - q(t-1) (3.10)
where
(t) ft )y d ( )
q(t)s = In(t") at” 3.11
0

is the basic charge transfer per unit length developed by the current driver Ip(t).
This is the same relation developed in Section 2-3.3 for the special case of an
electrically shot cable with I'g = i'g.

For the purposes of further discussion, it is assumed that the time history
of the current driver Ip is a square pulse. Evaluation of the expressions for other
pulse shapes will be obvious. Let Tp be the width of the square pulse, and Ip the
amplitude of the pulse, as shown in Figure 3%a . The charge transfer q(t) ramps
up to a total transfer QO=IDTp in a time Tp, as shown in Figure 336 .  The basic
pulse in the termination AQ is somewhat different depending on whether the cable
is long compared to the pulse (r>Tp). For a long cable, aQ ramps to a peak value
Qo = IpTp in a time Tp, remains at this value until t and then ramps back to zero
at a time Ty + r. For a short cable, 4Q ramps to the smaller value of IpT in a time
1, remains at this level until Tp, and ramps back to zero at a time Tp + 1. These
wave forms may be seen in Figure 38¢ and 38d .

The important point is that the waveform aQ (t-nt), which appears in
fquation 3.9, is non-zero only in the interval nTp5ﬁ5(n+1) Tp*t. Outside of this
interval 2Q(t-nt) is zero. Thus, the successive terms in the series of Equation
3.9 appear at later and later times. Thus, the terms are easily interpreted as
the successive reflections from the terminations, with the primary reflection occur-
ring at either end, followed by propagation to the opposite end and reflection back
to the termination of interest. As each pass through, the termination dissipates
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sore of the energy of the pulse; the successive terms arrive with smaller and smaller
amplitude (i.e., the pulse is multiplied by a power of o).

The primary pulse arriving at the termination is most easily seen by con-
sidering the special case of matched termination (n=1, T=0) and t is small for any value
of n, then the infinite series of Equation 3.9 reduces to

1(t) =--5 VQt) (3.12)

which is the same as derived in Section 2-3.3 with v=n/,. Thus, the expression
reproduces the well-known fact that matching terminations give rise to no reflections.
The current which flows in the termination is directly obtained from the information
about aQ previously presented. It takes on its maximum value only for ©™Tp. For
mismatched terminations (r#0), the current waveform takes on a different character
depending on whether there is a high mismatch (n>1, r<0) or a low mismatch (n<1, T>0).
The first case has the character of an over-damped ring down of a charged capacitor,
while the second case waveform has the character of an under-damped R,L,C circuit.
These features of the termination waveform may be seen in Figures 39 and 40 which
give the current waveforms for a moderately long cable (T=Tp) for significant high
mismatch (R=10Zy) and low mismatch (R=0.1Zq).

Several other features of the solution should be noted. The load current
scales directly with the source current I,. It also scales with the phase velocity
v. For long cables, the current scales as VQo=vIoTp, while for short cables, it
scales as vipt=Ips. The load current depends on the load resistance only through
the dimensionless ratio n=R/Z,. Finally, the time dependence of the solution in
terms of a dimensionless time variable t =t/: depends only on the pulse length
through the dimensionless ratio c=Tp/r. Taken together, this means that the solu-
tion space depends only on the parameters n (equivalently 1) and ¢, and that other
solutions may be obtained by scaling. Of course, the load voltage may be obtained
from the ~urrent by multiplication by R.

While Toad current and voltage are of some concern for semi-conductor
terminations, it is recognized that many major failure mechanisms are associated
with the total energy deposited in the load, and the rate at which the energy is
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deposited. Thus, while the current in the load reaches a maximum as the length

of the cable is increased (% IpTp for a matched load), the length of time the cur-
rent flows continues to increase as the cable length increases. This implies that
Tonger cables will deliver more energy to the load even though the peak current

and voltage may be no worse than for a shorter cable. The development of worst

case considerations for semi-conductor loads demands that these energy concerns be
addressed. A central feature of the approach to .~ discussed below is a careful
accounting for worst case energy capability. This criterion is taken to be of prime
importance. The features of this energy capability are now discussed for the single-
wire transmission line. An understanding of this capability will be central to the
approach for multi-wire lines.

In Appendix III, a derivation has been given for the energy which is
deposited in the loads on a multiwire transmission line. For a single wire long
line (1>Tp) this expression reduces to

1
B R [1 - -3-c(1—r-)] (3.13)

where

(%)
s §
Emax ~\2C (3.14)

and C = capacitance per unit length. In these equations, the symbols have the

same meaning as above, i.e., ¢ = Tp/t is the characteristic time ratio, Qg > IpT,

is the charge transfer per unit length, C is the capacitance per unit length of

the line, s is the line length, and r the reflection coefficient. Equation 3.14
may also be written in terms of the characteristic impedance of the line Z. = v']C‘],

2
- S IQ
Emax 2v o

1424 42

(3.15)
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For shorter lines, (1 < Tp) the expressions for the energy deposited
become more complicated, as is noted in Appendix III. However, the resulting expres-
sion always gives rise to an energy less than that implied by Equation 3.13 , i.e.,
more and more positive terms are subtracted from this basic quantity. Furthermore,
as the termination impedence becomes very large (R+~,r++1), all of the expressions
tend to E , no matter what the ratio of Tp to t. For further discussion, it is

max
therefore sufficient to consider the case Tp < 1, as given be Equation 3.13 .

The maximum energy available Emax is simply the amount of energy developed by charging
up the capacitance of the cable with the total transfer Qo. Naturally, this quantity
scales linearly with the length of the cable. It is thus possible to discuss the

per unit Tength energy capability of the cable. Note that this quantity depends not

only on the magnitude of the current driver ID {through Q0 = IDTp) but also on the
cable capacitance (or equivalently the characteristic impedence Zc)’ Note that for
very long cables (z<<1), the energy delivered to the load is nearly independent of

g the load resistance. Shown in Figure 41 is the normalized energy E/E as a function

max
of n = R/Z0 for various values of z. Note that this quantity is a monotically increas-

ing function of the load resistance R. Shown in Figure 47 is the same information
displayed in absolute units of E which shows the increase in energy with cable length. ']

Not only is the total energy of importance for semi-conductor considera- {
tions, but also the energy-time history. Shown in Figure 4: are the energy time
histories for three identical cables with low, matched, and high impedence termina-
tions (n=0.1, 1, 10). The solution is for a long cable (1 = Tp), so the final energies
are very nearly the same. As is evident from the figure, the energy is deposited in
the 1oad much more rapidiy for the matched load as compared to the mismatched loads.
While no convenient analytic expression has been developed for the length of time
required to deposit a fixed fraction of the energy, it is evident from the Equation
3.9 that the matched condition clearly gives rise to peak power in the load.

Indeed, for very long lines, since the final deposited energy is nearly independent
i of the load, it is clear that the matched load represents the worst case. Indeed,
the time ‘o deposit the energy in the load is minimized by matching the line. Shown

in Figure 44 is a summary of the time to deposit one half the final energy as a
function of termination impedence. The deep minima for most line lengths is apparent.
This plot was developed from an extensive numerical evaluation of the solution for
the indicated parameter range.

87

BB




:-“__ = 1) ON\m *SA ABbuauad pazi|ewuoN |y s4nbi4

%2/u
10t 0l i 10l Ol ¢O0l
T __ T J "_ a-OP
o = @
Yyibueq ejqey = 1
eoumoede) = 9 -
Jgn.ow «©
eouepaedw) onsieoBIBY) = O3 L9
Qk\.—k = 0
8auQg 1981 o031 eng L9
Jejsueij eBieypn w30l = 10 m
m
B 292/1:0 ot e
08’
o'l Ix—
£€°L |
w.‘u 1
v
_ =,




oN\a “SA ABadul - 7p 3unbiy

%2/4
0L ol t -0t 04 01
[ T ; T T 10!
%3 = s3wmor , _oix"s
= W°*
HLON3T 378Yd = 1
W/4d 00L = 3IINVLIOVAYD =
B . 01
08 = 0
JINVAIJWI DILSINILOVEVHI = 2
W/D g-OL = HLON3T
LINN ¥3d ¥34SNYYL I2¥YHI = B ve
N‘OF: Nn
22 _ 0 €l
T o 3
‘2

39

f
<

°3/3




¥
3 5€-08 L A 1 e 1
ENERGY
3.0(‘084 -
2.5:-08_ n = .1 =
¢ 2.0€-08_] a
.5€-08_] -
1.0€-00_] - ‘
8.0€-09_ o
0. :
LA Lf ¥
0. 5.06-08 1.0£-07_  1.%€-07 2.06-07 2.5€-07
TIME (SEC)

Figure 43a. Energy into load

90




————

4

3.5€-08

3.0€-08_

2.5€-08_]

2.0€-08_]

1.5€-08_

1.0€-08_]

5.0€-09_]

ENERGY

7.06-09  1.4E 08, 2 1E- 2.8€-08
' ' IME ( '

Figure 43b.

SEC)

Energy into load

3.%£-00




. 9E-08 i i 1 A 1
ENERGY
“.2€-08_] .
3-“‘08_‘ =3
n = 10
2.8€-08_] "
2.1e-08_ -
1. 4€-08_] o
7.0€-09_ -
0.
T T T \J v
0. 3.0e-08 1.0€-07 1.5€-07 2.0€-07 2.%-07
TIME (SEC)

Figure 43c. Energy into load




1031

p
s 102Tp -
=
w
>
-
<
m
@ 10T,
b

T=
10Tp

Te= 101b/3

7=Tp

r==1b/3<{\\»

L7 =:1b/1041 | PO
10-2 101 1 10 102
R/Zc
Figure 44. Time to deposit 50% of final energy into load




_;_:ﬂ!!!!!!!::E—'!ﬂﬁngggzg!ggnug-.-..‘

Sufficient information has now been presented about single wire solutions
to proceed to the simplest multi-wire model, that of the two-wire-to-shield trans-
mission line.

3-3 TWO WIRE ANALYSIS

It is of interest to consider, in a multi-wire bundle, how one can couple
current from one wire to another. The obvious place to study such effects is the
two-wire bundle. In the Appendix we have considered the analytic analysis of the
two-wire bundle and have shown how the two-wire bundle reduces to single wire solu-
tions. Such a reduction is extremely useful in terms of conceptualizing what is
happening in the coupling, but the obvious way to demonstrate the coupling is to
present the results of the current and energy, for example, that appear in the two
wires when only one is driven. The current that flows in the un-driven wire is all

coupled current. We have analyzed various two-wire bundles in order to consider
various coupling effects.

The analytic solution that is presented in Appendix II assumes that there
is only one propagation velocity. In general, in a multiwire bundle, there can be
many propagation velocities, which are a source of coupling from one wire to another.
While it is beyond the scope of this report to detail the consequences of this coupl-
ing, some calculatic~. have been done on a two-wire bundle with two different phase
velocities. The analysis seems to indicate that, particularly at low impedance ter-
mination, there can be a significant coupling effect due to the different phase
velocities. The remainder of the calculations have been performed on two-wire bundles
with one phase velocity. One two-wire bundle was constructed using the same capaci-
tance matrix as the multi-phase velocity bundle and by choosing the inductance matrix

in such a way as to give one phase velocity. The other two-wire bundle was constructed
in such a way as to represent a seven-wire bundie where six of the seven wires are
tied together. Llet 2 represent the wire of interest and

V. =V i=1 (3.16)
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where Vi is the voltage of the ith

between charge and voltage is again

Q = C43Y;

If we sum over all i, i # 2 we have

>, = 204,

i,ig 1,J,if %

N N
2, CigVy + > Ci5Y;
1¢4 1,3#L

and
N
Q ~ J}:CU 3
N
=C,,V +<_Zc“>v
j#L

Q, » V= V7
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wire with respect to the shield.

The relationship

(3.17)

(3.18)

(3.19)

(3.20)




we have
Q= C11Y; * C1aVs

- (3.21)
Q= Cia V; * Caa ¥y

where =
€11= Cyy

N
C12°) Loy = Ca1 =£le
J#L

=) 3.22)
C22 .i C.o ( )

1,572t
We have considered a seven wire bundle and picked out the wire with the largest
driver so that £=3 in the seven wire bundle.

In Figure 45 and 46 we pliot the ratio of E/EMAX for the bundles TW2 and
TW3 respectively. In this ratio, E is the energy dissipated across each termina-
tion for the un-driven wire and EMAX is the maximum energy capability across each
termination for the driven wire. The quantity E/EMAX is plotted as a function of
R2 for various values of R], where R2 is the ratio of the termination impedance
to the diagonal characteristic impedance of the un-driven wire and R] is the same
ratio for the driven wire. These plots indicate that the coupled energy from the
driven to the un-driven wire approach a maximum value of C2 times the maximum
value of the energy of the driven wire, C is the coupling factor defined in Appendix
V. It is important to realize that the quantity C is always much less than one

for any realizable bundle.

3-4 SEVEN WIRE ANALYSIS

The seven wire line analysis has been performed in order to demonstrate
the basic tenets of the previous sections when applied to a larger bundle of wires.
We have considered various distributions of seven wire drivers which are typical of
groups of seven wires in a larger bundle (37 wire bundle). In these calculations
we have singled out the wire in that distribution with the largest driver and varied
the terminating resistance of that wire as a function of the terminating resistances
of the other six wires. In Appendix VII we present the results of these calculations.
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One basic tenet of our analysis is that one can think of each wire in a
multiwire bundle as a single-wire transmission-line driven by an effective drive
ID given by

N
I, = I, + 9.C,|L |
D L ¥=1 il~i

ifs (3.23)

Where I ; is the driver for the wire of interest, wire %, Ii are the drivers for
all the other wires, and Ci are the coupling terms.

- %
Ci=24 ALY (3.24)

The charcteristic impedance matrix is given by Z and N is the number of wires in

the bundle. We can compute the total energy dissipated for a single-wire trans-
mission line, EMAX’ driven by this effective driver using the results of Appendix

IIT and compare with the actual energy dissipated from the numerical calculations.
Shown in Figure 47-49 are the results of these calculations. The labelling conven-
tion is detailed in Appendix III. On these plots, EMAX is the maximum energy capa-
bility per termination for the wire with the largest driver (including the coupling),
R] is the ratio of the termination impedance to the diagonal element of the character-
istic impedance for the wire with the largest driver, and R2 is the same ratio for
all the other wires. It is clear from these plots that EMAX represents the upper
1imit for the energy.

3-5 LOSSY CABLE TRANSMISSION LINE

It is of interest to consider dissipative effects in evaluating the
current that flows through the terminations for a cable driven by X-rays. In general,
for any real cable there will be a resistance per unit length along the length of
the cable due to skin depth losses and a conductance per unit length across the di-
electric due to the dark conductivity of the dielectric. In the following para-
graphs, we will discuss how to incorporate frequency dependent conductance and
resistance into the transmission-l1ine equations and present our solutions of these
equations.
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If we allow our caple to be lossy, the following transmissionline equa-

tions are appropriate:

oV _ Lal _ |
3X ot RI

I _-Cav _

B—)E = -sft- GV + ID . (3-25)

For convenience we will limit ourselves to single-wire cables and so drop all
vector notations. In these equations R is the resistance per unit length and G

is the conductance per unit length. The method of solution is the same as indi-
cated in Appendix II, and so we arrive the following fourier-transformed equations.

%% = iwLY - RrY
¢ %% = iwCV + TD - GV (3.26)

At this point, we will allow R and G to be functions of frequency, i.e.

R(W)
G(W) (3.27)

R
i G

[}

Using the same assumptions as made in Appendix Il we arrive at the following
equations:
2
2—}(2- = _kz?
dx
a2y
dx2

il

k% + IiWL-RI ¥, (3.28)

where

2
k = 35 - RG + iw(RC + GL). (3.29)




n, N
These equations can be solved, as in Appendix II, for I(w,X) and V(w,X). In par-
Y]
ticular, the solution for 1{0,w) is as follows

-it .
p(™ 2o ||1-p.e2ikl_ 22,

Y(o,w) =
[1-p Zikll Z 42 R Y

ik1
e

P e L
R™L °© R (2.30)

The notation in this solution is the same as has been used previously with the
following expression for Zo, the characteristic impedance

Z, = k/(wc + iG) (3.31)

Since k and Zo are functionsofw, it is not possible to obtain directly I{o,t),
given by the following equation

4o

-1 .
I(o,t) —E?./;w Y(o,w)e 1Vt

-0

(3.33)

We have performed the required integrations numerically using a fourier-transform
code and will present the results of this analysis in Appendix VIII.
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SECTION 4
MODEL VALIDATION

4-1 INTRODUCTION

The key to successfully developing the desired threat definition is an
accurate analytical tool which can predict not only photon responses (i.e., the de-
sired invariant current source terms) but also the wesired electrical parameters
required for the maximum energy analysis. Existing tools, such as the CHIC code,
have been developed to provide such information. An interesting characteristic of
these programs, which is associated with the physics of the direct drive phenomenon,
is that the calculated electrical parameter and current driver definitions are derived
from the same set of physical and material parameters contained in the subject cable.
The fact that these entities are not mutually independent of one another provides a
fortuitous situation which can be exploited to advantage.

Since the successful development of the maximum energy concept rests with
the accuracy of such tools as the CHIC code, it is highly desirable to obtain an
independent validation of the accuracy of such codes before committing extensive
effort based on their utilization. Such a validation is described in this section.
The interrelationship of the current driver and electrical parameter definitions
provides an excellent double check on the code validation conclusions. The cable
type which will be selected is also the baseline multiwire cable type which has been
used as the model for the development of the multiwire analysis technique. An excel-
lent choise for a candiate cable type is the AWG 24 (Raychem 44/0411 space wire), 37
wire foil/film (Copper/Mylar) shielded cable identical to that used in the DSCS III
Spacecraft and in the DSCS IIl Harness Photon Test.

4-2 CABLE PARAMETER SENSITIVITY-DRIVERS

The very large parameter space associated with any possible multiwire cable
configuration requires a considerable reduction if any meaningful predictive capa-
bility is to be realized. That is to say, we would like to isolate those parameters
which predominantly affect the response of a multiwire cable configuration to inci-
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dent ionizing radiation. In order to effect this reduction, we have employed the
CHIC computer code to perform a large number of calculations in various multiwire
cable configurations. The CHIC code, details of which have been presented elsewhere,
(8']O)is uniquely suited to perform this analysis since it is capable of handling an

arbitrary cross sectional geometry and material configuration.

For this particular cable configuration, the parameter space that is per-
tinent to an SGEMP analysis would include the following variables:

e Individual Wires

Composition, Plating, Size

e Wire Insulation Composition, Thickness, Dielectric

Constants, Density

e Liner - Composition, Thickness, Density
e Overshield - Composition, Plating, Thickness
o Geometric - Shield configuration relative to

wire bundle, relative positions of
wires, total number of wires in
bundle.

Qur approach in this sensitiVity study is to consider oniy those variables
which we feel might realistically be considered in any multi-conductor bundle. In
addition, we have considered how one might reduce these variables even further for
the purpose of a sensitivity study. One example of this is the assessment problem
associated with multi-layered dielectrics surrounding the individual wires of the
bundle, with frequency dependent dielectric constants. We have investigated the
possibility of representing such a configuration with one dielectric with an effec-
(") has indicated that
it is perfectly adequate, for the purposes of a sensitivity study, to model a multi-

tive dielectric constant. The outcome of this investigation

layered dielectric by a single dielectric with an effective dielectric constant.

Such a modeling will certainly indicate the trends in the response as a function

of the various parameters. On the other hand, if one wants to pinpoint the response
of a given multiwire bundle, one has to take into account the details of the multi-
layered dielectric configuration. Such an analysis has been performed and it has
been found that a modeling of the double layered dielectric is critical to accurately
calculating the response of the multiwire bund]e.(12)
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4-2.1 Sensitivity Study

The following parameters have been considered in our sensitivity study:

Wire Size - 16-26 AWG
Wire Plating - Sn, Ni
Shield Composition - Cu, Al
Liner Thickness - 1,2 mil

Angle of Incidence of Radiation
Geometric Configuration

Shield Configuration

4-2.1.1 Geometric and Shield Configuration

One question of interest is the dependence of the maximum response in a
bundle to the number of wires in the bundle. Shown in Figure 50 is a comparison of
a 61-wire bundle and a 7-wire bundle. The two bundles are identical, except for the
number of wires. Since the largest response is always on the wire nearest to the
shield, we do not expect there to be a significant difference in the maximum response
from a 61-wire bundle to a 7-wire bundle. In fact, our calculations indicate that
the maximum response for the 61-wire bundle is slightly smaller than the 7-wire
bundle. For this reason, we have considered the 7-wire bundle to be a canonical
configuration representing any close-packed multi-conductor bundle (see Figure 51
and have performed the majority of our computations on it. We have also considered
various packing arrangements of the wires in the bundle; the 7-wire bundle representing
hexagonal close-pack, and have found very little difference. An example of a hexa-
gonal close-pack and circular pack bundle of wires is shown in Figure 52. In addition,
we have found very Tittle difference in the response between a circular and hexagonal
shield, and so have performed most of our calculations on a circular shield configura-
tion. An example of a hexagonal shield is shown in Figure 53.

4-2.1.2 MWire Size

We have considered four different wire radii, ranging in size from 8.0
to 25.4 mils. Shown in Figure 54 are worst case response versus wire gauge. Since
a positive response indicates that the dominant effect is wire emission, we expect
that the bundle with larger radii wires will have the larger responses, and this
is verified by the calculations.
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¢ Figure 50. Comparison of 61-wire and 7-wire bundle
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Figure 51.
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61-wire bundle hexagonal pack - hexagonal shield

Figure 53.
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4-2.1.3 MWire Plating and Shield Composition

We have considered Sn and Ni wire plating and Cu and A1 shield composi-
tion. Since, again, the dominant effect is wire emission, we expect the largest
response to occur for that configuration which has the largest Z wire plating and
the smallest Z shield composition and this is verified by the calculations, as
indicated in Figure 54.

4-2.1.4 Liner Thickness

The effect of the thickness of the dielectric liner, which is bonded to
the overshield, on the response of the wires in the bundle has been considered.
A thinner Tiner would result in the shield emission being more effective, thereby
reducing the worst case response for a given bundlie. We have considered one and
two mil liners. Shown in Figure 55 is a typical distribution of drivers for these
two liners. It is clear that the response is indeed smaller when the liner is half
as thick, but not significantly smaller,

4-2.1.5 Angle of Incidence of Radiation

Shown in Figure 56 are the distribution of drivers for various angles of
incidence. An angle of incidence of 0° gives rise to the worst case driver.

4-2.2 Conclusions

For the purposes of comparing one bundle configuration to another, we
will use as the criterion the maximum response in a given bundle. For the range
of parameters considered in this study, the bundle configuration that resulted in
the largest maximum response had the following parameters:

(a) 16 AWG wire size,

{b) Sn-plated wire,

{c} A1l shield,

(d) 2 mil liner thickness, and
(e) 0° angle of incidence.

The maximum response for this bundle was computed to be 6.12 x 10']0

(cou]/cm)/(ca]/cmz). [f we take this configuration to be the baseline configura-
tion, the following specific conclusions can be drawn from the sensitivity study:
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Figure 55. 7-wire response
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Figure 56. 7-wire response
[10']0 coul/cm/ca]/cmz]
effect of incidence angle
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(1) The maximum response is a monotonically increasing function
of wire radius for all material configurations.

(2) Replacing an aluminum shield with a copper shield gives at
least a factor of 0.64 reduction in driver from the baseline
response.

(3) Replacing the tinned wires by Ni-plated wires, gives a factor
of 0.58 reduction in driver from the baseline response.

(4) Replacing the tinned wires by Ni-plated wires, and replacing
an aluminum shield by a Cu shield gives a factor of 0.26
reduction in driver from the baseline response.

(5) For all material configurations, a small liner gives a
sTightly decreased response for the worst case driver,

(6) The angle of incidence of the radiation has only a small effect
on the worst case driver, and 0° incident is the worst case.

These results indicate the relative insensitivity of a multi-conductor
bundle to realistic variations in the parameter space. In general, if we take the
maximum response as an indicator, the maximum variation is less than a factor of
ten. Although this analysis has mainly been carried out for one typical blackbody
spectrum, our calculations have also indicated that the response increases with
blackbody temperature, a result consistent with the absence of gaps between all

conductor-dielectric interfaces.

4-3 MODEL DRIVERS

This section will present the results of a complete analysis of the elec-
trical parameters and current drivers associated with 7 and 37 foil/film multiwire
cables. This analysis has been performed using the CHIC code, det .ils of which
(8) The CHIC code has the capability, not only
of calculating the current sources associated with Photon Direct Drive SGEMP, but

have been considered elsewhere.

also all the parameters which electrically identify a given multiwire cable. The
electrical parameters can be conveniently represented in matrix form and are completely
analogous to the capacitance and inductance of a coaxial cable.

4-3.1 Foil/Film Multiwire Cable - Specification

We will be considering a 7 and 37 wire bundle in this section. These two
bundles are identical, except for the difference in the number of wires. Each multi-
wire cable consists of N individually unshielded wires within a single foil/film
overshield. In this section, we will specify completely the geometrical and material
configuration which has been used in these calculations.
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4-3.1.1 Individual Wires

The individual wires are Raychem AWG #24 space wire which consists of
pure tin coated, copper wire covered by a combination cross-linked, extruded poly-
alkene and cross-linked, extruded polyvinyldene fluoride dielectric (Kynar). The
extrusion process used for the Raychem space wire is such that there are no gaps
between the dielectric and the conductor. Shown in Fiqure 57 is a model of the
Raychem space wire with appropriate labels. Table 4 is a table of the correspond-
ing parameters associated with the Raychem space wire which serves as inputs to
the CHIC code.

4-3.1.2 Foil/Film Overshield

The foil/film overshield consists of a Sun Chemical #1132 film-foil lami-
nate made of an electro deposited Copper foil on a polyester (Mylar) film. Figure
58 is a model of the overshield with appropriate labels and Table 5 is a table
of the associated parameters which also serve as inputs to the CHIC code. 3

4-3.1.3 Geometric Model

We have assumed in these calculations that the individual wires in the
multiwire bundle are hexagonally close-packed and that the overshield is circular.
Shown in Figures 59 and 60 are the geometric models assumed in the calculations
along with the labeling of the individual wires in the bundle. This labeling cun-
vention will be used throughout this section, both in the definition of the capaci-
tance and inductance matrices and in the current drivers.

4-3.2 Incident Spectrum

The current drivers have been computed using the PIMBS-1A spectrum shown
in Figure 61. We have assumed a 20 mii Mylar and 1 mil Al window between the
photon source and the multi-wire cable, and will present all current drivers nor-
malized to 1 ca]/cmz incident on the cable overshield.

4-3.3 Electrical Parameter Definition of a Multiwire Bundle

There are two capacitive matrices which are relevant to multiwire bundles
of N wires. One, which we will call Maxwell's capacitance coefficients, is defined

by the following matrix equation:(s)
N
Q, = Z .
i ClJvJ , 1=1,----.,N
J=1
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Figure 57. RAYCHEM space wire #24 AWG
Table 4. Parameters associated with RAYCHEM space wire # 24 AWG
RELATIVE
RAPIUS DENSIT; DIELECTRIC
MATERIAL (mils) (gm/cm™) CONSTANT
A ry = 13.0 8.96 —_—
(TIN COATED COPPER)
B r, = 16.5 1.08 2.25
(POLYALKENE)
} c ry = 19.5 1.73 7.0
E ¢ (KYNAR)
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¢ Figure 58. Foil/film overshield

Table 5. Parameters associated foil/film overshield

THICKNESS DENSITY DIELECTRIC

MATERIAL (MILS) (GM/cm?) CONSTANT
A (COPPER FOIL) tl = 0.7 8.96 -
B (MYLAR) t, = 0.92 1.35 2.9
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Figure 59. 7-wire multiwire bundle with Tabelling convention

Figure 60. 37-wire multiwire bundle with labelling convention
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th

where Qi is the charge on the i~ conductor, Vj is the voltage of the jth conductor

with respect to the shield, and Ci' are Maxwell's capacitance coefficients. Cij is
th .th
J

the ratio of the charge induced on the i conductor to the potential on the

conductor when all other conductors are at zero potential. An alternative capacitance

matrix which can be determined from Cij wil; be labeled (CM)ij' In this definitiﬁn,
(CM)ii is the ratio of the charge on the i~ conductor to the potential on the i

conductor when all other conductors have no charge. (CM)ij (i#j) is the ratio of
the charge on the ith conductor to the potential difference (vj-vi) when all other

conductors have no charge.

The inductance matrix is determined by computing the capacitance matrix

C?j of the identical multiwire bundle without dielectric. The inductance matrix Lij
is determined by the following equation:
-1
(€53
Lij =
c2

where C is the speed of light in vacuum.

The propagation matrix (Yz)ij is determined once Li'

and C.. are known
J 1]

and is defined by the following equation:

N
2 =
CRIVEEID DR ICW
k=1
This matrix is, in general, not diagonal; but when brought to diagonal form (yz)?j;

the diagonal elements are related to the multiwire phase velocities Vi by the
following equation:

-1/2
v, = ((vz)ﬁi)

A knowledge of Lij and Cij can also be used to determine the characteristic impe-
dance matrix Z1.j of a multiwire bundle which can best be represented symbolically

Z = VI/C

where Z, L, and C are the impedance, inductance, and capacitance matrices, respec-

as:

tively.
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4-3.3.1 Electrical Parameter Results

In this section, we present the complete 7-wire results and a limited
amount of 37-wire results. In Tables 6-10 are given the complete set of para-
meters for the seven wire bundle. In Tables 11-15 are given the diagonal elements
of all the matrices for the 37-wire bundle.

4-3.4 Fall-0ff of Capacitance Matrix

For a given wire, i, in a multiwire bundle, we do not calculate all of
the elements of the capacitance matrix Cij’ j=1, 2, ..., N, but only those elements
which correspond to wires that are nearest to wire i. This is justified in light
of the fact that Cij is very small for wire j far away from wire i, and is, there-
fore, for the purposes of any calculation zero. To justify this assumption, we
have computed C]j, j=1, ..., N, for the 37-wire bundle. Shown in Table 16 are
the results of this calculation,

4-3.5 Current Driver Results

Using the geometrical and material configuration described in Section
4-3.1 and the x-ray spectrum described in Section 4-3.2, we have computed the cur-

rent drivers for the 7- and 37-multiwire bundles. The results are indicated in Figure
62 and Tables 17 and 18. The largest driver for the 7-wire bundle is =3 with a driver

of +4.14 x 10'10 cou]/cm/cal/cmz. The largest negative driver for the 37-wire
bundle is #14 with a driver of -1.27 x 10'10 coul/cm/ca]/cmz.

4-3.6 Comparison to Experiment

It is of interes., once the model drivers and associated electrical
parameters have been computed, to compare results with actual multiwire bundles.
The particular quantities that have been measured are the Norton equivalent current
drivers for a 37-wire bundle and various capacitance, wire to shield and wire to
wire, for that bundle. When comparing theory and experiment, however, it is impor-
tant to keep in mind the fact that the geometrical model assumes a close-packed
configuration whereas there is a certain tendency for the wires to move around in
the actual bundle. It is difficult to make a detailed comparison wire by wire for
this reason. Our model predictions always have the wire with the largest driver
at the outer edge of bundle with the peak ~4 X 10']0
experimental results give the largest driver +6 X 10

cou]/cm/ca]/cmz, and the

-10 cou]/cm/ca1/cm2. The wire
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Table 6. Capacitance matrix C (pf/m) for 7-wire bundle
248.08 -31.86 -31.86 -31.86 -31.86 -31.86 -397.86
-31.86 225.76 ~37.83 -0.55 -0.08 ~0.55 -37.83
-31.86 -37.83 225.76 -37.83 -0.55 -0.08 -0.55
-31.86 -0.55 -37.83 225.76 -37.83 -0.55 -0.08
-31.86 -0.08 -0.55 -37.83 225.76 -37.83 -0.55
-31.86 -0.55 -0.08 -0.55 -37.83 225.76 -37.83
-31.86 -37.83 -0.55 -0.08 -0.55 -37.83 225.76
Table 7. Capacitance matrix EM {pf/m) for 7-wire bundle
¢
| 207.19 130.10 130.10 130.10 130.10 130.10 130.10
130.10 203.05 128.63 110.01 107.64 110.01 128.63
130.10 128.63 203.05 128,63 110.01 107.64 110.01
130.10 110.01 128,63 203,05 128.63 110.01 107.64
i 130.10 107.64 110.01 128.63 203.05 128,63 110.01
130.10 110.01 107.64 110.01 128.63 203.05 128.63
130.10 128.63 110.01 107.64 110.01 128.63 203,05
Table 8. Inductance matrix L (nH/m) for 7-wire bundle
187.72 40.58 40.58 40.58 40.538 40.58 40.58
40.58 152.11 31.79 12.71 10.05 12.71 31.79
40.52 31.79 152.11% 31.79 12.71 10.05 12.71
| 40.58 12.71 31.79 152.11 31.79 12.71 10.05
5 40,58 10.05 12.71 31.79 152.11 31.79 12.71
£0.58 12.71 10.05 12.71 31.79 152.11 31.79
) 40.58 31.79 12.71 10.05 12.71 31.79 152.11
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Table 9. Propagation matrix Y (10'20(m/s)_2) for 7-wire bundle
3881.29 6.25 6.25 6.25 6.25 6.25 6.25
206.46 3063.77 -37.46 -9.88 -3.27 -9.88 -37.46
206.46 -37.46 3063.77 -37.46 -9.88 -3.27 -9.88
206.46 -9.88 -37.46 3063.77 -37.46 -9.88 ~3.27
206.46 -3.27 -9.88 -37.46 3063.77 -37.46 -9.88
206.46 -9.88 -3.27 -9.88 -37.46 3063.77 -37.46
206.46 -37.46 -9.88 -3.27 -9.88 -37.46 3063.77

Table 10. Phase velocities (e-values v (108 m/s) for 7-wire bundle

1.80
1.80
1.79
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Table 15. Phase velocity Vi (108 m/s) of a 37-wire bundle

V1 = 1.59 V20 = 1,77
V2 = 2.1 V21 = 1.76
V3 = 1.88 Voo = 1.77
V4 = 1.78 V23 = 1.78
VS = 1.97 V24 = 1.76
V6 = 1.84 V25 = 1.78
v, = 1.85 V26 = 1.76
Vg = 1.79 Voo = 1.77
Vg = 1.97 V28 = 1.77
V10 = 1.84 V29 = 1.77
V11 = 1.83 V30 = 1.76
V12 = 1.85 V31 = 1.75
V13 = 1.85 Vzo = 1.77
V14 = 1.75 Vi3 = 1.75
V15 = 1.79 Vg, = 1.75
V16 = 1.76 V35 = 1.76
V17 = 1.77 V36 = 1.74
V18 = 1.77 V37 = 1.76
V19 = 1.77




Table 16. Capacitance of wire 1 with respect to all wires
37-wire bundle

€(1,1) = 247.29 pf/m
€(1,2) = =-30.99 pf/m
c(1,8) = -1.61 x 10" pf/m
C(1,14) = -4.66 X 10°°> pf/m
C(1,200) = =4.49 X 10> pf/m
€(1,32) = =3.27 x 10°° pf/m
| §
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Table 17. 7-wire current drivers

CURRENT DRIVER (cou'l/cm/ca]/cmz)
- 160 x 1071
64 x 10710
.14 x 10710
39 x 1071
41 x 107
X
X

m

39 x 1071
14 x 10710

~N OO AW NN —~ X
"
B O O OO & N

10_10 (coul/cm/cal/cmz)

<4——— hv

Figure 62. 7-wire current drivers
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Table 18. 37-wire current drivers
WIRE * CURRENT DRIVER (coul/cm/cal/cn’)
1 . 6.48 x 107"
2 = 4.69 x 107!
3 - -1.34 x 107"
4 - 8.15 x 10712
5 = 2.72 x 1071
6 - -8.15 x 10712
7 - 1.38 x 1071
g - 7.8 x 107!
] 9 - -9.26 x 107"
0 - 2162 x 10713
" - 1.62 x 10713
12 - -9.26 x 1072
q 13 = -7.18 x 10':; |

- 1.27 x 10
| 15 = -5.40 x 107"
[ 16 - 1.78 x 10712
| 17 - 2138 x 1071
| 18 - 1.78 x 107 1%
i 19 - -5.40 x 107"
f 20 - 1.32 x 10710
‘ 21 . 1.37 x 10710
22 - 21,08 x 1071
23 - 2315 x 10712
' 2 - 9.26 x 10712
25 - 9.38 x 10712
2 - 9.38 x 1072
27 - 9.26 x 10712
28 - 3.5 x 10712
29 = 21,98 x 1071
: 30 - 1.37 » 10719
: N - 1.32 x 10719
5 2 s 2.67 x 10710
33 = 4.19 x 1070
- 2.65 x 107!
¢ 35 = 5.53 x 107
% - 2.65 x 107V
37 - 4.19 x 1070
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with the largest driver tends to be on the outside of the bundle in such a way that

there is a separation between it and the nearest neighbors. We believe, therefore,
that the difference between the model predictions and the experimental data are due
to the fact that the wires are, in fact, not totally close packed. The model drivers

range from -1.27 X 10710 to +4.2 x 10710 cou]/cm/ca]/cmz. Another way to compare
theory and experiment is to compare the bulk current drivers defined as the algebraic
sum for the bundle. The model predicts a bulk current 15»4.2 X 10'9. The difference

between the model predictions and the experimental data can more vividly be seen by
the two histograms plotted in Figure 63 and 64. In the model, there are more negative
drivers in the interior of the bundle due to the close packing of the wires. This is
what gives rise to a smaller bulk current.

Measurements have been made of the capacitance matrix of a 37-wire bundle,
and it is of interest to compare these results with the model predictions. It is
important to note that whatever is the reason for differences between the model and
the data as far as the current drivers are concerned can also be responsible for
difference in the capacitance matrix. We can think of the capacitance matrix as de-
fining the geometry and dizlectric properties of the bundle. Table 19 is a comparison
M and the
corresponding model prediction. In all cases the data are somewhat smaller than the

of the experimental data of various elements of the capacitance matrix c

model. The difference is consistent with the fact that the wires are not as close
packed as the model assumes.
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Table 19. Comparison of capacitance matrix elements - model and experiment

WIRE TO SHIELD WIRE TO WIRE
CAPACITANCE CAPACITANCE
i (PF/M) MODEL EXP. DATA (PF/MD MODEL | EXP. DATA
cC1,1) 168 90 c(1,2) 112 86
c(2,2) 124 90 €(2,3) 106 85
c(3,3) 124 89 C(3,4) 106 85
CC4,4) 124 90 C(4,5) 106 85
€(5,5) 124 89 c(5,6) 106 85
C(6,6) 124 90 2(5,7) 106 8¢
cC7,7 124 90 c(7,8) 78 67
c¢8,8) 120 95 c(8,9) 81 65
c(9,9) 119 95 c(9,10) 81 65
cC10,10 119 96 €C10,11) 81 65
CC11,11) 119 95 cC11,12> 81 65
cC12,12) 119 96 €(12,13) 81 65
€C(13,13) 119 96 C(13,14>| 106 83
CC14,14D 125 91 C(14,15) 80 64
(15,15 124 90 c(15,16) 80 63
g C(16,16) 124 90 C(16,17) 80 64 .
cCC17,17) 124 91 €C17,18) 80 64 i
€(16,13) 124 91 c(18,19) 80 64 '
C(19,19) 124 96 cC19,20) 70 60
€(20,20) 124 108 c(20,213| 103 84
cC21,21 124 110 €(21,22) 79 68
(22,22 125 107 €(22,23)} 103 86
€(23,23) 124 112 €(23,24) 79 68
C(24,24) 125 110 C(24,25)| 103 86
€(25,25) 124 112 C(25,26) 79 69
C(26,26) 125 108 C(26,27)1 103 86
1 C(27,27) 124 109 €(27,28) 79 68
€(28,28) 125 108 €(28,29)| 103 86
€C(29,29) 124 113 c(29,30) 9 69
c(30,30) 125 111 €(30,31){ 103 86
€(31,31) 125 115 C(31,32) | 111 87
€(32,32) 196 113 €(32,33)| 105 65
€(33,33) 196 109 €(33,34)| 105 63
C(34,34) 196 113 C(34,35)| 105 65
€(35,35) 196 112 €(35,36>| 105 65
C(36,36) 196 111 C(36,37)| 105 65
€(37,37) 196 115 €(34,37>| 100 63
€(33,36)| 100 61
€(32,35)}| 100 62
€(1,32) 99 60
€(1,33) 99 60
C(1,34) 99 60
€(1,35 99 60
€(1,36) 99 60
C(1,37) 112 60
L]
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SECTION 5
CIT DESIGN AND DEVELOPMENT

5-1 INTRODUCTION

The ground characteristic of the photon direct drive threat has been shown
in Sections 2 and 3 to be one of a large differential mode, wire-to-shield transmission
line type electrical surge. This type of threat produces a unique energy-time, trans-
mission line controlled waveshape at electronic interfaces and, it is to this threat
profile that satellite electronics are hardened. Hence, the primary requirement
imposed on any candidate C.I.T. technique is that it provides a meaningful SGEMP
hardness verification test with respect to correctly simulating the electrical energy-
time nature of the SGEMP threat. There are, however, a number of additional design
constraints which are imposed at the satellite system program level which impact the
specific method and configuration that can be used to meet the C.I.T. specification.
These constraints are both of a practical nature as well as those associated with
actual spacecraft hardware. Specifically, the C.I.T. must be compatible with the
SGEMP hardening designs employed in actual satellite systems, it must be of a low risk
approach which provides individual, positive control of currents delivered to each pin,
and finally, be practical for user test evaluation.

An additional requirement is associated with the correct electrical parameter
definition of the maximum SGEMP energy threat which exists in a cable bundle, since
it is these parameters which must be used in a meaningful hardness verification test.
Furthermore, the maximum energy capability of a particular wire is not only controlied
by the magnitude of the wire's current source term but is also controlled by the
wire-to-shield characteristic impedance.

The situation is further complicated by the fact that since satellite
cables are comprised of many unshielded wires enclosed by a common bundle shield,
significant interwire coupling occurs which alters the equivalent electrical para-
meters of the transmission line type threat.

From a threat specification standpoint, one could adopt an approach based
on defining the maximum threat posed to the component box pins in terms of the
total cable core current and some nominal or worst case characteristic impedance.
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This is an extemely conservative approach which is unrealistic but mathematically
representative of an upper limit. This approach, however, is completely intolerable
from a satellite system standpoint since is represents a significant hardware impact
design solution to providing adequate hardening against a realistic threat level.

5-2 DESIGN CONSIDERATIONS

Since the SGEMP threat in present day, design hardened, satellite system is
associated with photon direct drive effects in electrical cables, the foundation for
the overall hardening designs for component boxes is based upon the energy-time,
transmission line nature of the direct drive threat. However, since system weight,
power, cost and reliability are of utmost concern, these hardening designs, by neces-
sity, are of a hardware efficient nature for both new and existing design component
boxes. Thus, SGEMP hardening is implemented on a "specifically where required" basis
rather than legislated on an "across the board" basis.

Since the severity of the SGEMP threat is controlled by energy-time trans-
mission line characteristics and specific wire length, hardening requirements are
imposed based on actual cable lengths in the satellite system for each interface cir-
cuit as well as the quantitatively defineable electrical loads, not only at the circuit
of concern, but at the interfacing circuit at the opposite end of the wire. In many
cases, for example, the presence of a particular low impedance electrical load or the
addition of a single zener diode at one end of a short-to-medium length wire is suf-
ficient to provide protection to the interfacing circuits at both ends of the line.
For Tonger length Tines, SGEMP hardening is implemented at both ends of the line
consistent with the line length of the transmission line type threat. Hence, many
interface circuits in a component box are only SGEMP hardened when all their respec-
tive interface component boxes are electrically connected.

An additional design consideration is associated with the physical nature
of the electrical systems (cables and connectors) in actual satellites. Satellite
cables are unlike re-entry vehicle cables in that they are not generally straight,
two connector cables. Instead, satellite cables are typically complex configurations
comprised of large bundles of upwards of hundreds of unshielded wires contained within
a common bundle shield with numerous branches and connector breakouts, with high
density (large number of pins) connectors used for component box interfaces. Further-
more, the wiring in these cables consists of wires with short total lengths (low
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threat level wires which require minimal SGEMP hardening of their respective inter-
face circuits) in a common bundle with wires of long total lengths {high threat
level wires which require extensive interface circuit hardening).

The consequence of these design aspects is that an SGEMP simulation tech-
nique must provide high simulation fidelity of the energy-time transmission line
nature of the SGEMP threat for muiltipin, simultaneous drive of component boxes. It
also must be capable of correctly driving a component box whose SGEMP protection is
contained in numerous other component boxes which are not in the test setup during
individual component box testing. Furthermore, the technique must be capable of
simultaneously driving some pins at high levels and others at Jow levels to accom-
modate various distributions of long and short wire threats at the same connector
interface. This latter requirement also has a significant impact on the risk potential
associated with any potential simulation technique.

Since the SGEMP hardness verification test is typically performed in line
at the latter portion of the total qualification cycle (generally before thermal-
vacuum qualification}, a lTow risk simulation approach is required to avoid inadver-
tent overstress levels which could cause spacecraft equipment failures and impact
system integration and, possibly, flight schedules. In view of the typical SGEMP
hardening designs employed in satellite systems, one cannot generally afford the
luxury of overdriving some pins at higher levels in order to assure that the minimum
required test levels are properly established in all pins. As such, the simulation
method must also be capable of providing individual positive control of each of the
currents delivered to each of the interface pins to eliminate high current (or voltage)
hazards to both the equipment as well as the operating personnel. An obvious addition-
al requirement, which is more practically oriented for user test evaluation, is that
the simulation methods be capable of being configured into portable, in-house hard-
ware readily adaptable to correctly interfacing (both electrically and mechanically)
with actual satellite component boxes and their associated ground test equipments.

5-3 CIT DESIGN

The detailed design requirements were based on the design constraints
described in the previous section. In order to achieve the desired electrical simula-
tion the design and development of the test techniques were accomplished in the
following five subsystems elements.

'.({-"“‘ ';>




1) A central source term generator to reproduce the desired
invariant current driver waveshape to drive a practical
multiport current source.

2) A set of cable delays from the central generator to the
multiport current source to provide time-phased photon
source term simulation.

3) Discrete current source injection into a controlled charac-
teristic impedance (Zo) test cable for each pin under test
to provide simulation of the distributed source term nature
of the threat.

4) Multiple cable line drive capability in order to simulta-
neously drive the number of pins which corresponds to the
maximum number in the cable bundle which could realistically
be at maximum threat conditions.

5) Provide a range of termination impedances and drive levels
for the test injection cable to simulate those corresponding
to the realistic maximum threat when considering realistic
maximum multiwire coupiing effects in the actual multiwire
cable which is connected to the component box being tested.

The central direct drive source term generator provides a large amplitude
current pulse which has the same time waveshape as the actual photon pulse. This
is the unit which reproduces the basic invariant current driver waveshape and is the
heart of the C.I.T. technique. The multiport currents source and time phasing cables
provide the correct distribution of the invariant current driver waveshape to the
pins of the component box to complete the simulation.

A significant element in the development of the C.1.T. approach was the
proper technique to distribute the source term generator to a multiwire, controlled
impedance network for correct simulation. This distribution depends on the specific
wire placement in each cable manufactured. Hence, each pin on the component box must
be evaluated for maximum threat in order to ensure that the complete interface is

survivable no matter what manufacturing variations occur in the production satellites.

This evaluation must be performed keeping in mind that the hardened level of each pin
corresponds to the actual wire length in the system and that the indiscriminate in-
jection of current into a high characteristic impedance wire could produce an over-
stress condition.

The approach for distributing the source temis which wasmore preferred from
a practical and simulation aspect was to simultaneously test the desired number of
signal lines at maximum threat levels using controlled characteristic impedance
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values and current amplitude values corresponding to maximum threat conditions. Hence,
each pin should be driven by its own controlled impedance pulse generator interface

at maximum wire-to-shield threat levels when considering realistic worst case multi-
wire coupling effects. Multiwire transmission line analyses is required in this
approach for the proper definition of such effects and for the development of user
oriented simplified techniques to readily define realistic test parameters to use

for maximum threat testing of any specific cable design and configuration.

A simplified diagram of the multipin C.I.T. method and equipment which was
developed is shown in Figure 65. This method is essentially a group of "N" transmis-
sion lines driven by "S" current sources. Line-to-line isolation diodes are provided
as shown to prevent interwire bias loading and to prevent loading of the injection
test cable by the multiport current source. A bipolar, central source term generator
is formed by the voltage pulse across the two output resistors. The multiport current
source is formed by the drive resistors in series with the isolation diodes which are
driven by the voltage pulse across the output resistors of the central source term
generator. Photon time phasing simulation is accomplished, quite simply, by driving
each section of the Tline through different lengths of coaxial cable.

The pulser consists of the current pulse generator, various load impedances
and test cables. The basic schematic for the C.I.T. Pulser is shown in figure 66.
A test cable impedance of 36 ohms was used as a result of an analysis which indicated
that the average wire-to-shield characteristic impedance on typical DSCS III cables
was 36 ohms. The remaining variables, such as, cable length and termination impe-
dance was specified by the particular component, or connector under test. Simulation
of the distributed current source was achieved by using the pulser to inject the 36
ohm test cable once per meter. A typical test setup shown in Figure 67 used test
cable lengths of 1/2 meter between the I/F adaptor of the box under test and the
pulser, 1 meter between current injection points and 1/2 meter between the last cur-
rent injection point and the termination load. A Tektronix CT-2 current probe was
used to measure the current delivered into the box under test. When opening all
outputs of the pulse generator are either connected to a test cable or connected to
a short.

Typical design capability of this C.I.T7. equipment is shown below when
using a 10 amp per meter drive level.
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Figure 65. Simplified schematic diagram of the multipin C.I.T.
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Pulse Generator Charge: 20 kV
Pulse Shaping Resistor: 10 Q

1 Driver Max: 10 Amp/Meter

Cable Impedance: 50 @

Cable Length: Absolute Maximum Number of
(T/Tp) Wires Which can be Driven
0.17 120
0.5 60
1.7 40

Figure 68 shows the overall layout of the C.I.T. equipment which was
designed. Figure 69 shows an overall view of the attached pulser hardware that was
subsequently developed based upon this design. This hardware was then used to test
actual spacecraft boxes to demonstrate the application and utility of the test tech-
niques and pulser hardware. The results of these tests are given in the Final
Technical Report, Task 2 of this Program (Reference 13).

Typical pulse current waveshapes resuiting from the simulated SGEMP re-
sponse of numerous cable lengths and which are delivered to a large range of compo-
nent box pin impedances by the C.I.T. method are described here are shown in Figure 70.
The component box pin impedances "R" are expressed in terms of the impedance relative
to the wire-to-shield characteristic impedance (Zc) of the cable response being simu-
lated. The cable electrical length threat t being simulated is expressed in terms
of the cable propagation time compared to the full width-half maximum {FWHM) of the
photon pulse being simulated. The time-per-division "tp" and the amperes-per-division
"Ip" of the oscilloscope traces are expressed in time relative to one another. Each
of the amplitudes and waveshapes shown are in excellent agreement with those which
are predicted by analytical codes.
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Figure 68. Pulser layout

143

1 o e ——————-

s iAo T H 48 A r——

. ) o ,
g o e e (2R W




B

v

" - - . - o ]

i

i

L
-

144

t

equipmen

Overall front view of the C.I.T.

Figure 69.



T -

poylaw *1°1°9 ayl Aq paodnpoud sadeysasem uld ddejuajul |edrdh] g/ 9unbiy

- |
:
w o
3 i
1 144
R
i
3
B L B i
L K ) Ty ! P nm
4 0
———
1
Iz 00l 2201 4 Z 9210
0]
3 - -




S

SECTION 6
CONCLUSION

The need for this analysis, design and development effort is rooted in the
requirement for a safe and reliable simulation test method to verify satellite elec-
trical system operation in a nuclear X-ray environment. A number of fundamental

transmission line response equations have been developed, progressing from the simple

two-wire case to the multiwire cable, which provide useful tools for analyzing cable
response in radiation, including the case wherc the radiation propagates along the
length of the cable. Numerical and graphic results are provided.

For the multiwire bundle the current driver description has been reduced
to an effective single wire transmission line with an effective current driver.
Using this effective current driver the worst case current and energy into an inter-
face is developed as a function of line length and termination impedance.

The current injection test method which has been designed and described
here represents what is felt to be an optimum approach for performing a meaningful
multipin C.1.T. on electronic component boxes. The photon direct drive simulation
has been accomplished within the overall satellite program level constraints of
actual electronic equipment.

The major objectives of developing simplified analytical and experimental
techniques for simulation of the photon direct drive threat to satellite electronics
has been met in three areas.

1. The photon/electrical response of multiwire cables has been determined
with respect to their SGEMP direct drive sources, transmission line parameters and
realistic multiwire coupling.

2. The electrical test requirements for component box current injection
t.tting have been defined with respect to the SGEMP electrical energy distribution
in multiwire cables and injection current level and characteristic impedance of
this threat.
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3. Direct drive current injection test simulation has been performed
using the designed C.I.T. pulser on electrically active component boxes to achieve
a proper simulation of threat, at low risk, while being compatible with actual hard-
ened satellite electronics and practical for user test performances.
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Appendix I

PROPERTIES OF THE TRANSMISSION-LINE MATRICES

There are two matrices which uniquely determine
tue electrical properties of a multiwire bundle. These
matrices are the capacitance matrix € and the inductance
matrix L. The elements of the capacitance matrix 5,
also called Maxwell's capacitance coefficients, are
defined by the following matrix equation

Q=) Ci¥; (I-1)
j

where Qi is the charge on the i'th conductor, VJ is the
voltage of the j'th conductor with respect to the shield
and Cjj are Maxwell's capacitance coefficients. Cjj 1is
the ratio of the charge induced on the i'th conductor to
the potential on the j'th conductor when all other con-
ductors are at zero potential. The capacitance matrix
has the following properties:

a) C is symmetric

b) The diagonal elements are all greater than or
equal to zero.

¢) The off-diagonal elements are all less than or
equal to zero.

N
d) 2 Ci; 2 0 for every i.
=1 M
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These properties can all be proven from the defining
relationship, Equation (I-1), and from the basic prin-
ciples of electrostatics.

The inductance matrix f is defined in a way

analogous to the capacitance matrix

L., = —iJ (1-2)

In this equation Lij is the inductance coefficient, ¢ij
is the magnetic flux linking the i'th conductor and the
4 shield when there is a current Ij flowing through the
j'th conductor and no current flowing through any other
conductor, and AX is a short section of length. This
equation merely states that the inductance coefficient
Lij
per unit length of cable per unit current flowing in

is equal to the flux linking the i'th conductor

the j'th conductor. The inductance matrix has the

following properties:

a) T is symmetric.

b) All elements are greater than or equal to
zZero.

The propagation matrix Y2 is defined by the

following equation

ol

= C-L (I-3)

This matrix is, in general, not diagonal; but when
brought to the diagonal form by the appropriate

150




s
C e I — _1
v

transformation matrix, the diagonal elements are related
to the multiwire phase velocities. If we denote the

diagonal form of the propagation matrix as y% and the

multiwire phase velocities as V, then we have

-1/2
] (I-4)

Vi = [@%)

ii

Although, in general, the multiwire phase velocities can
all be different, there are important circumstances in
which they are all the same. In particular, if there is
a uniform dielectric surrounding all the wires in the
multiwire bundle, there is only one phase velocity asso-
ciated with this buzgle and it will be found that the
propagation matrix yz is diagonal with only one diagonal
element 72. The phase velocity V for this bundle is,

therefore,
1
vV = = I-5)
Y (

and we have

ol
oll
]
oll
]
"

11 (1-6)
v

where I is the identity matrix.

Since the inductance matrix does not depend on
the dielectric properties of the multiwire cable, but
only on the relative positions of conductors, T is the
same for a given multiwire cable with or without any
dielectric. If we know the capacitance matrix E? of
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our multiwire cable without dielectric, we can use the
fact that there is only one phase velocity for this
cable V=C, the speed of light, and the relationship

I&-t-171
C
==
L = ; (I-7)
c

to determine the inductance matrix of our multiwire

cable.

The characteristic impedance matrix Eo of a
multiwire cable is determined once L and C are known
by the -oilowing relation

5 -1 =.1/2
Z, = (¢t D)
oo LE )l/2 . 1 2y1/2 (I-8)

[ M)

In general, if is not a diagonal matrix, but can be
brought to the diagonal form ;% by the transformation
matrix T, we have

1 2
Y

':‘2- -
= -9
Yy =T T (I-9)
and, therefore,
= _ -j = = -1
Zo = C T Yp T (I-10)
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For the special case when there is only one phase
velocity V, we have

i

(I-11)

3]
o)

"
<

RELATION TO MEASURABLE QUANTITIES

From the results of the preceding section, it
is clear that a complete description of the electrical
properties of a multiwire bundle is obtained once the
capacitance matrix c and C° is computed. As part of
the computer code CHIC, these matrices are calculated

‘ and all other relevant parameters are computed. It is
important to note that a knowledge of C and C° entails
complete information about the electrical properties
of a multiwire bundle, and, therefore, any particular
measurement made of capacitances and inductances can
be compared with the theoretical results by appropriate

manipulation.

It is usually more convenient, when making
a capacitance measurement, to relate charge to the
potential difference between two conductors. If one
performs such an exercise on a multiwire bundle one
obtains a capacitance matrix EM which is different
from the one considered in the previous sections. In

the following paragraph we will indicate how one obtains

EM by appropriate manipulation of C.




The defining relation for C is again

g = CV (I-12)
We can invert this relation and solve for V

= _ 1=

vV = ¢ 1§ (1-13)

If we specify the potential on wire i as V, let the
charge of wire i be Q and at the same time let all of
the other wires float so that Q=0 for itj, we have

-1
v = (C )iiQ (I-14)

We can write this relation in the following way

by,

(Cy)ii A (I-15)
This relation defines the diagonal elements of CM

1
Cy),. = ——3—
M 11 (c 1).

ii

(I-16)

The off-diagonal elements of Eﬁ are determined by the
following prescription

Qy = -Qi = Q

(I-17)

]
o
E

.
-
.

Qk
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With this assumption, we can expand Equation (I-14) for

i and j
= -1 _ -1
V5 (€755 @ - (€7Hy; Q
= -1 -1
Vi = (€T Q- (CThy; Q (1-18)
So that
- -1 ~1 -1 -1
vi-v; = (ehyrehgmehy-eh ) @ (a-19)
Re-writing, we have
Q = (CM)ij av
1
(Cy),. = ~ — —
Hooethy rethyy - 2ehyy
Vo= V-V (1-20)

The manipulations outlined above result in a
capacitance matrix E;, the elements of which can be
conveniently measured. In this definition of Eﬁ, (CM)ii
is the ratio of the charge on the i'th conductor to the
potential on the i'th conductor when all other conduc-
tors have no charge. (CM)ij (i#j) is the ratio of the
charge on the i'th conductor to the potential difference
Vj—Vi when all other conductors k(k#i,j) have no charge.
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Appendix II

SOLUTION OF TRANSMISSION-LINE EQUATIONS

In this appendix we will discuss the solution
to the T-L equations as presented in the main body of

the text. In order to arrive at the exact solution we

have made the following assumptions:

1) There is only one propagation velocity, V.

2) TD is uniform along the multiwire bundle
(normal X-ray incidence).

3) Resistive terminations.

The equations to be solved are:

3V _ _F I

X - "Nt

oI _ =¥, _
X - ~°Sw® (11-3)

together with the boundary conditions

I(X,t=0) = V(X,t=0) = 0

V(x=0,t) = -Z; T(X=0,t)

T(x=2,t) = %R T(X=0.t) (11-2)




where ?L(ER) is the termination impedance matrix on the
left (right) end of the cable of length

The method of solution is to take the fourier

transform of the two equations using the following con-

vention

T(X,w) = f at T(X,t)el"t
0

(X, w) =f dt 7(x,t)el¥t
0

|

T(g) =f dat YD(t)eth (11-3)

0

. The fourier transformed version of these two equations

are

av _ = 2

X iwL I

i . 3% 0+ % (11-4)
aX D

We can take the second derivative of each of these
equations with respect to X, noting by assumgtion 1

that C L=L E=V1§ T and by assumption 2 that %I}I(). = 0,

and arrive at the following two equations
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where

The solution of these two equations 1

<3¢
|

4t
|

<le

(11-5)

(11-6)

s straightforward

(I11-7)




’
T = -(I-F 5, %" 1[(70+ZR)‘1 - FR(?O+iL)'1eiL2 x
ik4 ! 1EOTDJ
X
Bp = Zp + Zp) ™t (Zy - Zp)
Pu= G+ 27 Gy - 7)) (I1-8)
The solution for % at X=0 is simply
% T(x=0,w) =T + L
- {<i’-‘ﬁL> R e LR

1 We can take the

tion, according

T(X,t)

[}

! V(X,t)

]

1

27

~

- - 1 iZOYD]
- (ZO"‘ZL) }{"—E—— (I1-9)

inverse fourier transform of this equa-
to the following definition

+
1 = -iwt
'2-;1-‘[“ dw I(X,w)e

+ o0 - .
f dw V(X,w)e %t

~C0

(I1-10)
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The analysis of the fourier-transform of Equation (II-9)
is made intelligible by the following observations. Let
Q(t) be the total charge deposited at time t due to the
Norton equivalent driver TD

— t—

Q(t) =[ ID(t‘)dt‘ (II1-11)

0
Using Equation (II-10) we can write
] 1 [F * iwt
—_— - N -1
Q(t) = br dt f dw ID(w)e
0 - -.
L T (wye ™
= o [ daw —D— (I11-12)
-
So that we have
: +oo . iZ.T
. 1 -iwt 0D _ = =

ﬁ?_/. dw e " = V Z0 Q(t) (I1-13)

In addition we have
, -1 i2nk4
= = 2ik?l = == .1
(1-PRPLe ) = Z (PRPL) e (11-14)
n=0
]
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So that
= w - = n 12nk£
To,w) = (TP L (PgPy) e
L RL
n=0
_ - = .q 2iK2 - = -1 ikll
PR(ZO+ZL) e + ZO+ZR) e
371
= = -1 0°D
- (ZO+ZL) } { X ‘ (II-15)

1f we take the fourier-transfornm of this equation,

using Equation (1I-10), we have

T0,t) = -5 (T + P x
;é%(EREL)n §Q(t-2nTy) = Pp 6Q(t-(2n+1)7Ty) (I1-16)

where

]

§Q(t) = Qt) - Q(t-Ty)

L

T, = /V (I1-17)

as the final solution for the current that flows at X=0 as

a function of time.
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Appendix III

ENERGY THEOREM

An important consequence of the properties of
the T-L equations as presented in the main body of the
text and in the preceding Appendix is the presence of
an energy theorem. The total energy density for a
multiwire bundle is defined by the following equation

=i

U =% 5('\?,57) + (T, T)) CITE-2)
l |

where the inner product of two vectors A and B is denoted

by the symbol (A,B). If we take the partial derivative

of p with respect to t and X and use the T-L equations,

Equation (II-1) to simplify, we can write a Poynting

equation for u
3y 4, 88 _ (7 ¥ _
+ % (T.,V) (III-2)

where S is the energy flux (Poynting Vector) and is
defined

S = (I,V) (III-3)
and the source term is (TD,V). The energy which is
transported to the loads is generated by the source

term, which is directly related to the Norton Equivalent

drivers Ip.
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If we integrate Equation (II-2) over the
length of the cable £, we obtain an expression for
the total energy in the multiwire cable E

%Et_ + {(T(g), V(O)) - (T(o), V(O))}
Lo _
=f (Tp, ) dx (I11-4)
0

If we again assume, as we did in Appendix II, that Tb is
independent of X, then the right-hand side of the
previous equation can be written

L
f dx (TD, V) = z(TD, < (I11I-5)

The quantity, therefore, in Equation (III-5) represents
the total power source and the total available energy is

&= z_[ (T, <V>) at (111-6)
0

We can, again, use the T-L equations to get an expression

for (V).




|
4

|
(@]

39{ Ty =c 1) - & (T - T()) (111-7)

This equation, together with the relationship between
current driver and charge

I, = 27 (I11-8)

allows us to rewrite the total available energy as

e- [ a {'(6, 1 f(z)) - (6, 1 T(O))}

l —_

where QD is the total charge transfer in the multiwire
cable

Qp =/ I, dt (I1I-10)

To arrive at the expression in Equation (III-9) for £,
we have assumed that at t=e, V(«)=0.

Since the expression for € in Equation (III-9)
represents the total enexrgy that can be dissipated across
all terminations in a multiwire bundle, it is of interest
to cast this equation into a more useable form. It is

immediately obvious that the energy is not a constant of
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the motion, since it depends on the solution I(2), I(0),
which is associated with the fact that the Poynting
equation, Equation (III-3) has a current source term.

We can, however, arrive at a usable expression for Q
since we have an analytic solution for the current T
that flows across the terminations, as presented in
Appendix I1. For convenience in this derivation, we
will assume that the terminations are symmetric, i.e.

P. = P, = P (I11-11)

The solution for the current at X=0 is, therefore

el

T(0,t) = - g (I + P

P) sQ(t-2nt,) - B §Q(t-(2n+1)1,) (I11-12)

TlMs

2
P

For the case of symmetric terminations, we have

T(e) - 1(0) (III-13)

So that

-5 @ Py (I11-14)
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In addition, we will assume that the waveform f(t) for
the current driver Tb is a square wave of width Tp, so
that

TD(t) = TO f(t)
Q(t = TI.t 0 <
Q( ) o _t i Tp
= T T t >t
0
and P P
% = Ty (111-15)

where Iy is the peak driver in a/m. The other time of
interest is the propagation time, Ty where

T, = L/V (111-16)

In order to obtain an expression for € from Equation (III-14)

we must assume a particular value for the ratio

g = Tp/Tl (I11-17)

Since we are interested in obtaining an expression for £
the maximum energy that can be dissipated, it is natural
to look at the particular values of ¢ that correspond to
long cables, i.e.

0<g<1 (III-18)

If we assume the range of ¢ as given above, and substi-

tute the expression for I(0) into Equation (III-14),




using Equation (III- 15) we can perform the integrations
over time and sum the infinite series. The result is a
closed form expression for the total energy that can be
dissipated across all terminations

= 1 » -
é‘/c’MAX =1-3:81+ <F>) (III-19)
where
1 (= =1 =<
Cuax = 3 (QD’ ¢ QD) -2
. (3, 15" q,)
(ppy = 1D -~ D (I11-20)
(% < 5)
This result is valid in the range
0 <gzgc<1 (I11-21)

In general, the solution for € is different in other
ranges of 7, getting more complicated as r gets larger.
The result for the range

1<g<2 (I11-22)

can be written

&€y = 1 - (2102 B> + <B)

z (<3> + <32>)] 1 <g<2 (III-23)

1
Wi
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Appendix IV

MULTIWIRE TERMINATION IMPEDANCE
MATRIX AND REFLECTION COEFFICIENT

The solutions to the T-L equations presented
previously, both for the current and energy into the
loads, depend on the terminations through the impedance
matrix Z or, alternatively, on the reflection coeffi-
cient D which is a function of Z. In this appendix
we will consider the relationship between Z and physical
resistance and, also, what the reflection coefficient P

looks like for the various possible terminations.
Iv.1 IMPEDANCE MATRIX

The boundary conditions for an n+1 bundle of
wires terminated at the left (right) end with a termina-
tion impedance matrix 7L (?R) is:

V(0,t) ZL I(0,t)

Z‘R I(e,t) (IV-1)

V(L,t)

If we consider the left side of the transmission line,
we can write:

_—

z,”h Vo,t)

I(0,t)




If we denote the current (voltage) at X=0 in wire i by

Ii' (Vi) we have

N
- -1 _
I, —jZ=:1 (Z] )i v, (1V-3)

This current will divide depending upon the physical
resistances that it sees. I1f we denote these physical
resistances by Rij j=1, n, where Rjj is the resistance
from i to ground and Rij’ j=1, n (i#j) are the resis-
tances from i to all ‘the other wires in the bundle,

then we have

N . . .
I, =Yy 2—4 4 ﬁf%' (1V-4)

Equating these two expressions for I;, we have

N V. - V. V. N _
y 23+ 2 =% a@gh,, v, (1V-5)
R. . R, . o L i3 ']
j=1 ij i1 Jj=1
i#J
Rearranging these terms we have
5& 1 1 1
+ - (Z;). ) v,
j=1 Rij Rii L 7ii i
i#3
N
1 -1
- = + (27)..lVv. =0 (IV-6)
i=1 [Rij L 13] J
it
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These equations imply
N
-1 1 1
CRITEP VI A
j=1 ij ii
i#j
-1 _ 1 C .
1)
|
We can rewrite the first equation using the second 1
ﬂ equation and we obtain I
1 al 1 1
(2,733 = Z_: - Gyt R/ (IV-8)
j=1 ii
¢ 143

which implies
Rii j
i

N -1
SID D ¢ (IV9)

And so we obtain the following two equations

1

I
L ’ij
R = 1 (IV-10)
ii N (Z_l)
2 L ’ij
j=1

ik




[

If we desire to characte
wire cable, we can use t

ristically terminate the multi-
he above two equations to

determine the appropriate physical resistances. If we

desire to determine what
corresponding to a given
Rij» we can use Equation

as:
N
-1 1
(Z77); =2 w5
L “ii j=1 Rij
-1 1
(Z2,7).,. = = o—
L 7ij i3
Iv.2 EXAMPLES — TWO

In this sectio
lar examples of the resu

termination matrix fL to use
set of physical resistances
(IV-7). These can be written

i#j (IV-11)

WIRE

n we will consider some particu-

1ts indicated in the previous

paragraph. Let us consider a TSP with the following

capacitance C, inductance L and characteristic impedance

matrix i :

0

_ 207. -
c =

- 36.
_ 223.
L =

11.
_ ( 33.3
Z =
0 3.73

36.
pf/m
207.

11.0
nH/m
223.

3.73
) Q (IV-12)

33.3
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CASE 1: CHARACTERISTIC TERMINATION

If we desire to terminate the TSP character-
istically, we can use Equation (IV-10) to determine the
appropriate physical resistances. The inverse of the
characteristic impedance matrix EL is given by:

- 3.04 x 1072 - 341 x 1070}
2 = 3 A ;
- 3.41 x 10~ 3.04 x 1072 (IV-13) i
and the physical resistance matrix R is:
_ 32.9 293.6
R = A
293.6 32.9 (IV-14)

The reflection coefficient 3 when the cable is charac-

teristically terminated is given by:

T =0 i
!
i
= [0 0 \ !
;
} {
0 0 (IV-15) '
CASE 2: WIRE-TO~SHIELD TERMINATION

If we desire to terminate the TSP only wire-to-
shield with Ryg=Rgp=«, corresponding to no wire-to-wire
termination, we can set Rjs=Rg;=« in Equation (IV-l1l) to

determine the appropriate EL matrix:




-1 1
(Z, ™) = =

L )11 Ry,

-1 1
(Z ) = —

L )22 Ryp

-1 ]
(Zy, )12 (21,7094 0

which implies:

L
0 R22 (IV-17)

For this case, therefore, the diagonal elements of Zp

are identical to the physical resistances Rll’ RZQ‘

If we write the characteristic impedance

matrix in the following way

Z1 y/
Z0 =
Z Z2 (IV-18)
then P can be written:
(Z,-R,)(Z,+R,)-22  2ZR
1 11 2 72 2
p = D
2ZR 2
1 (Zl+R1)(22—R2)-Z
2
D = (21+R1)(22+R2)—Z (IV-19)




It is important to note from the above expression for
P that whenever the two wires are terminated wire-to-
shield only, P can never be diagonal for any finite

value of Rl and Rz.

CASE 3: SHORT~CIRCUIT WIRE-TO-WIRE

If we desire to determine the appropriate %
when the two wires of the TSP are tied together and
terminated with one resistance to ground we can set:

Rjg = BRyy = 0

Rjj = BRgg = R (IV-20)

This corresponds to:

L)
1 1 (IV-21)

The reflection coefficient is:

N
[
oo

(Zl—R)(Zz+R)-Zz 2ZR

1
p —3 —

D\ 2zr (2,+R)(Z,-R)-2° ?
D = (Zl+R)(22+R)—Zz (IV-22)
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CASE 4:

GENERAL EXPRESSION — TSP

For the general situation of any combination of

physical resistances we can write down the appropriate

termination matrix

Z

L
_ Ri1 Ri2
R =
Ro1 Ros
= . 1 (Rop*Rp)(RygRyp)  RypRygRa
L = R R, +R R, +A,.R
127217 F11R21 " 22R2 R, R IRy (B p+RL ) (By RS 0D

178
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Appendix V

TWO WIRE SOLUTIONS

V.1 CURRENT

The termination dependence of both the current
and energy in a multiwire bundle can be conveniently
represented by the dimensionless matrix P defined as

E = (Zo+ )I(EO-

N

) (V-1)

The exact solution for the current given in Equation
(I1-16) indicates that the fact that ¥ is, in general, a
non-diagonal matrix distinguishes a multiwire bundle from
a single wire transmission line. Since the characteristic
impedance matrix fo can never be diagonal for any physi-
cally reasonable multiwire bundle, P can never be diagonal
for any finite value of the terminations. It is possible,
however, to make a transformation which diagonalizss ;, and
which allows the solution for a multiwire bundle to be
written in terms of single wire solutions. While this
procedure, in principle, can be done for any number of
wires, in practice, the algebra becomes rather tedious

for n>2. 1In the following paragraph we will sketch this
procedure for a two-wire bundle.

The characteristic impedance matrix is defined

V4 =
0
VA ZZ
179
- o R < P -




and the termination impedance matrix is defined

o3l
"

0 R2 (V-3)

where we will only consider terminations wire-to-shield,
and R and R are the physical resistances wire-to-
shield. The reflection coefficient can be written

2
(Zl—Rl)(Zz+R2)-Z 2ZR

2
- 1
P = 3 !
2 . |
27R;  (Z,+R;)(Z,-R,)-2% (V-4)
where
A = (Z,+R,)(Z,+R,)-22
1*R1)(25*R,

The e-values of P can be found directly

1/2
2 2,402

WL - (1-ry7y-C%) # ((ry-15)%+4C%r 1y ) (V-5)
I 2 (1+r;)(1+r,)-C?

where




The e-vectors corresponding to these e-values can also
be obtained directly

[(8101)/(1+ 1)B+(1-g )a] 1/2
<1
%2

+ |ccovar/ (1rg) B 1 ra] /2 (V-7)

where

g = Rl/RZ (Vv-8)

The quantity C is a measure of the wire-to-
wire coupling. It is easily seen that the solution
reduces to two independent uncoupled transmission
lines when C is zero. From general properties of the
impedance matrix, it may be shown that the maximum
value of C is unity.

Once the e-values and e-vectors have been
determined, it is straightforward to construct the
transformation matrix T. If we denote €1 and és as
the unit vectors in the original basis, which can be
written as

()
§

(V-9)




We can write

>
o

0y 1

-~ = rr- A

i, &, (V-10)

where

( B+a )1/2 z(g-a) )1/2
(I+7)(g)+(1l-g)a (1+)B+(1-g)a :

7 - |
( 8-a )1/2 —( z(B+a) )1/2 >
(1+)8~-(1~gla (1+g)B-(1l-g)a :

In order to write the solution for the current in wire
one and two it is necessary to obtain ("1_‘)"1 which we

can write:

é ol
1 - 1
e2 n2 (V-11,
where
( D )1/2 . ( b )1/2 .
4c82 22 P 12
(1=
fo) e Gl
482 21 1082 11
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and

D = (1+0)282 - (1-7)%a?
Ty Ty
F =
To1 Toa (V-12)

In order to understand wire-to-wire coupling
in a multiwire transmission line, it is of interest to
drive one wire and look at the current that flows in
the other wire. The analysis that we have just developed
allows us to accomplish this. Let X denote the basic

current driver

X = X.e. (V-13)

A — —1 ~
€ = (T )5 n,
J
So that
X = x, (T™h,. n (V-14)
i ij 7 J

The current that flows in both lines can then be written

= -1
I Xi(T )

} I(AJ) Ajl (V-15)

ij




where I(Aj) is the single wire solution for the e-value

Aj. For the special case that we drive only wire two,
we have
X1 = 0
X = 1 (V-16)

and the solution for the current in wire one and two can
be written:

2 2\ 1/2
1 (5—19—) {I(kl) - I(Az)}

I =
178
= [B=a ta -
I, (23) I(x) + (Qﬁ) I(Xy) (V-17)

1
where I(Az) are the single wire solutions with reflec-~

tion coefficient Aj.

v.2 ENERGY

Once the current in both lines is written in
terms of single wire solutions, it is of interest to
compute the energy dissipated across the terminations.
Our main interest in this analysis is the calculation
of the energy dissipated across termination one when
wire two is driven, since all of this energy represents
coupled energy. The current that flows in wire one can
be written

o




ZR
_ 2 $
I, = P— 73 (I(Al)-l(xz)f (V-18)
[(alzz-nzzl) +47Z Rlaz]

and the energy is

[--]

L= R1A12[Jr dt[r(x1)2+1(x2)
0

2

Je5]
[

-ZI(kl)I(Az)”

where

ZR,
A = (V-19)
2. .. 2 1/2
[(R122°R221) +42 Rle]

If we assume a square wave driver, we can perform these
integrations as has been done in previous sections. In
particular, if we take the long line limit which corres-
ponds to

r = Tp/TZ <<<1 (V-20)

We arrive at the following expression for Elz

Max )| 1 r1r22C2 1+d, 1+,
By 7 B EA SRl ] F T P
17Tg 172
<1+x1><1+A2)]
_ (V-21)
(T-A;%5)
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Where EzMAx

and is given by

is the maximum energy capability of wire 2 i

E, = 1ovzyep’e (V-22)

From these expressions, one can show that the coupled
current and energy tend to zero as the termination
resistance on line 2 goes to zero (shorted) and
increases as the termination resistance is increased.
If line 2 is opened, the current on line 1 simply
appears as if line 1 were being directly driven with
an effective source term of C times the line 2 source
‘ term. In particular, all the energy capability of
line 2 is not coupled into line 1. The final voltage
on the second line is not zero, and leads to capaci-

tive energy storage of a portion of the energy capa-

bility of this line.




Appendix VI

TWO-WIRE CALCULATIONS

We have considered a number of two-wire cables.

Each cable is labeled by the designation TWI where

I=1,2,3.

The following parameters distinguish each

cable from one another.

W1

oll

i}

ol

TW2

ol

]

a1

]

[]

207.

223.

11.

33.

.4 9.6
nh/m
.6 55.4
6
9

- 36.0
pf/m
.0 207.
11.
nH/m
223.
3 3.73
ohms
.73 33.3

pf/m
207.

ohms
16.6
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TW3
226. -109.
c = pf/m
-109. 751.
S53. 8.
L = nH/m
8 16.
15.9 23.5
ohms

il
[]

[9;]

VY

23. .8

In the following pages we will present the results of the
calculations. The cable designated TW1l is the two-wire
cable which has two phase velocities whereas cables 1 and
3 each have one phase velocity. Each plot presented is
labeled by a header which indicates the parameters used.
In the following Tables we indicate the definition of
these headers. For cables TW1l and TW2 the current

drivers were as follows

> - (o)

and for TW3 the current drivers were

> ()

—
]

—
]

]
1«;«:




TABLE VI.1
T™W1 l
i
33.3 0 ‘;
7 = ohms .
0 33.3 .
R = termination impedance matrix (ohms) (symmetric ?
termination)
Tp = pulse width (square wave) (ns)
i
8 L = 1length of cable (meter) L
ﬁ Tp L Header
.12 3 .3 TW1R11T1L1
.12 3 3. TW1R11T1L2
.1Z 3 30. TW1R11T1L3
.12 30 .3 TW1R11T2L1
.12 30 3. TW1R11T2L2
! .17 30 30. TW1R11T2L3
) .12 300 .3 TW1R11T3L1
.12 300 3. TW1R11T3L1
.12 300 30. TW1R11T3L3
Z 3 .3 TW1R22T1L1
Z 3 3. TW1R22T1L2
Z 3 30. TW1R22T1L3
VA 30 .3 TW1R22T2L1
Z 30 3. TW1R22T2L2
Z 30 30. TW1R22T2L3
'




TABLE VI.1 (Continued)

R tp L Header
Z 300 .3 TW1R22T3L1
Z 300 3. TW1R22T3L2
Z 300 30. TW1R22T3L3
10 2 3 .3 TW1R33T1L1
10 Z 3 3. TW1R33T1L2
10 2 3 30. TW1R33T1lL3
10 2 30 .3 TW1R33T2L1
10 2z 30 3. TW1R33T2L2
‘ 10 2 30 30. TW1R33T2L3 ‘
10 2 300 .3 TW1R33T3L1
10 2 300 3. TW1R33T3L2
10 Z 300 30. TW1R33T3L3
i
]
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'
TABLE VI.2
TW2
16.6 0 16.6 0
Z = Y
0 16.6 0 o
0 0
Zy
0 16.6
ﬁ = termination impedance matrix (ohms) (symmetric
termination)
' Tp = pulse width (square wave) (ns)
L = 1length of cable (meter)
R L d
R Tp Header
.1z 3 .3 TW2R11T1L1
.12 3 3. TW2R11T1L2
.12 3 30. TW2R11T1L3
A 30 .3 TW2R11T2L1
5 .1z 30 3. TW2R11T2L2
.12 30 30. TW2R11T2L3
.12 300 .3 TW2R11T3L1
.1Z 300 3. TW2R11T3L2
.12 300 30. TW2R11T3L3
Z 3 .3 TW2R22T1L1
Z 3. TW2R22T1L2
yA 3 30. TW2R22T1L3
Z 30 .3 TW2R22T2L1
Z 30 3. TW2R22T2L2
A 30 30. TW2R22T2L3




TABLE V1.2 (Continued)

3 rp L Header

A 300 .3 TW2R22T3L1
yA 300 3. TW2R22T3L2
YA 300 30. TW2R22T3L3
10 2 3 .3 TW2R33T1L1
10 Z 3 3. TW2R33T1L2
10 Z 3 30 TW2R33T1L3
10 Z 30 .3 TW2R33T2L1
i 10 2 30 3. TW2R33T2L2
| 10 Z 30 30. TW2R33T2L3
10 Z 300 .3 TW2R33T3L1
10 2 300 3. TW2R33T3L2
10 Z 300 30. TW2R33T3L3
.lzl+z2 3 3 TW2R12T1L2
.1zl+1ozz 3 3 TW2R13T11.2
Zl+.1Z2 3 3 TW2R21T1L2
Zl+1OZ2 3 3 TW2R23T1L2
10Z1+.122 3 3 TW2R31T1L2

1OZI+Z2 3 3 TW2R32T1L2 x

¢
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TABLE VI.3

o
w
o

termination impedance matrix (ohms) (symmetric

termination)

pulse width (square wave) (ns)

p
L length of cable (meters)
ﬁ Tp L Header
.12 3 3 TW3R11T1L2
y/ 3 3 TW3R22T1L2
10 Z 3 3 TW3R33T1L2
.121+Z2 3 3 TW3R12T1L2
.lzl+10Z2 3 3 TW3R13T1L2
Z1+.1Z2 3 3 TW3R21T1L2
Zl+1OZ2 3 3 TW3R23T1L2
1OZI+.1Z2 3 3 TW3R31T1L2
1021+Z2 3 3 TW3R32T1L2
193
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Appendix VII

SEVEN-WIRE CALCULATIONS

We have considered various distributions of
drivers for the seven wire bundle discussed in Section V.
These distributions represent typical groups of seven
wires in the thirty-seven wire bundle also discussed in
Section V. The propagation time and pulse width were
chosen such that

Tp = Ty = 17ns

which corresponds to a length of cable equal to ~3m.
Three different distributions of drivers were considered
SE1, SE2, SE3 according to the following

- .5
+1.0
+ .5
§_E_1 - ID(I) = - .3
- .2
- .3
+ .5
- .1
+ .3
+1.0
SE2 - Ip(2) ={ - .05
- .02
- .03
- .20
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+
[y

NHBAHNNNO

SE3 - ID(S) =

Each plot is labeled by a header. The definition of the
header for each plot is given in Table (VII.1)-(VII.3).

196




. At Basion

ol

SE1

Z = |30
z, = [o
Zg = [30

R

TABLE VII.1

0

oll
mmm—

27.4

ol
o
o
o
———

o
oll

of
N
-3
1N
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TABLE VII.1 (Continued)

termination)

pulse width (square wave) (ns)

termination impedance matrix (ohms) (symmetric

1 72

p
L length of cable (meter)
R T L Header
.12 17 3 SE1R11T1L1
_ yA 17 3 SE1R22T1L1
i 10 2 17 3 SE1R33T1L1
.1Z1+Z2 17 3 SE1R12TiL1
.121+10Z2 17 3 SE1R13T1L1
Zl+.1Z2 17 3 SE1R21T1L1
Zl+10Z2 17 3 SE1R23T1L1
1021+.122 17 3 SE1R31T1L1
10Z,+2 17 3 SE1R32T1L1
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TABLE VII.2 (Continued)

ﬁ termination impedance matrix (ohms) (symmetric
termination)
Tp pulse width (square wave) (ns)
f length of cable (meter)

ﬁ rp L Header
.1Z 17 3 SE2R11T1L1
A 17 3 SE2R22T1L1
10 2 17 3 SE2R33T1L1
.1Z1+Z2 17 3 SE2R12T1L1
.1Z1+loz2 17 3 SE2R13T1L1
Zl+.lz2 17 3 SE2R21T1L1
Z1+IOZ2 17 3 SE2R23T1L1
1ozl+.lz2 17 3 SE2R31T1L1
1ozl+Z2 17 3 SE2R32T1L1
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TABLE VII.3
SE3
Z = [30.1 =
27.4 °
27.4
27.4
27.4
= 27.4
27.4
0
0
0
0
0
= 0
0
] zz = 0 ~6-
27.4
27.4
27.4
27.4
= 27.4
27.4
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TABLE VII.3 (Continued)

E termination impedance matrix (ohms) (symmetric
termination)
rp pulse width (square wave) (as)
T length of cable (meter)

R Tp L Header
.12 17 3 SE3R11T1L1
z 17 3 SE3R22T1L1
10 Z 17 3 SE3R33T1L1
.lzl+Z2 17 3 SE3R12T1L1
.1Zl+1022 17 3 SE3R13T1L1
Zl+.1z2 17 3 SE3R21T1L1
Zl+1OZ2 17 3 SE3R22T1L1
10Z1+.1Z2 17 3 SE3R31T1L1
10Z1+Zz 17 3 SE3R32T1L1




’
Appendix VIII
LOSSY CABLE CALCULATIONS
The effects of loss have been considered for
the following cable?

RG - 316

C = 95 pf/m
] L = 237.5 nH/m

e = 2.05

In the following pages we will list the results of the
calculations. Each plot is labeled by a header to
identify it. 1In Table (VIII.1) is indicated the defi-
nition of the header. 1In the first two plots are
indicated R(W) and G(W) as is used in all the calcula-
tions and the remainder of the plots indicate the
results of the calculations.
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TABLE VIII.1
R = termination impedance (ohms) (symmetric
termination)
Tp = pulse width (square wave) (ns)
i L = length of cable (meters)
! R tp L Header
.5 3 .3 ON1R1T1L11
¢ .5 3 3. ON1R1T1L21
.5 3 30. ON1R1T1L31
.5 30 .3 ON1R1T2L11
.5 30 3. ON1R1T2L21
.5 30 30. ON1R1T2L31
.5 300 .3 ON1R1T3L11
.5 300 3. ON1R1T3L21
.5 300 30. ON1R1T3L31
50 3 .3 ON1R2T1L11
50 3 3. ON1R2T1L21
50 3 30. ON1R2T1L31
50 30 .3 ON1R2T2L11
50 30 3. ON1R2T2L21
50 30 30. ON1R2T2L31
50 300 .3 ON1R2T3L11
! 50 300 3. ON1R2T3L21
50 300 30. ON1R2T3L31
* 5000 3 .3 ON1R3T1L11 |
5000 3 3. ON1R3T1L21
5000 3 30. ON1R3T1L31
]
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TABLE VIII.1 (Continued)

R ‘l'p L Header
5000 30 . ON1R3T2L11
5000 30 3. ON1R3T2L21
5000 30 30. ON1R3T2L31
5000 300 . ON1R3T3L11
5000 300 3. ON1R3T3L21
5000 300 30. ON1R3T3L31
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System Generated Electromagnetic Pulse

Defense Satellite Communications System, Phase III
Current Injection Test

Inductive/Capacitance

Transmission Line

Impedance

Characteristic line impedance

Load impedance at position x

point current source

reflection coefficient

line propagation constant

Tine voltage at position x

angle of incidence of photon to cable

total charge accreted on open circuited line
Current Driver

line length |
distance of line from its end

contribution to current from all source left
(right) point of 2z

Load Current

pulse width (square wave)

open circuit voltage
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