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DETERMINATION OF SOIL PPOPERTIES ‘
THROUGH GROUND MOTION ANALYSIS

John Frye
&
Norman Lipner
S June, 1981

ABSTRACT

A method of calculating in situ one dimensional stress-strain soil
properties from vertical ground motion is presented. The method relies
_on the fact that superseismic air blast ground surface loadings produce
ground motions that are very nearly vertical and one dimensional in
character. Therefore the equations of motion that govern the response are
simple and may be integrated to obtain one dimensional stress-strain
relations. Thus, results from tests that Kncorporaté superseismic air
blast surface loading and sensors to measure vertical motion at various
depths in the soil can be used to calculate sofl stress-strain properties
. directly. The method accounts for multiple records at a given depth and
features techniques fer characterizing response histories and interpolating
velocities at depths between those where measurements have been made. As
an example, for the DISC HEST Test I event, conducted in RaIston'VaIIey.

Nevada as part of the MX development program, the site properties are

computed based on the free field data\\
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DETERMINATION OF SOIL PROPERTIES THROUGH GROUND MOTION ANALYSIS

J. W. Frye! and N. Lipner2, M. ASCE l

INTRODUCTION
The ground response to overhead highly superseismic airblast loading

(airblast shock speed faster than ground shock speeds) is nearly one-dimensional

uniaxial strain and the motions are nearly vertical. Soil properties for
prediction of these motions have typically been determined from dynamic

uniaxial strain laboratory tests. However, the process of extracting soil

samples from the field can disturb the material and, as a result, the laboratory
properties could be different from the in situ material behavior. .
. An approach to determine the in situ properties is to perform a field
test where the ground surface is loaded by superseismic airblast. Data from
sensors that measure vertical motion at various depths {n the ground could
then be used to calculate the uniaxial strain properties of the soil by use
of the one-dimensional equation of motion.
One type of surface loading that has been used to obtain a one-dimensional
_response is the DISC (Dynamic In Situ Compressibility) HEST (High Explosive !
Simulation Technique) test shown in Figure 1. This test employs a circular
region of explésives that is center detonated. The detonation propagates
outward fast enough that the early-time response to peak velocity is essentially
one-dimensional within some region under the loaded area that is governed by
the disc radius and the soil properties. Because of the finite propagation
- velocity, time at any range from the centerline is measured with respect to

the arrival of the overhead airblast at that range.

1, Member of the Technical Staff, Hardness and Survivability Laboratory,
TRW, Redondo Beach, CA 90278

2, Department Mead, Hardness and Survivability Laboratory,
TRN, Redondo Beach, CA 90278 )
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ANALYSIS FORMULATION
The one-dimensional equation of motion relates the vertical normal

stress gradient to the acceleration of the soil.

- - e ——

a"’z = pii, (1)
3z
Here z is the vertical coordinate (Fig. 1), 9, ts the normal stress in the =
direction (tensile stress is positive), and p is the soil density.
Equation (1) can be integrated with respect to depth from the ground

surface to a depth 3 to obtain the following equation for stress:

. s ‘
o, = -p(t) +./r: p_bzdz (2)

where the constant of integration, p(t). is the surface pressure-time

history, a boundary condition of the problem, and the first time deriva-
tive of velocity, bz. replaces the second time derivative of displacement.
The one-dimensional strain, e, is the derivative of the vertical

displacement with respect to depth.

. === (3) A

Taking the time derivative of Equation (3) provides the fol1ow1ng relation

for the strain rate ‘z'

LR’} 3
g s ".r:i (4)

" and integrating Equation (4) gives the following relation for strain in terms

of velocity:

*avd )
e, = —t

s [

The constant of integration is zero because the strain in the soil is




measured with respect to the geostatic strain and, therefore, is zero at

-

time zero. ' {
From Equations (2) and (5) it is seen that if the vertical component
of velocity is defined with respect to time and depth, then stress and
strain may be directly calculated from derivatives of the velocity by
performing integrations with respect to depth and time. The pressure
time history at the surface and estimates of the soil density are also
required by Equation (2). |
Evaluation of the integrals of Equations (2) and (5) requires

knowledge of the velocity field for the complete space-time region of

-interest. In a test, motion sensors at only a limited number of depths can

be implanted because of cost, as well as physical constraints. Therefore, a
method must be developed to interpolate from the data available for a -limited
number of depths to the velocity history at any depth.

In many test events, more than one record is available at some depths,
so that if one sensor is faulty, all of the velocity-time information

concerning that particular depth is not lost. Data records available for

" a particular depth will vary from one another due to a number of reasons,

such as variation from one location to another of soil properties and surface

pressure-time histories. In examining the velocity-time records taken at

a particular depth, it is not always obvious that one particular record is

the most accurate and representative of all. Thus, some method of including
all acceptable records taken at a particular depth must be'employed in
defining the velocity-time history to be used in the interpolation process.
Clearly some records that show anomalous results, not representative of

motfons that are physically plausable, should be excluded from consideration

Such records might be taken from sensors that either were poorly installed,




were destroyed by the shock loading, or produced records that were
extremely noisy.
The method chosen for interpolating the measured velocity records uses
a transformed coordinate system with a time-like coordinate s that remains
constant with depth along specific characteristics of the velocity time
history. At the beginning of motion, & is always taken as zero; at peak
velocity, s equals 1.0; and at the end of the velocity record, s assumes
some large value such as 10. Other values of s are chosen to follow
percentages of the peak velocity, as shown in Figure 2. Mathematically,
- the transformation is as follows:
2’ =3
(6)
8 = f(z,t)
where z' is the depth coordinate of the new coordinate system.
This transformation is piecewise lingar between depths where velocity

records are available. Averaged characteristic information available from

the records at each depth is used. At constant depth, the time-1ike

coordinate s is related to ¢ through a series of straight 1ine segments between

e and t values established for particular velocity record characteristics.
Details of the formulation of the transformation and other matters concerning
the interpolation between records at different.depths are gfven in the
appendix.

The interpolation of the velocity between depths where data are
available is done in the 3’, s coordinate system along 1ines of constant
s values; f.e., the interpolation is performed with respect to specific
velocjty record characteristics. Peak velocities at adjacent depths where

data are avaflable are used to interpolate the peak velocity at in-between

depths. Thus, half-peak velocity data are used to interpolate half-peak velocities,
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and so on.

In order to establish a unique definition'of the velocity history at a
given depth, the velocity record is broken up into a series of segments that
begin and end at specific s coordinates. The segments are taken to be the
same at all depths forming a grid work in the z', & space as shown in
Figure 3. The velocity history at each depth and over each segment is

represented as a cubic function with the beginning and end of each segment

having the same velocity value as adjacent segments so that step changes in velo-

city (infinite acceleration) are ruled out. The parameters of the cubic interpolation

functions are evaluated based on a least square fit to the velocity records

“at the depth in question.

Interpolation between depths is done using an exponential function
that begins at the adjacent upper depth and ends on the adjacent lower depth.
Extrapolation of velocities to depths above the shallowest depth for which
data are available is performed by extrapolating the exponential interpolation
function derived for the region between the two shallowest depths. Velocity

at depths below the deepest depth for which data are available is obtained,

' in a similar manner, from the interpolation function of the two deepest

depths.

Having established a method of deriving unique velocity records for
all depths and times from the measured data, stresses and strains are
calculated from Equations (2) and (5) using central differencing and
standard numerical integration techniques. The results of the analysis
have been found to be rather insensitive to the discretization used in the

numerical analysis. The major»fhctors in the analysis appear to be the

. choice of velocity histories and of interpolatfon segments.




ANALYSIS RESULTS

Soil stress strain relations have been calculated from one-dimensional ?
finite difference calculation results, as a check on the analysis, and from
DISC HEST test data. The finite difference calculation considered two dry

soil layers over a wet soil half-space (Reference 1). The dry soil layers

had linear loading and linear unloading moduli. The loading modulus for !
the lower dry soil material was 1.5 times as stiff as for the surface ¢
layer; the unloading moduli in both layers were about an order of magnitude
stiffer than the loading (Fig. 4). The velocity histories from the calcu-
'.1ation were input into the aﬁa1ysis developed herein, with the stress-

strain curve results shown in Figure 4. For this analysis, velocity ¢
histories were used at every 1.83 m (6 ft) of depth from the surface down é
to 18.29 m (60 ft) and every 3.05 m (10 ft) of depth from 18.29 m (60 ft) a
down to 45.72 m (150 ft). '

The technique is able to track properties that change with depth and

is able to follow unloading along entirely different slopes than the
loading curve. The unloading results are less satisfactory than those for

the loading portion of the response. However, because the unloading is so

steep, a small change in strain can make a large difference in the slope of

e et e A S ke el A

the curve. The results also show that the method predicts a gradual, rather
than a sharp, change in properties with depth. This {s attributed to
smoothing and other approximations inherent in the use of exponential and

cubic functions to perform the required interpolations.
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When using theoretical results, ve1ocity.records are available at
the surface as well as at large depths. With experimental data, surface
velocity histories are not known and histories at deep depths are likely to
be influenced by free surface reflections from outside the loaded area
that produce multi-dimensional response characteristics.

After gaining experience with the technique using analytical results, it
was then applied to data from the DISC HEST Test I event (Referen;e 2)
conducted in Ralston Valley, Nevada. The HEST cavity radius on this test
was 13.7 m (45 ft), and data was obtained at eight depths down to 15.2 m

(50 ft) (Fig. 5). The data appeared to be relativeily free of noise, allowing

"most of the records to be incorporated in the evaluation of the velocity field

history. A total of fourteen records over the eight depths (Fig. 6) were
included in the analysis. Figure 7 shows a family of interpolated velocity
histories obtained from the analysis.

The airblast pressure history was measured at several points on the
ground surface within the HEST cavity. A best fit through the pressure
records (Reference 2) is shown in Figure 8. This pressure history
was fnftfally used in Equation (2) to calculate stress histories at depths
of interest, but unsatisfactory results were obtained. The main problem
was that, at the onset of incipient motion (s = 0) at some depths, the
stress was nonzero because the two terms on the right hand side of
Equatfon (2) did not exactly cancel. This occurred because the averaged
surface overpressure and the velocity field interpolated from the data were
not completely consistent.

An alternate approach is to compute a surface pressure loading from

the velocity field. Setting the stress equal to zero in Equation (2)

m—
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at the arrival of motion at any depth, db yields

dy(t)
0 = -p(t)+_£ o b da

d,(t) (7)

p(t)=_[ b b, da

A pressure history derived from the ground motion response is shown
“in Figure 8 compared with the best fit pressure history. The pressure
histories agree reasonably well in the early time of the motion. The
initial slope of the calculated pressure loading is not as steep as that
obtained from measurements. This is probably due to. smoothing of the
velocity histories by the interpolation process and the difficulty of exactly
predicting ground motion at and near the surface from measurements made
below the surface. The impulse histories of the measured and calculated
surface loadings are also shown in Figure 8. They compare very well in the
early time of the motion indicating that the interpo1ation process averages
out variations in the velocity histories in a manner that preserves the
overall character and energy content of the response. After about 25 ms
of response, the calculated and measured pressure and impulse historfes
begin a significant divergence. This can be attributed to the reduction
of the vertical ground accelerations by edge effects. The divergence of

the pressure histories may serve as a time marker for the demarcation of

when two-dimensional response becomes important.
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Examination of the data in Figure 7 shows that peak velocity is
achieved within 25 ms down to a depth of abod; 8 m. For larger denths,
the time to peak velocity increases with depth at a faster rate than
might be expected for one-dimensional response. Information on properties
at deeper depths can be obtained from two-dimensional finite difference
calculations, however, assumptions are required to obtain the uniaxial
strain properties at the depths because the response is two-dimensional and
essentially only verticai motion records are available. .

Figure 9 shows the interpolated uniaxial strain stress-strain plots
obtained from the velocity field and the derived surface overpressure.
- The initial slope of the stress-strain curves and the 4 MPa secant'modu1us
are plotted as a function of depth in Figure 10 and compared with the
seismic velocity profile of the site. The loading properties show relatively
small variation with depth down to 9 m. The unloading properties are not
well behaved, but most of the unloading occurs after the 25 ms of one-

dimensional simulation time.

The initial slope of the interpolated stress-strain curves produces a
modulus that compares better with the seismic results (except very near the
surface) than does the 4 MPa modulus. This is to be expected since the
moduli obtained from seismic measurements are representative of the soil
response at very low stress values. The 4 MPa modulus {s consistently
fower than the seismic or initial slope values. This reflects the softening
of the soil with increasing stress, characteristic of cemented granular
soil.

The sefsmic profile shows a soft soil layer in the top 1.5 m (5 ft)
that is not present in the results of the interpolated stress-strain curves.
It is possible that the material {s behaving stiffer than would be expected

from the seismic profile, because of strafn rate effects. However, the




* contained information that was more characteristic of the soil below the

fact that the interpolated peak surface pressure is lower than (about 15 percent)
the averaged pressure gage data indicates that the near surface motions
were actually larger than those used in the analysis, which would result
in softer near surface properties.
Better results might be obtained by making use of seismic velocity

information in extrapolating velocity field data to obtain surfzce values.

The second depth that velocity data was recorded in DISC HEST Test I was at i
1.5 m, the same depth that a sudden hardening of soil modulus was indicated |
by seismic data. Thus the second velocity history occured at a transition

region in soil properties. The velocity response at this depth then

transition boundary. Therefore, the extrapolation of motion field to
the surface was influenced by the second seismic layer. An alternate

approach to performing the extrapolation youid be to increase the peak

surface velocity until the interpolated peak surface pressure was in

agreement with the data. In cases where it is important to more accurately

i
. . |
define the material properties in this very near surface layer, then gages |
at two depths within the layer (such as 0.5 and 1.0 m) should be used in

the experiment.
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CLOSURE

The purpose of this paper is to demonstrate a methodology for

determining uniaxial strain mechanical properties of soil salely from

velocity time histories obtained from a high explosive field test event.

It is similar to the LASS (Lagrangian Analysis of Stress and Strain)
methodology developed by SRII (Reference 3) for analysis of spherical
motions. However, for the spherical case both stress and velocity data
are needed.

Analysis of in situ field test data is generally the most accurate

‘ technique for determining in situ mechanical properties. The material

property inversion technique described herein represents a first step

in the analysis of the data; the complete development of properties at a

site would consider all avafilable relevant information, such as seismic

and laboratory test results. The properties derived from in situ data

might then be smoothed or adjusted based on auxilfary data, as long as these
changes were within the uncertainties of the in situ analysis. These

revised properties would then be used in one- and two-dimensional finite

difference calculations to verify their adequacy.

TR




CONCLUSIONS

(1) Dynamic stress-strain properties of in situ soil may be derived
directly from velocity histories taken from surface pressure loading

tests, using the method described herein, down to depths where the ground motion

{s sufficiently one-dimensional. Results have been obtained from experi-
mental data for the DISC HEST Test I event.

(2) Surface pressure histories may be derived from the velocity data for
the duration of one-dimensional response. This can provide a check on the
consistency between pressure and velocity data. The time when the measured
and derived surface pressure loading diverges is an indication of the
duration of one-dimensional response. In the DISC HEST Test 1 event, the
measured and derived impulse histories were in reasonable agreement out

to about 25 ms.

(3) The interpolation functions used in'the technique are effective in

—
PP

deriving soil velocity as a continuous function of depth and time. Since
the functions are based on measured rather than hypothesized soil response

characteristics they should be able to be applied to tests with different

C o cp— e ————

sofl types with equal success. This approach can also be generalized to

apply to motion fields that are dependent on two spacfal coordinates.
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Appendix I - Derivation of Coordinate Transformation and Interpolation
Functions

There are a number of characteristic times that are clearly important in
describing a velocity record (Fig: 2). The two times of dominant importance are
the time when the-motion begins ana the time when the velocity reaches its greatest
absolute amplitude. Other points such as the end of the record and time
where the velocity attains given fractions of the peak velocity serve to
complete a listing of the important characteristic time points of the
record. The points that serve to best describe the records may be assigned
.labels that we will denote by the symbol s. For convenience, the labels
can be made numeric and assigned values that increase with time for a given
record. By convention the start of motion is at e=0; the peak velocity
is at 8=1.0; and the end of the record is assigﬁed 2 large number such
as s=10. Points between the peak velocity and the end of the record
have & values between 1 and 10 and points between the start of motion
and the peak velocity have s values between 0 and 1.

Once a set of s labels have been chosen they can be applied to all
of the records at all of the depths. The value of g remains constant with
depth along a characteristic 1ine connecting similar time points of different
records. At a given depth, points with particular values of & form clusters.
The best estimate of where particular s points ought to fall can be obtained

by calculating mean values.
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ta,,8) = i E tj{"i's) (A-1)
J=t

where t(zi’s) is the time of characteristic point & at depth 2. and record j;
E(zi,s) is the average time of characteristic point s for depth 2.3 and

n, is the number of records at depth z..

To estimate values of s between depths where records exist, a straight

line can be drawn between the average time of the various s labels for
existing records. 1In this way, a family of segmented constant & curves
.may be obtained, which can be considered as a new time-depth coordinate
system. Specific features of the velocity response history, for each
depth, occur at constant values of the time like s coordinate. The symbols
of the new coordidates z',s are related to the z,t coordinates by the

following transformation relations.

2' =23 (A-2)
8 = f(z,t)

In order to further define the function frz,t) the variation of & as
a function of ¢t at a given depth must be specified. The simplest choice,
and the one that will be shown here, is to let s vary as a linear function
of t between each of the labeled values of s. The linear function has the
advantage that it guarantees that a unique mapping of s onto ¢t coordinates

exists and vice versa. This 1inear relation between & and ¢ is illustrated




in Figure A-1 and shown in equation form below
(1-))]

(1) , (g(t+1)_ .’i)) [t-%(z,8

§ =g + s . . (A-3)
[E(z,a(””) - 3(8,3(7'))]

for E(z,s(i)) <t< f(z,c(i*z))
where s(i) is the value of s at the i{'th characteristic point on the
velocity history. Equation (A-3) can be rearranged to give the solution

of t as a function of s.

. ;( R (":*1) _z( (1:) - (1:)
¢ - Ea,e) 4 (T(s,s )-T(z,8"'"" )] (s-8""") (A-4)

(.(i+1)_.(i))

for 8P < o < o(P*)
" The terms Z(z(i),a) are linear functions of depth. In equation form

the relation for i(s,s'®) is
T T (4) (i) -
[¥(8j+1,a )-E(zj,s )](z-x.)

E(s,a(i)) - E(zj,a(i)) +

for zjgz 5',7’+1

Equations (A-3) and (A-5) define the function f(z,t) of equation (A-2).
. The inverse transformation equation is

3 =3
t =g(z',8)

(A-6)

The advantage of the coordinate system is that it provides a convenient

framework for interpolating velocities between depths. Points at s=l

will be related to peak velocity values only; points with 3-1)2 will be

related to velocity values that are at 1/2 of the peak value, and so forth,
At each depth a variety of records are typically available. For

those records at a given depth that are valid, we have the problem of

forming a function that is representative of the velocity response

history. Since the records are complex it is impractical to consider

16




using one equation to represent the entire time history at a given

depth. An equation of this kind would 1ikely be complicated and might
vary in form depending on the depth. A more realistic approach is to
segment the velocity record and treat each segment independently of the
other but at the end points of a segment have velocity values that match

up with those of adjacent segments. For convenience we will require that
common s values be used to define segment boundaries. It is usually better
to have a larger number of segments to define the history at the beginning
of the motion than at the end of the velocity record. The time history

at the beginning of the motion changes more rapidly than at the end and

" thus should be more carefully described.

Lagrangian interpolation functions are particularly well suited for
establishing the velocity histories for the various segments of the response
at a particular depth. These kinds of functions can be readily defined to
any desired order, but the higher order functions have unfavorable properties.
Since the function must describe the velocity history over only a segment of
the total time of the record, a cubic function should be adequate to give a
good description of the required motion. The general form of a cubfc

Lagrangian interpolation function is as follows:

v, () = (aiz-s)(ais-s)(ai4-a) Vi . {aiz-c)(ais-s)(ai4-s) Vi sg
g ?aiz‘“iz’(“ia‘“iz’(“i4‘“£1’ (a£1°ai2)(ai3'ai2)(ai4'°i?) )
A-7
. (ail") (aiz-a) (a“-s) vi.ii}_ . (a“-a) (aiz-a) (ais-s) "ij4
(a;1-a;3) (@ 5ma; 50 (a;4-a, 4 (@;1-a;q)(a;9-0;4) (a;5-0:,)

Here ”idl' ”ijz’ 1:1."7.3 and ”ij4 are the velocities at each of four s
coordinate locations @r1s Bige Gig and . within segment £ and at depth j, and
"ﬂj is the function defining the velocity history for the i'th segment and

J'th depth. The locations a;, and a4 will be considered to occur at the




beginning and end of segment <.

At the point where s is zero, the value of velocity is zero also.
This is always true by definition since the g=0 point is taken to be
the point in time where the motion response begins. Thus, for the first
interpolation segment between s=0 and 828, where s, 1s the‘value at the
end of the first seqment, the value Vii1 is zero. The values Vij2 Vg 33
and v;j4 3TE still unknown.

For any given time history at a particular depth, errors will
occur between the velocity given by Equation (A-7) and the time history
value. For a given value s the error can be written as

o Ea'k(" = "jk"’ - wij(a) (A-8)

where V.k(a) and E, k(s) are the velocity and velocity error, respectively,
fbr time history k at coordinate 8 and depth and

(a a)(a -a)(a -8)
(dtz-azig?dts 11)(47 ~a; )

(ail-’) (ais-’) (ai‘-a)

2 (ail'aiz)(ais'aiz)(ai4°ai2)
(A-10)
(a.z-al(a 2 '}(“zl°')

i3 ~ Ta,,-a

h
a;1-8i3)(az9ma 5l (@, -a,s)

(‘iz"”“iz")(‘ia“)

h,, = =
4 ?aiz'aiij?hiz"il)(“is‘ailj

The error value E&k(a) may be either positive or negative; however,

only the absolute amplitude of the error value is of fmportance. The

square of the error value E}k(') is always positive and {s then a beiter

18




error measure for the purposes of judging the ability of the function w k(a)
to fit the velocity-time response ka(a)' ”

The total error is not just that measured at one coordinate value
for one record but is the integral for all points s over the segment

summed for all of the records available at a given depth.

/ k(s)ds (A-11)
k=1
s;
E:l'ji 'ﬁ A [ij(s) htl tj1 h1.2 52 hzs 13" 1.4 1.,74] ds (A-12)
=] 7831

We must select velocities v. i52° vta3, and v that minimize the total
error ETji' We will assume that the value vijz is always constrained ?y.

continuity requirements with segment 7-1. If we evaluate the segments in

order starting with <=1, we need only match the constant ”1j4 for segment

1 with the constant vzjl for segment 2 to preserve continuity of velocity

between segment 1 and 2. The constant V151 is always zero since it corresponds.

to the beginning of motion. In evaluating the constants for segment 1, we
need only find values for vzjz’ vljs and v1j4. If v1j4 is set equal to
Vai1 then for the second segment only the values Vgjor V2s3 and Vai4 need
be evaluated. The process can be continued for all of the segments.

The positions a;, and a;, then must fall at the beginning and
end of the segment. Thus @y = 8;: 4 and @y =8; - The points a:q and
a.; can be chosen as equally spaced along the segment. Thus

@1~ 8.2

1,
Grg = 8y 1 + 306,78, 1)

, (A-13)
Arg = 8; g + 308,79, )

7 B4
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The error function Efﬁi is always positive and is a quadratic

function of the terms vij2’ ”ijs and vij4 . It follows that its minimum
- .
occurs where the derivatives of Epii with respect to ”ijz’ ”ijs and ”ij4

are all zero. These conditions produce the equations for the determination

of the unknown velocity constants.

. ns 82
BET oo T 2
a‘l‘vi . % -Vidtia * haghssPsgn + Wisvije * Pighis®is
v =1 “8i-1 (A-14)
+ highigvs 410
”n.
v 8.,
k.. I " 2
L ‘Z : C-Vihis * Pigtisvizn + RighisPie * Fis¥ijs
143 =1 “8;.1 - (A-15)
+ highigv;sq1ds
n.
&1
Em:: 20 = _ .
oot =0 / C-Vihia * Pithia®is0 * Ridhid¥sje
; # highigViss * MigV;z4)ds
Evaluating each term of the summation and integration processes of
Equations (A-14), (A-15) and (A-16) separately and placing terms of known
value on the right hand side of the equation with terms of unknown value
on the left hand side of the equation produces the fbilowing results:
Co2¥i52 * C23Y153 * C24Vij4 = T2
C93%i 2 * 33V553 * C34¥554 = F3 (A-17)

®2d¥ij2 * C34%i53 * %¢4%ij4 = T4

20




where n.

; 8; Y Y
ey -2 / n2 ds (A-18) e, .Z:/ h§4d.s (A-23)
w=1 J8;_1 =1 i
n;
23 '2 / highigde  (A-19) — / Vialie itV 9 (_A-ZM
o; =

k=1

n,; . .
i i

Cpq = E f hizhad’ (A-20) FS =<E f ( th1,3 Ftlh‘l} 131 )ds (A-25)
=1 J8;_1 =1 J8:.1

n.
33 ‘i/ - (A1) ;/ Vidhiahihig0; 51098 (A-26)
k=1 31' 1
n.
1: X
Caq = huh“ds (A-22)
8i-1

k=1

& e T ORI e 44, Ao I AR ) A -0 53 1
0 .

Equations (A-17) are a set of three linear relations with constant

coefficients and three unknowns that can be readily solved. The solution
is not a major problem once the constant coefficients Coos Co3s etc., and
the right hand side constants Fz, F% and F; are known, However, these

constants require an integration that is not trivial. The functions hil’

higs h

defined at a finite number of points rather than in a continuous manner

..<¢W~ P i -
¢

i3 and hi4 are not simple, and the velocity functions ?fk are typically

due to the digita1 definition of the record. The integrations for the
coefficients of the equation can be carried out numerically with no difficulty
since the functions are defined for all values s within the segment. A
standard procedure for performing the numerical integration {s to divide

up the segment into a large number of intervals, and then evaluate the
integral based on the function Qalues at the beginning and end of each of

the intervals.

For the integration of the constants Fy, Fy and F,, it will be necessary

to define values of Vﬁk at points s where digitized velocity data are undefined.

This problem is resolved by assuming that the velocity in each record varies

1inearly between the defined values. Fiqure A-1 {llustrates the assumed
21 ‘




variation of the velocity record with respect to s and time. By making the
assumption of linearity between the defined velocity record points, the
velocity record becomes in effect defined at all points and the integrations
of Equations (A-24), (A-25) and (A-26) can be carried out to obtain the
2 3
With the determination of the constants vijk for all segments at

constants 7 and i;.

all depths, a set of velocity records are available at each depth that
are representative of an optimal average of all valid velocity records.
The problems now remaining are how to interpolate between depths where

velocity records are recorded and also how to interpolate from the

" velocity record at the shallowest depth up to the surface and to depths

1 below the deepest where data is available.

T e T Y P ST -t e+ —— — -

; There are any number of schemes that could be applied to the inter-

polation of the velocity records between depths. GC:e could use linear,

quadratic, cupic or higher order polynomials, or one could use functions
that are appealing on a physical basis. Since some characteristics of
velocity histories are known to decay in an approximately exponential manner
with depth within a given material, exponential functions should provide

useful vehicles for interpolating the velocity records. After some experi-

E mentation, it was found that the exponential fﬁnctions in fact produced
i more favorable results than the polynomial functions. The major draw- h

back to the polynomial functions is their tendency to oscillate. This
E ’ oscillation produces velocity responses that can increase with respect H
i to depth instead of decrease even though all of the points used in the u
% interpolation show a decrease in velocity with respect to depth. ‘
E The simplest type of exponential fit involves placing an exponential

function between two points. Suppose it is required to determine the

. 22




variation of velocity between depths j and ;7+1 along a time-like coordinate

line s. Using Equation (A-7), the velocities Vi1

The equation must then satisfy the following constraints.

and w.. are obtained.
]

(a+bz ')
wij = e J
> (A-27)
(atbz! )
Wicje1) =€ M
The constants a and b are unknown and zé and z5+1 are the depth
values at depths j and j+1. The equation can be solved for a and b by

taking the log of both sides of the equation.

log W2 =a+ bz;
(A-28)
- [4
109w, 2pg) =@+ b2},
Solving for a and b produces the following
_ zé+1 log (wij) - zé Tog (”i(j+1))
q = (z7 —z7) (A-29)
1+1 1
log (w,,..,,) - log (w,.)
b = 'L('J""J) 17 (A'BO)
!

Knowing the constants g and b, the velocity w(z') is solved from

the relation

e(a«l-bz ')

w(z') = (3?,.< 2'< za'.) (A-31)

J+1=
A special problem arises when the velocities are negative or change
sign between depths. In the case of negative velocities wij and ”i(j+1) in
Equation (A-29) and (A-30) are replaced by absolute values and the sign of
the right hand side of Equation (A-31) is made negative instead of positive.
In the case where the velocity changes sign a new velocity term w'(z’) is

defined by adding or subtracting from w(z’) a constant equal to twice the

absolute value of the velocity at the lower depth point.




.

w'(z') = w(z') t-2|vi(j+1)' (A-32)

For instance if wlz' ) s negative and v(z'. ,) is positive then 2""1:(~‘+1)'is

J+1
subtracted from w(z') to compute w'(z'). w(z';+1) would then be equal to

- ”i(j+1) . The experimental interpolation is computed in terms of w'(t’)

which always has the same sign. w(z') is calculated from w’(t') by appro-

priately adding or subtracting the constant 2|w | from wi(z?).

1(j+1)

w(z') =w'(s') ¥2 - {A-33)

Wili+1)

The selection of the constant 2w )| fs arbitrary but is not a

T(j+1
critical one since sign changes in velocity occur at late times in the

. velocity histories where soil motions are not critical in determining loading

‘slopes of the soil stress-strain behavior.

To extranolate velocities to the surface, the velocity records of
the two shallowest depths must be used. The only piece of information
available at the surface is the time of the start of the pressure loading.
The first s label line at s=0 can then be drawn from the first depth to
this point at the surface. The g label at s=1 should falf no more than ‘
a millisecond behind the Tabel for &=0 since the rise time of the blast \
loading is very short. The s labels falling after s=1 can be extended
up to the surface based on their slope between the two shallowest depths.
These considerations are illustrated in Figure (A-2).

Having established the s coordinates for extrapolating the velocity,
it remains to establish how the velocity varies in the upper layer
of sofl. The recommended approach {s to simply extend the exponential
velocity fit be.ween the two shallowest depths. If the exponential form
of the function has a physical basis then this form ought to be the best

possible to use given no other information about the velocity in this

24

- . DTSRRI T PERRTTET RS PR IR R R S J




region. In a similar manner the two lowest depths with data are used to
extrapolate down below the region where information is available.
The velocity time history for all times and depths is thus obtained

by three fundamental steps. First, & coordinate transformation between

2,t and z',s coordinates is established where certain s values relate

to particular features of the velocity-time record. Second, a set of cubic
Lagrangian velocity functions are established at each depth to fit a set

of velocity records using a least square error criteria. Third, an

exponential function is used to extrapolate velocity values from the

Lagrangian function along lines of constant s between depths where the velocity

" functions are defined.




Appendix II - Notation

The following symbols

2:12%:22%:3:%4

d,(t)

E}k(’)

flz,t)

gl(az',s)
higohipe iz iy

n

o

3

: the time of characteristic point & for depth z

are used in this paper:

time-1ike s coordinate locations within interpolation
segment <.

Unknown constants in the evaluation of the exponential
function used to interpolate between depths.

coefficients of set of linear equations used in least

square solution for ”ijk'

shallowest depth at time ¢t where soil motion and
stress due to soil motion are zero.

error between velocity record j at depth k and
Lagrangian interpolation function for time-like
coordinate s.

function defining time 1ike coordinate s in terms
of 3 and ¢.

function defining time ¢ in terms of 2z’ and s.

components of Lagrangian interpolation functions uij{s)'

the number of records at depth <.

pressure at surface

time-1ike coordirate that remains constant with depth
for particular features of the velocity response
history.

time-1ike coordinates at the beginning and end of
interpolation segment <.

time

the average time of characteristic point s for
depth 5.

and record 4. b

displ;cement in vertical direction (positive direction
fs up).

velocity of record 7 and depth k for time-1ike
coordinate s.
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Appendix Il - Notation (continued)

-

v, * velocity in vertical direction (positive direction
is down).

velocity values used with Lagrangian interpolation

v.. ’v.. v.. ’v.. .
w1°"4j2 13 "ig4  ginction for interpolation segment i at depth j..

w,.(s) = Langrangian interpolation function written in terms
w of time-1i{ke coordinate s for interpolation segment %
at depth ;.

2 = vertical coordinate (positive direction is down)
[(z,t) coordinate system].

s' = vertical coordinate (z',8) coordinate system
p = soil density

o_ = normal stress in 3 direction (tensile stress is positive).

.- e
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