MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A
Title: LONG WAVELENGTH LIMIT OF THE $E \times B$ INSTABILITY

Authors: J.D. Huba and S.T. Zalesak

Performing Organization Name and Address:
Naval Research Laboratory
Washington, DC 20375

Report Date: June 17, 1983

Number of Pages: 20

Abstract:
We present an analytical expression for the growth rate of the $E \times B$ instability in the long wavelength limit, i.e., $k_y l_n < 1$, where k_y is the wavenumber and l_n is the scale length of the density gradient. Specifically, we obtain results for the case of a single discontinuity in plasma density.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>THEORY</td>
<td>2</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>7</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>7</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>8</td>
</tr>
</tbody>
</table>
I. Introduction

The $E \times B$ instability is regarded as an important instability in the structuring of ionospheric plasmas (e.g., the high latitude F region, barium clouds). The instability is basically an interchange mode and can be excited in a weakly collisional, inhomogeneous, magnetized plasma containing a neutral wind or an ambient electric field orthogonal to the magnetic field. Depending upon the ratios v_e/Ω_e and v_i/Ω_i, where $v_e(i)$ is the electron (ion) cyclotron frequency, two types of currents can be generated. For the case of $v_e/\Omega_e \ll 1$ and $v_i/\Omega_i \ll 1$, a Pedersen current is produced by the ions; when $v_e/\Omega_e \ll 1$ and $v_i/\Omega_i >> 1$, a Hall current is produced by the electrons. The Pedersen current driven instability (Simon, 1963; Hoh, 1963) is relevant to F region irregularities (Ossakow, 1979), while the Hall current driven instability (Register and D'Angelo, 1970; Sudan et al., 1973) is relevant to E region irregularities (Farley, 1979; Fejer and Kelley, 1980). This brief report will discuss the former instability.

An extensive amount of research has been devoted to the $E \times B$ instability, both theoretical (Linson and Workman, 1970; Shiau and Simon, 1972; Perkins et al., 1973; Ossakow et al., 1978; Huba et al., 1983) and numerical (Zabusky et al., 1973; McDonald et al., 1980; McDonald et al., 1981; Ossakow et al., 1982). In general, the geometry and plasma configuration used in the analyses are shown in Fig. 1a. The ambient magnetic and electric fields are in the z and y directions, respectively (i.e., $B = B_0 e_z$ and $E = + E_0 e_y$), and the density is inhomogeneous in the x direction [i.e., $n = n_0(x)$]. Wave perturbations are assumed to be primarily in the y direction so that $\delta p = \exp(ik_y y)$ where δp is some perturbed quantity. It is usually assumed that $k_y L_n >> 1$, where $L_n = (\partial n/\partial x)^{-1}$ is the scale length of the density gradient, and a local stability analysis is performed. [Perkins and Doles (1975) and Huba et al. (1983) are exceptions. They considered the effect of velocity shear on the $E \times B$ instability which required a nonlocal stability analyses]. The purpose of this brief report is to consider the opposite limit, viz., $k_y L_n \ll 1$, and to present an analytical expression for the growth rate.

Manuscript approved April 8, 1983.
II. Theory

We use the plasma configuration and geometry shown in Fig. 1a and assume \(v_e \ll \Omega_e \) and \(v_i \ll \Omega_i \) so that an ion Pedersen drift exists in the \(y \) direction. We take perturbation quantities of the form
\[
\delta p = \delta p(x) \exp[i(k_y y - \omega t)]
\]
and assume \(k_y L_n \ll 1 \) where \(L_n = (3 \ln n/\lambda x)^{-1} \) is the scale length of the density gradient, i.e., we are considering a discontinuous boundary layer.

The fundamental equations used in the analysis are continuity and momentum transfer:

\[
\frac{\partial n}{\partial t} + \nabla \cdot (n \mathbf{v}_\alpha) = 0
\]

(1)

\[
0 = -\frac{e}{m_\alpha} \left(\mathbf{E} + \frac{1}{c} \mathbf{v}_e \times \mathbf{B} \right)
\]

(2)

\[
\frac{\partial \mathbf{v}_i}{\partial t} = \frac{e}{m_i} \left(\mathbf{E} + \frac{1}{c} \mathbf{v}_i \times \mathbf{B} \right) - \mathbf{v}_i \mathbf{n}_i
\]

(3)

where \(\alpha \) denotes species (e: electrons; i: ions) and other variables have their usual meaning. We neglect electron inertia but retain ion inertia. The equilibrium drifts are given by

\[
\mathbf{v}_e = 0
\]

(4)

\[
\mathbf{v}_i = \frac{\mathbf{v}_i \mathbf{n}_i}{\Omega_i} \frac{c \mathbf{E} \cdot \mathbf{n}_i}{\mathbf{B} \cdot \mathbf{n}_i}
\]

(5)

where we have chosen a reference frame such that \(\mathbf{v}_x = \mathbf{v}_x - c \mathbf{E}_0 / \mathbf{B} \) and \(\Omega_i = e \mathbf{B} / m_i c \).

We now consider a linear perturbation analysis of Eqs. (1)-(3). We assume \(n = n_\alpha + \delta n_\alpha \), \(\mathbf{v}_\alpha = \mathbf{v}_\alpha + \delta \mathbf{v}_\alpha \) and \(\mathbf{E} = \mathbf{E}_0 - \mathbf{V} \phi \) where \(\phi \) is the perturbed electrostatic potential. Using Eqs. (2) and (3) we find that

\[
\delta \mathbf{v}_e = -ik_y \phi \left(\frac{c}{B} \right) \mathbf{e}_x + \phi^\prime \left(\frac{c}{B} \right) \mathbf{e}_y
\]

(6)

and

\[
\delta \mathbf{v}_i = \frac{c}{B} \left[-ik_y \phi + i(\omega/\Omega_i) \phi^\prime \right] \mathbf{e}_x
\]
where \(\omega = \omega + i \nu_{in} \) and \(\phi' = \partial \phi / \partial x \). Substituting Eqs. (6) and (7) into Eq. (1) and making use of quasi-neutrality \((\delta n_e = \delta n_i)\) we obtain [Huba et al., 1983]

\[
\ddot{\phi} + \frac{n^2}{n} \dot{\phi}' - \left[k_y^2 + \frac{k_y (cE_0/\omega)}{\omega} \nu_{in} k_y \frac{n^2}{n} \right] \phi = 0
\]

which we rewrite as

\[
(n \phi')' - \left[n k_y^2 + \frac{k_y (cE_0/\omega)}{\omega} \nu_{in} k_y n \right] \phi = 0
\]

after multiplying through by \(n \).

We now assume that

\[
n = \begin{cases}
n_1 & ; \quad x > 0 \\
_2 & ; \quad x < 0
\end{cases}
\]

(as shown in Fig. 1b) since \(k_L n \ll 1 \), and take

\[
\phi(x) = \phi_1 e^{k_y x} + \phi_2 e^{-k_y x}
\]

since Eq. (8) reduces to \(\phi'' - k_y^2 \phi = 0 \) for \(x \neq 0 \). The modes are required to be bounded as \(x \to \pm \infty \) so that

\[
\phi_1 e^{k_y x} = 0 \quad ; \quad x > 0
\]

and

\[
\phi_2 e^{-k_y x} = 0 \quad ; \quad x < 0
\]

We require that the interface velocity and the fluid velocity perpendicular to the interface be equal (Chandrasekhar, 1961) which requires that \(\delta \dot{V}_x \) be continuous at the discontinuity, i.e., \(x = 0 \). From Eqs. (6) and (7) we find that this requires \(\dot{a} \) to be continuous at \(x = 0 \). Thus, \(\dot{a}_1 = \dot{a}_2 \) in Eqs. (12) and (13) so that
Fig. 1. Plasma geometry and slab configuration used in the analysis. (a) Standard plasma configuration. (b) Plasma configuration with a discontinuity in the density at $x = 0$.
\[\phi(x) = \begin{cases} \phi_0 e^{-k_y x} & ; x > 0 \\ \phi_0 e^{k_y x} & ; x < 0 \end{cases} \]
(14)

Finally, to obtain a dispersion equation for the modes we integrate Eq. (9) across the discontinuity at \(x = 0 \). Thus, we have

\[\oint_{-\epsilon}^{\epsilon} (n\phi') dx = \oint_{-\epsilon}^{\epsilon} \left[\frac{k_y (cE_0 / B) v_{in}}{\omega} \right] \phi dx \]
(15)

Since \(\phi \) is continuous across the boundary at \(x = 0 \), it is found that Eq. (15) leads to

\[(n\phi')_1 - (n\phi')_2 = \frac{k_y (cE_0 / B) v_{in}}{\omega} \frac{n_1 - n_2}{n_1 + n_2} \]
(16)

where \((1, 2)\) indicate the region \(x > 0 \) (\(\epsilon \)) and \(x < 0 \) (\(-\epsilon\)), respectively.

Substituting Eq. (14) into Eq. (16) and letting \(\epsilon \to 0 \) we arrive at

\[\omega = -\frac{k_y (cE_0 / B) v_{in}}{\omega} \frac{n_1 - n_2}{n_1 + n_2} \]
(17)

Equation (17) has the solution

\[\omega = -\frac{4v_{in}}{2} \left[1 + (1 + 4k_y (cE_0 / B) \frac{n_1 - n_2}{v_{in} n_1 + n_2})^{1/2} \right] \]
(18)

Equation (18) can be simplified by considering the limits \(\omega << v_{in} \) and \(\omega >> v_{in} \), that is,

\[\omega = -\frac{4v_{in}}{2} \left[1 + (1 + 4k_y (cE_0 / B) \frac{n_1 - n_2}{n_1 + n_2})^{1/2} \right] ; \omega << v_{in} \]
(19)

and

\[\omega = -\frac{4v_{in}}{2} \left[1 + (1 + 4k_y (cE_0 / B) \frac{n_1 - n_2}{n_1 + n_2})^{1/2} \right] ; \omega >> v_{in} \]
(20)

so that instability results when \(n_1 > n_2 \) and \(E_0 > 0 \), i.e., \(\omega = \omega_r + i\gamma \) with \(\gamma > 0 \).

We compare Eqs. (19) and (20) to the expressions obtained in the short wavelength limit \((k_y L_n >> 1) \). They are given by (Linson and Workman, 1970).
\[\omega = i \left(\frac{cE_0}{B} \right) \frac{1}{L_n} \quad ; \quad \omega \ll v_{in} \]
(21)

and (Ossakow et al., 1978)

\[\omega = \left[\frac{cE_0}{B} \frac{v_{in}}{L_n} \right]^{1/2} \quad ; \quad \omega \gg v_{in} \]
(22)

Note that Eqs. (19) and (20) can be obtained from Eqs. (21) and (22) by making the identification

\[\frac{1}{L_n} + k \frac{n_1 - n_2}{n_1 + n_2} \]
(23)

in Eqs. (21) and (22). This identification (Eq. (23)) is the same one needed to make the transition from the short wavelength to long wavelength Rayleigh-Taylor instability (Chandrasekhar, 1961).

We note that we have not specified a form for the density perturbation \(\delta n \). Also, we have made reference to the interface between the two materials without ever specifying either its initial perturbation or describing explicitly its subsequent evolution. Further, it is shown in Huba et al. (1983) that

\[\delta n_e = - \frac{c}{B} \frac{k \phi}{\omega} n' \]
(24)

Since \(n' \) is a delta function at the interface, any finite amplitude perturbation such that \(\phi \) were finite would cause \(\delta n_e \) to "blow up" at the interface, a nonsensical result.

The resolution of the above difficulties consists of starting with a sharp, but continuously differentiable, distribution of plasma of scale length \(L_n \), complete with an infinitesimal perturbation of the form given by Eq. (24), and properly taking the limit of both the sharpness of the profile and the amplitude of the perturbation. Looking at Eq. (24), we see that \(\delta n_e \) is proportional to \(n' \). That is to say, Eq. (24) is completely consistent with our describing the perturbation as a sinusoidal displacement of the fluid in the \(x \) direction. In fact, this displacement \(\xi \) is given by
\[\xi = \frac{c k_y \phi}{B} \frac{\omega}{ \omega} \]

(25)

The limiting process which avoids the problems noted above in defining \(\delta n_e \) for a discontinuity is to simultaneously let both \(L_n \) and \(L \) go to zero in a manner such that

\[\frac{\xi}{L_n} \rightarrow \text{constant as} \quad \frac{\xi}{L_n} \rightarrow 0 \]

(26)

Thus, the scale length over which the density changes from \(n_1 \) to \(n_2 \) and the displacement of the fluid are always of the same order, and \(\delta n_e \) remains bounded in the limit. The perturbation in this limit consists of displacing the interface sinusoidally, with the amplitude of this displacement growing in time with the growth rate given by Eq. (18).

III. Conclusion

We have presented an analytical expression for the growth rate of the \(E \times B \) instability in the long wavelength limit, i.e., \(k_y L_n \ll 1 \), the limit of a single discontinuity in plasma density. The growth rate, in general, is given by Eq. (18). It is similar to that found in the short wavelength limit \((k_y L_n \gg 1) \) via the identification \(L_n^{-1} + k_y (n_1 - n_2)/(n_1 + n_2) \).

We point out that Huba et al. (1983) recently investigated the \(E \times B \) instability numerically. For a specific set of parameters [see Fig. 12 of Huba et al. (1983)] they find that \(\gamma = 0.93 k_y (cE_0/B) \) where \(k_y L = 0.1 \).

Using this same set of parameters in Eq. (18), we find that \(\gamma = 0.95 k_y (cE_0/B) \) which is in excellent agreement with the numerical results. We also note that the results presented here can be used to describe the bifurcation tendency of two-dimensional ionospheric barium clouds (McDonald et al., 1981; Overman and Zabusky, 1980) which will be reported in a future paper (Zalesak and Huba, 1983).

Acknowledgments

One of us (JDH) thanks John Finn for a helpful discussion. This research has been supported by the Defense Nuclear Agency.
References

Huba, J.D., S.L. Ossakow, P. Satyanarayana, and P.N. Guzdar, "Linear theory of the $\mathbf{E} \times \mathbf{B}$ instability with an inhomogeneous electric field," *J. Geophys. Res.*, 88, 425, 1983.

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, CHD, CONT 7 INTELL
WASHINGTON, D.C. 20301

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BE 685
WASHINGTON, D.C. 20301

01CY ATTN C-650
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209

01CY ATTN NUCLEAR MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA. 22090

01CY ATTN CODE R410
01CY ATTN CODE R812

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA. 22314

03CY

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, D.C. 20305

04CY ATTN STVL
04CY ATTN TITL
04CY ATTN DDST
04CY ATTN RAAE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND AFB, NM 87115

01CY ATTN FCPR

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115

01CY ATTN DOCUMENT CONTROL

JOINT CHIEFS OF STAFF
WASHINGTON, D.C. 20301

01CY ATTN J-3 WWMCCS EVALUATION OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NE 68113

01CY ATTN JLTW-2
01CY ATTN JPST G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550

01CY ATTN FCPR

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172

01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, D.C. 20301

01CY ATTN STRATEGIC & SPACE SYSTEMS (OS)

WWMCCS SYSTEM ENGINEERING ORG
WASHINGTON, D.C. 20305

01CY ATTN R. CRAWFORD

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002

01CY ATTN DELAS-ED F. NILES
DIRECTOR
BMD ADVANCED TECH CTR
HUNTSVILLE OFFICE
P.O. BOX 1500
HUNTSVILLE, AL 35807
01CY ATTN ATC-T MELVIN T. CAPPS
01CY ATTN ATC-O W. DAVIES
01CY ATTN ATC-R DON RUSS

PROGRAM MANAGER
BMD PROGRAM OFFICE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
01CY ATTN DACS-BMT J. SHEA

CHIEF C-E- SERVICES DIVISION
U.S. ARMY COMMUNICATIONS CMD
PENTAGON RM 1B269
WASHINGTON, D.C. 20310
01CY ATTN C- E-SERVICES DIVISION

COMMANDER
FRADCON TECHNICAL SUPPORT ACTIVITY
DEPARTMENT OF THE ARMY
FORT MONMOUTH, N.J. 07703
01CY ATTN DRSEL-NL-RD H. BENNET
01CY ATTN DRSEL-PL-ENV H. BOMKE
01CY ATTN J.E. QUILLEY

COMMANDER
U.S. ARMY COMM-ELEC ENGRG INSTAL AGY
FT. Huachuca, AZ 85613
01CY ATTN CCC-EMEO GEORGE LANE

COMMANDER
U.S. ARMY FOREIGN SCIENCE & TECH CTR
220 7TH STREET, NE
CHARLOTTESVILLE, VA 22901
01CY ATTN DRXST-SD

COMMANDER
U.S. ARMY MATERIAL DEV & READINESS CMD
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
01CY ATTN DRCLDC J.A. BENDER

COMMANDER
U.S. ARMY NUCLEAR AND CHEMICAL AGENCY
7500 BACKLICK ROAD
BLDG 2073
SPRINGFIELD, VA 22150
01CY ATTN LIBRARY

DIRECTOR
U.S. ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MD 21005
01CY ATTN TECH LIBRARY EDWARD BAICY

COMMANDER
U.S. ARMY SATCOM AGENCY
FT. MONMOUTH, NJ 07703
01CY ATTN DOCUMENT CONTROL

COMMANDER
U.S. ARMY MISSILE INTELLIGENCE AGENCY
REDSTONE ARSENAL, AL 35809
01CY ATTN JIM GAMBLE

DIRECTOR
U.S. ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN ATAA-SA
01CY ATTN TCC/F. PAYAN JR.
01CY ATTN ATTA-TAC LTC J. HESSE

COMMANDER
NAVAL ELECTRONIC SYSTEMS COMMAND
WASHINGTON, D.C. 20360
01CY ATTN NAVALEX 034 T. HUGHES
01CY ATTN PME 117
01CY ATTN PME 117-T
01CY ATTN CODE 5011

COMMANDING OFFICER
NAVAL INTELLIGENCE SUPPORT CTR
4301 SUITLAND ROAD, BLDG. 5
WASHINGTON, D.C. 20390
01CY ATTN MR. DUBBIN STIC 12
01CY ATTN NISC-50
01CY ATTN CODE 5404 J. GALET
OTHER GOVERNMENT

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
WASHINGTON, D.C. 20234
(ALL CORRESP: ATTN SEC OFFICER FOR)
OICY ATTN R. MOORE

INSTITUTE FOR TELECOM SCIENCES
NATIONAL TELECOMMUNICATIONS & INFO ADMIN
BOULDER, CO 80303
OICY ATTN A. JEAN (UNCLASS ONLY)
OICY ATTN W. UTLAULT
OICY ATTN D. CROMBIE
OICY ATTN L. BERRY

NATIONAL OCEANIC & ATMOSPHERIC ADMIN
ENVIRONMENTAL RESEARCH LABORATORIES
DEPARTMENT OF COMMERCE
BOULDER, CO 80302
OICY ATTN R. GRUBB
OICY ATTN AERONOMY LAB G. REID

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORPORATION
P.O. BOX 92957
LOS ANGELES, CA 90009
OICY ATTN I. GARFUNKEL
OICY ATTN T. SALMI
OICY ATTN V. JOSEPHSON
OICY ATTN S. BOWER
OICY ATTN D. OLSEN

ANALYTICAL SYSTEMS ENGINEERING CORP
5 OLD CONCORD ROAD
BURLINGTON, MA 01803
OICY ATTN RADIO SCIENCES

BERKELEY RESEARCH ASSOCIATES, INC.
P.O. BOX 983
BERKELEY, CA 94701
OICY ATTN J. WORKMAN
OICY ATTN C. PRETTIE
OICY ATTN S. BRECHT

BOEING COMPANY, THE
P.O. BOX 3707
SEATTLE, WA 98124
OICY ATTN G. KEISTER
OICY ATTN D. MURRAY
OICY ATTN G. HALL
OICY ATTN J. KENNEY

CALIFORNIA AT SAN DIEGO, UNIV OF
P.O. BOX 6049
SAN DIEGO, CA 92106
CHARLES STARK DRAFTER LABORATORY, INC.
555 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139
OICY ATTN D.B. COX
OICY ATTN J.P. GILMORE

COMSAT LABORATORIES
LINTHICUM ROAD
CLARKSBURG, MD 20734
OICY ATTN G. HYDE

CORNELL UNIVERSITY
DEPARTMENT OF ELECTRICAL ENGINEERING
ITHACA, NY 14850
OICY ATTN D.T. FARLEY, JR.

ELECTROSPACE SYSTEMS, INC.
BOX 1359
RICHARDSON, TX 75080
OICY ATTN H. LOGSTON
OICY ATTN SECURITY (PAUL PHILLIPS)

EOS TECHNOLOGIES, INC.
606 Wilshire Blvd.
Santa Monica, Calif 90401
OICY ATTN C.B. GABBARDO

ESL, INC.
495 JAVA DRIVE
SUNNYVALE, CA 94086
OICY ATTN J. ROBERTS
OICY ATTN JAMES MARSHALL

GENERAL ELECTRIC COMPANY
SPACE DIVISION
VALLEY FORGE SPACE CENTER
GODDARD BLVD KING OF PRUSSIA
P.O. BOX 8555
PHILADELPHIA, PA 19101
OICY ATTN M.R. BORTNER SPACE SCI LAB

GENERAL ELECTRIC COMPANY
P.O. BOX 1122
SYRACUSE, NY 13201
OICY ATTN F. REIBERT

GENERAL ELECTRIC TECH SERVICES CO., INC.
HINES
COURT STREET
SYRACUSE, NY 13201
OICY ATTN G. MILLMAN
<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Attn</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOPHYSICAL INSTITUTE</td>
<td>UNIVERSITY OF ALASKA</td>
<td>(ALL CLASS ATTN: SECURITY OFFICER)</td>
</tr>
<tr>
<td></td>
<td>FAIRBANKS, AK 99701</td>
<td>01CY ATTN T.N. DAVIS (UNCLASS ONLY)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01CY ATTN TECHNICAL LIBRARY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01CY ATTN HEAL BROWN (UNCLASS ONLY)</td>
</tr>
<tr>
<td></td>
<td>GTE SYLVANIA, INC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77 A STREET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEEDHAM, MA 02194</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN DICK STEINHOF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R.S.S., INC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 ALFRED CIRCLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEDFORD, MA 01730</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN DONALD HANSEN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ILLINOIS, UNIVERSITY OF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>107 COBLE HALL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150 DAVENPORT HOUSE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHAMPAIGN, IL 61820</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(ALL CORRESP ATTN:DAN MCCLELLAND)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN K. YEH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INSTITUTE FOR DEFENSE ANALYSES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1801 NO. BEAUREGARD STREET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALEXANDRIA, VA 22311</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN J.M. AEIN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN ERNEST BAUER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN HANS WOLFARD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN JOEL BENGSTON</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTL TEL & TELEGRAPH CORPORATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500 WASHINGTON AVENUE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MULLEY, NJ 07110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN TECHNICAL LIBRARY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAYCOR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11011 TORREYANA ROAD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.O. BOX 85154</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAN DIEGO, CA 92138</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN J.L. SPERLING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JOHNS HOPKINS UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APPLIED PHYSICS LABORATORY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JOHNS HOPKINS ROAD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAURAL, MD 20810</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN DOCUMENT LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN THOMAS POTEMRA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN JOHN DASSOULAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KAMAN SCIENCES CORP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.O. BOX 7463</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COLORADO SPRINGS, CO 80933</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN T. MEAGHER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KAMAN TEMPO-CENTER FOR ADVANCED STUDIES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>816 STATE STREET (P.O DRAWER QQ)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SANTA BARBARA, CA 93102</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN DASIAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN WARREN S. KNAPP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN WILLIAM MCMAARA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN B. GAMBILL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINKABIT CORP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10453 ROSELE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAN DIEGO, CA 92121</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN IRWIN JACOBS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOCKHEED MISSILES & SPACE CO., INC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.O. BOX 504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUNNYVALE, CA 94088</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN DEPT 60-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN D.R. CHURCHILL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOCKHEED MISSILES & SPACE CO., INC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3251 HANOVER STREET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PALO ALTO, CA 94304</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN MARTIN WALT DEPT 52-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN W.L. INHOF DEPT 52-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN RICHARD G. JOHNSON DEPT 52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN J.R. CLADIS DEPT 52-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MARTIN MARIETTA CORP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ORLANDO DIVISION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.O. BOX 5837</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ORLANDO, FL 32805</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN R. HEFFNER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.I.T. LINCOLN LABORATORY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.O. BOX 73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEXINGTON, MA 02173</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN DAVID M. TOWLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN L. LOUGHLIN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN D. CLARK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCDONNEL DOUGLAS CORPORATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5301 BOLSA AVENUE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HUNTINGTON BEACH, CA 92647</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN N. HARRIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN J. HOULE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN GEORGE MBOZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN W. OLSON</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN R.W. HALPRIN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01CY ATTN TECHNICAL LIBRARY SERVICES</td>
<td></td>
</tr>
</tbody>
</table>
SRI INTERNATIONAL
333 RAVENSWOOD AVENUE
MENLO PARK, CA 94025
01CY ATTN DONALD NEILSON
01CY ATTN ALAN BURNS
01CY ATTN G. SMITH
01CY ATTN R. TSUNODA
01CY ATTN DAVID A. JOHNSON
01CY ATTN WALTER G. CHESNUT
01CY ATTN CHARLES L. RINO
01CY ATTN WALTER JAYE
01CY ATTN J. VICKREY
01CY ATTN RAY L. LEADABRAND
01CY ATTN G. CARPENTER
01CY ATTN G. PRICE
01CY ATTN J. PETERSON
01CY ATTN R. LIVINGSTON
01CY ATTN V. GONZALES
01CY ATTN D. MCDANIEL

STEWARD RADIANCE LABORATORY
UTAH STATE UNIVERSITY
1 DE ANGELO DRIVE
BEDFORD, MA 01730
01CY ATTN J. ULWICK

TECHNOLOGY INTERNATIONAL CORP
75 WIGGINS AVENUE
BEDFORD, MA 01730
01CY ATTN W.P. BOQUIST

TOYON
34 WALNUT LAND
SANTA BARBARA, CA 93111
01CY ATTN JOHN ISE, JR.
01CY ATTN JOEL GARBARINO

TRW DEFENSE & SPACE SYS GROUP
ONE SPACE PARK
REDONDO BEACH, CA 90278
01CY ATTN R. K. PLEBUCHE
01CY ATTN S. ALTSCHULER
01CY ATTN D. D. DEE
01CY ATTN D/STOCKWELL
SNTF/1575

VISIDYNE
SOUTH BEDFORD STREET
BURLINGTON, MASS 01803
01CY ATTN W. REIDY
01CY ATTN J. CARPENTER
01CY ATTN C. HUMPHREY