MULTIPLICITY RESULT FOR A SEMILINEAR DIRICHLET PROBLEM

PRONOMSUNRON UNIV-MADISON MATHEMATICS RESEARCH CENTER J V GONCALVES APR 83 MRC-TSR-2515

UNCLASSIFIED DAAG29-88-C-0041
A MULTIPLICITY RESULT FOR A SEMILINEAR DIRICHLET PROBLEM

J. V. A. Goncalves

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706

April 1983

(Received March 21, 1983)
A MULTIPLICITY RESULT FOR A SEMILINEAR DIRICHLET PROBLEM

J. V. A. Goncalves*

Technical Summary Report #2515
April 1983

ABSTRACT

Let Ω be a bounded smooth domain in \(\mathbb{R}^N \). We give an estimate for the number of solutions of the problem

\[
Lu + g(u) = \lambda u \quad \text{in} \quad \Omega, \quad u|_{\partial\Omega} = 0
\]

where \(L \) is a second order elliptic operator. The behavior of the nonlinearity \(g \) both at 0 and at \(\infty \) and the relationship between \(\lambda \) and the spectrum of \(L \) play an important role in the analysis.

AMS(MOS) Subject Classification: 35J20, 35P30

Key Words: Semilinear Dirichlet Problem, Variational Methods, Maximum Principles.

Work Unit Number 1 - Applied Analysis

* Universidade de Brasilia. Partially supported by CNPq/Brasil.

Sponsored by the U. S. Army under Contract No. DAAG29-80-C-0041.
SIGNIFICANCE AND EXPLANATION

In this paper we consider the number of solutions of the Dirichlet problem for semilinear elliptic equations. Specifically, we study the question of finding solutions u of an equation such as $-\Delta u + g(u) = \lambda u$ in a bounded domain $\Omega \subset \mathbb{R}^N$ subject to the condition that u vanishes on the boundary of Ω. This problem has been intensively studied in the last few years; it arises in many situations such as nonlinear diffusion generated by nonlinear sources, the thermal ignition of gases, and others. In this paper we derive precise estimates of the number of solutions under assumptions which are natural for these problems thereby complementing results obtained by a number of authors.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC and not with the author of this report.
A MULTIPLICITY RESULT FOR A SEMILINEAR DIRICHLET PROBLEM

J. V. A. Goncalves*

1. Introduction

Let \(\Omega \) be a bounded smooth domain in \(\mathbb{R}^N \). We are concerned with the question of existence of multiple solutions for the problem

\[
Lu + g(u) = \lambda u \text{ in } \Omega, \quad u|_{\partial \Omega} = 0
\]

where \(g: \mathbb{R} \to \mathbb{R} \) is a locally Lipschitz continuous function, \(\lambda \) is a real parameter and

\[
Lu = - \sum_{i,j=1}^{N} \frac{\partial}{\partial x_j} \left(a_{ij} \frac{\partial u}{\partial x_i} \right) + a_0 u
\]

has smooth real valued coefficient functions \(a_{ij} = a_{ji} \) and \(a_0 > 0 \) satisfying the ellipticity condition

\[
\sum_{i,j=1}^{N} a_{ij}(x) \xi_i \xi_j > c \sum_{i=1}^{N} \xi_i^2 \quad \forall \xi \in \Omega, \quad (\xi_1, \ldots, \xi_N) \in \mathbb{R}^N
\]

for some positive constant \(c \). Let \(0 < \lambda_1 < \lambda_2 < \ldots < \lambda_j < \ldots \) be the sequence of eigenvalues of the linear problem

\[
Lu = \lambda u \text{ in } \Omega, \quad u|_{\partial \Omega} = 0
\]

with each \(\lambda_j \) occurring in the sequence as often as its multiplicity. We recall that the corresponding sequence of eigenfunctions \(\varphi_1, \varphi_2, \ldots, \varphi_j, \ldots \) is a complete orthonormal system of \(L^2(\Omega) \) with \(\varphi_1 > 0 \) in \(\Omega \) and \(\frac{\partial \varphi_1}{\partial n} < 0 \)

* Universidade de Brasilia. Partially supported by CNPq/Brasil.

Sponsored by the U.S. Army under Contract No. DAAG29-80-C-0041.
on $\partial \Omega$ where $n(x)$ is the outward pointing normal to $\partial \Omega$. Our goal in this paper is to prove the following result.

Theorem 1. Assume $g: \mathbb{R} \to \mathbb{R}$ is a locally Lipschitz continuous function satisfying

\begin{align*}
(g_1) & \quad g(z) = o(|z|) \text{ at } z = 0 \\
(g_2) & \quad \frac{g(z)}{z} \to \pm \infty \text{ as } |z| \to \infty \\
\text{and} & \quad (g_3) \quad 0 < G(z) \equiv \int_0^z g(t)dt < \frac{1}{2}|z|g(z), \ z \in \mathbb{R}.
\end{align*}

Then (1) has at least four solutions provided $\lambda > \lambda_2$.

Theorem 1 is an improvement to an earlier result by Struwe [5] where a condition stronger than (g_3), namely

\begin{align*}
(g_3') & \quad \frac{g(z)}{z} \text{ is increasing in } (0, +\infty) \text{ and is decreasing in } (-\infty, 0)
\end{align*}

is assumed. As a matter of fact, by requiring more regularity on g, namely $g \in C^1(\mathbb{R})$, Ambrosetti [6] proved as an application of the Morse Theory that at least 3 nontrivial solutions of (1) do exist provided $\lambda > \lambda_2$ and $(g_1) - (g_2)$ hold. Also for $g \in C^1(\mathbb{R})$ it was shown by Hofer [7] that (1) has at least 4 nontrivial solutions if $(g_1) - (g_2)$ hold and $\lambda \in (\lambda_i^{1}, \lambda_i^{1+1})$, $i \geq 2$. We recall that more precise results are known both in the O.D.E. case (see Berestycki [11] and references therein) and in the case that g is odd (see Rabinowitz [4] where the technique used to prove Th. 2.8 applies to (1)). We refer the reader to [1], [3], [9], [10] for additional results concerning (1).
Remarks.

(i) Theorem 1 holds if \((g_2')\) is replaced by the weaker condition

\[g'_2 \quad \text{there exist numbers} \quad z_0 < 0 < z_+ \quad \text{such that} \]

\[\lambda z_0 - g(z_0) = 0 = \lambda z_+ - g(z_+) \]

(ii) If we assume \((g_3')\) in Th. I then it can be shown that (1) has exactly a positive solution and a negative one. Moreover (1) has a maximal solution and a minimal solution (see e.g. the Lecture Notes by deFigueiredo [10]).

(iii) Dependence of \(g\) on \(x \in \Omega\) is allowed by modifying conveniently our assumptions, for example, by requiring the limits \((g_1') - (g_2')\) to be uniform with respect to \(x \in \Omega\).

(iv) If \(zg(z) > 0\) for \(z \neq 0\), then it follows easily that (1) admits only the trivial solution for \(\lambda < \lambda_1\).

The author is grateful to Professor P. H. Rabinowitz for his help.
2. Notations and Preliminary Results

We introduce in the Sobolev space $H = H^1_0(\Omega)$ the inner product

$$ (u,v)_1 = \sum_{i,j=1}^N \int_\Omega (a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_j} + a_0 uv) dx $$

$$ = B(u,v) + \int_{\Omega} a_0 uv dx \quad u, v \in H. $$

Let $|u|_1^2 = (u,u)_1$ for $u \in H$ be the corresponding norm which is equivalent to the usual norm of H. We denote by $(*,*)_0$ the inner product in $L^2(\Omega)$ and by $|*|_0$ the corresponding norm and recall that $(v,v)_1 < \lambda_j (v,v)_0$ for $v \in V_j$ where $V_j = \text{span} \{ \varphi_1, \ldots, \varphi_j \}$ and $(w,w)_1 > \lambda_{j+1} (w,w)_0$ for $w \in W_j$ where $W_j = \text{span} \{ \psi_{j+1}, \ldots \}$. Moreover $H = V_j \oplus W_j$ and V_j is orthogonal to W_j both with respect to the L^2 and H inner products. We denote by p_j and q_j the projectors onto V_j and W_j respectively.

Next we will associate to (1) an auxiliary problem. Let

$$ z_+ = \sup \{ z > 0; \lambda t - g(t) > 0, \quad 0 < t < z \} $$

and

$$ z_- = \inf \{ z < 0; \lambda t - g(t) < 0, \quad z < t < 0 \}. $$

It follows from $(g_1) - (g_2)$ that $-\infty < z_- < 0 < z_+ < \infty$. Instead of working directly with (1) we are going to look for solutions of

$$(1') \quad Lu = f(u) \text{ in } \Omega, \quad u|_{\partial \Omega} = 0$$

where $f: \mathbb{R} \to \mathbb{R}$ is the bounded function (f is Lipschitz continuous if g is locally Lipschitz continuous) defined by $f(z) = \lambda z - g(z)$ if $z_- < z < z_+$ and $f(z) = 0$ otherwise.
Lemma 1. Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying (g_2). If $u \in H$ is a solution of $(1')$ then $z_- < u < z_+$ in Ω and u is a solution of (1).

Proof of Lemma 1. Let $u_-(x) = u(x)$ if $u(x) < z_+$ and $u_+(x) = z_+$ if $u(x) > z_+$. By a theorem of Stampacchia [12], $u \in H$. On the other hand,

$$(u, u_+ - u)_\Omega = \int_\Omega f(u)(u-u_+) < 0, B(u, u_+ - u_+) = 0$$

and $\int_\Omega a_n(u-u_+) > 0$. By using the uniform ellipticity of L and Poincaré's Inequality we get $c|u_+ - u|^2_0 < 0$ for some positive constant c. So $u < z_+$ in Ω. Similarly we can show that $z_- < u$ in Ω. Lemma 1 is proved.

Let $F(z) = \int_0^z f(t)dt$ for $z \in \mathbb{R}$ and

$$J(u) = \frac{1}{2} |u|^2_1 - \int_\Omega F(u), \quad u \in H.$$

It follows that $J \in C^1(\mathbb{H}, \mathbb{R})$, $(\forall v) (u, v)_1 = (u, v)_1 - \int_\Omega f(u)v$ $u, v \in H$ and actually the solutions of $(1')$ are the critical points of J. The following auxiliary result will play an important role in this paper.

Theorem 2. Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying $(g_1) - (g_2)$. Suppose $\lambda > \lambda'_+$. Then there exist solutions $u_+ \in C^{1+\alpha} \Omega, (a \in (0, 1))$, of $(1')$ with $u_- < 0 < u_+ \in \Omega, \frac{\partial u_+}{\partial n} < 0 \text{ on } \partial \Omega$ and $\frac{\partial u_-}{\partial n} > 0 \text{ on } \partial \Omega$. Moreover $J(u_+) < J(u)$ if $u > 0$ and $J(u_-) < J(u)$ if $u < 0$.

Proof of Theorem 2. Let $f_+(z) = \lambda z - g(z)$ if $0 < z < z_+$ and $f_+(z) = 0$ otherwise. Let $F_+(z) = \int_0^z f_+(t)dt$ for $z \in \mathbb{R}$ and

$$J_+(u) = \frac{1}{2} |u|^2_1 - \int_\Omega F_+(u), \quad u \in H.$$

It is quite easy to check that $J_+ \in C^1(\mathbb{H}, \mathbb{R}), J_+(u) \to +\infty$ as $|u|_1 \to +\infty$ and J_+ satisfies the Palais-Smale condition ((PS) for short). Thus there exists $u_+ \in H$ such that $J_+(u_+) = \inf_{u \in H} J_+(u)$. Actually, by using (g_1) and $\lambda > \lambda'_+$ we have
we find that $J(tv_1^+) < 0$ for all $t > 0$ near 0. On the other hand, by recalling that $Lu_+ = f_+(u_+)$ in Ω in the weak sense and using the elliptic estimates, Sobolev embedding theorem and maximum principles we get $u_+ \in C^{1+\alpha}_{loc}(\Omega)$ for $\alpha \in (0,1)$, $u_+ > 0$ in Ω and $\frac{\partial u_+}{\partial n} < 0$ on $\partial \Omega$. Moreover, $J(u_+) = J_+(u_+)<J_+(u) = J(u)$ if $u > 0$. Similar arguments apply with respect to u_-. This proves Theorem 2.

Our approach to get the third nontrivial solution consists in applying the idea of the Mountain Pass Theorem (cf. Ambrosetti-Rabinowitz [2]). However the fact that u_\pm are not necessarily minima of J poses a technical difficulty. In order to get around it we had to use a reduction argument by Lazer-Landesman-Meyers [13] related to the global Ljapunov-Schmidt method. Actually we will use an improvement of that reduction argument by Castro [14]. Since (under the assumptions in Theorem 1) $f(z)$ is Lipschitz continuous we take $k > 2$ such that $\lambda_k < \lambda_{k+1}$ and $|f(z)-f(z')| < \lambda_k |z-z'|$ for all $z, z' \in R$. Now, if $v \in V = V_k$ and $w_1, w_2 \in W = W_k$ we get

\[
(VJ(v+w_1), w_1 - w_2) =
\]

\[
|w_1 - w_2|^2 \leq \int_{\Omega} (f(v+w_1) - f(v+w_2))(w_1 - w_2)\]

\[
> (1 - \frac{\lambda_k}{\lambda_{k+1}}) |w_1 - w_2|^2
\]

By Castro's result mentioned earlier ([14], Lemma 2.1), there exists $\theta \in C^0(V,W)$ satisfying

(i) If $v \in V$ then $J(v+\theta(v)) = \inf_{w \in W} J(v+w)$ and actually, $\theta(v)$ is the only element of W such that $(VJ(v+\theta(v)), w)_1 = 0$ for all $w \in W$.

(ii) Let $\tilde{J}(v) = J(v+\theta(v))$ for $v \in V$. Then $\tilde{J} \in C^1(V, R)$ and $(\tilde{VJ}(v), v)_1 = (VJ(v+\theta(v)), v)_1$ for $v, v_1 \in V$.

-6-
Moreover, $u \in H$ is a critical point of J iff $u = v + \theta(v)$ and v is critical point of \tilde{J}. So $u_\pm = v_\pm + \theta(v_\pm)$ where v_\pm are critical points of \tilde{J}.

Lemma 2. Assume $g: \mathbb{R} \times \mathbb{R}$ is a locally Lipschitz continuous function satisfying $(g_1) - (g_2)$. Suppose $\lambda > \lambda_1$. Then there exists $\delta_1 > 0$ such that $B_{\delta_1}(v_+) \cap B_{\delta_1}(v_-) = \emptyset$, $\tilde{J}(v_+) < \tilde{J}(v)$ if $v \in B_{\delta_1}(v_+)$ and $\tilde{J}(v_-) < \tilde{J}(v)$ if $v \in B_{\delta_1}(v_-)$.

Proof of Lemma 2. From (i)-(ii) above we get for all $v \in V, w \in W, u \in H$

$$(\theta(v), w)_1 = \int f(v+\theta(v))w.$$

By recalling that v and w are orthogonal both with respect to L^2 and H and writing $P = P_k$ and $Q = Q_k$ we find

$$(\theta(v), u)_1 = \int Qf(v+\theta(v))u$$

that is

$$L\theta(v) = Qf(v+\theta(v)) \text{ in } \Omega$$

in the weak sense. It follows from the elliptic estimates that

$$|\theta(v) - \theta(v_+)|_{W^{2,p}_{\Omega}} \leq C|Qf(v+\theta(v)) - Qf(v_+ + \theta(v_+))|_{L^p}$$

for any $p > 1$. On the other hand, it is quite easy to check that

$$|Qf(v+\theta(v)) - Qf(v_+ + \theta(v_+))|_{L^p} \to 0 \quad \text{as} \quad |v-v_+| \to 0$$

Thus we get by using the Sobolev embedding $W^{2,p}_{\Omega} \subset C^1(\Omega)$, $(p > 1$ large enough), that

$$|\theta(v) - \theta(v_+)|_{C^1(\Omega)} \to 0 \quad \text{as} \quad |v-v_+| \to 0$$

and further

$$|(v+\theta(v)) - (v_+ + \theta(v_+))|_{C^1(\Omega)} \to 0 \quad \text{as} \quad |v-v_+| \to 0.$$
Therefore by recalling that \(u_+ > 0 \) in \(\Omega \) and \(\frac{\partial u_+}{\partial n} < 0 \) on \(\partial \Omega \) we find that \(v + \theta(v) > 0 \) in \(\Omega \) provided \(|v-v_+|_1 < \delta_1 \) with \(\delta_1 > 0 \) small enough. In particular, \(\tilde{J}(v_+) = J(v_+ + \theta(v_+)) < J(v + \theta(v)) = \tilde{J}(v) \) for all \(v \in B_{\delta_1}(v_+) \). Similar arguments apply with respect to \(v_- \). This proves Lemma 2.
3. **Proof of Theorem 1.**

We can assume that both \(v_- \) and \(v_+ \) are isolated critical points of \(J \). Let, as in Ambrosetti-Rabinowitz [2],

\[
B = \{ \beta \in C^0([0,1],V); \beta(0) = v_-, \beta(1) = v_+ \}
\]

and

\[
c = \inf_{\beta \in B} \sup_{0 < t < 1} J(\beta(t)).
\]

In order to show that \(c \in \mathbb{R} \) is a critical value of \(\tilde{J} \) we recall that

\(\tilde{J}(v) \to -\infty \) as \(|v|_1 \to \infty \). So \(\tilde{J} \) satisfies the (PS) condition. Suppose by contradiction that \(c \) is not a critical value of \(\tilde{J} \). It follows from the Deformation Theorem (see e.g. Clark [15], Rabinowitz [8]) that there exist \(\epsilon > 0 \) and \(\sigma \in C^0([0,1] \times V, V) \) such that for all \(v \in V \)

(i) \(\sigma(0,v) = v \).

(ii) \(\tilde{J}(\sigma(t,v)) \) is nonincreasing in \(t \in [0,1] \).

(iii) if \(\tilde{J}(\sigma) < c + \epsilon \) then \(\tilde{J}(\sigma(1,v)) < c - \epsilon \).

On the other hand, from the definition of \(c \) there exists \(\beta \in B \) such that \(\tilde{J}(\beta(t)) < c + \epsilon \) for \(t \in [0,1] \). Let \(\beta(*) = \sigma(1,\beta(*)) \). We claim that \(\beta(*) \in B \). Indeed, \(\beta \in C^0([0,1],V) \) and \(\tilde{J}(0) = \sigma(1,v_-) \). Further there exists \(\mu \in (0,1) \) such that \(|\sigma(t,v_-) - \sigma(0,v_-)| < \delta_1 \) for \(t \in [0,\mu] \). On the other hand, \(\tilde{J}(\sigma(t,v_-)) = \tilde{J}(\sigma(0,v_-)) = \tilde{J}(v_-) \) for \(t \in [0,1] \). Thus \(\sigma(t,v_-) = v_- \) for \(t \in [0,\mu] \). If

\[
\mu^* = \sup \{ \mu > 0; \sigma(t,v_-) = v_-, \ 0 < t < \mu \}
\]

then we find easily by repeating the above argument that \(\mu^* = 1 \). So

\(\sigma(1,v_-) = v_- \) and \(\beta(1) = v_- \). Similarly we get \(\beta(1) = v_+ \) and consequently
\[\hat{\beta} \in B. \text{ But this is impossible, since by (iii) above } \hat{J}(\hat{\beta}(t)) < c - \varepsilon \text{ for } t \in [0,1]. \]

Now,

\[\min_{v \in \partial B} \hat{J}(v) > \hat{J}(v_+) \]

since we are assuming \(v_+ \) to be an isolated minimum of \(\hat{J} \). Therefore

\[\inf_{\beta \in B, \beta : [0,1]} \hat{J}(\beta([0,1]) \cap \partial B_1(v_+)) > \hat{J}(v_+) \]

and \(c > \hat{J}(v_+) \). Similarly we get \(c > \hat{J}(v_-) \). Next we will show that \(c < 0 \).

We claim that

\[(*) \quad \text{there exists } \alpha \in C^0([0,1], \mathbb{R}) \text{ such that } \alpha(0) = u_-, \alpha(1) = u_+,
\]

\[u_- < \alpha(t) < u_+ \text{ and } J(\alpha(t)) < 0, \quad 0 < t < 1. \]

Let \(\hat{\beta}(t) = \hat{\beta}(t) \) for \(t \in [0,1] \), where \(\alpha \) is given in \((*)\). Then for all \(t \in [0,1] \)

\[\hat{J}(\hat{\beta}(t)) = \hat{J}(\hat{\beta}(t) + \hat{\beta}(t)) \]

\[= \inf_{v \in \partial v} \hat{J}(v(t) + \alpha(t)) \]

\[< J(\alpha(t)) < 0 \]

so that \(c < 0 \). Next we will prove \((*)\). If \(t \in (0,1) \) then we get by using \((g_3)\)

\[J(tu_-) = \frac{t^2}{2} |u_-|^2_1 - \int_{\Omega} F(tu_-) \]

\[= \frac{t^2}{2} |u_-|^2_1 - \frac{\lambda t^2}{2} |u_-|^2_0 + \int_{\Omega} G(tu_-) \]

\[= t^2 \left(\frac{|u_-|^2}{2} - \frac{\lambda}{2} |u_-|^2_0 + \int_{\Omega} \frac{G(tu_-)}{t^2} \right) \]

\[< t^2 J(u_-) < 0. \]
Similarly, \(J(tu_t) < 0 \). Now, the following inequalities are consequences of the maximum principles

(iv) there exist \(b_- < 0 < b_+ \) such that
\[
-u_- < b_- \varphi_1 < 0 < b_+ \varphi_1 < u_+ \text{ in } \Omega
\]
and

(v) if \(a < 0 < b \) then there exists \(r > 0 \) such that
\[
a \varphi_1 < u < b \varphi_1 \text{ in } \Omega
\]
for all \(v \in \mathcal{B}_r(0) \cap V_s \) where \(V_s = \text{span} \{ \varphi_1, ..., \varphi_s \} \) and \(\varphi_2, ..., \varphi_s \) are the eigenfunctions corresponding to \(\lambda_2 \).

On the other hand,
\[
J(b_+ \varphi_1) < 0 \text{ and } J(-b_- u_-) < 0
\]
provided \(b_- < 0 \) is near enough to 0. Let
\[
a^-_1(t) = -tb_- u_- + (1-t)b_- \varphi_1, \quad 0 < t < 1.
\]
We will show that \(J(a^-_1(t)) < 0 \) provided \(b_- < 0 \) is taken sufficiently close to 0. Indeed, if \(t \in (0, 1) \) we get
\[
J(a^-_1(t)) = \frac{1}{2} |a^-_1(t)|^2_1 - \int_\Omega F(a^-_1(t))
\]
\[
= \frac{1}{2} |a^-_1(t)|^2_1 - \frac{\lambda}{2} |a^-_1(t)|^2_0 + \int_\Omega G(a^-_1(t)).
\]
Now, there exists \(\xi: \Omega \to \mathbb{R} \) such that
\[
a^-_1(t) < \xi < -tb_- u_- \text{ in } \Omega
\]
and
\[
G(a^-_1(t)) = G(-tb_- u_-) + (1-t)g(\xi)b_- \varphi_1.
\]
Moreover,
\[
b_-(\varphi_1 - u_-) < \xi < 0 \text{ in } \Omega
\]
so that \(\xi + 0 \) uniformly in \(\Omega \) as \(b^- + 0 \). We get from (2)

\[
J(a^-_1(t)) < (tb^-)^2 J(u^-) + t(1-t)b^- \int \frac{g(u^-)\varphi_1}{\Omega} + (1-t)^2b^- \frac{\lambda_1 - \lambda}{2} + (1-t) \int \frac{g(\xi)b^- \varphi_1}{\Omega}
\]

\[
< (tb^-)^2 J(u^-) + (1-t)^2b^- \frac{\lambda_1 - \lambda}{2} + \int \frac{g(\xi)b^- \varphi_1}{\Omega}.
\]

Let

\[
M = \sup_{0 < t < 1} (t^2J(u^-) + (1-t)^2 \frac{\lambda_1 - \lambda}{2}).
\]

It follows that \(M < 0 \). On the other hand,

\[
\left| \int \frac{g(\xi)}{\Omega} \frac{\xi}{b^-} \varphi_1 \right| < |\varphi_1|_{\Omega} \int \frac{g(\xi)}{\Omega} \xi
\]

and by using \((q_1) \) we get

\[
M + \int \frac{g(\xi)}{\Omega} \frac{\xi}{b^-} \varphi_1 < 0
\]

provided \(b^- < 0 \) is sufficiently close to 0. Therefore \(J(a^-_1(t)) < 0 \) for all \(t \in [0,1] \) if \(b^- < 0 \) is near enough to 0. Let

\[
a^-_0(t) = tu^-, \quad -b^- < t < 1
\]

Then \(J(a^-_0(t)) < 0 \) for \(t \in [-b^-, 1] \). Similarly, we introduce

\[
a^+_1(t) = tb^+u^+ + (1-t)b^+\varphi_1, \quad 0 < t < 1
\]

and

\[
a^+_0(t) = tb^+, \quad b^+ < t < 1
\]

Let \(r > 0 \) be as in (ii). If \(r > 0 \) is small enough we find that

\[J(v) < 0 \text{ for } v \in \mathbb{B}_r(0) \cap \mathbb{V}_s \text{ and } \mathbb{B}_r(0) \cap \text{span } \{\varphi_1\} = \{b^+\varphi_1, b^-\varphi_1\} \]

where \(0 < b^+ < b^- \) and \(b^- < b^+ < 0 \). Now, take any path say \(a^-_0 \) on \(\mathbb{B}_r(0) \cap \mathbb{V}_s \)

connecting \(b^-\varphi_1 \) to \(b^+\varphi_1 \). Let \(a^-_2(t) \) and \(a^+_2(t) \) be the segments...
connecting $b_{-\varphi_1}$ to $b_{-\varphi_1}'$ and $b_{+\varphi_1}'$ to $b_{+\varphi_1}$. By joining all of these paths we get after reparametrization the path α as asserted in (*). This proves Theorem 1.
REFERENCES

[13] Lazer, A.; Landesman, E. & Meyers, D. On saddle point problems in the
Calculus of Variations, the Ritz algorithm and monotone convergence. J.

Let Ω be a bounded smooth domain in \mathbb{R}^N. We give an estimate for the number of solutions of the problem

$$Lu + g(u) = \lambda u \quad \text{in} \quad \Omega, \quad u\big|_{\partial \Omega} = 0$$

where L is a second order elliptic operator. The behavior of the nonlinearity g both at 0 and at ∞ and the relationship between λ and the spectrum of L play an important role in the analysis.