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FORWARD MULTIPLE SCATTERING CORRECTIONS
AS FUNCTION OF DETECTOR FIELD OF VIEW

I. INTRODUCTION

Low visibility atmospheric conditions occur in the presence of heavy
concentrations of atmospheric aerosols such as dust, smoke and fog.
Scattering of laser radiation by such aerosol clouds, being basically a
multiple scattering process, is very Qifficult to predict. A fruitful
approach to the problem has been a Monte Carlo technique, because it can
handle strange geometries as well as inhomoqeneitiesl‘3. Recently, considerable
attention has been paid to analytical solutions to the equation of transfer
in a form appropriate for the laser beam propagation problem4-g. Although
exact solutions have not been obtained to date, there are some special cases
where simple and useful approximate solutions to the eguation of transfer are
available. For tenuous distribution of scatterers, the first-order multiple
scattering theory can be used, and for dense distribution the diffusion
approximation is appropriate. If the particle size is large compared with
incident wavelength, the enerqgy scattered by the particle is largely confined
within a small angle in the forward direction and, therefore, by employing the
small-angle approximation it is possible to simplify the equation of transfer.
In Ref. 8, a systematic study of contributions of increasing order of scat-

tering for both realistic and model aerosols has been conducted.




As indicataed by Ishimarulo'11

+ the first-order multiple scattering
approximation is applicable when the density of scatterers is so low that
the diffuse (incoherent) intensity is considerably smaller than the reduced
{coherent) intensity. This will certai;iy be the case if optical distance

f traversed by the beam is much smaller than unity. Howsvér, the same weak

; fluctuation case is also encountered in the situations where the receiver ‘.
has a narrow receiving angle. In this case, the amount of scattered
intensity entering into the receiver is small compared with the direct
coherent intensity, and therefore the received field is predominantly
coherent. The effect of the detector's finite field of view on the
received power has been a subject of comprehensive investigations related

' . te forward scattering corrections for optical extinction mnasuremcntslz-l7.

The purpose of this paper is to study the effect of a finite field of

view on the intensity and the received power of a laser beam undergoing

multiple scattering. Our analytic approach is based on the theory of
Dolin18 and Fantelg-zz, summarized in Section II. 1In Sections II and 1V,

we apply ~Zhis theory to Gaussian beams. Numerical results relevant to
the beam propagation in a water cloud and model aerosol particles are

presented in Section V.
II. THE FANTE-DOLIN THEORY

Our considerations will be based on the eﬁuation of radiative trans-
fer for the radiance (specific intensity) distribution function, 1(3,;.2).

In the small angle approximation, I($.§.z) satisfies

$ -gé'f%fuu-o, I r@d -39 1352 a B

e mrrm -




where 0 and c’ are volume extinction and scattering coefficients (m-l) for
the aerosol medium; ; is the component of the position vector transverse to
the z axis; and 3 is the transverse component of the unit propagation Qcctor
(Fig. 1 in Refs. 8 and 9).

In the work of Doli.n]'8 and Fantelg-zz, which applies to sharply peaked
phase functions, I($',;,z) in the integrand on the right hand side of Eq. (1)
is expanded in Taylor series about 3' -'3. More precisely, 1(3,;,2) is
split into

€-)) (s)

> > - > > -+
I(d,r,2) = I (¢,r,2) + I ($,x,2) (2)

where superscripts o and s refer to unscattered and scattered radiance,

respectively. Then, one expands

I(S) ($l;lz) - I(S) ($';02)
s -0, 5 1 @i
k k
1 32 (s) 3 -
+ =L L (¢ -0, (9 =0, == I (¢,r,z) + . . . (3)
2 x % k L a¢k3¢l

where k and £ refer to the Cartesian components of the $ vector. Recall
-’

that¢-oxﬁ+¢y9.
Equation (1) now yields

(o) (0)
R A » A R (4)

3 z
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’
while I(s)is determined from the nonhomogeneous equation
(s) (s)
+ 9I ow .2 g2..(s) , 31
PrEE o T VT vy
sol-w 1'% = 0w { p(3 - o9 19 (3,52 ale (5)
where w = GS/O is the single scattering albedo; and <$2> is defined as
3% - I pd 3 a® o (6)
In deriving Eq. (S) we have neglected the terms of higher order than second
. in Eq. (3). The solutions to Eqs. (4) and (5) can be obtained by the method

- -+
of characteristics in the Fourier space of the variables ¢ and r. With

the Fourier transforms defined generically as

3. ” 2, 2z = o Ed+ A
I({,n,z) = d°ddr 1(o,r,2) e (7
-0
S -
P(E) = J a%e p(d) e12-¢ (8)

-0

we obtain the following solutions

~ > & R - > -
I(°) (&:n,z) = I(§ + nz,n,z = 0) e oz (9)
and

~ -> R -> - -

I(S) (E.n,z) = I(g + nz.ﬁ,z = Q) f P[E + N(z=-2')] e oz
z

* exp { - f (c;_w <32> lE +N (z - z")l2 + O(l-w)] dz"} dz* (10)
zl

. for the unscattered and scattered contributions, respectively.

11




III. CASE OF COLLIMATED GAUSSIAN BEAM

le assume now that in the single scattering theory the scattering phase

function 9(5) is given by a Gaussian function, i.e.,

2
P($) = 3 exp (-a® $2) (11)

and that the incident collimated beam, directed along the z axis, has a

Gaussian spatial form, i.e.,

-1 Y2 +(2)

- - - 2 +2
I(d,r,z2 = Q) = FOW o) (¢) exp (-y ) (12)

where 5(2) is the Dirac delta function.

In the situation modeled by Egs. (11) and (12), we obtain, after performing

the inverse Fourier transforms of Egqs. (9) and (10), the explicit formulas

(o) (s)

for I (3,;,2) and I ($,;,z). They read

2 +2
I(o) (¢,;,z) - Foﬂ-l e-oz e-y T 6(2) 3 (13)

and

Foome-cz 2 -1
I (¢,r,z) = —_ [ dz' (4 A(2') C(z') -B (2"))
(2m)

( ')-’2 T z -+2 .
- exp { _A(z)r - 3(z2')d*r + C(Z2')0 } euoz (14)

ar(z')C(z') - B2(2")

where the functions A, B, and C are defined as

1l + cwz’

4a2

A(z') =

22' + sz'z

40

B(z') =

'2 l3
Clz') = l2 , 2 + ng /3 (15)
4y 4Q




-
In polar coordinates (8,b), the vector ¢ can be expressed by

¢x = 8§ cos b
QY = 8 sin b (16)

For a detector having the field of view (FOV) half-angle, BD, the
received intensity is obtained from Eq. (14) after integration over the
angle b in the range (0,27) and over O in the range (O,GD). The received

intensity F(S)(SD.;,oz) corresponding to the scattered beam thus becomes

)
D
F(S) (BD,;,OZ) = j I(S) (81;102)9 d9 (17)
0
where
(s) o * P e s oz X, ., X 2 x L
I (8,r,0z) = 3 J [4A(50C(5) - B (E)]
0
. Io [ 8¢ B(x/0) 5 )
4A(x/0)C(x/0) - B (x/J)
A(x/0)r> + C(x/3) 8° wt
* exp (- ] e dx (18)

4A(x/0)C(x/T) - B2 (x/0)

Here Io is the modified Bessel function of zeroth order, and x is a dimensionless

integration variable.

The contribution coming from the unscattered part of the beam is

(o) - -1 -0z - 22
F° (OD,r.cz) - Fow e e yr (19)

It is thus seen that the numerical results can be extracted from this

theory in a rather simple manner by performing merely a double integration.

13
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IV. CASE OF GENERAL GAUSSIA!N BEAM
More generally, one can account both for the spatial and angular divergence

of the laser beam assuming a Gaussian law of the form

2 2 »2

- - 2 2 - 2.2
I{¢,z,z2 = Q) = R, B ¥ n° exp(=- 8" ¢" - y" £%) (20)

for the incident beam. Here, the parameter 8 describes the angular divergence.
3y following exactly the same line of reasoning as in Section III, we

(s

-
obtain the following contributions F )(Bn,r,cz) corresponding to the scat-

tered beam, viz.,

1
, -> 2 (s) ' > ¢ .
F(S}\VD.YZ‘,O'Z) = 30 I (8 eD,Yl';OZ) g+ ag (21)
Q
where
- -
I(S) {8,vr,qz) = Fo wJz e OZ/ZW

rt 2 -1
+ J EA((x/O) 2o} c{(x'0) zo! - B ((x/0) zo-}]
0

o - 8 (YE) - B((%/0) 20) /Y
° lan{(x/0) zat clx/9) zo} ~ B3 {(x/0) 2o}

(ve) 2 A((x/0) za) /Y2 + C((x/0) 2018°
aal (x/0) zo} c{(x/0) za} - 8%{(x/q) zo}

+ expl-

—

+ exp(w x0 2) °* dx'’ (22)

and Io is the modified Bessel function of zeroth order.

14
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For the unscattered beam, we obtain

F(o) (BD,Y;.az) - 2F 82 exp(-02z) enz/w

1
+ f 8* a8 1 _{2(y/0) 0_8°*(yr) oz}
o (-] D

+ exp (- (Y022 - [(v/o)2 (02)2 + B%] 602 8+2} (23)

The integrals in Eqs. (22) and (23) have limits O and 1. This choice of

limits anticipates the use of Gaussian quadrature in numerical computation.

v. RESULTS AND DISCUSSIONS

The numerical values were obtained for the on-axis intensities as a
function of OD. and the plots shown in Figs. 1-3 depict the unscattered
(reduced) intensity (squares), scattered or diffuse intensity (circles), and
total intensity (triangles) on the beam axis for optical depth T = 1, 4, and

1Q, respectively. A divergent beam with the parameters £ = 2v/(y)\) and

1 24

y = 1.0 cm - is assumed to be propagating with the Deirmendjian water cloud

model CL. For )\ = 0.45 um, the extinction coefficient is obtained from

the Mie theory computations when a modified gamma distribution is taken

from water cloud particle size distribution. One also obtained a = 46.80 rad

for the Gaussian fit to the phase function. For a coaxial detector, with a

diameter R_ = 1.0 cm, the same as the laser beam diameter, the intensity F

D
becomes a function of OD and 2., We normalize the intensities by dividing
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.

out the factor F(O)(BD = o, 2w 0). Por the sake of clarity in graphical
presentaticn, we also scale the normalized intensities by the multiplicative
factor =2xg(T).

In order to investigate the siqﬁiticance of the optical thickness, we
calculated the power received by a coaxial detector of.radius RD = 1 cm.
b § 4 !(OD,;,t) denotes generically the beam intensity, then the received
power is defined as

F(8,,%T) £ dr (50)

P (R,) = 2m IRD

0

The received power is also scaled by the multiplicative factor exp(T),
' . and the power received at z = 0 is divided out. The numerical values were

obtained for received power for a coaxial detector of diameter RD = 1 cm,

and the situation is depicted in Figs. 4-6 corresponding to the same parameters
as in Figs. 1-4, respectively. As the FOV increases, both the intensity

and the received power saturate rapidly, independently of the optical depth.
This corresponds to the situation of an open detector. The contribution of the
scattered power becomes dominant in the saturation region for optical depth

of the orxder of 10.

1 Gaussian phase functions as given by Eq. (ll) were best fitted in Ref. 8
g to the exact Mie phase functions for monodisperse aerosols with radii in the
| range from 2.0l to 40.2 ym. In Figs. 7-9, we show the intensity vs.
detector's FOV. 1In addition, we show the received power vs. FOV for

i T = 4.0 (Fig. 10). These sets of results were computed for the model

particles characterized by the parameters = 289,33 rad~l, and
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RECEIVED POWER
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T = 4,0,
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ON-AXIS INTENSITY
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Figure 7. Normalized intensity on the b?am axis as function of detector
FOV corresponding to a = 289.33 rad °, Rp = 1.0 em, and T = 1.0.
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o= 5.0x102 em?t

at )\ = 0.45 um, for a coaxial detector of diamater
RD = 1 cm. ©Note that the phase function and the Gaussian fit to the forward
lobe of the Mie phase function are plotted in Fig. 3 of Ref. 8.

In order to study the effect of thae detector's radius RD' we let RD
assume valuss smaller and larger than the beam diameter of the 1.0 cm,
viz, RD = 0.2 cm and 2.0 cm. Results were obtained for the same parameters
as in the case of RD = 1.0 cm. However, for the sake of clarity we present
only the results for T = 4.0 for the two cases, viz, RD = 0.2 cm
(Figs. 11-12) and Ry = 2.0 cm (Figs. 13-14). Figures 11-12 depict the
corresponding values of intensity and received power as functions of FOV
for RD = 0.2 cm, whereas, Figs, 13-14 depict the corresponding values for
RD = 2.0 cm. The three cases (RD = 1.0, 0.2 and 2.0 cm; T = 4,0) for
large particles with phase function parameter a = 289,33 cm'-l show clearly
the contrast in the behavior of the intensity and the received power. j

The Fante-Dolin approximation employed in this paper enables one to

estimate the corrections to the Bouguer~Beer law for a receiver having a

finite field of view, as for example in Ref. 2S.

Vi. RECOMMENDATIONS
1. It should be noted that the small-angle approximation is valid for
highly forward-peaked phase functions, It is, therefore, recommended that

approaches be developed to deal with the case of MS in laser beams traversing 4

small size aerosol particles, with broadly-peaked phase functions.
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Figure 11. Normalized intensity on the beam axis as function of detector
FOV for the same parameters as in Fig. R except RD = 0.2 cm,
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2. It is recommended that experiments and numerical computations be
performed to (a) determine the effects of the detector field of view on
both the extinction and backscattering function measurements and (b) investigate
the effects of beam diameter on optical extinction measurements.

3. It is recommended that the above investigation be repeated for the
case of backscattering, which is of great importance for single-ended

electro-optical gystems,
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