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Steven Kay
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Abstract

This report describes a number of results which have been obtained in
the Data Adaptive Detection and Estimation project. The various papers
summarized deal with properties of autoregressive representations as they
relate to detection and estimation in partially known signal and/or noise

environments. Complete copies of the works can be obtained from the author.
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SUMMARY
I :
1) "On the Statistics of the Estimated Reflection Coefficients of an
Autoregressive Process" (with John Makhoul of Bolt, Beranek, and Newman)--

P ur=pvern

submitted to IEEE Trans. on Acoustics, Speech, and Signal Processing.

This paper derives a recursive means of computing the Cramer-Rao (CR)

lower bound for the estimated reflection coefficients of an autoregressive
(AR) process. The exact algorithm which computes the bound is given in

Figure 1. Since the CR bound is attained asymptotically (for large data :

e .

records) for a Maximum Likelihood Estimate of the reflection coefficients,
one can also use the algorithm of Figure 1 to describe the statistics of

the MLE. It is also shown in this paper that all currently available

v eyt

estimators for the reflection coefficients are MLE's for large data recc.ds.
Thus, the results can be used to statistically characterize these estima-
tors, i.e., the Burg algorithml as an example., An example of the actual

covariance matrix (obtained via computer simulation) and the CR bound is

e e gy

shown in Figure 2. The data length was 1000 points.

2) "Simple Proofs of the Minimum Phase Property of the Prediction Error

Filter" (with Louis Pakula of U.R.I.)--IEEE Trans. on Acoustics, Speech, and
Signal Processing, April 1983.

Presented are two simple proofs which assert the well known property

Gl e

that all the zeros of the optimal prediction error filter lie on or within

the unit circle of the Z plane. The first proof is somewhat incomplete in

that it only shows that the zeros lie on or within the unit circle, It

gives no indication as to when the zeros must be totally within the unit

o[ Yas - T

circle. However, it is extremely simple. The second proof which is slightly

more complex also determines conditions under which the zeros may be on the
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3)

4)

5)

unit circle.

"Recursive Maximum Likelihood Estimation of Autoregressive Processes''--

IEEE Trans. on Acoustics, Speech, and Signal Processing, February 1982,

An estimation algorithm is derived which is a closer approximation to
the true MLE of the parameters of an AR process than currently existing
procedures. Specifically, the algorithm does not make the standard assump-
tion that the determinant of the filter covariance matrix can be neglected
in the maximization of the likelihood function. This common assumption is
not valid for short data records and/or highly peaked spectra. By incorpo-
rating the determinant and maximizing the likelihood function recursively
(in model order) more accurate parameter and spectral estimates are obtained.
The algorithm is summarized in Figure 3. Also, Figure 4 summarizes some
simulation results which verify the improved performance of the algorithm
for short data records. (RMLE = Recursive MLE, FB = Forward-Backward,

YW = Yule-Walker).

"More Accurate Autoregressive Parameter and Spectral Estimates for

Short Data Records"--IEEE Workshop on Spectrel Estimation, Hamilton, Ontario,

August 198].
This paper is a shortened version of 3.

"Some Results in Linear Interpolation Theory'--to be published in IEEE

Trans. on Acoustics, Speech, and Signal Processing.
The optimal finite length interpolation filter for a wide sense stationary

process is derived. It is shown that for an AR process one can significantly

reduce the power out of an FIR filter by performing interpolation rather than
the more common one sided prediction. Also, the optimal interpolation filter
for an AR process, i.e., the one which minimizes the interpolation error
power, is found to be the one which attempts to interpolate at the midpoint

of a deta record. This result although intuitive is shown not to hold for
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more general processes. Finally, some well known results in infinite

length FIR filter interpolation are simply derived using AR approximations

Ty

of infinite order.

6) "Accurate Frequency Estimation at Low Signal-to-Noise Ratios"--sub-

mitted to IEEE Trans. on Acoustics, Speech, and Signal Processing.

An iterative algorithm for frequency estimation of sinusoids in white

noise is described and analyzed. The algorithm iteratively computes AR

parameter estimates after the original data has been filtered by an all ¢

pole filter. The algorithm is shown to be related to the Steiglitz-McBride

o~ Shagrry

algorithmz. It is summarized in Figure 5, where it has been termed the
Iterative Filtering Algorithm (IFA). For two sinusoids closely spaced in s
frequency the algorithm performance is shown in Figure 6. Aléo, shown 1is g

o —,

the CR bound (for unbiased estimators) and the principal component (PC)
approach of Tufts and Kumaresan3. The IFA outperforms the PC approach

at low SNR's. The PC approach had been claimed to offer the best per-
formance other than a direct MLE, at low SNR's. At higher SNR's a bias

is present which tends to degrade the performance of the IFA., 1In Figure 7
a comparison is made with a direct MLE, which amounts to a nonlinear

least squares estimator. Again at low SNR the IFA appears to perform

better.

7) "Asymptotically Optimal Detection in Unknown Colored Noise via

Autoregressive Modeling'"--to be published in IEEE Trans. on Acoustics,

Speech, and Signal Processing.

The problem of detecting a known signal in Gaussian noise of unknown
covariance is addressed. The noise is assumed to be an AR process of known

order but unknown coefficients. Thus, the parameterization of the covari-

ance leads to a problem in composite hypothesis testing. Since in general

no uniformly most powerful test exists, the Generalized Likelihood Ratio

T Py 1+ T R ANV NI STt T WO T AL
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Test (GLRT) is applied. The GLRT detector which results is shown in Figure
8. As expected adaptive prewhiteners are included which assume either the
signal is present (upper channel) or absent (lower channel). The detector E
is not a single estimated prewhitener and matched filter as might be ex- {
pected. The performance of the detector is shown in Figures 9 and 10 for

an AR process of order p=l and parameter a=-0.9 and for various data record

lengths N=20,]00. The optimal curve is the performance assuming a known
covariance function, i.e., a prewhitener and matched filter. It is seen

[ that even for short data records the performance is nearly optimal. Finally,

T

it is proven that for large data records the GLRT performance is equal to that

- Sy

of a prewhitener (assuming a known covariance) and matched filter ard hence
is optimal.

8) "Detection for Active Sonars via Autoregressive Modeling,"--Workshop

N

on Maximum Entropy and Bayesian Methods in Applied Statistics, University
of Wyoming, Laramie, Wyoming, August 1982.

This paper is a shortened version of 7.
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TABLE 2

TRUE VALUES ESTIMATED VALUES
K, K, Ky 0.570 0.570 0.570 0.569 0.568 0.564
0.541 —-0.490 0.000 0.523 —0.479 - 0.006
NCQ - 0.490 0.675 0.000 - 0.479 0.689 0.028
0.000 - 0.000 0.675 — 0.006 0.028 0.665

TRUE VALUES - ESTIMATED VALUES
K, K, Ky 0.570 -0.570 0.570 0.557 - 0.563 0.563
7.210 -1.790 0.000 6.988 - 1.858 ~—0.151
NCR -1.790 0.675 0.000 -1.858 0.716 0.016
0.000 0.000 0.675 = 0.151 0.01G 0.692

Figure 2, True gnd estimated values of the reflection
coefficients and their covariances for two AR(3)
processes.

of Kz.

The two processes differ by the sign
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TABLE |
COMPARISON oF AR Puumrnn lﬂ'unln\ Mnm»m

N = ll l).nl.x P()nn\

a, az PN ay

§ True AR Parameters  -2.76070 381060 -2.65350 0 92380

, Mcan-YW -1.01527 0.61949 0.04466 0O (573s
' Mean-FB -2.56333 3.42185 -2.27303  0.77262
‘ Mecan- RMLE -2.62975 351086 -2.37186 031412
Variance - YW 313780 10.29627 7.33884 0.7584u
Variance--IFB 0.11598 0.52574 049303 Y|4
Variance - RMLE 0.10960 0.33371 0.26227 (.04148

A" = 50 Data Points

a, da a3 v

1
t
i
)
‘ True AR Parameters 2.76070 381060 65380 0.923iN0
[
{

Mcan YW 130552 0.92378  0.0515% (06719
Mcan -I'B 272368 371024 254984 0.876°9 ]
Mean -RMLI. 270815 369876 -254345  fi8-768

; Varance- YW 222544 BS6804  6.90815 074576

: Variance~F 8 0.00758 0.14128 0.04219  (.0KER

j Variance - RMLE 001076 0.04485 004069 01741

| S

Figure 4. Comparison of AR Parameter Lstimation Methods
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