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Abstract

Autoregressive-moving average (ARMA) models, and their autoregressive (AR) counter-
parts, are useful approximants to the kinds of random processes commonly encountered
in discrete-time signal processing applications. Such models may be used to compress
data in low bit-rate information transmission, improve frequency resolution in spec-
trum analysis, and to forecast in economic, meteorological, and other time series.

In this paper we discuss several aspects of the maximum likelihood theory of parameter
identification in ARMA and AR models. We highlight the initial condition problem
encountered when identifying ARMA or AR models from finite data records and propose
several methods for computing exact and approximate likelihood. Several new interpre-
tations are given for the innovation representation of an ARMA process. Computation-
ally efficient lattice and fast Kalman filters are proposed for the computation of

exact likelihood.

1. INTRODUCTION

The random processes encountered in signal pro-
cessing applications are typically lowpass or
bandpass processes in which redundancy is high.
This means finite-dimensional models may often
be used to approximate the second-order proper-
ties of the processes. The dominant motivations
for using finite-dimensional models are (1)
they provide a systematic framework for deriv-
ing data compression and frequency resolution
improving algorithms, and (2) they become pre-
dictor formulae for event forecasting.

The problems of data compression, resovlution
improvement, and forecasting are "solved”, so to
speak, by identifying a parametric model that
either infinitely extends a data correlation
sequence or matches the data, itself, in a

least squares or maximum likelihood sense.

The catch in all of this is model selection and
parameter identification within the model.
Autoregressive (AR) models are by far the sim-
plest parametric wmodels to identify. Exact
maximum likelihood theory leads to nonlinear
methods, even in the AR case. However, the
best AR predictor is finite-merory and linear
identification procedures involving Toeplitz
normal equations or non-Toeplitz Yule-Walker

1'l'his work supported by the Army Research

Office, Research Triangle Parkh, NC 27709,
under contract DAAG29-79-C-0176 and by the
Office of Naval Research, Statistics and
Probability Branch, Arlington, VA 27740,
under contract NOOO14-75-C-0518.

equations are routinely used.

AR models suffer the defect that spectral zeros
are not easily modeled with low-order schemes.
Couple to this defect the fact that sample-data
versions of rational continuous-time processes
are autoregressive moving average (ARMA) [1l1],
and we have strong motivation for identifying
the more general ARMA models.

Traditionally the emphasis in identification of
ARMA models has been on approximate representa-
tions (such as "long ARs") that lead to linear
fdentification procedures. However, more
recently there has been a flurry of activity in
exact maximum likelihood formulations and non-
linear optimization procedures. Representative
recent offerings include papers by Akaike [1],
Newbold [2], Osborne {3}, Harvey and Phillips
[4), Ansley [5], Pearlman [6]), and Jones [7].
A&aike [1] has advocated the use of a Markovian
representation for an ARMA process, which is
essentially the standard form state space model
well-known to engineers. Jones [7] has used
this representation to formulate exact likeli-
hood equations for ARMA processes observed in
white noise. He advocates state space models
for the calculation of exact likelihood with or
without missing observations. Newbold (2] gen-
eralizes the exact likelihood results of Osborne
for MA processes, and of Box and Jenkins |8)
for AR and MA processes, to fnclude ARMA pro-
cesses. Harvev and Phillips {4] advocate the
Kaiman filter as a rcecursive technique for com-
puting exact likecelihood and refercnce Schweppe
[9] as perhaps the first investigator to write
exact likelihood in terms of prediction errors




or "innovations". Pearlman [6] discusses the
fast algorithm of Morf, Sidhu, and Kailath (10]
for updating the Kalman gain, and compares it to
the algorithm of Ansley (5].

Why exact likelihood and maximum likelihood
theory? Perhaps the most convincing argument

in favor of an exact maximum likelihood formal-
ism for identifying ARMA models is that it gives
one a basis from which to approximate. We re-
tum to this point in Section 5. Add to this
argument the success of authors like Jones {7]
with maximum likelihood identification of low
order (e.g. p < 3) ARMA models. Whether or not
exact maximum likelihood becomes a standardjzed
identification procedure will depend in large
part on our ability to efficiently compute like-
lihood and to make good parameter adjustments
using nonlinear optimization procedures.

Paper Outline: In this paper we begin with a
general discussion of maximum likelihood (ML)
theory for identifying ARMA models of normal
time series. A modal decomposition of the
correlation matrix for ARMA processes is derived
and placed in context with Anderson’'s work [12]
on correlation matrix identification when the
matrix is a linear combination of known
matrices. The identification equations that
result from ML theory are matrix versions of
the Aigrain-Williams equations [13].

We next derive a linear time-invariant predictor
formulation of the likelihood function based on
a standard form or Markovian state space vepre-
sentation for an ARMA time series. In this
formulation the likelihood function is an infi-
nite-dimensional average over a noncountably
infinite collection of conditional likelihood
functions. The conditioning is on an initial
condition (or state) vector. The values of

this representation are these: (1) special
initial condition assumptions suggest themselves
for approximating the exact likelihood function
(two of the most popular techniques associated
with the covariance method of linear prediction
are easily interpreted in terms of initial con-
dition assumptions) and (2) an interesting ML
procedure for ARMA parameters and initial con-
ditions arises as a potentially useful method

of approximating the exact likelihood.

We use the results of our linear time-invariant
predictor formulation, together with variations
on the Bayesian tricks used in Box and Jenkins
[8] and Scharf and Nolte [14] to derive exact
likelihood for ARMA processes. The prediction
residuals from a linear time-invariant predictor
are used in conjunction with a least squares
estimate of the initial state based on the ob-
served data record. The results include those
of Newbold [2]), Osborne [3], and Box and Jenkins
[8) as special cases.

The next item of business is a time-varyving
(innovations) representation of the likelihood
function in which the Kalman gain arises as the

principal computational problem. We show how
this gain may be obtained by triangularizing an
(NxN) correlation matrix. This provides a fast
Kalman predictor of the Morf, Sidhu, Kailath
{10} varietv. From the perspective of filtering
or time series analvsis the {nnovations repre-
sentation of an ARMA process provides a zero-
initial condition, time-varying linear filter
representation of a stationary process. From a
batch data processing point of vicew the innova-
tions representation provides a sequential tri-
angularization of the inverse correlation matrix
Finally, viewed from a probabilistic perspec-
tive, the innovations representation solves the
Chapman-Kolmogorov equation that arises in
connection with our averaged linear time-invari-
ant representation for the likalihood function.

The innovations representation is shown to be
equivalent to a representation in which data is
generated as the output of a sequence of AR
filters of order 1,2,... . This leads to an
AR lattice for computing exact likelihood for
APXA models.

An efficient fixed point algorithm for computing
the Kalman gain is discussed and computational
requirements are compared with those of Anslev
[5] and Morf, Sidhu, and Kailath [10].

2. MAXIMUM LIKELIHOOD THEORY FOR ARMA PROCESSES

Let Y = (v...., Vv,)  denote a finite version of
a wide-sense statlonarv Gaussian sequence ly_!.
Assume the mean-value sequence is identically
zero, Denote the correlation sequence by (r_}.
The correlation matrix for Y is the non-negative
definite Toeplitz matrix

R | )

N

i
The likelihood function for a realization of Y
is

tg(¥) = - %logl - %log“(N!— %\QH 1)

We moke no not.'  'nal Jdistinction between ran-
dom variables ani realizations of them, relving
instead on context to make the meaning clear.

A tvpical ML inference problem is to maximize
the likelihood function with respect to the
correlation matrix R and call the resultiong
“estimate” the ML estimate of R, The result is

RV = arg max < (Y)
h R,;

= C=YY’

Thus, without priov parametvization of Ryto
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reflect the fact that it must be Toeplitz and
related to an ARMA sequence, ML theory leads to
an inefficient, Inconsistent, non-Toeplitz esti-
mate of R. The corresponding spectrum cstimate
is the periodogram, a notoriously bad estimate.

Modal Decomposition: The correlation sequence
of an ARMA (p,p) process (p poles and p zeros)
may be written

4
r = T Amplnl
n m=1 n

Ue will call (DL“I} the mth mode of the process

and A the corresponding residue. Each o~ 1is a
complex zero of the polynomial A(z) = 1 + alz'
...+apz'P in the ARMA representation

yt+alyc_1+...+a +b1ut_1+...+b

u
2 p t-p
L 1.i.d N(0,0%) r.v.s. 2)
We assume the zeros of A(z) and B(z) = 1 + b -1

+...+b_z"P lie inside the unit circle. The 1
resultgng process is stable and minimum phase.

ple-p e

The covariance matrix Ry may now be written as
a linear combination of symmetric, linearlv-
independent, Toeplitz modal forms:

P
RN = T 4\mCm
m=1
[ N-1
1 On v “m
[+]
m
G =
m
. I\l
m
N-1
*n 1

[ N-1 ¢ N-1
RN = I A Z o F = I rF
m=1 m t=0 m t t=0 tt

0...0 1...0
: " :
= {1 g
Ft 0 v o°$» 1
L \ee®
0...1 v

These rapresentations correct a basic defect in
the original formulation by forcing the ML esti-
mate of R to be symmetric and Toeplitz.

Write

. P .
N " - A mcll'\
m=1
where
P . . _N N ST
(Am.Gm)l arg  max 71082n- FloglRyi
{A 0}
m' m 1
1 -1
- 2tr RN C

The resulting nonlinear ML equations are
for poles cm:tr ﬁ;l(nmﬁglc-Dm]-D (m=1,2,...,p)
for residues Am:tr§;1[ém§;1C-ém]-?m‘1'z‘...'p)
J1-31,

A G, Gm-(nm

. P

constraints:R“- I

" m=l
5 - 2l1-]
D =(i1-310 """}

(3)

Here is how these equations may be used. For
any choice of residue-pole pairs (Am.:mlg ob-
jectiye functions of the form n:(Ap,0.) =

tr Ry [GuRGMC~Gpl, ®=1.2,..4,pP, may Pe formed.
These functions have zeros at (Am.gm?, the ML
estimates. So ML estimates may be found from
a nonlinear regression algorithm that seeks

the zeros of .(Ap,op), m=1,2,...,p.

Linear Time Invariant (Markovian) Representa-

O T RPN .
AP W Y. PPN Wl W PG IPE W ey ey ey U W W W

tion: Llet {v_: be the ARMA (p,p) sequence of
Eq. (2). The standard form or Markovian state
space representation for (yt) is

t “efe-1 ¢t ¢ = (1 0...0

Yeseel T X
t/t-1 ¢ o10...0] - [n
X, =AX +h.u hy
e e Yl A AN e |
X8 (0.Qp) 1 :
" -ap ...-a11 h
utzi.i.d. N(0,o7)r.v.s.
-~ -7 r
Yese-1 1 hol |1
. yy+l/t-1 a, 1 h. b:
X.= s a, a; 1 =].
Ye4p-1/t-1 Y { th bn

In this representation it is important to note
that the p-dimensional state x  is a vector of
s-step predictors y +s/t_l(S-O.l.....p-l) based

on the infinite pas 1yt_1.yt_2,...l

Ves/e-1 B0V as/ Yoo Yoo

B




The unit pulse response sequence {h !} and corre-
lation sequence ir |} provide invaluable first-
and second-order déscriptors for the ARMA pro-
cess:
0 , t<0
h =<1 , t=0
S'At-lhl , 21

r = E‘AtQO c+ uzht , 20

t
r-t = rt
R N
Qp = AQpA™ + 2 hyhy

Figure 1 shows feedback diagrams for this pro-
cess model and the corresponding predictor
structure. Note that both diagrams are time-
invariant.

Yl e i
-1 . z ¢ -
A

(a)
-1

2
A

*¢-1 (%)
(b)

Fig. 1. Markovian State Space Model for ARMA
(p,p) Process: (a) model,
(b) predictor

Linear Time-Varving (Innovations) Representa-
tion: The time-varving, or ifnnovations, repre-

sentat fon for (ytig is

Yo Yese-1tY c={1 0 ... 0]
1
- o1o0...00 [
Yefe-17C *e | ‘
x_=A +k A= 1I Et- :
t ¥ ea1"Fe-1Ye-1 | p
(p)
B a ... -a ‘ kT
X 0 P 1 to
ut:indep.N(O,v[)r.v.s.
- b 2
Ye/e-1 kv AP e AQpethy
™ Yed1/e-1

V. Ty7S PCE

Pt-E(xtx t)

yt*P-l/t—lJ

In this representation the p-dimensional state
%, is a vector of s-step predictors y,,qo/¢_3
(s=0,1,...,p-1) based on.the finite past
{ye-1+¥pgee--¥olh:

Yeas/e-1"EV eas/¥eopade2e oo Y0l

The time-varying unit pulse response sequence
{h®: and the (generally non-stationary) corre-
lation sequence {r } provide first- and

second-order descriptors for the ARMA process:

hi=90 1<0
t
hy =1
t il
hi c’A kt i>0
t PP LGi-1
r=e A Ptc + c’A Et v,

Pt+1 = APtA + Ettt Vt

t
g Bl Yoy

With Etvt chosen to be

d
ke = -AP €+ AQyc + o“hl (6}
then rf = ¢, and {y )" is wide-sense stationary
with the same correiagion function obtained in
the previous section. Figure 2 shows feedback
diagrams for this model and the corresponding
predictor structure. Note that both diagrams
are time-varving. The innovations model is
simplyv a time-varving model that starts from
zere initial conditions and, nevertheless, gener-
ates a4 stationary sequence.
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u + - x y
t k, 2 1 -t El t
+
A
(a)
[“n'“l""'“d
Ve +
t k, + 1
z ¥ z
A
c'
-t
(b)

Fig. 2. Innovations Representation for ARMA
(p,p) Process: (a) model,
(b) predictor

Exact Likelihood in the Markovian Representa-
tion: From the predictor structure of Figure 1
we note that, given x., Y is distributed as

follows: 0
N
f£(Y/x,) = n (y .0 )
0 =0 yt t/t-1
Here Ny is the normal density
t
2 -t
N (yt/t 1°° ) = (2n02) *
exp(--——- (y.~ »2}
202 t/t 1
Caution: is a function of xo But xg

18 dxq:rxbuf/é as follows:
R -(? -p/2 I"z.
%t Ny (0109 20) Qg
1 -1
3 %o %!

So the unconditional density of Y is

expi-

N

£(N)=dxgn, (0,00) 7 N (y RETRNE3)
%o 0 -0 Y t/t-1

The exact likelihocd is EN(Y) = ¢n f(Y). In
Section 5 we show how this representation may
be used to obtain a variety of approximate like-
lihood functions.

Exact Likelihood in the Innovations Representa-
tion: From the predictor structure of Figure 2
we see that Y is distributed as follows:

N
Q) = m Ny, 1eY,) (3
te0 Yt t/t-1""t
where §t/t_1nou depends only on the finite past

and v_ is a time varying prediction error vari-
ance. The exact likelihood is Lﬂ(Y) = n f(Y).

Connections: A Chapman Kolmogorov Equation and
Initial Conditions: Comparing Eqs. (7) and (8)
it is clear that the innovations representation
has solved a very important Chapman-Kolmogorov
equation:

N
fdx. N_ (0,Q) N (y (%) 2)
0 N, %7 7 t/e-1

N -
m Ny

* 9
t=0 Yt 1 vt) ®

t/t-

(We have used the notation it/t-l(xo) on the LHS

to distinguish between the two 9: t-1+) This is
one interpretation. But note f(Y{ may be writ-
ten

f(Y) = f(Y/xo)f(xo)/f(xO/Y)

What this means is that solution of the Chapman-
Kolmogorov equation  is tied up in the solu-
tion for f(xn/Y). the : rosteri »! density for
the initial condition x., priven observations Y.
This is fundamental. Always the problem is
initial conditions. In Section 5 we derive a
closed form expression for f(xolY). and thus
derive an exact time-invariant realization of
the likelihood function.

The Innovations Representation is Equivalent to
a3 Sequence of AR(t) Models of Increasing Urders:
The innovations representation may be inter-
preted as a sequence of AR(t) filters in dis-
guise. This interpretation provides for
another constructive approach to recursive com-
putation of exact likelihood. The kev is to
use the properties of the Toeplitz correlation
matrix RN to achieve a sequential computation
in terms of dimension.

Recall the original likelihood expression

y
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. .. N .1 o lypy
LN(Y) > log2r ZlogIRN, 5 Y RNl\

Partition to obtain an equivalent partition
of the inverse,
L7 l/aN a N/aN

RN- R;I. rr -1
v R

ay /%N [RN-I + _;6-] (10)

-o=1
with ay=r-rT RN-l r= IRN}/IRN-Xl‘ The
vector is easily recognized as the set of
optimal parameters for an autoregressive model
AR(N) of order N fitted on the given model
(ARMA) correlation . As a consequence the
likelihood is decomposed according to (1l1):

-2
1 1
e L - ilog R B ilog 2n (11)

Here 4, is the prediction error of the AR(N)
model measured on the data and ay the corre-
sponding variance.

This approach is obviously equivalent to the
preceding innovation representation and is
merely another way of computing the innovations
sequence. The whitening condition i{s here re-
placed by the orthogonality condition satisfied
by the optimal AR estimated model. In the fol-
lowing, one of the two approaches will more
naturally give rise to a time sequential com-
putation of likelihood and the other to a

batch implementation.

3. RECURSIVE COMPUTATION OF LIKELIHOOD FOR
BATCH DATA

In manv applications the measurements v "'yV
are readily available, and can be processed as
a batch. Moreover, the likelihood computation
for a given model is generallvy imbedded in a
larger iterative procedure for optimizing the
model (such as nonlinear programming) which is
not fitted for real-time implementation. An
efficient batch method for evaluating the like-
lihood is therefore often desirable.

A first solution is given by the expression for

using the autoregressive estimates of suc-
cessive orders. The appropriate Cholesky fac-
torization is

rl 1y 1 a': . .5':
.N 1 . 1
-1 1 . . .
Tl I :
! 1 a:
N 1
4 - - a 1 ”"0 1
(12)

- - -~ LUV Y G WL TN N Yy YT N VU W V. G VA AP Y Y AP Wi e

where aj represent the cocft.cients of the opti-
mal AR prediction of order j and «; the corre-
sponding variance. The sum ‘i squares in the
likelihood is then obtained : the squares of
the successive outputs of a .ime varving, order
increasing MA filter fed with the data to gen-
erate the prediction residucls:

a,y a3

This computation is started with zero initial
conditions and cogxeniently weighted by the
inverse variance %

A seemingly more convenient implementation,
first proposed by Kailath et al. [15], makes
use of a now classical expression of the in-
verse of a Toeplitz matrice [16] in terms of
the coefficients of the order N predictor (i.e.
first column of the triangular factorization in

(12)),

[.0 .::-‘0 s IN. o ';:0 1, a.
!ax a i[ & a, 0 ) il ).
1| . : . .
b i -l L
N ] T J 5
l\ 3 -q, nol a i ] L "
Y 4 i
(14)

N —
where ai ai Yy

This representation is suitable for tizme invar-
iant implementation using two reciprocal MA
filters of given order N and N-1:

i 7t-i
(13

e 0y it Veed
The outputs are then squared, subtracted,
weighted and accumulated to compute the desired
likelihood. The major limitation of this meth-
od is evidently the restriction to a fized
sample size N.

But the opposition between the two implementa-
tions of Eqs. (13) and (i5) 1s only apparent.
The time-variation in (13) is more meaningfully
interpreted as an order adjustment at each san
ple. The two methods can be imbedded in the
same lattice structure using only thercflection
coefficients v, = al] (i.e. last row of the
triangular facéoriz&tion in (12))[17). The pre-
ceding quantities zJ arc then available at the
output of the various scctions of the lattice
according to Figure 3.
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Fig. 3. Use of an AR lattice for computing
exact likelihood for ARMA process

This structure is well known for its excellent
sensitivity properties and allows at the same
time a convenient sequentialization of the com-
putation by adding new sa2ctions to the fixed
preceding ones.

The computational requirement for the above
method is the fitting of an order N AR predictor
to the correlation sequence of the given ARMA
model under test. This is conveniently achieved
using the classical Levinson _algorithm in order
of N operations instead of N3, But still N is
large in many applications (e.g. - 256) and the
correlation must be carefully computed (even in
this noise free case) to ensure the necessary
stability of the predictions.

4. RECURSIVE COMPUTATION OF LIKELIHOOD FOR
REAL-TIME DATA

The state space formulation gives a nice con-
ceptual way of generating the innovation se-
quence in the well understood framework of
Kalman filtering. The formulation becomes par-
ticularly interesting when we note that there
exist efficient algorithms for computing the
Kalman gains. This efficiency is not achieved
using standard algorithms that ignore the fine
structure of the data. Here the data are out-
put correlation coefficients for an ARMA pro-
cess, and the state space equations describing
them must have an input/output counterpart.

More precisely the convolutional form for the
time-varying innovation representation is

e
y,= L hiu . +h u
t i=1 i "e-i 0t

which relates to the state space description by

- \ [ t_,i-1 t L i-
xt = L hi ut—i R hi A k h1 c’A k

This impulse response description will now be
used.

Instead of using the Cholesky factorization of

o P D Sy N P A R N AR N T A PN

CIC Bt et St A A e A 4R S U S rifmﬁ'ﬁ_1
N i ~ B [ . u

the inverse as in (12) the correlation miatrix
itself mav be uniquelyv decompused into an upper
and a lower (transposcd) factor.

[t t-p 0 2
So Sp . e e ?[
T.t-p ‘0

3, e Se-p
- . ’ 16)
Rl ) (

1 SO
o %1
s0
| 0

Here the notation "2" stands foy the product bv
its transpose. The quantities si are readily
interpreted as cross correlations between the v
and their prediction error for a predictor of
order j. As the ry for i>q satisfy the AR re-
cursion with coefficients a,, it is also the
case for the s) i>q. After the normalisation by
1/s), the sg are the coefficients of a time
varying impulse response. By taking the first
(p+l) rows and columns of Ry, it follows that:

r,o.. . gt .tP 0 "2

o % % Sp T S|

. -1 10 ——— !

- . _i: : (17)
r ot t-p 0

P rOJ LO 0 so voe s:-p‘

As a consequence the time-varying system with
impulse response ht fed with white noise of var-
iance Ve both defined such that
t t, t t

hi si/s0 and v = s (18)
reproduces the stationary correlation of the
process. The h; for i=l,p coincide with the
components of tﬁe Kalman gain kt and v, ie the
corresponding variance of the innovations.

An efficient algorithm has been provided for
factoring R, according to (16) [18). Moreover,
it has been proven to generate a minimum phase
model {19] and can be implémented using fixed
point arithmetic {20]:

t t
Yo s-:-I/SO

t+l 2, t
s (1-\t)s0 (19)

R S
i PO T N

In this particular case, only the st+l for i=0,p
are usctul., Thev are computed using p nonzero
values for 1<0, so that the required number of
multiplicatiors per step is approximatelv 2p.
The values for {>p may be deduced if necessary
from the recursion with coefficients Ay

Moreover it mav be noted that the most important




N
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role in the behavior of the model is played by

the MA part. For an AR-only process, the Kalman
gain would converge in p steps (p first AR pre-
dictors) but for an MA process the gain converges
at infinity. It seems therefore interesting to
consider the AR and MA parts separately instead
of constructing the ARMA correlation sequence.
This can be done by extending the AR part of the
equation in order to include the zero initial
conditions and deduce the time varying MA corre-
lation matrix V for the given stationary ARMA
output correlation RNaccording to (20):

‘80 81. . ap ao .,

o e s

(20)

Due to the zero initial conditions, the V matrix
is no longer Toeplitz but is still a banded
matrix and can be computed using ay and by. A
generalization of Bauer's Algorithm [21] may be
applied in this time-varving case [22] to factor
V and retrieve the Kalman gains. The algorithm
then requires approximately q2/2 multiplies per
step and can be interesting for small q. A
closer examination of V, shows that it is
Toeplitz except for a pxp right bottom matrix
and it is the feeling of these authors that the
computations could be reduced using other
choices for the initial AR and MA parts.

5. INITIAL CONDITIONS
We return to the ARMA difference equation:

yt + alyt_1 +...4+ apy[_P =u, + blut-l +

P bput-p
Let us establish the following data conventions:

Y_p Yo u_p Yo
Y = vV = . LY ‘o= .
-p . Yo § -p U 0
.\'_1 y u u
And

p-1 -1 p-1

r . -

8 f L : by

a a h, h . b, b
A Vo W L0 g. 170

. P
:
J‘p-l 20 hp-l : "u' hr-l hu

. -

aln aa’s awmiale aa . hta e Pa—y

The (pap) Toeplitz matrix of unit pulse
responses satisfies the linear equation

ANl =8 (21)
P
Special cases are
MA H =8 AR : AH =1
P P

We mav summarize init‘2l conditions by estab-
lishing the followinrc near dependence:

LY ' = '
ANY_ 4 A v_, + 6 U, (22)

The special cases are¢
MA: ELE

- = B 1 Ay +AY '
\0 8 l—p + B A \-p 0" lo
From the time-invariant 'state space representa-
tion, we have initial conditions:

x. =Y - H U

0" "0~ "p V0 Q = Ry ~ HH 2D

p

The special cases are

MA: AR:
Y, =x +8¢ vy, =x +A Ly
0o 7o 0 0 0 0
x. = b* x. = -H A* Yy
0 Up Y P -P
5.1 Approximate Likelihood: Fixed Initial

Conditions:

Recall the likelihood function of Eq. (7). With
the normal density Nx (O.Qo) replaced by the
0

dirac density S(xo-io), we_have the approximate
likelihood:

N
. . . 2
f(V/x,) = = N_ (v, 2(x),37)
0 t=0 Yt t/t-1"70

Question: How to choose xo?

Method 1: With x, = Y, we are assuming
U, - 0 in (23). This implies Q, = R . The
approximate likelihood is simply obt8ined by
summing squared residuals in Figure 1, with
%q fixed at Yo The special cases are

MA: AR:

Y, o= By A\:O-A*!’p
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In each of these special cases, initial condi-
tions are manufacrured outside the data interval
with a sackward predictor. In the AR case %:E

is a backward pre .ction from Yo. The resulting

approximate likel.hood function reproduces the
equations of the vovariance method of linear

prediction,

Method 2. With x £ 0 we have Y = HU_.
This implies Qo : 0. Rgain the approximate
likelihood is obtained by summing residuals in
Figure 1 with io fixed at 0. The special cases
are

MA: AR:
u =20 Y =0
-p -p
In this method initial conditions are set to
zero outside the data interval. In the AR case

the resulting equations correspond to the pre-
windowed method of linear prediction.

5.2 Approximate Likelihood: MAP Estimation of
Initial Conditions:

As a second alternative to approximating exact
likelihood, consider maximizing the joint den-
sity of the data Y and the initial conditions

Xy

max f(Y.xO)

%o
Write out the time-invariant (Markovian) state-
space equation for t=0,1,...,N:
- Y

Y on + HNU

Yy’ = [yo...yN] U= [uo...uN]

0" = (c.AC,..., ¥

We have the following linear dependence

U=LY - Mxo .

with

L= H;l and M= H;l 0

The matrix O is the observability matrix.

The joint density of Y and Xy is obtained from
the density of U:

2_
£, %) = (270) (NH)/zexp(- —15 g(Y.xo))

20
g(¥.x;) = (LY-\mo)XLY-MxO)

Note g(t.xo) may be written
g(Y.x0)=g(Y.x0)+(x0-x0)H A(xo—xo)

with

M MXO = M'LY

So f(v,io) is

£(¥,xg)=(2na?y W 2o ;i; W) @Y= )) (24)

The corresponding likelihood is E(Y,io) =
lnf(Y.xo).

The AR case specializes nicely:

x, = Yo - (H HORL ¥

0 pp p O
Equivalently,
-1 =) -
RP Yo = Qp X,
or
-1 -1
A*Y 4+ H R-Y =0
2 % 9% Yo

Note this reduces to the c.ovariance method of
linear prediction under the approximation
QOR;1 = 1. The corresponding likelihood is

N p
R 1 2,1...-1,
i(Y,x)=-——2(y-Za_v_)+-—R
0 202 t=p t a1 i‘t-f° 2 0p O

(25)
The second term on the RHS represents a correc-
tion to the usual covariance method of linear
p.a2diction.
5.3 Exact Likelihood:

Write the joint density of the data Y and the
initial conditions Xy as

f(Y,xo) = f(Y/xO)f(xo) = f(xO/Y)f(Y) N
Here

f(xo) : prior density on X5 : Nxo(o'QO)
f(Y/xo) : conditional density :

N -
n Nv (v
t

2
(x.),07)
t=0 0

t/t-1

f(xO/Y) t o poster’ rf density for Xg»

given data Y

f(Y) : unconditional density of Y
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Return to the joint density f(Y.xO):

2)-(N+2)/2exp(_ —lf g(Y.io) _

f(Y,x.) = (2no
0 20

1 L. -
- (xo-xo) M M(xo-xo))
20
It follows from a factorization theorem that
- 1
£(xy/Y) = (270%) P/ZIM‘M]’
expi{- L (x.-x.) "M M(x -x)}
"2200 0 "0
[+
Now write

£(Y) = £Q¥/%0) E(x0) /£ (xg/Y)

L(Y) = l(Y/xo) + l(xo) - !(xO/Y)

r Yo 2
LWY) - - =5 L (y,-y ;. _,(x))
202 tag € /=170

1 ., 1 .
7% %% * 3 log|M-M| (26)
. (x.-%.) "M "M(X.-X.)
2 Yo% (V]
20

The first summation may be obtained from the
time-invariant predictor in Figure 1, starting

from any x.. But the choice nust be fixed up
with the remaining terms. Several choices are
of interest Xy mXy o, X " 0.

6. CONCLUSIONS

Maximum likelihood (ML) is an attractive para-
metric method for fitting models to observed
data. When the data is a time series record

and the underlying model is ARMA, then ML be-
comes a parametric method for identifving linear
models. In the parlance of signal and system
theory, ML becomes a method of identifying
rational discrete-time systems from output data
only.

In general ML leads to nonlinear equations in
the parameters to be identified. This is re-
flected in all of our expressions for exact
likelihood. By making special assumptions about
initial conditions one can obtain in the AR case
quadrat{c approximations to exact ML that lead
to such methods as the pre-windowed and covari-
ance methods of linear prediction.

If no approximations are to be made then two
problems arise: (1) efficient computation of
exact likelihood for each set of candi-
date ARMA parameters, and {2) evaluation of
gradients and/or Hessians for cflicient itera-
tion to a solutjon.

In this paper we have focused or. problem (1).
Several approaches to the computation of vxact

L et uain st diare Jibo AR A S

likelihood have been analyzed and compared. As
in previous contributions to this problem, a
central role is played by the innovation of the
ARMA process. Other derivations of exact like-
lihood have proceeded within the framework of
Kalman filtering where the innovaticns play an
essential part. But innovations need not be
tied to Kalman filtering. In this paper we have
emphasized the innovations representation for
the ARMA process itself. This leads to a
straightforward computation of Kalaman gains de-
signed to generate a stationary correlation
sequence in spite of the zerc-initial condi-
tions imposed on the model. The state-space
consists of one-step through p-step »oredictions
based on the finite past. An interesting in-
terpretation is that the_tire-varvin: Kalman
gains comprise the time-varying MA part of an
ARMA model with fixed AR part.

The innovations of a stationarv ARMA >rocess
need not be interpreted in the context of state
space models. They may also be interpreted as
a sequence of independent random variables ob-
tained by sequentially whitening the correlated
data. The whitening transforzation .. derived
by triangularizing an inverse covariance
matrix. The triangularizaticn procecdure is
equivalent to fitting a sequeace of iR models
to ARMA data. Stable and efficient slgorithns,
which compete favorably with fast Kalman algo-
rithms, are available.

The problem of computing exac: likelilrood mayv
also be cast in such a way that initial condi-
tions on a time-invariant predictor rlav an
important role. The initial conditions may be
pinned at an arbitrary value provided subse-
quent corrections are appliec. This Zormula-
tion shows the way to approxizations of exact
likelihood that may be superior to existing
ones. The same approach could have >een ap-
plied to final conditions, providing a com-
pletely symmetrical setting in wiich to discuss
forward and backward prediction outsiie the
data window.

As mentioned previously, this paper is focused
on one aspect of ML identification of ARMA
models: computation of exact likelihood. it
is our feeling that some progress is still to
be made on this problem to reduce comdlexity.
But just as important for overall

maximization of likelihood would be eiticient
procedures for evaluating gradients and
Hessians in the framework of time-varving inno-
vations representations or tizse-invariant pre-
dictor representations.
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Abstract Durbin algoritha may be used in conjunction with a
Kulman predictor or an analysis lattice to efficiently
In this paper we present a general framework for realize an AR type analysis of ARMA data. In the con-
deriving and interpreting analysis and synthesis cluding section we outline how these observations lead
spectra of the autoragressive (AR) and moving average directly to a derivation of fast and exact likelihood
(MA) type. By analyzing MA and AR linear transforma- for ARMA time series.
tions of finite-dimensional data records we derive MA
type spectra that are direct analogs of the AR type 2.0 Linear Filters and Representation
spectra associated with the maximum likelihood method of Stationary Sequences
(MLM) and the maximum entropy method (MEM) of spectrum
analysis. Asymptotically the MA theory is tied up with Let (’t) denote a real, zero-mean, wide-sanse

Wold's decomposition in the ssme way the AR theory is

stationary sequence with real &, correlation sequence

tied up vith Kolmogorov's whitening theory. 2
By parsmetrizing the MA and AR type spectra we {rt}. This sequence hae factorizationm
obtain & variety of spectrum models that trade off
resolution and pover fidelity. We propose J-divergence -
as an attractive order fitting rule and show how it r. = I h h ¥t

t 3 Mitl ' 3

relates to final prediction error (FPE) and Akaike's
information criterion (AIC).

n=0

We call (hn} the impulse response sequence, for ressons

1.0 Introduction to become clear.

The concept of wide-sense stationarity seems to Whenever ve speak of {yt} ve have in aind the

underly the very notion of a spectrum. It is & mistake triple ({y },{h_},{r_}).
however, to conclude that one should identify only t t t
stationary models when estimating spectra. The precblem 2.1 MA(=) or Wold Decomposition
with stationary models is that initisl conditions mani-
2 fest themselves as nuisance parameters that must either The Wold decomposition for the sequence {yt) is
> be estimated or averaged over. In nonstationary models
: the initial conditi.onz manifest themselves as time the infinite moving average (MA(=))
variations (as in innovations representations) or as
order-increases (as in lattice representations). In
either case the initial conditions may be absorbed
naturally into the theory.
In this paper we present a general framevork for

. deriving and interpreting analysis and synthesis
< :pectrl of the autoregressive (AR) and moving average
MA) type. By analyz MA and AR linear transforma-

. tions of finitl-dhen::sonnl data records ve derive MA The coefficients (hn} are called the MA(=) filter co-~
type spectra that are direct analogs of the AR type efficients.
spectrs associated with the maximum likelihood method

(MLM) and the maximum entropy method (MEM) of spectrum First-Order Descriptors. Replace {u_} by the impulse
analysis. Asymptotically the MA theory is tied up with t
Wold's decomposition in the same way the AR theory is
tied up with Kolmogorov's whitening theory.

Y,= I h u
t e B tm

u, ¢ vhite sequence (zero-mean, unit variance
r.v.s.)

ssquence “t} to obtain the impulse response

By parametrizing the MA and AR type spectra we ht » £20
obtain a variety of spectrum models that trade off h =
resolution and power fidelity. We propose J-divergence t
as an attractive order fitting rule and show how it 0
relates to final prediction error (FPE) and Akaike's > Ow

information criterion (AIC).
For an sutoregressive moving average (ARMA) time
series, a fast impulse response algorithm may be used

The complex frequeniy response associated with this
impulse response is

in conjunction with an innovations representation or a hw) ® lim H

synthesis lattice to efficiently realize an MA type w LA™

synthesis of ARMA data. Conversely a fast Levinson/ L e +(t-1)u
This work supported in part by the Office of Naval Ca(u) e (l,e ,...,e

Research, Statistics and Probability Branch, Arlington, ;

VA, under Contract N00014~75-C-0S18 and the Army Re- h= (ho’hx"“'ht-l)

search Office, Research Triangle Park, NC, under Con-
tract DAAG29-79-C-0176,

Superscript H denotes Hermitian transpose.
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Second-Order Descriptors. The correlation sequence is

-
B(z) = £ b 2
o
- n=0
r,= I h h
t o 0 otlel and the vhitening filter
i The corresponding pover spectral density (or magnitude- -
squared frequency response) is A(z) = £ a 2z°

KA

a=0 °

2
tlw) = |hiw)]
The results of Sections 2.1 snd 2.2 say that the impulse
MA(q) Case. In the MA(q) case the moving average rep- responses of H(z) and A(z) sanihilate each other or,

-
-
.
-

resentation terminates and ve may write equivalently, that H(z) and A(z) whiten each other:
q -
e nfo P2 Ye-n nfo LI
The resulting specializations in the first- and second- A(z)H(z) = 1

order descriptors are obvious. -
3.0 Linear Transformations and the Representation

2.2 AR(=) or Kplmogorgy Representation of Snapshots
Let Yt denote a t-sampls snapshet of (yt)
Y, - (yg ¥y +-- yr.-l)n
The correlation matrix for Yt is symmetric and Toeplitz:

The Komogorov repr~sentation for (yt} is the
infinite autoregression (AR(=)):

- =
Z a y =y ; a.$%0 o M1 r:_ﬂ
as0 ©® t-n t 0
o\
! AN
The coefficients (an} are called the AR(=») filter co- R = .
efficients. t N
r
Firsc-Order Descriptors. Replace (ut) by the impulse 1
sequence (it} to obtain the impulse response Lrt-l o 4
= This matrix has LU Cholesky decomposition
< a h:-n = 6: L3 4 a“
n=0 Rt - Et N
The complex frequency response is 0 ‘1 o
hy h
I(U)h(w) -1 1 1
hl ho 0 0
a(w) s 1lim C*: a .
ti= g =]
t .
a = (aga; ... a ) = 0 5 o8
Second-Order Descriptors. The correlation sequence is -2 0 -
. characterized by .
e - L] L )
. - t-1 t-1 t-1
=0 2 nEO “a-n+s "a " 6: | el {_t-1-s h0
L‘,: from which it follows that the spectrum is B0 !‘1
. \ 2
P . aluw)]” r(w) = 1 We call the s*" row vector _l:’ the order-s MA synthe-
! sizer, for reasons to become clear, and the sth column
AR(p) Case. In the AR(p) case the autoregression ter- vector h the impulse response of an MA linear trnas-
[ ninates and we may write formatioR to an impulse spplied at time s. When we tie
p.- . up MA and AR theory we will see that other interpreta-
- P tions accrue, as well.
. - 8 Yen Y 1
; n=0 The satrix R ¢ has UL Cholesky decomposition
L_. Obvious specializations of all first- and second-order
L.»f Jescriptors result.
L." .
- 2.3 Tying Yp the MA(») and AR(=) Representations
- Define the synthesis filter
@
o 2.6.2
¥
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We call the sth row vector 2’ the order-s MA vhitener,
for reasons to become clear, and the stP column vector
3, the exciter of an AR linear transformation required

to generate an impulsive (not impulse) response. When
we tie up MA and AR theory we will find other inter-
pretations and connections.

Whenever we speak of Yt we have in aind the triple

-1
(Yt'Ht'Rt) or, equivalently, the triple (Y:’At'nt ).

3.1 MA or Synthesis Transfoemation

The snapshot Yt has MA type representation

Ut : white vector (Eut-o EU‘Ut-It:(txt) identity)
The output Y, may be written

s
y = I bt
$ Leq D 50

For this reason we call 3’ the order-s MA synthesizer.
In the limit ste we have

lim h® = h
n

¥ n>0
ste P

th

where hn is the n MA(w) filter coefficient in the

Wold decomposition.

First~-Order Descriptors. Replace Ut by the identity

It to obtain

Yt-Ht

As I: corresponds to a column sequence of delayed
izpulses, we call Ht a column sequence of impulse re-
sponses h

h:+“ in hs is the response at time s+n to an impulse

to impulses applied as time s. The entry

appiied at time s. It is easy to see that

n 0
hn rn/h°
There are at least two definitions we can give

for the "frequency response" of the MA transformation
H .,
t

LFR. The left frequency response is the object
. - “
“:(“'L) Ct(u)llt

This 1s a row vector of phesed (or delayed) complex
frequency responses for the impulse responses g‘:

2.6.3
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H‘(u;L) - (ho(u),....ht_l(w))
hy(e) = Ciludh,

RFR. The right frequency response is the object

ﬂt(u;l) - B Ct(u)
This is a coluan vector of phased complex frequency
responses for the MA synthesizers g‘:

B iR = (00w, ... x5 w)®

h*(w) = h° c (w)

Second-Order Descriptors. R_1is our obvious second-
order descriptor. By analogy with linear filtering
theory we can try to associate spectra with the norms
of our complex frequency responses.

LFR. Define the left spectrum as

.2
R (w;l) = [H (wil)!

- C?(u)“: C,(w) -
t-1

- I |hs(m):2
s=0

This result leads to several important observations:

(1) ! times the left spectrum is the triangu-
lar windowed or Bartlett spectrum:

1 1l H
T R:(w;L) -t C:(U)Rt Ct(u)

(1- l%i)tne°j“” .

(2) the Bartlett spectrum is an average of
magnitude-squared frequency responses
for the impulse responses gs:

t-1
= I
n=-(t=-1)

t-1
1 R 1 2
T Ct(u)RtCt(u) T .fo Ih’(u)l ’

(3) 1if the average above {s (arbitrarily?)
truncated at s=0, something akin to the
rectangular windowed spectrum results:

t-1
ho(w)iz « o nS et
s
3=0
t-1
- 3501 r eI
:hO' n=0

RFR. Define the right spectrum to be

Rt(U;R) - th(w:R)|'

t-1 s 2
= I |hi(w)}
s=0
This leads to the following observations:
(1) ¢! times the right spectrum is an average

of magnitude-squared frequency responses
for the MA synthesizers h®:

et K ) . 3 L T
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t-1
%lt(u;l)-% L Ih'(w)|z R
s=0

(2) {f the average above is (arbitrarily) sodi-
fied to include only the t-1 term, the
following maximum order MA synthesizer
spectrum results:

t-1
w2 - ) s neh etise?
s=0

MA(q) Case: In the MA(Q) case the MA syntheaizing
transformation specializes as follows:

Hroo
v

-
[al
"
na"a e 3 >
>
~.a
o
© 0f
=,

q 1
q q
0 hq ho
q
hy
L d
h
X

The important thing to notice here is that for q<s<t-q

(£22q+1), the MA synthesizer h® looks like
the impulse response h‘.

LFR. In the MA(q) case the LFR specializes as
does its magnitude squared. The magnitude squared
becomes

o I 2 2q) |k |2
Rt,q(“’L) ’fo ‘(u)| +(t-2q) q(u)
t-1 2
+ z Ih (W] .
get-l-q s

a8 linear combination that lends extra weight to the

th
q  1iopulse responsa.

RFR. Ia the MA(q) case the RFR specializes, as
does it magnitude-squared. The magnitude-squared be-
comes

q-1
R, J(wiR) = T Ih’(w)lz + (t-q)!hq(u)|z
'q ’-0

a linear combination that lends extra weight to the

qlh MA synthesizer,

3.2 AR or Analysis Transformation

The snapshot Yt has AR type reprasentation
Ay Y= Y
The outputs Ye to Yo 24y be filtered to obtain

s
[
I ln Ye-n u

n=0 s
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For this reason ve call 2’ the ordar-s MA vhitener or
analyzer. In the limit st* wve have

lima®egq ¥ >0

ste B B
where s is the uth AR(=) filter coefficient in the
Kolmogorov representation.

First-Order Descriptors. Replace Ut by It to obtain
At ﬂ: - I:

As in the MA case, Et is the column sequence of impulise

responses h’. The entries in 2' have the same inter-

pretation as befors.
1f Ut is replaced by an exciter matrix that makes

Yt-lt'

A - E

an impulsive response, we obtain

For this reason we call A: also a column sequence of
impulsive exciters.

LFR. The left frequency response is the object
H
A (wil) = C (w) A

This is a row vector of phased complex frequency re-
sponses for the impulsive exciters a:

A (wil) = (ag(wd,...,a, 1))

8 () = Cg(u) a

RFR. The right frequency response is
A (wiR) = A, C (w)

This is a column vector of phased complex frequency
responses for the MA whiteners a%:

L
A = 2w L ")

a%w) = a* c (W

Second-Order Descriptors. R: (or R:l) is our obvious

second-ozder descriptor. We can try to associate spec-
tra with the norms of the complex frequency responses.
But, as At i{s a vhitening transforzmation, wa ought to

use the inverse of these spectra as our spectral defi-
nitions for Yt.

LFR. Define the left whitening or analysis spec-
trum as

1
. 2
IAt(w.L)I

nt(u;L) -

1
H H
Ct(w)AtAtCt(w)

1

t-1 2

I [I.(u)(

s=0

Sevaral observations can be made:

(1) The invarse of t times the left vhitening
spectrum is an average of order-increasing

T W1
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exciter spectra: 3

lt.p(w:L) et ryy

L L 1 ) I o (w) |2+(c-29) |a Wk (awi?

- a= 1 |a(w}] s=0 P p=t=l-q

tlt(u;L) t oo °* th
a linear comdbination that lends extra weight to the p

(2) 1If the sum is truncated at s=0, the resulting exciter spectruam.
spectrua 1s 5h¢ inverse of the exciter spec-
trum |.°(u)i . SFR. In the AR(p) case the right whitening spec-

trun specislizes to the following linear combination:
RFR. Define the right whitening spectrum as

- 1
R _(wR) =
~(w:l) = 1 t,p p-l
R (wiLl) m ! b Il.(u)|2+(t-p)‘lp(w)|2
atd s=0
- This lends extra wight to the yth MA wvhitener.
H -1
€. (R €, (w) 3.3 Tying up the MA and AR Theory
- 1 We have the relations
t;l s 2
|a”(w) | A B -1
=0
l!t: A = It

Several interesting obaervations may be made:
From these the most succinct interpretations of Ht and

(1) The right vhitening spectrum is the maximum At are the following:

1ikelihood method (MLM) spectrum, -0 .1
h
(2) The inverse of ¢t timas the right whitening 1
spectrum is an average of order-increasing — Nk
vhitening spectra: 2
¥ o0 .
t-1 H = 3 ho:order-s MA
__._1_ - % r |a%w|? € ‘. synthesizer
LRt(w;R) s=0 '
(3) if the sum is arbitrarily modified to t-J
include only the t-1 term, the maximum o =
] entropy method (MEM) spectrum results: _ -
h
} 1 -0
|at-1(w) !2 L0}

; h_:impulse re~
sponse for AR(s)

In the AR(p) case the AR synthesizing filter correspond-

AR(p) Case.

(]
i
()

e

[P S
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P Sand.

P S Y e

: tnnsfom:io: specializes as follows: _ . ing to order-s MA
L 0 ‘ vhitener a®
r'.' 0
L 1 0
- a2 a h
- 1 1 -}
L : 0 - K
i . o
= - |aP 4 =
o At.p lp . . .0 _ .1
h :
. P
L - . a P
- : P *o A, _1_2 H _._.:order-s MA
b, ., vhitener or
o analyzer
t._ oF aP
r“ L P 0]
o K
L - -
1
£° 1
For prs<t-p (t_2p+l) the MA whitener a® looks like 2
}-.' the transpose of the exciter a. . |
- a ; & :impulse re-
- LFR. 1In the AR(p) case the LFR specializes as ,2 ;‘ponu for AR(s)
L{ :Ou its magnitude-squared. The left vhitening spec- ‘ filter correspond-
rum becoses , ing to order-s MA
- l l a synthesizer h®
y L Se-1

.




4.0 Parametrized Spectra

The results for MA(q) and AR(p) linear transfor-
mations suggest that the MA synthasis and the AR anal-
ysis transformations Ht and A: nay be approximated by

the qth and 1»th order approximants H and A .
t,q tp

This kind of thinking in the linear transformation
world is directly analogous to the kind of thinking
that goes on in the linear filtering vorld vhen we
identify order-q MA and order-p AR filters to model
data that is surely infinite-dimensional. So think of

H, q and A, ? as paranetrized synthesis and analysis
s »

linear transformations that can be used in place of
llt and At in the various spectra defined in Sections

3.1 and 3.2 to obtain parametrized anslysis and syn-
thesis spectra.

In the sections to follow we explore the so-~called

parametrized maximum likelihood method (pMLM) spectrum
that results from replacing At by A: in the right
whitening spectrum: o?

- R = 1
Rt.P(u'R) -1 c

tt,pt

1

p-1
£ a%w) |2+ e-plaP(w) |2
=0

R-l H

A
t,p - Ae.p tep
Let's agree to call R; p(ui\). the pMLM spectrum
v

mt,p(“) .

4,1 Limiting Results

The pMLM spectrum may be written

1 1 t-p

- +
M!.H:'P(u) mp—l(u) HBT(&)

where !(LHP_I(Q) is the maximum likeli{hood method spec-
trum of order p-1 and mp(u) is the naximum entropy
=zethod spectrum of order p.

p=t-1. In this case the pMILM spectrum is the
xmt_l spectrTus.

p fixed; tte. In this case the pMLM spectrun
goes to the mp spectrum:

limeMIM,  (w) = MEM (u)
com P P

From thase rasults we see that the pMLM spectrum
defines a two-parameter class whose properties lie, in

soue sensge, betveen those of the MLM and the MEM specta.

4.2 Yumerical Results

We examine the performance of the pMLM spectrum
for three different sets of correlation data. For
purposes of comparison with published results, we use
the example of two close sine waves in noise studied
by Lacoss

r:-s: + 5.33 cos(.3nt) + 10.66 cos(.4nz) te[0,21]).

In Figure 1 it is observed that by extending the corre-

lacion matrix to obtain the MLM,, u(m) spectrum we
L]

rasolve quite successfully the two close peaks why:
the Hulu(u) csonot. Another interesting obunu;:.

concerns the pover estimation. The parametrized
Hu!n.u(u) estimates accurately the 3dB differenc, a

the pesks, vhile the )mln(w) spectrum gives on tg

order of 5dB,

The second example shown in Pigure 2 i bygeq »
synthetic AR data. We generate 4th order AR dge,
corresponding to the transfer function

1
B(z) = —
1-.8¢2

The same comments can be made - the parametrized
m.nn s(u) yields a much better resolution thaa the
1]

lluls(u) .

Finally in Pigure 3 we have applied the method ¢4
a finite set of recorded speech data. The data used 4
a set of 80 data points sampled from the vowel "I" 1o
the sentence, "I hope it's April". This example {i..,-
trates very well the compromise between resolution asg
smoothness. The three spectra illustrated require
exactly the same amount of computation. However, :he
parametrized MM, u(u) exhibits & dramatic improve-

ment in resolution over the MIMj;;(w) and a much bdetter
power estimation of the second peak over the xmu-'.).

The results are summarized in the following vay.
The pMIM spectrum can be used in two conceptually
different ways. First 1if one is interested {n saving
parameters, then a resolution coaparable to the MLu(.)
can be achieved with the puu(t. ? with p<t. .

On the other hand {f better resolution is soug't

t
{rt)oo is available, then by extending the correlatis:
matrix to e>t,, a resolution close to the m(to) cag

be obtained while preserving the power estimation of
the MLM. As a result ve see that the parametrized ¥Lv
reslizes a compromise between the smoothness of the ‘v
spectrum snd the resolution of the MEM,

4.3 Order Fitting
The essential problem in all of this is order-
fitting: deciding when lt P for example, is close
1]
enough to Rt to decide that I!t ? or At ° is a good
1] v
enough approximation to Ht or At. In the context cf

the parsasetrized maximum likelihood method (pMLM) two
order fitting rules arise naturally.

J-Divergence: Suppose we are given a finite data set
Yt with correlation matrix R‘. The parametric
model is determined by the correlation azatrix R _ 33

t.?
defined earlier. The problem of order fitting is one

of discriminating between the two hypotheses Hz and

ut,p from the data Yt:

H : Yt “(O'Rt)

t

Ht,p : Yr_ . N(O'Rt,p)

The divergence between the two hypotheses is defined
as:

Jt{?.t) - Eu: th(Yt)- !"tLt(Y:)

wvhere Lt(x) is the likelihood function l‘:(‘) .

2.6.6
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p(z/u, )/P(x/B). The set of data 1s supposed norm-
L3
ally u:trlb\ltcd. Using the identity g(,T“) -

tr(ql(nr)). the J-divergence is
1 -1 -1 _
J t(p.t) * 3% Tr[‘t't.p + lt,pl: 21].

The J-divergence, while not a true matric, provides a
seasure of the distance betvean the two hypotheses. It
can slso be vieved as & measure of how far R R ? or

*

tt
R ’I:I ate from the identity matrix. If A ,1=0,1,...,
;-'1, are the sigenvalues of the matrix ltl: » than ve
1 ]

can also write

t-1

1 .2
Jipt) o5 T (A === .
t 2t .0 '

This suggests that the J-divergence is more simply
interpreted as & measure of the dispersion of the
eigenvalues sround unit.

J-divergence is tvice the Kullback-Leiblerinforma-
tion used by Akaike in his discussion of information
criteria and order~-fitting. Thus Akaike's derivation
of the AIC can be translated in its integrity in teras
of the J-divergence, and the following order fitting
rule is proposed:

X ° Jt(c.p) + 2E

A Simpler Distance Measure: The calculation involved
in the J-divergence is quite large. We are after a

siaple order fitting rule easy to compute at each order
p. Ap intuitive measure of the distance b‘ctvun l;

and l:lp consists in getting a measure of how far

% , peict-l, are from the constant value % . Consider

1 . P
the following quadratic mean:

t-1
M) =ty I G-’
P {ep-1 i P

¥ote that if the given correlation sequence corresponds
to an exact autoregressive process of order Poe then

ME(p)e0 for P2py-

dumerical Results: 1In Pigure % we apply the eri-
teria to the set of correlation data estimated from
syothetic AR(4) data generated in Example n®2 of Sec-
tior 4.2. The simple measure and the J-divergence
ve compsre to the minimum prediction error. Pigure 5
fnunutu the similarity of behavior betveen the
s=divergence corrected for asymptotic bias and the AIC
triterion. We have applied the criteria to the
Speech data in Figure 6. Again the J-divergence cor-
tected behaves like the AIC but has a sharper and
tlesrer mirimum. Here the siaple measure has s slow

f:::"iﬂu‘t rate that would be misleading in the order
fitting.

5.0 Conclusions

Many of the ideas in this are speculative.

f!u spectra defined semm to be :.1:::1&10 d::i.nitionl

-or the frequency responses of nomstationary synthe-

M2ers and vhiteners (snalyszers). The fact that the
Srgumentation leads to Bartlett snd MLM spectra lends
:::.x““-“ to the line of reasoning. The numerical

."H-:: indicate that pMLM - and hopefully its other
ot rized counterparts as vell - can become useful
“;ucn to MM and MEM processing. The pMLM seems to
¢ & tradeoff batween the resolution of MEM and the

2.6.7

pover fidelity of MLNM.

All giscuseions of MA(q) and AR(p) linear
transformation generslizes to ARMA(p,q) linear trans-
formation. Such transformations underly lattice and
innovations representations of stationary time series
and the corresponding lattice and Kslsan predictor
structures that play such an important role in exact
1ikelihood for ARMA time series. The nonstationarity
(or initial conditions) of the linear transformations
are captured in the order increase for the lattice and
the time variation for the Kalasn gain. By combining
fast Levinson/Durbin and impulse response algoritims,
the lattice and Kalman predictors lesd to fast and
exact computation of exact likelihood. .

Koopmmis [1] contains a more complete discussion
of the MA(®) and AR(») theory of statignary time ser-
ies. The interpretations of lt and l; are evident in

the influential work of Friedlander, Kailath, and Morf.
The comnectionsbetveen MLM and MEM are due to Burg [2].
The interpretation we give for the Bartlett spectrum
may be close to that given by Oppenheim at the 1980
1'Aquila conference. The Lacoss exanple is reported
in [3]. The appropriate references to Akaike are [4]
and {S]. Other topical work on order-fitting is re-
ported by Parzen [6] and Rissanen [7]. Our motivation
to use J-divergence arose from {8] and [9]. The sim-
plified IME rule is discussed sore fully in {10].
Exact 1ikelihood is reported in [10]-[12]. Variatioms
on and fast versions of the Levinson-Durbin algorithm
{13)-{14] are reported in [15], '[16]), and (10}, wvhere
tespectively the MSK slgorithm, the impulse response
algoritim, and a fast impulse response algoritim are
derived.
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Louis L. Scharf
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_ Claude Gueguen
Ecole Nationale Superjeure de Telecommunications
46 rue Barrault 75634 Paris

r' Abstract

- Les modeles autoregressifs a moyenne mobile (ARMA) sont des approxi-
[ - mations utiles des processus aléatoires communement rencontrés dans le

- traitement des signaux & temps discrets. De tels modéles sont utilisfs &
la compression des données en transmission d'informations a bas débit, a
1'amélioration de la résolution en analyse spectrale, a la prévision en
economie, méteorologie et autres series numériques.

Dans cet article nous discutons differents aspects de 1'identifica-
tion des modeles ARMA par le maximum de vraissemblance. Nous soulignons
le role de la représentation de "1'innovation" dans le galcul de la fonc-
tion de vraissemblance exacte. Finalement nous montrons comment la struc-
ture interne du modéle peut étre mise @ profit pour accélérer le calcul de
la fonction de vraissemblance soit par un prédicteur rapide de Kalman soit
par 1'implémentation d'une structure en échelle (Lattice) rapide.

Autoregressive-moving average (ARMA) models, are useful approximants
to the kinds of random processes commonly encountered in discrete-time
signal processing applications. Such models may be used to compress data
in low bit-rate information transmission, improve frequency resolution in
spectrum analysis, and to forecast in economic, meteorological, and other
time series.

In this paper we discuss several aspects of the maximum 1ikelihood
theory of parameter identification in ARMA models. We highlight the role
of innovations representations in exact 1ikelihood theory and show how

internal model structure may be used to speed up calculation of likelihood
3 in either fast Kalman predictor or fast lattice implementations.
¢
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1. INTRODUCTION

The random processes encountered in signal processing applications are
typically lowpass or bandpass processes in which redundancy is high. This
means finite-dimensional models may often be used to approximate the
second-order properties of the processes. The dominant motivations for
using finite-dimensional models are (1) they provide a systematic frame-
work for deriving data compression and frequency resolution improving
algorithms, and (2) they become predictor formulae for event forecasting.

The problems of data compression, resolution improvement, and forecasting
are "solved", so to speak, by identifying a parametric model that either
infinitely extends a data correlation sequence or matches the data, itself,
in a least squares or maximum l1ikelihood sense.

AR models suffer the defect that spectral zeros are not easily modeled
with low-order schemes. Couple to this defect the fact that sample-data
versions of rational continuous-time processes are autoregressive moving
average (ARMA), and we have strong motivation for identifying the more
general ARMA models.

Traditionally the emphasis in identification of ARMA models has been on
approximate representations (such as "long ARs") that lead to linear iden-
tification procedures. However, more recently there has been a flurry of
activity in exact maximum likelihood formulations and nonlinear optimiza-
tion procedures.

[Box and Jenkins, 1976] developed the familiar conditional sum of squares
for the identification of univariate MA processes and treated the ARMA
case as a special MA of infinite dimension. This method was later general-
ized by [Newbold, 1974] and [Ali, 1977] to mixed processes. They obtained
expressions for the inverse and determinant of the sample correlation
matrix from which the exact 1ikelihood could be computed. [Osborn, 1976]
applied the same approach to the case of multivariate moving average pro-
cesses.

Using a different type of linear transformation of the input white noise
sequence, [Phadke and Kedem, 1978] showed how to obtain exact 1ikelihood

PR PP S S P PP A
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for a pure moving average process by Cholesky decomposition of the corre-
lation matrix. This approach was generalized to the mixed models case by
[Ansley, 1979], who presented the first really efficient algorithm.

[Akaike, 1973] and [Anderson, 1978] have tried to obtain an analytical
solution to the problem of exact maximum 1ikelihood for vector ARMA pro-
cesses. [Akaike, 1973] formulates the problem directly as the identifica-
tion of a Gaussian model by numerical maximization of the Gaussian likeli-
hood function. Following [Kashyap, 1970], he concentrates on obtaining
expressions for the gradient and Hessian of the log likelihood function to
be used in a Newton-Raphson type non-linear procedure. All these methods
are in fact approximate in the sense that they consider the conditional
1ikelihood with conditioning on some fixed initial conditions. [Anderson,
1978] and later [Arhabi, 1978, 1979] further developed the method and
expressed the likelihood function in terms of the ratio of the periodogram
to the spectral density function of the model. Along these lines, the
following work is also relevant: [Tretter and Steiglitz, 1967], [Tunni-
cliffe Wilson, 1973], [Dunsmuir and Hannan, 1976], [Shaman, 1973], [Gal-
braith and Galbraith, 1974].

A11 the preceeding methods can be regarded as computationally impractical.
The success of the maximum l1ikelihood theory as an identification proce-
dure for ARMA processes is directly tied up with the ability to efficiently
compute the 1ikelihood function.

An alternative representation of an ARMA process is the Markovian represen-
tation, introduced by [Akaike, 1974]. As early as 1965, [Schweppe, 1965]
had indicated how Kalman filtering theory could be used to get the exact
1ikelihood function in the scalar case. Later [Harvey and Phillips, 1979]
further developed the theme. The method has been adapted to processes
with missing data in a very useful paper by [Jones, 1980]. Recently
[Gueguen and Scharf, 1980], using a somewhat different approach, based on
the fnnovations representation of an ARMA time series, have given new and
interesting filtering interpretations. These interpretations show the
connection between Markovian and innovations representations of a time
series and show how the Kalman gain vector is related to the impulse re-
sponses of increasing order autoregressive models fitted on the data.

R
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In this paper we generalize these concepts to vector autoregressive moving
average models and obtain efficient recursive procedures to compute the
exact likelihood function in fast Kalman predictor and fast lattice forms.

2. EXACT LIKELIHOOD FOR VECTOR ARMA PROCESSES

We assume that a finite set of observations {yg,....yl} on a d dimensional,
2ero mean, wide sense stationary random process {yt} is given. The problem
to solve is one of fitting a vector ARMA (p,q) model, q < p,

P

r a y =
m=0 m t-m

b =1, for all t (1)

u a
ont-n

3
n ™Mo

0

to the data. {ut} is an input d dimensional, zero mean Gaussian white
noide process whose (dxd) correlation matrix is E(utul) = W.

The 1ikelihood function is defined as the joint probability density of the
set of vector data (yg,...,y;), evaluated at the observations and param-
eterized by the ARMA parameters. Define the following ((N+1)dx1) observa-
tion vector
T T T

Yy = [.YO’---’.YN]
The vector y is distributed as a multivariate N(O,R) where R is an
(N+1)dx(N+1)d block Toeplitz matrix:

ro r-l rN
r r
1 "o
_ . ) T, T
R = . re = Elygypd = vy
"N "0

We shall derive several expressions for the likelihood function: convention-
al, Markovian, and innovations.

2.1. Conventional representation of the 1ikelihood. The (N+1)dx(N+1)d
matrix R is block Toeplitz symmetric but is not symmetric Toeplitz. The
1ikelihood function takes the form of the well known multivariate normal

density
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1 172 1.7 -1
L{y) ?;;;(5;7775 |R] exp{- 5 y Ry} (2)

and the log-likelihood reduces to

Tog(L(y)) = - {81 10g 20 - 1 10g [R]- 1 uTu (3

u =R

This is the vector closed-form often encountered in the 1iterature [Ansley,
1979], [Anderson, 1978]. 1t is highly non-linear in terms of the ARMA
parameters (a],...,ap,bo,...,bq.w). Several approaches can be considered
to maximize this expression. The conventional direct method consists in
deriving an approximate version of the 1ikelihood by conditioning on some
initial conditions.

2.2, Markovian representation of the 1ikelihood. An alternative approach
is to use the structure introduced in the Markovian representation of the
process {yt}. A stochastic process {yt} is said to exhibit a Markov prop-
erty if the future behavior of the process can completely be described by
some present state and the future input. The state condenses all the
information of the present and past of the protess {yti. Assuming the
process is stable and minimum phase, [Akaike, 1974] has established the
equivalence of the Markovian and ARMA representations. The finiteness of
the dimension of the predictor space of an ARMA process is the fundamental

characteristic of a process with a Markovian representation.

Internal structure. The finite basis of the predictor space is chosen as
the state of the process. The process {yt} has the infinite MA represen-
tation

Yo = I h u (4)
where u, =y, -y is the innovation of (y,} at time t. The analysis
t Tt Tt t
of the different predictors y s Y »..., reveals that they are
L PR IR P
given by

y 'L(y 'ERERY 4 ,U) s =1,2,...
t"’Slt_] t't-1 t+p-'||t_-l t
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= where L represents a linear transformation. The predictor space is then
o of finite dimension p and the vector of one-step ahead to p-step ahead
predictions forms a basis for the predictor space. The state space model
we obtain in the following paragraphs is based on the concept of a finite-
dimensional predictor space. It is slightly different from the one given
by [Akaike, 1974] since our definition of the state is a shifted version
of his.

Notice from the infinite MA representation (4) that the predictors are
written,

+ h. u

j Uy forallizo0. (5)

t+i+

¢ = Yi+i

t-1

From (1), the subsequent relation also holds:

P
y =-za_y _3 +h u (6)
t+p t j=1 ) t+p ’!t-] p t-1
These recursions impose an internal structure on the process. That is, if
we define the (dpx1) state vector XT = [yT yeens yT ! ], weobtain
t t t“ t+p-]}t‘]
Xe = A Xy By,

The vector u, =y, -y, is the innovation of the process as defined
t-1

earlier and has a multivariate normal density with zero mean and covari-
ance matrix W. A and B are respectively a (dpxdp) block state matrix and
a (dpxd) input matrix, defined as follows:

r Ny ~ -

A= 0 . and B =
I

B R Pp | |

Hence the stationary stochastic process {yt} js represented as a linear
map from the input innovatfon process {ut} to {yt} via a Markovian state
- space structure

L}
1]
’
?
x
’
v
'
-
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X, =A xt-1 + B Uy 1

T
y = C X (7)
t -1 t

Yy = CT X, +u

t t

with C defined as the output (dxdp) matrix [I1 0 . . . 0].

Initial conditions. The wide-sense stationarity of the process {yt}

imposes the condition that at time t=0 steady state has been achieved.
This means the time origin is rejected back to t=-~ and the initial state
Xq is a zero mean (dpx1) random vector with probability density N(O,QO).
The (dpxdp) covariance matrix QO satisfies the Lyapunov equation

QG =AQy A +BWE

First order descriptor. The first order descriptor of the vector process
is the response to a unit pulse 5t applied as the zth element of the vector
T The resulting output corresponds to the ;th cofumn of the (dxd)
impulse response matrix ht‘ The 1mpu1se response matrix is directly

by a (dxd) input diagonal matrix

input u

obtained by replacing the input vector u
By [Wolovich, 1974)

t

>
]

¢ = diag (ét,...,st)

1 t=0
t 0 t#0

The first order descriptor is then

ht = for all1 t < O
hg = 1 t=0 (8)
hy = ¢l at-) g for all t » 0

Second order descriptor. The lagged correlation matrices for the random
process {yt} are defined by ry = E(ytyg). Using the above Markovian repre-
sentation we obtain
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r, = EL(C" X, + ut)(c Xg + u

= ¢l At 0 €+ T at-Tsw

That is, the correlation matrix for lag t is
= o1 5t
ry C A QO C+ ht W . t>0

These equations are straightforward generalizations of the scalar version
[Gueguen/Scharf, 1980].

Likelihood. In this representation, the stationary sequence of prediction
residuals {ut} may be written

U =Y, - Y '
t T Y,

This sequence is a sequence of i.i.d. random vectors with normal distri-
bution, N(0,H). The joint distribution of the input vector u' = (uj,...,
u;) is then readily written as the product of normal distributions,

N

flunseoosty) = 7 N (O,N).
0 NT g0 Yt

These residuals may be computed causally from the time series values

xT = (yg,...,yz) provided the initial state is given:

Ut =Yt Y

¢-1
.
= ¢l X
tlt_1 t
Xe =A X _q+tBu
. d
Yol-1 = o

Thus we may write the conditional 1ikelihood function

N N
Ly/Xo) = = f(u, +y /X)) = n N, (y , W) (10)
00 =0 ' i O g0 Ve t|
The exact 1ikelihood function of the process is then obtained by integrat-
ing over all the realizations of the random initial state X0 which has a

T P S T
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normal density N(O.Qo). Then
N
L(y) = anjxo oo Nyt (¥, ey’ W) Nx0 (0,05) d X5 . (1)

This result generalizes the scalar result of [Gueguen/Scharf, 1980]. It
is of theoretical interest as we shall see later, but of no computational
value. A maximum 1ikelihood identification procedure based on the Markov-
ian representation could be derived using the conditional likelihood (10).
An interesting problem then is one of choosing the appropriate initial
state X [Gueguen/Scharf, 1980].

2.3. The Innovations Representation of Likelihood. [Gueguen and Scharf,
1980], drawing on ideas from [Anderson and Moore, 1978], showed how a
linear time varying predictor, or innovations, representation could be
derived from the Markovian representation. The essential advantage of
such a representation is that the initial predictor state is no longer a
random vector, but is rather an identically zero vector. These ideas
generalize to the multivariate case. This feature is of inestimable value
in 1ikelihood theory, as we shall see.

Internal Structure. We are lboking for a model that will produce an out-
put Yy that has the same statistical properties as the original ARMA pro-
cess. The innovations model maps, some time-varying zero-mean, Gaussian
white-noise {Gt} into {yt} through a time varying structure. The states
are still defined as a (dpx1) vector of predictors, RI = [&I
-T

t-1

yt+p 1l J, but now they evolve according to the time varying state equa-
Tt
tjon,

Xt = A xt-1 + kt-l Uy . (12)

Here k, 1s a (dpxd) time varying Kalman block vector that replaces the
time invariance B of the Markovian representation:

i
p.t]

T .S
kt [kl,t . k

and {Gt} is a multivariate nonstationary N(O,wt) innovation or prediction
residual that replaces the stationary residual sequence {ut} in the

Gt e S | N W W T e VT e T W _—
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Markovian reprecentation. w, = E[GtﬁI] is a (dxd) zero-lag correlation

matrix. The output is then given by the Markovian measurement equation

. s T 4
Yo TVl T T O Nt

Initial conditions. The origin of time may be brought back to t=0 and the i

initial conditions may now be given deterministically as

X0 =0
: (13)
First order descriptor. Substituting the diagonal matrix A, in place of

t
the vector Gt leads to the following expression for the impulse response:

h = 0 for all i < 0
hy =1 i=0 (14)
nt=cha™ k. foranl 4> 0
The term hg is the response of the representation (12) at time t+i to an
input 8, that applies a diagonal input at time t.

Second order descriptor. The (dxd) matrix correlation matrix sequence

{r:} of the output process is readily obtained as follows:

t T
ri = ELpyavyd

(15)
¢ Al P, C+ ¢l af-1 g

t "t

where Pt = E[XtXI] is the (dpxdp) zero-lag state correlation and is charac-
terized by the Lyapunov equation

T

P t

T
o1 APy AL H Kk K

The right choice for the Kalman vector k

and the correlation matrix Wy
can make {r?} become time invariant.

t




Choose kt and "t such that

ktwt = -A Pt C+A Qo C + BW

and

_ T
Wt'ro'c Ptc ’

where {rt},B, Qo are Markovian parameters defined in Section 2.2. Then,

t T, T .i-1
ry = o A. Pt c+¢C [-A Pt C+A Qo C+BW]
= ¢ Al % c+ct at-1 gy
=r.

1

The nice result here is the following: 1if one is interested only in the
second order properties of a stationary vector process, one can replace
the time-invariant Markovian representation by a time varying innovations
representation which gives the same mean value and correlation sequence
and whose advantage is that the initial conditions are deterministically
set at t=0.

Likelihood. Now we use the important property that the initial state in
the innovations representation is set at zero. The innovations process is
then

Up = Yy = ¥y 1 : N(O,wt)

Thus the vector of observation xT will have the same distribution as the

a

input vector uT with the different mean (9T ,...,yT )=y,
B tle- tP=Ti
Hence y s distributed as N(Q,QNL where @ 1s the d(N+1)xd(N+1) diagonal

matrix ay = diag(wN,...,wo). As a result the likelihood function is

expressed as a finite product of normal Ny (9t

,wt) densities:
t t-1

N
L(y) = = N (y ow,)
t=0 Yt tlt-1 b

The log likelihood of the observations is formulated in the favorable
form,
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N+1 ] N 1 N .
>~ log(2r) - 7 tio 1og]wtl -3 tEO UpWy Uy (16)

log(L(y))=-

with

In this form, the log likelihood function depends only on the innovations
values ﬁt and variance values W, . Both Gt and W, are non-stationary
sequences that have a finite time dependence, and are given at each time t
by the Kalman filter defined for the innovations representation. This
means that we have now a recursive way of calculating the exact likelihood
function of vector ARMA processes. The values so obtained are then fed
into a non-linear optimization procedure of the Newton-Raphson type that
provides an optimal set of parameters. This procedure is repeated till
convergence is achieved, and maximum 1ikelihood estimates of the ARMA
parameters obtained. This supposes that the orders (p,q) of the ARMA has

been determined.

2.4, Innovations representation and an important Chapman-Kolmogorov

equation. The two previous paragraphs have been devoted to the derivation
of the 1ikelihood function of the process {yt}. By comparing the Yikeli-
hood expressions (11) and (16), obtained respectively for the Markovian
and innovations representations, we see that a very important Chapman-
Koimogorov equation has been solved:

N N
m N (9 oW ) = f = N (y ,N)N (OaQ )dx (17)

t=0 Y tlm Eoantxg =0 Yp T Hear X OO

) T . .

y =C X 3 y, =0

t'M t 0/-1

e o ARtk 3 X% =0

u =y, -y

t t” Y,

.. LTe e et - ..
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e, " c X, * 71 ¢ M€ X, €7 g ©)
Xt = A Xt + But_1 ; Xy ¢ N(OaQO)
Yt Y N

t-1

2.5. Comments. The maximum likelihood identification procedure may be
conducted in the following way. First start with an initial guess of the
ARMA parameters and compute the corresponding correlation sequence. (In
the scalar case, [Dugre/Beex/Scharf, 1980] proposes an algorithm.) Then
run the Kalman filter to obtain the value of the exact likelihood function.
This value is fed into a non-linear optimization procedure that updates
the vectors of parameters.

One may want to speed up the computations involved in Kalman filtering.
Appealing to the formulae (14), it is seen that there exists a close
relationship between the time varying impulse response sequence {hg} and
the vector Kalman gain. Weshall use this feature extensively in the next
section to derive a Fast Kalman Algorithm (Morf, Sidhu, and Kailath algo-
rithm) that will avoid the solution of the Ricatti equation. This also
leads to a fast lattice implementation.

3. FAST ALGORITHMS

Recall the expressions of the exact likelihood (3) and (16) obtained by
the conventional method and the innovations method. It is clear that

and

1 T ]
mplu=-3

Thus the innovations representation solve the triangularization of the
inverse correlation matrix to obtain the white vector

—t oy £ A& it . -




v

r

v f (] - -1
() LAV
, 1.:. A

x mn gun e g

Ot el e
N

i

O

. L2t S S A s . e 3 .y T . . v ~ g A et Shad S s Sinie AR i MRt uanh audlh NS o

- 9,14 -
u=r2y
or since R'”2 is invertible
y=R/7Z4 . (18)

But the triangular or Choleski decomposition is easily obtained from the
innovations representation (12). If we write the observation vector

xT = [y;,...,y;] upside down, we obtain the upper triangular block matrix
equation:
] B N-1 | N-2 (N I
N o M M| YN
N-2 0
_ I oh™ o
0
0 I h.|
| Yo | ] T ]l
UN
= KN
_UO—J

Here the upper tr1angu1ar block matrix K is (N+1)d x (N+1)d dimensional.
The block elements {h } of the matrix are defined as the time varying
impulse response,

t .

hi =C A kt
t

h0 I

The block correlation matrix R is computed as the expected value of the
outer product of the vector of observations:

IN
R=E (|- [yL ces yg]}
Yo

TN WG IRy W T YT T
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Thus the ({(N+1)d x (N+1)d) dimensional block correlation matrix is decom-
posed into the following triangular form:

FgN
- . T AT T
R KN E{|: [uN . uo]}KN (19)

Ug
: That is
L‘.
L~i r - - - -
';ff "o " ™ rl h.'l"1 hg [-VIN [-I
{] T T ho., 0 0
i - ] 0 0 (20)
. o
;_ ro r'1 1 h]
E! & raoro) | 1| %ol | (T 1]

Thus we may write

T
_ T _1/2.1/2
h R = KN QN KN = R 'R

with

1/2 \1/2

R = KN(QN

where g, is the diagonal block matrix o = diag(wN wo). The triangular
matrix KN is invertible. Therefore we may write (20) in the form

A, T
Ky R =ay Ky (21)

By analogy with the scalar case, these equations are called the multivari-
ate normal equations. The inverse of the matrix KN’ is redefined as ay:

N N
1 a1 o e aN
I N-1
. AN
a, = KV = : (22)
LY " )
]
I a,
L ) G-

e e mtal 8t m 4 e = o L N -
n o a & s
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Now the analogy with the scalar case is much clearer. The block vector
(1 a?,....a:] represents the vector of parameters of an increasing order
vector autoregressive process fitted on the correlation matrix of the pro-
cess. This problem is solved in the scalar case by the Levinson-Durbin
algorithm [Levinson, 1947], [Durbin, 1960]. Equivalently, one might solve
(21) directly for the time varying impulse response h: using the impulse
response algorithm [Leroux/Gueguen, 1977]. [Robinson and Wiggins, 1965]
entended the Levinson algorithm to the multivariate case.

3.1. The Generalized Impulse Response Algorithm. Here we want to derive
an algorithm to obtain directly the matrix impulse responses hg that
appear in the matrix KN. It must not be forgotten that we are after a
fast algorithm to calculate the block Kalman gain vector kt' From rela-
tion (14), it is seen that the matrix impulse response sequence is given

by,

where CT = [I 0,...,0] and A is the block companion matrix given in Sec-
tion 2.2. This means that the block Kalman gain vector kt is composed of
the first p impulse response matrices;

T _ 1.7 p\T
ke = L)' (D)1

The generalized impulse response algorithm provides a recursive method
for calculating the Kalman gain vector.

Let's write the forward and backward predictors for orders p=0 to N;

Forward Prediction

N N " - N N TN
I s ay ! SRR LIS 8 Ty :s" . SP S:‘ 1 S: —
1oyt a2 [T o ', 52 |5 S ° (23)
. . .
) [ :
. . ' 0 0 ) 0
P Lroaw feper Uen ol L Syer LSy S So

k)T

Here S‘;:R;(hi and to connect the algorithm to the solution of (21), one
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should have in mind that Ri-wk. The order p is the order of the AR part
of the ARMA (p,q).

Backward Prediction

NN
N BNa1
N-1 . ' -1 K-1

Lt O P LS BEEEEE L Vo (24)
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From the matrix relation (23), the following results hold:

¥ 1_‘_:' —

Ny

, V=g a, r 2V = I for all N
T gzg ¥ -i-2 0
(25)
Fi AU B TR e ay
- i7 7 T T A S R R B

N N-1

But the expression for the difference a, -2 is given by the [Robinson-

Wiggins algorithm, 1965] and hence substitut%ng this expression in (25)
yields
SRR L P L o,
i j N-T1"N<1 2=1 N-2 " -i-2
(26)
by =1  for all N

We recognize from (24) that the sum is exactly

N

o

i

- N-T N-1

N VoieN 2] LR

= t=

-4

E§5 Therefore the elements S? satisfy the recursion

< N, N-1 roael N1

R Sy =8 - °N-1[RN-1] VoioN i>0 . (27)
-4

Ef The same derivation is applied to vTi-N-1 and it is easily shown that:

- N _ N-1 £ -1 N-1

= Vonie1 = Voneqo - ByalRy sy 100 (28)

{
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The equations given R£+] and R§+] do not need to be changgd and 1
remain valid provided that we can get an expression for ay = By that does
not include either the forward or the backward coefficients. From the
Robinson-Wiggins algorithm we know that

N r -1
ay = oy [Ry.q]

(29)
N, € -1
by = =8y_1[Ry.1]
From (22) and (23), one can extract the expression for b: given here:
N, e 1-1 _ _ N-TpeN-14-1
by = -8y-1[Ry-1] -V_y [S5 ] . (30)
The same procedure leads to a similar expression for am:
N r -1 _ N-1p N-14-1
aN = -GN-1[RN-]] = -S-N [vo ] . (3])

The generalized impulse response algorithm is then summarized as follows:

Ve N1 o (IRE 1T VL forannd

Woe Wt g e 1SNl forant

RE = RE ) -8 [RET™ oy e
RE = Ry _q -ay[RI1 8

and
°N~1[R;-1]-1 - sf&‘[vg”]”
e 11 _ N-TrcN-14-1
B [RN.1d = Vo (S )

Initial Conditions. The initial conditions are straightforward and given

by

[vg,...,v§] = [rgse--sy)
0
[Sys-++2Sgd = [royeeeeorg)
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In the scalar case it reduces to the impulse response algorithm proposed
by [Leroux/Gueguen, 1977]. By analogy, the terms aN_1[R£_1]-1 and
'BN_1[R§_1]°1 will be called multivariate forward and backward reflection

coefficients (or parcor coefficients).

el

Remarks. This algorithm, although a recursive way of computing the im-
pulse response of the increasing order vector AR processes, does not
improve the number of computations a great deal. In fact, if one wants
to obtain the Kalman vector Kﬁ = [(h?)T,...,(hg)T], one has to start the
algorithm with the knowledge of the matrix correlation sequence for -n-p-1
<i<p. This interval depends on N.

[ % et g o o v ri
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So far the generalized impulse response algorithm has been derived with-
out using the information we have of the internal structure for the pro-
cess.

3.2. Generalized Impulse Response Algorithm for ARMA Processes: The
Morf, Sidhu and Kailath (MSK) Algorithm. We show here tnat the general-
ized impulse response algorithm, modified to take account of the ARMA
structure, is identical to the [Morf, Sidhu and Kailath, 1974] algorithm
derived from the Chandrasekar type equations. As the process {yt} is
ARMA, it behaves like an AR on its tail. That is, for N>0, the matrix
correlation sequence {r,} satisfies the AR(p) recursion,

+...+a.r =0 for all N > 0. (33)

rN+'I+p ta rN+p p N+l

Here the {ai} are the true parameters of the autoregression. After trans-

¥ it
¥ PR
4 LRSI .

- position, equation (33) becomes,

e

ti- -aI

E" r-N-1-p = [T'_N_],...,F_N-p] :T (34)
. T

If we write this equation for r_p-1 to _N-1-p* then the following matrix
equation is true: |
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ii
= - 9.20 -
.o - - T
- [Tpr 7 [T1 T2 ][ }
-1 y r r .
m M = -2 -p-1 . (35)
. r r r -a)

-N-p-1 -N-1 -N- .
- L L A B L
?? Premultiply by the row block vector of backward prediction coefficients
b and obtain:
L _ ]
- r-p-1

N N _ N
Coyo-eaby I3 frp o 1=V oy (36)
" -N-p-1]

Therefore the internal structure imposed by the ARMA nature of the pro-
cess is characterized by the relation

N

< N N N °
Vonep-1 = DVoney VonezVonapd | : (37)

This indicates that we need only to compute p values VTN_1 to VTN-p' The
initial conditions are now given by {ri}fg, independent of N. This obser-

vation summarizes the essence of the Fast Kalman algorithm and underlies
N

the MSK algorithm. From (37), the vector [V'jN_2 . V-N-p-1] is given
by the 1inear transformation,
N N N N T
[V_N_2 cen v-N-p-1] ’[V-N-1 ces V_N_p]A (38)
where A is the state companion matrix. The recursions giving S? and V?

in the generalized impulse response algorithm (32) are written for i=l,
-uo,p:

N+1 _ N ra-1 N .
Si Si -GN[RN] v-N-i-1 1 .1’-.c’p (39)

NT N eqel N
Voneiol = Von-g-1-8n[RyDT S5
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Define now the following (dxdp) dimensional block vectors

[(shT [t )T
L X and v, = .
-(s;)T_ | (V)

Then the set of equations (39) is condensed into the vector form

T _ T ry=l T T
Kner = Ky -op[RyIT Yy A
T T,T

cael LT (40)
Yyor = Yy A -syIRGTT Ky

N

It is also noted that Rﬁ = Sg, and R; = Vo. These identities, together

with the expressions for aN[R;]'1 and BN[R§]'1 given in (32), prove that:

U ¢ = [10,...,0]
] (41)

Yy
T T

=V SBN

°N T N

Finally, for purposes of easy comparison with the MSK algorithm, define
the matrix Mk as the inverse of the matrix of mean square backward pre-
diction errors:

Pa-1
Mk [Rk]

Then the generalized impulse response algorithm for a vector ARMA process
is summarized in these equations:

. T T
K =Ky - Xy My Yy

- eq-T
Yar ANy KRV OO Y (42)
(R0 = IRGIT + €T w17 W €
T T T.T -1 T T
(Myard = - 00 vy CIREDT € v, IMD . |

c
cT

This algorithm is readily recognized as one form of the MSK algorithm
[Morf/Sidhu/Katlath, 1974], [Friedlander et al. 1978], applied on the
fnnovations state space model. To complete the identification the reader
should note that the matrix CT and the block vector yN in (42) correspond

PN AP S
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respectively to the matrix H and the block vector XN in the MSK algorithm.
The number of computations is significantly reduced compared to the direct
solution of the Riccati equation or to the generalized impulse response
algorithm. It should be clear that a number of operations can be per-
formed in parallel.

Remarks. Recall that we are after an algorithm to compute the block Kal-
man gain vector in order to calculate the exact likelihood function. The
vector K, introduced in (40) 1s defined as

where kt is the block Kalman gain vector we want and a, is the block
diagonal correlation matrix of the innovations process, nt=diag(w ....,wOL

The same derivation can be worked out in the scalar case starting from the
scalar impulse response algorithm. It leads to the scalar version of the
MSK algorithm used by [Pearlman, 1980].

The generalized impulse response algorithm or the fast Kalman algorithm

are also fast algorithms to generate the generalized reflexion coefficients
r a-1 € -1 .

“N-1[RN-1] and BN-1[RN-1] . Hence the method can be implemented as a

fast lattice as well.

4. CONCLUSIONS

In this paper we have derived a recursive procedure to compute the exact
1ikelihood for vector ARMA processes. The key to the method was the
"{nnovations” representation of the process that allowed the use of Kalman
filtering techniques. The Kalman vector gain was shown to be composed of
time varying impulse response values of the process. This motivated the
derivation of the generalized impulse response algorithm. Finally, intro-
ducing the knowledge of the internal structure of the ARMA process, we
showed that the generalized impulse response algorithm was identical to the
MSK or fast Kalman algorithm detived from the Chandrasekar type equations.
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ABSTRACT
A general framework for deriving and interpreting analysis and synthesis

spectra of the autoregressive (AR) and moving average (MA) type is reviewed.
Linear transformations of finite data records provide for a unified treatment

of spectra as different as the Bartlett (BA), the maximum likelihood method
(MLM) and the maximum entropy method (MEM) spectra. We then generalize these
ideas to ARMA linear transformations. An ARMA type spectrum is obtained and re-
lated to other ARMA spectra. A parameterization scheme is proposed.

INTRODUCTION

In many applications of signal processing such as sonar, radar, speech, and
communications, only short segments of the processes are available. This situ-
ation arises due either to inherent nonstationarities that force segmentation or
to the short interval over which the signal can be observed. Hence the problem
of estimating spectral density functions from a finite set of time series ob-
servations is a crucial step in the modeling of underlying data. Current re-
search activity is primarily centered on "high resolution' or parametric methods
of spectrum analysis (cf ex: (1)-(4)). Recently a general framework for deriviﬁg
and interpreting analysis and synthesis spectra of the autoregressive (AR) and
moving average (MA) type has been introduced (5)(6).

In most techniques, stationary time series are modeled as the output of time
invariant linear systems (filters) driven by stationary white noise sequences.
When dealing with finite length data records the problem of initial conditions

arises and is generally avoided by making some assumptions on the data outside
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the interval of observation.

Alternatively, the proper initialization may be obtained by identifying time
varying models where the initial conditions manifest themselves as time vari-
ations. In this approach, the vector of data is viewed as the result of a
linear transformation applied to a vector of uncorrelated values. This formu-
lation leads to a unified presentation and interesting interpretations of spec-
tral estimates such as the Bartlett (BA), maximum likelihood method (MLM) and
maximum entropy method (MEM) spectra (5)6). Depending on the type of data being
analyzed we are able to improve the performance of the BA and MLM spectra using
a parameterization procedure. It appears that these procedures provide a method
of classifying data as AR, MA or ARMA. These results are briefly reviewed in
the first part of this paper.

We generalize these concepts to the definition of an ARMA linear transfor-
mation on finite length data records using results from (7) and the statistics -
literature (8), (9). This leads us to the derivation of an ARMA spectral esti-
mate analogous to the MIM spectrum in the AR case of the BA spectrum in the MA
case. Its relationship to "high resolution" ARMA spectra is also discussed. As
in the AR and MA case, it is speculated that an appropriate parameterization
procedure would improve the performance of such a spectral estimate, at least
for ARMA type data.

AR AND MA LINEAR TRANSFORMATIONS

Let Yt - ('yo......yt_l)T denote a t-sample snapshot of the real, zero mean,"
wide sense stationary process (yt) with correlation sequence (rt). Yt has a

symmetric and Toeplitz correlation matrix with first row (ro, cesesr_ ). Let

t-1

Ut = (uo "“ut-l)T be a white vector with uncorrelated entries such that

E(Ut) = 0 and E (Utvz) = It (txt identity). The AR and MA linear transformations

are defined respectively by the matrix equations

T P T Ty Rad

Ly
d
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AY =1U

Yt - HtUt

where the lower triangular matrices At and Ht are obtained by a Gram-Schmidt
orthogonalization procedure. These matrices can be computed from the cor-
relation matrix or its inverse since the following Cholesky decompositions hold

and are unique:

Ath - It
Generalizing the linear system concept of frequency response, we define the
"frequency response’ of the AR and MA linear transformations in a natural way

asl

At(m) = Ac Cc(w)

H
Ht(w) = Ct(w) Ht

with
CE((») = (1 P LIS (t-l))

AR Case: As At is a whitening transformation, we associate with the AR complex

frequency response the spectrum

1 1
Rt(w) = =

2 H -1
| A (w) | C.(w) R™C. (w)

This spectrum is recognized as the maximum likelihood method spectrum. In the

case of AR(p) data, the AR linear transformation At is At p:

1Supersctipt (H)T denotes (Hermitian) transpose.
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In general the AR transformation matrix At can be approximated by At,p where
the matrix is completed by repetition of the order -p row. The associated
spectrum is called a parameterized MLM spectrum and has been shown to yield
good spectral estimates in the case of AR type data. (See (5), (6), and Figure 1
of this paper).
MA case: The spectrum associated with the MA linear transformation is

R (w) = lutm)lz - ¢} (W) BHE (w).
This spectrum is a scaled version of the conventional or BA spectrum as written
in (10). 1If the data were MA(q), then the MA linear transformation matrix Ht

would be banded even though the rows would remain time varying:

ho , f'ho
O‘ O\\
\\ 0 \\
AN
\ \\ 0
hd nd N
s q ‘g
= h h ~
Ht \\ q o\ e Ht,q
N S N

N ~ N
. \\ .

Bt A Y 0 na > pd

|t q o L q J

A parameterization scheme H insuring non-negative spectra is proposed and

t,q

associated with a parameterized BA spectrum in (6). (See Figure 2).
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ARMA LINEAR TRANSFORMATIONS

Suppose the underlying process (yt) is ARMA (p,q):

: b
a,y - _
j.O j t‘j j-o j t j

Here a = bo = 1 and et is a white noise process. The snapshot Ye has a cor-
relation matrix RY that has the LU decomposition

T
Ry =H H .

We define the AR part of (yt) as the AR process (zt) with coefficients (ao...,apL

A snapshot of the process Zt satisfies the AR linear transformation

Aep 2™ U

where Ut is a vector of uncorrelated data and At » is given by the Cholesky

’

decomposition

Rl aal 4
Z t,p t,p

Recall At P has the banded structure illustrated earlier. Applying this AR

linear transformation to the snapshot Yt’ produces a finite length vector Xt

whose correlation matrix Rx has the following structure (7), (8), and (9):

o -

0

x %

T
]
'
1
L
t
-
o
"
(a4

. 49
The matrix Rx is banded Toeplitz except for the upper left (p x p) corner.

Thus Rx is almost the (t x t) correlation matrix of a pure MA(q). However,

Rx has an L U Cholesky decomposition as follows:
T
RX BX Bx

Bx has the particular lower triangular structure (8)(9),
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This decomposition corresponds to an MA linear transformation applied to
Et to produce xiz

Xt = Bt,q Et .

Here Et is a vector of uncorrelated data. As a result the ARMA linear trans-
formation is summarized by the matrix relations

Y = =
At,P t xt Bt,q Et

At,p Ht = Bt,q .

It is not hard to show that Ht is an impulse response matrix determined by the

Kalman gain (7). This fully characterizes Bt and sharpens the result of

Newton and Pagano (8), (9).

It should be noted that Bt is exactly a banded matrix for q > p-1. The ma-

trix At b is easily constructed from (ao cee ap) by running the Levinson/Durbir
’

algorithm for decreasing j,

k

a =a, k>p, o <<k
+1 i+l 41 j+1.2,.-1
o) =" -alll Wl a-@DHT s<p, osts

It is also shown in (8) that the last row of Bt q converges to the vector of
’
true MA coefficients as t goes to infinity:

1im bi =b, o <i<gq
Lo 1
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ARMA Spectrum: If Sx (w) and SY (w) denote the spectra corresponding to

xt and Yt’ a plausible definition of SY (w) 1s

Sy(w)
S, (w) =
Y H T
C (w)At,pAt,pc(w)
H T
Sx(w) =C (w)Bt‘th’qC(w)
Hence an ARMA spectrum has the following form:
CH(w)B BT C(w) CHRXC
t,9 t,q
Syle) = A oral A clwy  c&lc
t,p t,p Z

This spectrum reduces to the MLM (BA) spectrum in the event of AR (MA) data.

ARMA Spectrum Analysis:

The method is based on the initial computation of the AR coefficients. For

t >p+q, these coefficients are computed using the lower left corner of zeros

in-fS{

. ot t
\ ry(O) ry( )
0
AN
\ 0 \\
b \
Ha? ao At,p \
h N A \ AT -
N N \ t,p
N . N \
0 N N N . o
N\ \ -
L 3 ag _ry(“) ry(oﬁ -

In fact this corresponds to solving the normal equations on the tail:

p
kz-:-'l a, ry(m-k) = -ry(m). m > q+]

The method can be summarized in the following steps.
- Estimate the correlation matrix RY , using the covariance method of
linear prediction, for example.

- Solve for (ao...ap), using the normal equations on the tail.
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- - Decompose RY - Htﬂz using a fast Choslesky decomposition routine

- Compute B, _=A_ _H .
. ompute B, ep Bt . . -
: U H H .
b Compute SY(w ) c Bt’th’qC/C A:,pAt,pc d
g In the limiting case, H T
- C b b ¢
- 4m S (w) =
.- t Y cHaaT c ;
~ “pp

where b = (b ....b )T and a = (a8 ....a )T
-q o q -P o P

Relationship With The "High Resolution' ARMA Spectrum: The "high resolution'

ahiidio

ARMA spectrum (4) can be written using our notation as
Sc (w)

CH a aT c E
=P P

S(w) =

where ép is the vector of AR coefficients and is computed by solving the normal
equations on the tail, corresponding in fact to using the lower left cormer of
zeros in RX' Se(w ) 1is the smoothed periodogram of the filtered process

(Ek) k=1....t:
P
+ I
i

& © 2y 31 Vg-1

k- 7k

This time invariant filter can be expected to whiten the data less than the
linear transformation At,p and hence yield a process €
The spectrum proposed here is consistent with both the MIM and the BA spectrum.

far from a pure MA(q).

Furthermore it is fairly flexible since one can apply a parameterization pro-

cedure on the AR part or on the MA part or both. Different sizes can be chosen
to extend the matrices At,p and Bt,q depending on the relative importance of K
the poles and zeros in the spectrum. This should give better control of the
compromise between resolution and smoothness and provide a tool for analysis of

spectra of the ARMA type. For the moment, these results are conjecture based

on the experience gained for AR and MA linear transformations.
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ABSTRACT

A general framework for deriving and in-
terpreting analysis and synthesis spectra of
the autoregressive (AR) and moving average
(MA) type is presented. Investigation of AR
linear transformations of finite dimensional
data records yields a set of intermediate AR
techniques associated with approximation of
the inverse correlstion matrix R~l. The
corresponding spectrum we call a parameter-
ized maximum likelihood method (pMLM) spec-
trum. Investigation of MA linear transfor-
mations yields a set of intermediate MA
techniques associated with approximation of
the correlstion matrix R. The corresponding
- spectrum we call a parameterized Bartlett
- spectrum (pBA).

- Simulations on synthetic AR, MA and ARMA

X data sets illustrate the techniques and lead

to intcresting remarks concerning the use of

parameterizations of R and R™! to differen-

tiate between data sets of AR and MA type.
INTRODUCTION

. Modern spectrum estimation is primarily
2 concerned with the identification of parametric

o models that represent an underlying random pro-
cess. In most techniques, the concept of wide
sense stationarity seems to underly the very no-
tion of a spectrum. A stationary time series is
modeled as the output of a time invariant linear
system driven by a stationsry white noise process.
The difficulty with stationary models is that in-
itial conditions manifest themselves as nuisance
parameters. The problem of the proper initial-
ization can be solved by identifying non station-
ary models where the inital conditions are absorbed
naturally into the theory.

Pursuing ideas developed in [1], we present
a general framework for deriving and interpreting
snalysis and synthesis spectra of the autoregres-
sive (AR) and moving sverage (MA) type. Investi-
gation of AR linear transformations of finite
dimensional data records yields a set of inter-
mediate techniques (parsmeterized likelihood)
{1], [2], essocisted with the maximum likelihood
method (MIM) [3] and maximum entropy method (MEM)
4], [5], (6], of spectrum analysis. Investigation
of MA linear transformations yields intermediate
MA techniques (parameterized Bartlett) associated
with an approximation of the correlation matrix and
and the conventional Bartlett (BA) spectrum [7).
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J. P. Dugre* N. Moreau**

**Ecole Nationale Superieure des
Telecommunications
46 rue Barrault, Paris 75634

Simulations on synthetic data sets lead to
interesting conclusions: the parameterizations
of the correlation matrix R and its inverse R
seenm to be useful for deciding whether a data set
is of the AR or MA type. 1In the paper we use term-
inology like stationary time series, snapshot.,
filter, and linear transformation. This terminol-
ogy 1s summarized in Fiq, 1. The figure is re-
ferred to throughout the text.
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AR REPRESENTATIONS OF A STATIONARY TIME SERIES

In this section we briefly recall the results
developed in [1] and provide an alternative inter-
pretation of the maximum likelihood method spectrum.

Let (yt) denote a real, zero-mean wide sense
stationary sequence with real 12 correlation .ge~
quence (rt).

Kolwmogorov Representation:

The sequence (yt) has the following AR (x) re-
presentation

¥

nfo u lo+0

8 Yten " Yt
where u, is a white noise sequence with zero mean
and unit variance. The cocfficients (‘i) are the
AR () filter coefficients.
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The first order descriptor is readily obtained
by replacing the input sequence (u,) by (4,),
(§,=0 t Yo, 6y=1):

for all t

¥ an LN
amo D t°D t

The correlation sequence, a second order descrip-
tor, is characterized by

nzo 'n n%o rn-n+s 'n = 6.
The specialization to the AR(p) case is straight-~
forward.

AR or Analysis Transformations

We consider now a finite length data record

Yt-(yo....y _1) of the process (y ). It has
a symmetric and Toeplitz correlation matrix
Rt: . .

o 1 Te-

r .

~
N\

Rt' ‘\‘

Te-1 To

The inverse correlation matrix R-lhas a UL

Cholesky decomposition (Fig. 1):t
R - Al: A,
o
N . a .
v O] |«
~
DR i A0

Definﬁng the white vector U, as E(U_)=0 and
E(UtU ) = I (txt identity), the snapshot Y
hasSthe AR Eype representation (Fig.l).

AYe=Ue
The row vectors gf of A, are the order-s MAwhite-
ners or analyzers and tﬁe column vectors a4, are
interpreted as impulsive exciters (1]. a; 1s aiso
known as the impulse response for the AR filter
tgat corresponds to the order-s MA synthesizer
h®.
The first order descriptor is obtained by sub-
stituting It for Ut to obtain

A, = 1,
where Bt is the matrix

]
o

(-4

As AtY = U describes a whitening operation on
Yt' reSlacinq Yt by ct(u) yields

At(w) - AtCt(w)

Py = (10 L 00D,
This 1is a column vector of phased complex fre-
quency responses for the MA whiteners gf:

A @) = (2%, «eens a7w))

a%(w) = a® C ()
The spectrum associated with Y 1s the inverse of
the spectrum associated with tﬁe whitening trans-

formation A_ (Norm of the complex €requency re-
sponse):

R (W) = jmr = 2
t IAt(w)]‘ EElw)REICt(u)

1
t-1
2 | as(w)l2
8=o

This spectrum has the followine interoretations:

-R_(w) is the maximum likelihood method (MLY)
spectrum [3].

- The inverse of R _(w) is an averaee of order
increasing whitening spectra [5].

- 1f only the (t-1) term is used in the sum-
mation above (correspondine to a very specific
weighting pattern), the maximum entropy method
(MEM) spectrum is produced [4].

- Using the second interpretation of the column
vector a. , the ML spectrum is also the Fourier
transform of the diaeonal sums of a correlation
sequence. This correlation is built on the impulse
response sequence for the AR filters that corre-
spond to the order-s MA synthesizers (o<s f_t—l).

Parameterized AR Transformation

If the process (y_ ) is AR (p), then in the
Levinson/Durbin algorithm, the reflection coeffi-
cients converse to O in exactly p steps. Hence
for t>p, the a® vectors repeat themselves and

the AR transformation specializes as follows:

Lo

O\\
\\ . 0.
P ~ P
A a
t,p= P, .0\
~ o ‘\\
0 SoP S QP
- P °4

The results for AR(p) linear transformations sug~
gest that the AR transformacion A_ may be approxi-
mated by the pt order lpproxinnnf Ag, [1]. [2].
The associated spectrum is a parameterized maxi-
mum likelihood spectrum. 1Its properties have been
explored in [1], [2]. [9].
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MA REPRESENTATIONS OF A STATIONARY TIME SERIES

The same ideas translate directly to the MA
case vhere the LU Cholesky decomposition of the
correlation matrix R plays a key role (Fig.l).
This yields an intermediate spectrum called the
parameterized Bartlett spectrum (pBA).

Wold Decomposition

The Wold decomposition for the sequence (yt)
is the infinite moving average (MA(®)):

Ye® nfo M Ye-n
The coefficients (h_ ) are the MA(») filter coeffi~
cients. They are also the impulse response ge-
quence since substituting (Gt) for (ut) yields:

ht - ht t>o

ht =0 ow
The correlation sequence (second order descriptor)
is then written in terms of the first order des-
criptor:

T for all t

t © n:o hahotle]

MA or Synthesis Transformation

As in the AR case, we consider only the snap~
shot Y . The corresponding R, symmetric and
ToepliEz correlation matrix has the LU Cholesky
decomposition

H
Rt tht

vhere H 1is the lower triangular matrix introduced
in the second section. The sth column vector hs
is the order-s MA synthesizer and the sth column
vector h.is the impulse response of an YA linear
transformation to an impulse applied at time s.
hg 1s also the impulse response for the AR filter
corresponding to the order-s MA whitener.

The finite length data record Yt has the MA
type representation

Y, = 80,
and the first order descriptor is obtained by re-
placing ut by I.: Ht = H,. The frequency response
of the MA transformations is

H
Bt (W) = ct(w)Ht
This is a row vector of phased complex frequency
responses for the impulse responses (ho(w).....
he_1{(w). As in the AR linear transformation case,
we define a spectrum

t-1
R = |1 @] CLWR.C (= 5 b w]?

The spectrum R'(w) has then the following inter-

pretations: t
-1
R . Zaly snw
t Re@ = ok (eayy-gmge

This is the conventional or Bartlett spectrum

[71 .

It 1s also an sverage of magnitude squared

frequency responses,
1 1 t-1 2
-— t —
t Rt(w) -2 ‘Eolhs(w)l

This is the reason for the extreme smoothness of
the conventional spectrum.

- It is also interpreted in terms of the impulse
responses for the AR filters corresponding to the
order-s MA vhiteners (o <s<t-l). It is the
Fourier transform of the diagonal sums of the cor-
relations built on these impulse responses.

Parameterized MA Transformations

As in the AP case, the parameterization is
suggested by the particular structure of the ma-
trix H, in the MA(q) case. Suppose the original
process (y,) is MA(q). By running the impulse re-
sponse algorithm we can generate the column vectors
of H.. The algorithm in that case produces time
varying impulse responses of maximum length q.
Hence the MA transformation specializes as follows:

° h
o~
S 0
~
= *nd
H: h ho\
~
O ~
ht-l \ht-l
I q .o

The order-s MA synthesizers hS stop their growth
at s*p but remain time varying . hS converges to
the true stationary MA(q) synthesizer only for

s » ®, This is a major difference with the spe-
cialization of the AR transformation for the AR(p)
case.

The parameterization suggested corresponds to
applying a rectangular window on the correlation
sequence and then using the impulse response al-
gorithm. This procedure can lead to negative
spectra that are meaningless, even though the
Toeplitz nature of the approximant is preserved.
We propose the following approximation:

X ;
hg
S 0
e Ing S gl
B .q q o
-~
o nd S48
L q °

This approximation of Ht does not preserve the
Toeplitz property but insures against negative
spectra. As in the AR case, it corresponds to
applying more weight to the q-order MA synthesizer.
The spectrum associated with H, q is a parameter~-
ized Bartlett (BA) spectrum: '

D)

1l H
t Ct(w) Ht,q t,qCt

PP SRR .4




NUMERICAL RESULTS

The influence of parsseterization on the
MLM and BA spectra is investigated for three
different sets of synthetic data. For each
set of data the correlation sequence is esti-
mated using the unbiased estimator on 4096
points. The different spectra are calculated
using 21 lags of the correlation sequence.

The exact spectrum and the MEM spectrum are
plotted as references.

The first set of data considered is the
AR(4) process used in (1]. It has two real
poles at + .94 and a pair of complex conjugate
poles at + j .94. Fig. 2 shows the classical
spectra corresponding to a covariance matrix of
order 21. Fig. 3 shows what happens when the
MLM and BA spectra sre parameterized st (4,21).

It is readily noted that the parameterization of
the BA spectrum changes a great deal, vhereas the
MLM spectrum appears almost unaffected.

The second set of data is an MA(4) with two
real zeros at + .94 and a pair of complex conju-
gate zeros at + j .94, Figs. 4-5 show the dif-
ferent spectra for the same parameterization as
before. The MEM spectrum of order 21 has spurious
peaks. Fig. 5 shows the dramatic changes obtained
by parameterization of the MLM gpectrum. Little
effect is seen in the parameterized BA spectrum,

Finally the same experiment is carried out
for a set of ARMA (2,1) data with a pair of complex
conjugate poles at .66+j.49 and a real zero at .33,
Here again we note the effect of parameterization.
Both the BA and the MLM are affected, but the effect
on the BA spectrum seems qualitatively much more
important. For the MM, the effects are evident
only the low frequencies.

We can summarize the results in the following
wvay. The selection of the right technique in
parametric spectrum analysis depends a great deal
on the type of data being analyzed. An MA type
technique will be much more suited to the analysis
of data of the MA type than an AR technique. This
is obvious. Furthermore, once the right technique
has been selected it is seen that parameterization
has little effect on the resulting spectrum. These
results seem to provide a method to differentiate
between datas sets of the MA, AR or ARMA type. One
has to compare the parameterized MM and Bartlett
spectra to the non-parameterized ones to decide
which one has been affected most.

CONCLUSIONS

We have presented a general framwork for de-
riving and interpreting analysis and synthesis
ectra of the AR and MA type. Along the lines of
lfnnd 2 ve have introduced a parameterized Bartlett
spectrum. Here we haven't been concerned with the
very important problem of order fitting. An order
fitting rule (J-Divergence) was proposed in 1].
Discussions of MA(q) and AR(p) linear transfor-
mation generalize to ARMA(p,q) transformations.
Such transformations underly lattice and inno-
vations representations of stationary time series
and are the object of future work.

IR S Sl S L T AP, TP U WO AT

T =

REFERENCES

(1) L.L. Scharf, C.J. Gueguen, J.P. Dugre, "Para-
metric Spectrum Hodelling A Signal Pro-
cessing Perspective,"” 1%% 1EEE Workshop on
Spectrum Analysis, Hamilton, Auc. 1981.

(2) C.J. Gueguen, F. Gianella, "Analyse Spectrale
et Approximation de Formes ONuadratigques"
Proc GRETSI, Nice, June 1931.

(3) R.T. Lacoss, "Data Adaptive Spectral Analysis
Methods," Geophysics, Vol 26, 4, Aug. 1971.

(4) J.P. Burg, "Maximum Entropy Spectral Analy-
sis," Ph.D. dissertation, Stanford Uni-
versity, 1975.

(5) J.P. Burg, "The Relationship Between Maximum
Entropy Spectra and Maximum Likelihood
Spectra,' Geophysics, Vol. 37, Ap.1972.

(6) T.J. Ulrych, T.N. Bishop, "Maximum Entropy
Spectral Analysis and Autoregressive De-
composition,” Rev. Geophysics, Space Phys., .
Vol. 13, Feb. 1973.

(7) P.D. Welch, "The Use of the Fast Fourier Trars~
form for the Estimation of Power Spectra,"
IEEE Trans. Audio Electroacoust, Vol.AU 15,
June 1970.

(8) C.J. Gueguen, L.L. Scharf, "Exact Likelihood
Identification of ARMA Models: A Sicnal
Processing Perspective,” Proc. EUSIPCO,
Lausanne, Switzerland, Sept. 1980.

(9) J.P. Dugre, "Parametric Spectrum Analysis of
Stationary Random Sequences," Ph.D. dis-
sertation, Colorado State University,

Aug. 1981.

ACKNOWLEDRMENTS

Our thinking has been influenced by recent
results of M. Morf, T. Kailath, B. Friedlander
and by remarks of A. Oppenheim at L'Aquila in
September 1980.

Continue to next page for Figures 2 through 7

.

PSP W TN P



NN
0 S
| .ty s T
i IR TS
[y T »an
: Iy “e

.' 7ig.s. Clomami astew B1s)

bttt ¢ 3000 570000508 2”3 1anp. 0 573

—
A fag.6. Bnmaeni wesare 49(1.1)

[T Ty
L 20 TP TS
) e

e i,

o]
o G
~

. e . .
. RPCICI ) e
I S E AN AT

PUIP SIS ST Sall ST S ST N Vil L.

e
Ty R IT Y RN YR YRS

Mt Pl TR'Y
! Mugvie) & Bhia2)!

r.. 1605, bflumus of FANERATLINAAD W 4)

|
o

L P N A N T L )

Ikmt = 1)
aakvie) - ..

Vig.?. Wfiaves & Summtemagiae (1.3}

%

[ L)
el o) AR THI e N

i  AfaM)
v} o Satl)




Vv

7

--T ¥
' R A
. R R B R
P

............

OFFICE OF NAVAL RESEARCH
STATISTICS AND PROBABILITY PROGRAM

BASIC DISTRIBUTION LIST

UNCLASSIFIED TECHNICAL REPORTS

FEBRUARY

Copies

Statistics and Probability
Program (Code 411(SP))
Office of Naval Research

Arlington, VA 22217 3
Defense Technical Information
Center

Cameron Station

Alexandria, VA 22314 12

Commanding Officer

0ffice of Naval Research
Eastern/Central Regional Office
Attn: Director for Science
Barnes Building

495 Summer Street

Boston, MA 02210 ]

Commanding Officer

Office of Naval Research
Western Regional Office

Attn: Dr. Richard Lau

1030 East Green Street
Pasadena, CA 91101 1

U. S. ONR Liaison Office - Far East
Attn: Scientific Director
APQ San Francisco 96503 1

Applied Mathematics Laboratory
David Taylor Naval Ship Research
and Development Center

Attn: Mr. G. H. Gleissner
Bethesda, Maryland 20084 1

Commandant of the Marine Coprs
(Code AX)
Attn: Dr. A. L. Slafkosky
Scientific Advisor
Washington, DC 20380 1

Copies

Navy Library

National Space Technology Laboratory
Attn: Navy Librarian

Bay St. Louis, MS 39522 ]

U. S. Army Research Office

P.0. Box 12211

Attn: Dr. J. Chandra

Research Triangle Park, NC
27706 1

Director

National Security Agency

Attn: R51, Dr. Maar

Fort Meade, MD 20755 1

ATAA-SL, Library

U.S. Army TRADOC Systems

Analysis Activity

Department of the Army

White Sands Missile Range, NM
88002 ]

ARI Field Unit-USAREUR

Attn: Library

c¢/o ODCSPER

HQ USAEREUR & 7th Army

APQ New York 09403 1

Library, Code 1424
Naval Postgraduate Schonl
Monterey, CA 93940 1

Technical Information Division
Naval Research Laboratory
Washington, DC 20375 1

OASD (I&L), Pentagon
Attn: Mr. Charles S. Smith
Washington, DC 20301 1




Director

AMSAA

Attn: DRXSY-MP, H. Cohen

Aberdeen Proving Ground, MO 1
21005

Dr. Gerhard Heiche
& Naval Air Systems Command
. (NAIR 03)
o Jefferson Plaza No. 1
- Arlington, VA 20360 1

[‘ Dr. Barbara Bailar

- Associate Director, Statistical
o Standards

o Bureau of Census

- Washington, DC 20233 1

Leon Slavin
Naval Sea Systems Command
(NSEA O5H)
Crystal Mall #4, Rm. 129
Washington, DC 20036 1

B. E. Clark
RR #2, Box 647-B
Graham, NC 27253 ]

Naval Underwater Systems Center

Attn: Dr. Derrill J. Bordelon
Code 601

Newport, Rhode Island 02840 1

Naval Coastal Systems Center
Code 741

Attn: Mr. C. M. Bennett
Panama City, FL 32401 1

o Naval Electronic Systems Command
. (NELEX 612)

- Attn: John Schuster

National Center No. 1

Arlington, VA 20360 1

Defense Logistics Studies
Information Exchange

Army Logistics Management Center

Attn: Mr. J. Dowling

Fort Lee, VA 23801 1

..........
..........

[ N BN e S e S SNt Mo S

Reliability Analysis Center (RAC)
RADC/RBRAC
Attn: I. L. Krulac
Data Coordinator/
Government Programs
Griffiss AFB, New York 13441

Technical Library
Naval Ordnance Station
Indian Head, MD 20640

Library
Naval Ocean Systems Center
San Diego, CA 92152

Technical Library

Bureau of Naval Personnel
Department of the Navy
Washington, DC 20370

Mr. Dan Leonard

Code 8105

Naval Ocean Systems Center
San Diego, CA 92152

Dr. Alan F. Petty

Code 7930

Naval Research Laboratory
Washington, DC 20375

Dr. M. J. Fischer

Defense Communications Agency
Defense Communications Engineering
Center

1860 Wiehle Avenue

Reston, VA 22050

Mr. Jim Gates

Code 9211

Fleet Material Support Office
U. S. Navy Supply Center
Mechanicsburg, PA 17055

Mr. Ted Tupper

Code M-311C

Military Sealift Command
Department of the Navy
Washington, DC 20390

RIS W W YR 2R 9P RNp A IS AP NP

Copies

1




Copies Copies

Mr. F. R. Del Priori

Code 224

Operational Test and Evaluation
Force (OPTEVFOR)

Norfolk, VA 23511 1

.............. LTl T e T - . . . . Y
e RO E T T T T IR N . e s “ e e -
LY

.................

............ - - .- - - - - ~ &) - . - Rl . - - > A - - - .
.......... A AP AR A SRR WAL WA WL YT YD I Y e, PO L LI . STIE L PRI AL VUl GO 0o S W SRR S W S SRR VoA W Wt







