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NONLINEAR INVERSE HEAT TRANSFER CALCULATIONS IN GUN BARRELS®
by
Alfred S. Carasso
Center for Applied Mathematics
National Bureau of Standards
Washington, DC 20234
ABSTRACT

‘We consider the problem of determining the temperature history inside a gun
barrel from embedded thermocouple measurements at some distance away from the
inside wall. This inverse problem leads to an improperly posed initial value
problem for a nonlinear system of partial differential equations, whenever the
thermal properties are temperature dependent. We discuss a step-by-step
marching algorithm for the numerical computation of such problems. The scheme
is stabilized by appropriately filtering in the frequency domain at each step.
We illustrate this technique with a numerical experiment on a nonlinear

problem whose exact solution is known. The basic ideas are applicable to
other unstable evolution equations,

I. Introduction

This report summarizes the results of an important computational
experiment on a nonlinear inverse heat conduction problem whose
exact solution is known. We consider the problem of determining
the temperature history at the inside wall of a gun barrel, from
embedded thermocouple measurements at various points in the annular
metallic region between the inner and outer radii of the cannon.

As the shell is fired, a continuous trace is recorded at each

thermocouple, providing temperature as a function of time at the

corresponding fixed spatial location. b\(( 4_7‘[ [ ——
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The present study centers around a novel computational technique
designed especially for coping with the nonlinear case of tempera-
ture dependent thermal properties. It is a sequel to [1] where the
linear quarter plane problem with constant coefficients, was tho-
roughly analyzed. As was shown there, in that case, the inverse
problem can be formulated either as a Volterra integral equation

of the first kind, or equivalently, as an initial value problem

for the one dimensional heat equation run sideways. Either formu-
lation leads to an improperly posed problem in which the solution,

when it exists, depends discontinuously on the data.

The inverse problem can be reqgularized in the L? norm by placing an
a-priori bound M on the norm of the unknown temperature history,
f(t), at the inside wall x = 0; at the same time, the measured noisy
temperature data gm(t), at the location x = 2 > 0, is regarded as
differing by at most € in the L2 norm from unknown smooth exact data
g(t), for which a solution exists. It is assumed that ¢ and M are
known and compatible. As shown in [1, equations (2.20), (2.21)] this
leads to explicit formulae for the temperature and gradient histories
at each fixed x, 0 < x < 2. Also, error estimates are obtained for
the regularized solutions implying Holder continuity with respect to
the data, for each fixed positive x. These estimates degenerate at

the wall, [1, Theorem 1].

The regularization procedure can be interpreted as solving the
initial value problem for the sideways heat equation with appro-
priately modified initial data. An explicit finite difference
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scheme consistent with that problem is shown to be unconditionally
convergent, when used with the filtered initial data, [1, Theorem 3].
This step-by-step marching scheme in the x-variable is the basis for
our approach to the nonlinear case of a temperature-dependent dif-
fusion coefficient. We regularize the calculation at each step by
filtering in the frequency domain, using FFT algorithms; we then
return to the physical variables for the calculation of the next
step. The filtering function used at each step is that determined

by the related constant coefficient problem. This algorithm is

outlined in [1, Section 7].

In order to test the robustness of this procedure, an example was
manufactured with a known exact solution. This is a fictitious
mathematical problem, artificially created so as to have a solution
which simulates conditions presumed to exist in a 155mm cannon. The
relevant parameters were made available to us by Dr. A. K. Celmins,
U.S. Army Ballistic Research Laboratory, Aberdeen Proving Grounds,
Maryland. The "exact" solution was constructed numerically by

solving a well posed direct problem as explained below.

The Direct Problem

Consider the initial boundary value problem

au 9 su
(2.1) - = -= [a{u) --], 0 < x<¢e, t >0,
at  ax X

(2.2) u(0,t)

f(t), u(l,t) = h(t), t > 0,

i}

(2.3)  u(x,0) = 300° K




where t is the time measured in milliseconds, x measured in
millimeters represents distance away from the inside wall, and

u(x,t) is the temperature in degrees Kelvin. The heat conduction
equation (2.1) is a simplification of the actual physical situation,
in that first order terms arising from cylindrical symmetry have been
neglected, as well as the variation of specific heat with tempera-
ture. Moreover, for gun steel at temperatures between 300° K and
1000° K, the conduction coefficient a{u) in {2.1) is well approxi-

mated by a linear function of u,
(2.4) a(u) = {1.299 - 1.144 x 10-3 (u - 255)} x 10-2 mm? /millisec

We remark that the methodology to be discussed can easily accommodate
the more exact differential equation, as well as more complicated

dependencies of a(u) on u . We shall refer to the quantity

(2-5) W(X,t) = -—a(u) --
oX

as the temperature gradient, by an abuse of terminology. It is

measured in mm° K/milliseconds. 1In all Figures shown below dealing

with plots of w(x,t) as a function of t for some fixed x , the
vertical axis bears the legend "temperature gradient."”

The functions f(t) and h(t) in (2.2) represent, respectively, the
temperature histories at the inside wall and at lmm away from the
wall. These mathematical functions are plotted in Figure 1; they
are constructed so as to approximate observed temperature histories

in gun barrels, [4].




The direct problem given by (2.1), (2.2), and (2.3) was solved
numerically, using an adaptive partial differential equation software
package, MOL1D, [31. The numerical integration was carried out to a
distance in time equal to 100 milliseconds. The temperature u(x,t)
and gradient w(x,t) were evaluated at various fixed values of x ,
as functions of time, and stored for subsequent comparisons. Figures
2 and 3 show the histories of u and w at x = .25mm. As is
evident from Figure 3, the numerical calculation of w is not free
from noise. Nevertheless, we use the term "exact solution" for any
history obtained by the above numerical computation of the direct
problem. All histories are records consisting of 400 equispaced

samples on the time interval [0,100] milliseconds.

The Inverse Problem

The physical region of interest here is the x interval between

0 and .25mm. The histories.in Figures 2 and 3 simulate what might
have been recorded by a thermocouple at .25mm away from the inside
wall as the shell is fired. The object is to use such data to re-
construct the temperature and gradient histories, arbitrarily close
to the inside wall. In actuality, two thermocouple readings are
necessary at x = X0 and x = X, with Xo < .25 ¢ X5 @ well posed
direct calculation, as in Section 2 above, then yields u and w at
X = .25mm. As noted in the references given in [1], this type of

inverse problem occurs in a variety of heat transfer contexts. The

purpose of our computational experiment is as follows:

a) To demonstrate the feasibility of the inverse calculation

in a realistic situation in which rapidly varying solutions

-5 -




and nonlinearity play a role. As may be seen from Figure 1,
the postulated temperature at the wall rises from 300° K to
almost 1000° K in the first 10 milliseconds. In this
temperature range, the conduction coefficient a(u) given

by (2.4) undergoes a 280 percent change.

b) To demonstrate the robustness of our algorithm with noisy

data and a fine grid.

c¢) The regularized marching procedure we shall use is a
powerful general method, applicable to other i11-posed
evolutionary partial differential equations, linear and
nonlinear. As used here, it is an adaptation to the non-
linear case of an algorithm which is rigorously justified
in the constant coefficient case. While the heuristic
"local mode analysis" underlying our regularization is
1ikely to be valid in many other cases of ill-posed
initial value problems, there is a need for well-documented

realistic inverse calculations.

let z =2 - x and let ag, a; be positive constants such that

(3.1) 0« a, < a(u) < a

1

da
Let b(u) = i and let v(z,t) = u(x,t). Using (2.5), we may write
u

(2.1) as an equivalent first order system
(3.2) v = ce-u- . W = vt . 0<¢z<e, t>0,

with the subscript notation used for partial derivatives.
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to be integrated in the direction of increasing z from z = 0 to
z = 2; we use the initial values given in Figures 2 and 3 and the

following boundary conditions at t = 0,
(3.3)  v(z,0) = 300° K, w(z,0) =0.

Let Az be the increment in the z-variable and let £ = (N + 1)az.
Let vN(t), w*(t) denote, respectively, v(naz,t), w(naz,t), for
0<n< N+ 1. The following finite difference approximation is

second order accurate and explicit,

a(vi(t))  2a(v"(t))

(3.4) vntl(t)

1
<
3
-
(a4
Al

222 b(v"(£))0w"(t) 1"

wh(t) + szn(t) + ememm—aa
2a(v"(t))

(3.5)  whtl(t)

az2 b(vn(t)) W' {(t) V:(t)
2a° (v"(t))
An effective way of implementing this scheme is to use cubic spline
interpolation at the 400 equally spaced mesh points on the time
interval [0,T]. Differentiating the spline function produces
0(At3) accurate derivatives v:(t), w:(t) at these same mesh points,

and hence vM1(t), wt1(t) from (3.4), (3.5). The next step is to

stabilize this process by filtering each of these functions in the
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frequency domain. This is accomplished by dividing the kth Fourier
coefficient by the precomputed weight iy, where

az/2
(3.6) A = (1 + w? exp [ 2 glElE 1) .

there w = (5) is the L% noise to signal ratio. See [1].

With £ = .25mm, the x-interval [0,2] was divided into 450 equally
spaced mesh points, and the above procedure was implemented with

w = .001. Figures 4 through 11 summarize the comparison between
exact and computed solutions at the interior location x = .056mm.

An idea of the relative errors in the calculation is easily gained
from Figures 7 and 11. Although the "logarithmic convexity"
estimates in Theorem 1 of [1] degenerate at the wall, the computa-
tion was pursued for 450 cycles and approximations to the temperature
and gradient histories at the wall were obtained. These are shown

in Figures 13 and 17. The "exact" temperature and gradient histories
at the wall are shown in Figures 12 and 16. Clearly, slight in-
accuracies in the well-posed direct calculation of u(x,t) near x = 0,
lead to a rather noisy determination of the exact w(x,t) at x = 0; in
particular, the pronounced spike near t = 40 milliseconds in Figure
16 is a numerical artifact which should be disregarded. Nonetheless,
we have chosen to compare the computed gradient history in Figure 17
with the wall profile given in Figure 16, As is evident from Figures
15 and 19, the wall estimates obtained by solving the inverse problem
are quite reliable. This is especially true during the first twenty
or so milliseconds where peak values are achieved.

-8 -




4.

A regutarized marching algorithm has been shown to be effective in
solving nonlinear inverse heat transfer problems in gun barrels. In
[2], a similar technique was used successfully on linear backwards
parabolic equations with highly variable coefficients. More
recently, success has also been achieved on other unstable examples

involving Burgers' equation with the time direction reversed.

Future work should be directed towards problems in two or more space

dimensions in general domains, in the context of heat transfer and

fluid mechanics.




~LWEQWEKTCHFEIXUW QuWoXuWe X

(W3190d8d LJO3MYIq 40

eoe

14

008 —

0001

SANOJ3SITIIM NI 3WIL

NOILUYD3ILNI TUOINIUNN 04 YLUA AJYANNOT)

12 08 03 )4 ec 0
—t —- ooz
00t
TeX ¥04 Wiud
— 009
+ -
— — 008
_ 0=X 779N 1¥ Yiva L..
—t ]t 0001
0t 08 29 )4 ec e

7=X QNU 0=X iU

¢ITNOLSIH A39IYIS3yd

FLWELWECHFIXUW QAQUOxWWe M

FIGURE 1




FWELLMKCEFEDXW AWOoxwWWey S

055

(NOILUYLINGWOO 3FSU3NNI Y04 YLUd TYILINI)
SANOJ3SITIINW NI 3MHIL

08 89 ov ee

Tllll]Tl‘lllllllll

|

|

llfllllll‘l

| ! _ | _ I |
! !

| |

Llllllllllll!

i

eo7

! _ .
e8 09
SWW S2° LY AM¥OLSIH 3uNLbd3d3al

]

FLEZ0 - rul Qoo W

FIGURE 2




FWELWETCHFIDXELW oAt -

(NOILYLNGWOO 3S¥INNI ¥04 Yivd TUILINI)
SAN0D3SITIIN/N S334H3A W NI LNITAUYD
SANOJ3SITIIW NI 3JWIL

001 08
052- “ “ 05a-
L A
-T
0 Iy
T
-
052 —— 052
u[
i
o~
-t
005 003
.
052 —— 0SL
0007 ———1 “ 0001
001 08

SWW §2° LY AYOLSIH LN3IAYdY

FWEALWEErI-DXxul Oca-uwZiE

FIGURE 3



U LU+ IDxW QWO N

00c

Q0L —1—
~

Q0% —

(W318038d L03¥IA 40 NOILYY¥OILNI TYSINIUNN A9 QINIVLIEO)

007

SANQJ3SITIIW NI 3WIL
08 23 )4 02 %)

IR IS S SO I

4 T

| O I
1

1

|
i

_ _ _ | ! _ ﬂ -

lj‘|}1ler'flllllIIT

LR NN [TTF(II1I—I

llLl’tll!

| ! | ] _ |

—

o _ _

e

~ , 1
@8 03 ot ez
S 850°=X LY ANOLSIH I¥NLYYIdWIL LIBX3

@

00s

003

FWEALWEICE-DXW QUWOoXWde W

FIGURE 4




FUEZAUECEDXLW Aoy W

Q0L

008

(W3190¥8d 3ISA3NNI ONINTI0S A9 A3NIUVLE0)
SANOJ3SITIIW NI 3WIL

08 23 14 o2 0

| “ | “ | | “ |00z

Q0ot

005

009

llll]lJll

| _ | | | _ ! _ _

! ‘ i _ 1 * Ll _ |

08 08 oy oc 0

SWW 950°*=X LY AYOLSIH 3dNLY¥IdW3L J3LUWILS3

FWEALWKCF-IDXW AQAWOxuwweyn ¢

FIGURE 5




FLWEQLWECRFDX W Quoxululy M

9

NOILNT0S LJUX3 HLIM NOSIAVdWOD
SANOJ3ISITIIH NI 3WIL

007 08 29 )4 oc 0
} } | _ | )
} f _ ! * T o
1 L
e—1 , 2
_ 4
y—— —¥
| | Tt g
0071 08 09 oy ec 0

Sl 850°'=X LY JuNLYd3dW3L (3ILUWILS3

NI d0¥d3 3LN10589

CFLWEAWXCHIOXW AQuWOoxwuweg N

FIGURE 6



NOILNT0S LOUX3 HLIM NOSI¥ULWOD
SANOJ3SITIIM NI 3UIL

SWi 9590°=X LY o3

007 08 03 1 4 eec o
! - ~ ] | | ] | 1
o 1 _ﬂ 1 1 — T — |
¥OUN3I 3ILNT0SAY
A T -+
S
3 00—
3
5
3 i
d
0o ——n o
3
o
D - o ol
L
M O O m . UNIYYILNIAL ILVUILS3
3
d
E T ———
3
L
008 A — ] L
001 08 09 14 ez %

3107058y QNY JANLYY3dW3L G3LUWILST

00c

0%

— 009

008

FWELWErCF-IOXxnW AWl N

FIGURE 7




FwEQWECEDXW OdaaHiulZ e

0es-

o

0es

2001

00s1

0002 —

00se

(W31908d LO3YIQ 40

NOTLUNDILNT TUOIHINNN A9 J3INIVLEO0)

SANOJISITTIN/N S3FNDAA Wil NI LNIIQUAD
SANOOISITTIN NI JWIL
001 08 09 oF 02 0
1 _ ! _ i _ | _ i
1 I | T _ _ _ K _ ! L
T T
- .
T T
T 1T
I 1T
i 1=
T T
T T
N 4
1 L \ | ' | ! | i T
1 1 _ | _ 1 _ 1
007 08 09 oy 02 0

SW 950°=X

LY AMOLSIH LN3IQUyD LOWX3

005~

0001

00s1

ooo2

2052

FLWEAWKXCEDIDXW AW

FIGURE 8




S
@
v

FLUEOLWXACRFIDXW OxxdariuZ -

(W319038d ISYINNI DNINT0S A9 U3NIULEO)
SANOD3SIT1IN/Y 5334930 WW NI LNIIAUAD
SANOJ3SITIIW NI 3JWIl

007 08 09 ob oc 0

Jlll'llJl

D
L]
&
-
g
IllllTlilllTllllvl1T‘IIIIII

e0s

2007

11

20s7

eooc

Il1T[lllT

] ——]— 0052
007 08 Q9 oy oc %)
SWW 950°=X LY ANOLSIH INIIQUD A3LUWILS3

FIGURE 9

FWELAWEITH-IZ LU OxxaamilZ e



FuWEQWYCRFIOW oxca-uZe

NOTILNT0S

SENO0J3SINTIWN/N 533493d

1auX3 HLIN NOSINYdWOD

Wi NI LN3IQUAD

SANODISITIIW NI 3WIl

00T 08 09 o 02 0
O _ .4._ : “ 1 “ ~ 4 h“ _ Q
T ,_
T i
g2 —— ! - 52
4 R | , +
05— ——05
-+ | +
1 1
g Lﬁl
S s
- ——
J.I e
- P
00T —— T
+ 4
521 —+ ~_ “ “ “ __ w “ -
001 08 09 o 02 0

SWil 956°=X Lb LNIIQUIO

Q3LUWILG3 NI d0¥d3 31LN1058Y

FWEAWXTHFIXW OCxca—wzZie

FIGURE 10




FUWEALXTHFIDOXLW OCxXacaHwzZt

o
N
v

geee

oese

NOILN10S LOYX3 HLIM NOSIdYdWOD
SAN0J3ISITTIW/A S3IFNDIC WK NI LNIIABAD
SGNOJ3SITIIW NI 3UWIL

o7 08 09 ov ee 0
\ | | | | | | | | _
-4 v | | | ! I i _ !
+
I ¥o¥¥3 3LN10STY
I j
.I.Iluu J
I -
.hmmwu Natausd qawrass | [
T "
4 |
1 1
+ I
1 ! | - | | | | | | T
. _ j [ f _ ! _ !
007 08 09 714 02 )

SWI 850°=X LY J0¥¥3 31N7058Y QNY LNIIQUAD d3L1YUILS3

00S

FLUEQLWECHIIXIY OXaAa-WZ -

FIGURE 11




FWEALWYTIFIDXW QuoZliuie W

TTe—
SANOOISITIIN NI IWIL

o1 08 09 o 02 )
002 | “ “ “ “ “ “ “ “ 002
00 00%
009 —— 009
008 —— - 008
0001 “ | | ! “ “ 0001

001 08 09 ov 02 0

(0°0=X) TIYM LU A¥OLSIH FINLYYILWIL LOUX3

FLWELWECHIDIKLW QGuiLien

FIGURE 12



FLWE0 WOl Aol M

002

00F —

(W318048d 3S43NNI ONINTT0S A9 G3NIULEO)
SANOJO3SITIIW NI 3UWIL

009 —

008 ——

0ol

007 08 o3 ov o2 0
S R e ez

1 i
r}?’i{%})}'\'{(% A R —— OOV
009
—— 008

B T e S LLY:
001 08 03 oy 02 0

(0°0=X) 119N LY AYOLSIH 3IyNLYYIdW3L J3LBWILS3

CWELUWXICHEIDOrW OWouwuwe N

FIGURE 13




FLWEQ WKTCEIDXL AWCKWWY M

NOILNTI0S LOUX3 HLIM NOSI¥UJIWOD
SANOJ3SITIIW NI 3IWIL

0071 08 09 14 oc (%)

O 1 “ | “ i _1 1 _ ] O
-t _ll
—_tt- t -~

| _.
T ,, _ .

G —— 9
- -
-+ i -+
4! —4
- . -+

07 —— | ——o1
-t -t
IT. .

S ey o O
001 08 03 oF oc %)

(0°0=X) 1I¢YM LY JINLY¥IdWNIL QILBWILS3 NI ¥O¥¥3 3LN10SEY

FWELQWXCH-IKrUW AWOoXuuy W

FIGURE 14




FLUEO WU xu AQALodulen M

NOILNTI0S LOYX3 HLIM NOSIyvdUOD
SANOJ3SITIIW NI JUIL

007 08 09 ob o2 0
0 et ——t—— °
1 YON¥3 ALNI0S8Y 4
002 —— — ooz
00b N NS oob
009 —— 009
T JUNLVYILUIL QILYUTLSS T
008 —— 008
0001 | “ “ n ! “ “ “ “ 0001
007 08 09 oY 02 0

(0°0=X) TIYN LY

o3

3LN1058Y aNY 3uNLYA3dW3L (ILYWILS3

CFWEo WOl QWOCXWWY, 8

FIGURE 15




0001~

FLWELWKYACHFIDIXW OCEITIAHWZE

000t

(3190¥d LOIHIC 40 NOILYNDILNI TUOIN3UNN A8 (3INIVLEO)

SANOJ3SITIIW/N 533¥93Q WW NI LN3IQUYD
SANOJ3SITIIKW NI 3WIL

007 08 09 ob o2 0
—t
1 | | [ | 1
- L]
L g . . 4
Q.II..II M A JE——
T T
1 1
1 1
-+ i
o -
- -
J[ —
T . | | _ L LT
' | ! _ ! _ L { '
00T 08 09 oy 0z 0

(0°0=X) TIYM LY AJOLSIH INIIQUAD

eooz

200t

FLWUEQUWETITEFEDXIW OxddAar--uwZE

FIGURE 16




OxaTa-HLWZ

FWEa LWKECEFEIXW

(W31808d 3SU3ANI DNIN10S AE AINIULEO)
SANO0J3SITIIW/X $33493a L] NI LNIIAVAD
SANO0J3SITIIM NI FuIl

007 08 09 o 02 0

0001 - —— - “ 0001~
-+ . +
-+ T
T .

86— Z C | ——0

L 4
1 1

Q007 ..U[l —— 0001
+ +
—4 o

0002 —— 0002
.I+|l b

0008 —|— —t T { 000E
001 08 09 ov 02 0

(0°0=%) TIYN LY ANOLSIH LNIIQWHO ILGWILSI

FWEALWXIFDXUL OXTAHWZE

FIGURE 17




FUWELWETHIDXLW OCrECQHUWZE

NOILNT0S LOUX3 HLIM NOSIYYLWOD
SANOJISITIIW N S33¥D3A WW NI LNIIAUED
SANOJISITIIW NI 3WIL

001 08 09 ob 02 e
* _~ — ] O

—|-p02
- J.l

00k —— ——00¥
—n s Y

009 —— —— 009
+ +

008 —— —{— 008
e Ll

0001 —t L _q 0001

001 08 09 o 02 2

(0°0=X) 11YM Lb LNIIQudd QILYWILSI NI d0dd3 3Ln1os8v

FWEAWXTFIXW CEIAmWZ -

FIGURE 18




FWEWECEIDIHL OTAHWZE

000T-

600t

NOILN10S LlOYX3 HLIM NOSI¥udWOD
SANOJISINTIW A S33493a Wi NI LNIIAUYD
SANOJ3SITIIN NI 3UIL

08 93 oy 02 0

=
|
=
e

——

T

|
1

youd3 3.iNn7058v

AN3IQUYD G3LUWILSI

LI

1

B

_ _ _

g0l

w
08

-t

1
03

_
14

ee

)

(@°0=X) T1YM LY HoN¥3 3LN1058Y GNY LNIIAUYD Q3LYWILS3

00071~

0002

000t

FWEALWETCHIXW OXTAHWZ -

FIGURE 19




REFERENCES

A. Carasso, "Determining Surface Temperatures from Interior
Observations," SIAM J. Appl. Math., 42, (1982), pp. 558-574.

A. Carasso, "A Stable Marching Scheme for an I11-Posed Initial
Value Problem," Proceedings of the Oberwolfach Conference on
Improperly Posed Problems and Their Numerical Treatment,
Oberwolfach, Germany, (September 1982), K. H. Hoffmann, editor.
International Series in Mumerical Mathematics, Birkhauser-Verlag,

Basel.

J. M. Hyman, "MOL1D: A General Purpose Subroutine Package for

the Numerical Solution of Partial Differential Equations," LANL
Report LA 7595M-UC32, (March 1979), Los Alamos National Laboratory,
Los Alamos, New Mexico 87545.

J. R. Ward and T. L. Brosseau, "Effect of YWear Reducing Additives
on Heat Transfer into the 155mm M185 Cannon," BRL-M Report 2730,
(February 1977), National Technical Information Service, U.S.
Department of Commerce, Springfield, Virginia 22161.

- 10 -



END

DATE
FILMED




