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t INTRODUCTION

"Forecasting and Time Series Model Types of 111 Economic Time Series"

is a chapter to be published in a book Major Time Series Methods and Their §

Relative Accuracy by S. Makridakis, A. Andersen, R. Carbone, R. Fildes,

M. Hibon, R. Lewandowski, J. Newton, E. Parzen, and R. Winkler, Wiley: London,
1953. It reports in detail the forecasting procedure followed by Parzen and
Newton in their participation in the forecasting "competition" whose results
are reported in Makridakis, S., et al (1982) "The Accuracy of Extrapolation
(Time Series) Methods: Results of a Forecasting Competition," Journmal of
Forecasting, 1, 111-153. ;
The joint paper did not explicitly draw any conclusions concerning

which methods performed best. Commentaries on the joint paper (to appear in

1983 in the Journal of Forecastiqg) seem to acknowledge the excellence of

the forecast errors cobtained by Parzen and Newton. David J. Pack points out
the desirability of increasing the numeracy of the joint paper's Table 2(b),
which provides MAPE measures of how well each forecasting method performed
for the entire 111 series sample [reproduced in Pack's ILxhibit 1)}. Pack's
Exhibit 2 is the same table with methods ordered to the "average of
forecasting horizons 1-12" column, and all MAPE's divided by 13.4, the minimum
MAPE in the ordering column. {
We reproduce Pack's Exhibits 1 and 2. Readers must draw their own ;
conclusions concerning the superiority of the forecasting methods used by
Parzen and Newton. Our contribution to the commentaries on the joint paper

is printed at the end of this report with the title "How to Learn from the JoF

Competition."
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1. Introduction

"Is it possible to put an end to the argument of what
forecasting methods are better and under what circumstances?", is
the guestion raised by Professor Spyros Makridakis in several
stimulating papers (1976), (1978), (1979). He has organized a
"forecasting competition” to which various forecasting experts
would contribute forecasts of 111 economic and business time series
which he has collected. This paper reports the results of our
analysis of these series, based on the general approach to time
series modeling, spectral analysis, and forecasting developed by
Parzen, with the collaboration of Newton.

An appendix describes the theory of univariate time series
modeling and forecasting uvsed in this study. The main text
summarizes the diverse models which are encompassed by our
approach, and which arise in the study of the 111 time series being
forecasted.

The methods of time series modeling and forecasting applied in
this paper can be applied automatically but they are not rote
formulas, since they are based on a flexible philosophy which
provides several models for consideration and diverse diagnostics
for qualitatively and quantitatively checking the fit of a model
(see Parzen (1979), (1980), (1981)). The models considered are
called ARARMA models because the model computed adaptively for a
time series is based on sophisticated time series analysis of ARMA
schemes (a short memory model) fitted to residuals of simple
extrapolation (a 1long memory model obtained by parsimonious "best
lag" non-stationary autoregression).

A consumer of time series forecasting and/or modeling methods
must evaluate the value of a proposed procedure in the context of
the actual time series with which he, or she, is concerned. Our
approach aims to be applicable in all the diverse fields to which
time series analysis is being applied.

A major problem of time series forecasting .is whether 1long
range forecasting and short range forecasting require different
methods to obtain satisfactory forecasts. This paper describes
iterated models which provide qualitative diagnostics as to the
possibility of long range forecasts (by diagnosing whether the time
series 1s long memory). Both long range and short ranfe forecasts
are provided by a model obtained by fitting a parsimonious
non-stationary autoregression whose residuals Y(t) are modeled by a




stationary autoregression.

The modeling procedure is both automatic and flexible. In
particular, two model orders are determined for Y(t) and we would
recommend computing and comparing forecasts from both models.

This paper aims to illustrate the results one obtains by
typical graphs, and to describe the time series model types that
one should expect to encounter when dealing with many economic time
series.

2. Ilterated Models Approach to Time Series Analysis

The problem of forecasting future values of a time series from
observations of 1its past values has an extensive literature which
propose many different approaches. The approach adopted here aims
to fit automatically to a time series sample not one but several
models. The class of models considered is suitable for time series
modeling, spectral analysis, and forecasting and for time series
encountered by researchers in the physical sciences, engineering
sclences, biological sciences, and medicine, as well as to the
social sciences, economics, and management sciences.

A time series may be predictable for a long time in the future
or only over a limited future. Ve say the former has "long memory"
and the latter "short memory". A time series with 1long memory
requires a "non-stationary" model with periodic, cycle, and trend
components. A time series with short memory requires a
"stationary” model which is a 1linear filter relating the time
series to its innovations or random shocks. The linear filter |is
an AR, MA, or ARMA filter (autoregressive, moving average, or mixed
autoregressive-moving average).

The model we fit to a time series Y(.) is an iterated model

Y(t) ~O— Y(t) -0 e(t)

If needed to transform a long memory series ¥ to a short memory
series Y, Y(t) is chosen to satisfy one of the three forms

Y(t) = ¥Y(t) - &(%) Y¥Y(t-%) , (1)
Y(t) = Y(t) - ‘;1 Y(t-1) - ¢, ¥(t=2) . (2)
Y(E) = Y(t) = &, Y(t-t -1) - §, ¥t0) (3)

Usually Y(t) is short memory; then it is transformed to a white
noise, or no memory, time series €(t) by an approximating
autoregressive scheme AR(m) whose order m is chosen by an order
determining eriterion (we use CAT, introduced by Parzen
(1974),(1977)). .

In the present study, Y(t) was found to be always short
memory. Tt is then modeled by a stationary autoregressive scheme.
T+ is argued by Parzen that approximating AR schemes suffice for
spectral analysis and forecasting. Only for model interpretation
is it desirable to fit an ARMA scheme. In the present study not
more than 15 percent of the time series could be regarded as
requiring an ARMA scheme.




~rn

To determine the best 1lag ¢ , we use non-stationary
autoregression; either fix a maximum lag M and choose v as the

lag minimizing over all <

T 2
b {y(t) - ¢(7) Y(t-1))
t=M+1

or choose T a3 the lag minimizing over all +r

T 2 T 2
b {y(e) - ¢(1) Y(t-0)}° s ¢ Y (t)
t=T1+1 t=1+1

For each 1, one determines ¢(t), and then one determines 1 (the
optimal value of T) as the value minimizing

T T

Err (1) = I {Y(t) - ¢(1) Y(t-r)}2 + I Yz(t)
t=M+1 t=M+]
é or T T
! Err (1) = I {Y{(t) - ¢(7) Y(t—T))z + I Yz(t)
t=1+1 t=1+1

The decision as to whether the time series is long memory or not is
based on the value of Err(t).- An adhoc rule we use is if Eff(t) <
8/T, the time series is considered long memory. In the present
study all time series were Jjudged to be 1long memory by this
criterion. When this criterion fails one often seeks
transformations of the form of (2) or (3), using semi-automatic
rules described in the appendix.

3 For the maximum lag M of non-stationary autoregression, the
following rules were adopted in this study: M = 2 for yearly
series, M = 5 for quarterly series, M = 15 for monthly series,

R. Forecasting Formulas .

For forecasting purposes it suffices to adopt for TY(t) a
stationary autoregressive model of suitable order m whose
coefficients 1, ..., &, are estimated by Yule Walker equations in
the correlation functionp(v) of Y(t). In this paper the model
adopted for all time series was of the form

Y(t) = ¥Y(t) - 6(1) ¥(t-T)

Y(t) +a, Y(E-1) + ... v Y(t-m) =e(t)

The residual variances are denoted

T o T
RVY = I  Y°(t) ¢+ . L Yo(t)
t=M+1 t=M+1

T T .
RVYT = T e (t) 3 L Y (t)
t=T+1 t=t+]

The last 18 points of the graphs of Y and Y represent not
observed values of these series but forecasted values of horizons h
= 1 to 18. The mathematical procedure by which they are derived is

as follows.




Let

YW (t+h|t) = E{y(t+h) |¥(t), ¥(t-1), ...)
denote the predictor of Y(t+h) given values Y(t), Y(t-1), ... .
From the equation

Y(t+h) = ¢(1) Y(t-t+h) + ¥(t+h)
one obtains, by condi‘ioning with respect to Y(t), Y(t-1), ...
v (te+h]t) = ¢(0) YW (t-t+n]t) + ¥ (een]o)
To obtain a formula for forecasts of ¥ when we have fitted an
AR(m) to Y:
Y(E) + @) Y(E-1) + ... + a ¥(t-m) = e(t)
write

Y (t+h) + a, Y{t+h-1) + ... + am Y(t+h-m) = ¢ (t+h)

Yiesnle) + o Yiene1]e ¢ L4 a_ ¥ (t+h-m|t) = 0

One can now compute YM(t+h/t) recursively for h = 1, 2, ...,
using the fact that

YW (t+i|e) = Y(t+3) if j< O

For example,

Yty = ) Y(E) 4 ...+ o Y(t-ml)

Then one can compute Yu(t+h/t) recursively for h = 1, 2, ... using
the fact that

Yit+ilt) = v(e+3) 1f 3< 0

For large values of h, one expects Y (t+h/t) = 0. Then
YW (t+h]t) = ¢(1) ¥¥(t+n-|t)

When¢(t) > 1, this does not damp down to =zero, and provides the
long term predictability apparent in many of the series.
4. Summary of Iterated Models Fitted to 111 Time Series

Table I describes the 1lags of the most significant lag

non-stationary scheme for Y(t). For 60% of the monthly series,
the annual period (T = 12) was most important; only 26
percent of the quarterly series had an annual period (t= i),

The AR character of the residual series Y(t).are described in
Table IX. Order m = 0 indicates white noise (or no memory); 60 %
of the yearly series obey the "naive" model ¥(t) = e(t), white
noise.

Table III lists the names of 33 series arbitrarily chosen from
the set of 111 series to represent typical series. We select this
swall number of series to discuss in detail. The different types
of time series which can be diagnosed by our approach to time

e e e e et S
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series modeling and forecasting are illustrated by the results in
Table IV and the graphs of Y and Y for the series listed in Table
I11.

Table IV summarizes the basic model diagnostics of a time
series Y(t). These are length; most significant non-stationary
autoregressive lagt, and coefficients ¢(r); the residual variance
RVY of this non-stationary AR scheme; the best orders (denoted CAT
1 and CAT 2) of approximating AR schemes for Y(t), their horizons
HOR 1 and HOR 2, and the residual variance RVYT of the best
approximating AR Scheme.

_Some ARMA models for quarterly time series were:
or Y = (I-1.04L%)Y, (1-.7uL)Y = (1-.85L4)¢
OH Y = (I-1.02L)Y, (I-.29L4)Y = (I-.38L3)¢
Some ARMA m?Sels for monthly time series were:

MA Y = (I-1.02L74)Y, (I-.41L+.32L12)Y = (1-.42L+.31L5)¢

MF Y = (I-.97L)Y, (I+. 31L10)Y = (I-.49)¢

MJ Y = (I-1.08L)Y, (1-.75L-.21L3)7 = (I-.54012)¢

MN Y = (I-1.0ML )Y, (1-.29L2-.28L3~,27L114.,30L13)Y = (I-.42L12)¢
MR Y = (I-1.05L12)y, (1-. 21L5-.41L6)¥ = (I-.55L12)¢

Table III. Typical Series for Detailed Discussion

(Y,0,M are the prefixes of Yearly,
Quarterly and Monthly Series Respectively).

YA Machinery and Equipment (YAC 17)
YB National Product and Expenditure-Residential
Construction (YAC 26)
YC Population Movement Male Death (YAD 6)
YD Crude Birth Rates (YAD 15)
YE Deaths, Analysis by Age and Sex, All Ages,
United Kingdom (YAD 24)
OA Industrial Production: Textiles (ONI1)
OB Industry Germany (ONI10)
OC Companv Data Germany (QONM15)
OD Company Data (ONM6) )
OF Industrial Production: Durable Manufactures (QRC13)
QF Industrial Production: Total Austria (QRC22)
0G Value of Manufzcturer’s New Orders for Consumer Goods (QRCY)
OH Per Capita GNP in Current Dollars (QRG13)
QT Total Industrial Production (ORGYH)
MA Company Data (MNB11)
MB Company Data (MNR2)
MC Company Data (MNB20)
MD Company Data (MNB29)
ME Company Data USA (MNB 38)
MF Company Data UK (MNB47)
MG Company Data (MNR56)
MH Company Data (MNB65) '
MI Textiles - Quoted at Paris Stock Exchange (MNC17)
MJ General Index of the Industrial Production (MNC26)
MK Reserves - Danemark (MNC35)
ML New Private Housing Units Started Total USA (MNCHl)
MM Industrial Production Spain (MNG28)
MN Industrial Production: Finished Investment

PRy i




Coods Austria (MNG37)
MO Aluminium Production Netherlands (MNI103)
MP Lead Production Canada (MNI122)
MO Production Tin Thailand (MN122)
MR Industrie France(MNI13)
MS Motor Vehicles Production Canada (MNI131)
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‘ Appendix
UNIVARIATE TIME SERIES MODELING AND FORECASTING
AUTOMATIC APPROACHES USING ARARMA MODELS

The model we propose fitting in general to a time series Y(t)
is an iterated model (with symbolic transfer functions G and g_.)

Y(t) — 6 > T(t) | ga | c(t) white notse

where Y(t) is the results of a "memory shortening™ transformation
chosen to transform a 1long memory time series to a short memory
one, and g«ls an innovation filter which is either an approximating
AR filter or an ARMA filter. Parzen (1982) introduces the
terminology ARARMA scheme for the iterated time series model with G
determined by a non-stationary autoregressive estimation procedure;
an ARIMA scheme, introduced by Box and Jenkins (1970), corresponds
to a pure differencing operator for G. Autoregressive analysis by
Yule-Walker equations yields a stationary autoregressive scheme; a
non-stationary autoregressive scheme 1s one which 1is fit by
estimating its coefficients by ordinary least squares.

To identify the final model, or "overall whitening filter", of
a time series, one should determine its model memory type, and
jdentify an iterative model for the time series:

IDENTIFY TIME SERIES MEMORY TYPE
No Memory Short Memory Long Memory
(White Noise) (Stationary) (Non-stationary)
(Unpredictable) (Partially (Predictable)
Predictable)
J’ Identify ' Identify
Stop ] Gentle
Whitening Filter Transformation
as AR(p), Ma(q), to Short Memory
or ARMA(p,q) Time Series ¥
Estimate " Model Y by |
Parameters Whitening Filte
No Memory No Memory
Residualsc Residualse

A confirmatory theory of statistical inference is available
only for short memory time series (which are ergodic). The
modeling of a short memory time series by a whitening filter can be
regarded as a science, and it can be made semi-automatic. Given a
sample of short memory stationary time series ¥(t), our modeling
procedure in the time domain is to compute approximating
autoregressive schemes.




1. Form the sample correlation function

T-v. - T .
BIV) = L ¥(t) Y(tev) ¢ T v(p)
t=] t=1
but do not base any decision upon it, or upon the partial
correlations. Rather, compute approximating autoregressive
schemes,

2. Solve successive order m = 1, 2, ... Yule Walker
equations o for autoregressive coef?icientscxhd..., a and residual
variance g_, m

3. dge an autoregressive order determining criterion (either
CAT or AIC) to determine m(1) and m(2), the best and second best
orders of approximating autoregressive schemes.

k. Compute PVH(h), the prediction variance horizon function
for the insight it provides on the memory type and ARMA type of the
time series. Compute horizons HOR 1, HOR 2 using approximating AR
schemes of orders m(1) and m(2).

5. Compute a subset AR model.

6. Compute a subset ARMA model.

One can also compute various spectral density functions and
spectral distribution functions if one would like the additional
insight of the spectral domain.

The diagnosis of a time series as being 1long memory can be
made semi-automatic. Many criteria are available to diagnose time
series memory type, using (1) correlations, (2) spectral densities,
(2) autoregressive prediction variances, (4) prediction variance
horizon function, (5) spectral distribution functions, and (6)
S-PLAY diagnostics. The definitions below are given in terms of
population parameters, assuming a stationary time series. In
practice, the diagnosis is based on sample analogues of these
parameters.

The prediction variance horizon PVH(h), h = 1, 2, ..., {s
defined 1in terms of the normalized mean square prediction error of
infinite memory prediction h steps ahead:

2 v 2 .
h,e = ELY (t+n]t) ) fE(Yz(t)},Y“(t+h|t)=v(t)-v“(t+h}t),

YW(t+nlt) = E{y(t+n) [Y(0), v(t-1), ...}

2 i3 obtained by introducing the MA (=)

A formula for oh -

representation of
Y(t) = elt) + Ble(t-l) + .... . Then
2 2 2 2
L . o {1+ By + -ou # Bh_ll )
The graph of o = increases monotonically from o_  at h =1 to 1
as h tends tow . We define -
2

PVH =1 -
(h) 1 O o '

h=1, 2, ...

and define horizon HOR to be the smallest value of h for which
PVH(h) < 0.05 (whence qi >.95).
L)

[4
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The infinite moving average coefficients 8, are estimated by
inverting the transfer function zm(z) of an approximating
autoregressive scheme to obtain, for k = 1, 2, ...

“OBk + cls + ... + ukeo = 0

k-1

The classification of memory type by prediction horizon HOR
is:

No Memory Short Memory Long Memory
HOR = O 0O < HOR < =« HOR = =

By HOR = =, we mean HOR is comparatively large: experiments lead
us to conclude that one should compare HOR with the order ORD of
the approximating autoregressive scheme. Let HOR/ORD denote the
ratio of HOR to ORD; identify time series as follows: If HOR/ORD
< 1, then MA(q), with @ < HOR-1, If HOR/ORD > l4(say) and PVH
decays slowly, then 1long memory. If PVH declines smoothly and
exponentially, then an AR(p) is indicated. If PVH has '"bends",
then ARMA. If PVH has many level stretches with periodt, then an
ARMA model is indicated of the form

) 2 q
I+81L+82L +....+B L e ()

Y(t) =
I-o.L"
The final identification of the orders p and q should be by
parameter estimation or by use of S-arrays.

The determination of most appropriate "gentle" transformation
of Y to Y, where Y is 1long memory and Y is short memory must
inevitably involve the physical nature of the observed time series.
A semi-automatic approach can be developed by considering the
following examples of long memory time series.

A time series Y(t), t = 0, + 1, ..., is called periodic with
period T, if

Y(t+1) - Y(t) = 0, all t.
It follows a linear trend Y(t) =z a+bt, if for all t
Y(t+1) - Y(t) = b, a constant

It is a pure harmonic of period ¢ if for all t

Y(t) - ¢¥(t=1) + Y(t-2) = 0, ¢ = 2 cos 2n .
T
Then

Y(t) = Acos 2rt + Bsin 2n t .
T T

As gentle memory shortening transformations, it is natural to
consider

Y(t) = Y(t) -4(2) Y(t-g), (1)
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Y(t) = Y(t) -6Y(t-1) -4,¥(t-2) (2)
Y(t) = Y(t) -] 1(:—(:-1?5 -4 Y (t-m) (3)

whose coefficients v , §(1), 10 6 are determined adaptively from
the data. Our first choice 13 (1); the 1lag ¢ is chosen to
pinimize over r

T 2 T 2
Erx(t) = I {y(t) - $(r) ¥(t-v))}° +# I ¥ (t)
t=1+1 t=T+1

and ¥ 1) is chosen to minimize over ¢(1)

T 2
I {y(t) - ¢(1) Y(t-1)}
t=T+]

The stationary correlation functionp(Tt) of (¥Y(t), t = 1, 2,
esey T) 1is defined by

T-1 T

Blt) = I Y(t) Y(t+1) + I Y2(t)
t=1 t=1
Define
. v 2
SSQ(v)- = L Y (t)
t=1

One can show that
55Q(T)
SSQ(T-1)

2 sso(T-
Err(t) = 1-]$(1)] §§g%¥7%%§2ﬁ;3

(1) = (1)

The most significant lag ?15 defined as the value minimizing Err
{(t).
We propose three possible actions at the initial stage of
analysis of a time series (Y(t), t = 1, ..., T):
L. Declare time series to be long memory,
and form Y(t) by (1)
M. Declare time series to be moderately long
memory, and form Y(t) by (2).
S. Declare time series to be short memory,_
.and form Y(t) = Y(t), or Y(t) = Y(t) - ¥_
where Y is the sample mean. After computing Y, one performs a
naive test to decide if it should be set equal to 0; a naive test
1s|f|< 20// where o is the sample standard deviation.

1. Compute and print $(t) and Err (1) for « =1, 2, e, M
wher: M 4is suitadbly chosen (15 for yearly, quarterly, or monthly
data):

?. Determine f . 1If Err(t) < 8/T, go to L.

3. Ir¥t) >.9, andt 5 2, go to L.

b, Irfe¢(1)> .9 and ¢ = 1 or 2 determine the best fitting
non-stationary AR(2) scheme minimizing.




15

T 2
r {y(t) - ¢,Y(t-1) - ozv(:-z))
t =3

Let q{ ¢2 denote the minimizing values of ¢, and ., Then go to

S. If $(f) < .9 go to S.

6. If é(r) is approximately ! for some v, one may set this
value of T equal tot and go to L. One compares the stationary
analysis of this choice of memory shortening transformation with
that determined by the value of ¢ minimizing Err ().

7. Non-stationary prediction analysis of a time series 1in
general finds coefficlents ¢,,..., ¢ minimizing (for a specified
memory m)

T 2
r {y(v) - ¢, ¥(t-1) - ... -.omv(t-m))
t=m+1

We recommend a subset regression solution which attempts to

determine the most significant lags 51, erey Jniminimizing

T

DA -6, Y(E3) - el - gy ¥(emi )3
t=m+1 3y In n
and determines the solution for a specified set of lags 9 eeey

} - One may take n = 2, and J; and i, are two adjacent lags (m-1
and m) for which ¢ (1) is approximately i; one then obtains the

transformation of type (3).
A model frequently fitted to monthly economic time series is

the so-called "airline” model (see Parzen (1979)):
- (1'% vio) = (-0 -0 ,1'% etn)

It seems doubtful that this model would be judged adequate by our
criteria, which proposes

Y(t) = (I—¢(12)L12) Y(t)
913(L) Y(t) = e(t)

If one desires a parsimonious ARMA model for Y(t) it may be given

by - - -
Y(t) + ulY(t-l) + °12Y(t"12) + cl3¥(t-13) = ¢ (t)

or
Y(t) + ulY(t-l) + azv(t-Z) = e(t) + 512‘{“12’

It should be noted that double differencing is not recommended
by us as a memory shortening transformation. When the need for
double differencing arises, it appears as 2 situation in which long
memory components continue to be present even after several
iterations; then the final iterated model is of the form

re) o~ r'V¢) o= ¥ (e) —o0—c(r)

o mmrer
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Graphs of Y and Y (denoted YT) for the 33 times series listed in
Table 1II. The break in the graphs indicates the end of the
observed values of the time series and the beginning of predictions
of the next 18 values.
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Industrial Production: Durable Manufactures (QRC 13)
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"HOW TO LEARN FROM THE JOF COMPETITION"

by
Emanuel Parzen and H. J. Newton

Institute of Statistics
Texas A&M University

The significance of the "forecasting competition" is best illustrated by
comparing it to horse racing. One may distinguish two main types of people
at the race track. Type A are bettors; they go to the track to bet on the
outcomes of the races and are concerned only with predicting winners. Type B
are lovers of knowledge; they go to enjoy the beauty of the horses (and
perhaps believe that the purpose of horse-racing is improvement of the breed!l),
and are satisfied with watching the race.

From a forecasting competition, Type A people want to know who won,
which was not explicitly reported in Makridakis et al (1982). The JoF
Competition merits publication as a report of raw summaries of the results.
Realistically, the authors are not likely to take any action which implies
that half of its members are below average. It is appropriate, and desirable,
to have subsequent papers that analyze and interpret the results of the
forecasting competition. We thank the authors who have provided commentaries
in this issue for the enlightenment that they have provided.

Our approach to the forecasting process is based on the belief that a
forecasting procedure should, in addition to forecasts, provide knowledge
about the "information" in the time series. Important aspects of information
are modern versions of the classic idea that a time series can be usefully
decomposed into trend, seasonal, and covariance-stationary irregular.

Parzen (1981) states that the first step in analysis of a time series is to
determine its "memory'". '"Short memory" corresponds to a covariance-stationary
time series for which there are available semi~automatic model identification
criteria for fitting AR, MA, and ARMA schemes which transform the "short

memory" time series to a "no memory" time series (white noise). "Long memory"
contains trend and seasonal components which one seeks to model by regression
(on other series or on deterministic functions) or non-stationary autoregression

on its past (the first AR in ARARMA).

It is our experience that the transformation of a long memory time series
to its "no memory form" has the following "uniqueness'" property: if €;(t) and
€2(t) are the white noise residual time series of two different methods of
decomposition, then €,(+) and e¢,(+) are approximately identically distributed.
One usually can conceive of several ways of transforming long memory time

*Research supported in part by the Office of Naval Research




series to a short memory time series; the optlhal transformation is not a
statistical matter, but depends on how the final overall model is to be
applied and interpreted.

Automatic AR and ARMA model identification algorithms can be used to
generate analytically several models (called "best" and "second best'"), and,
thus, forecasts, based on the information contained in past data.

Forecasters should devise systems for comparisons of forecasts generated
by different procedures on the time series of interest to their organizationm,
rather than relying on comparisons of other time series. The publication of
such case studies should be encouraged.

Qur approach to time series analysis is used in the TIMESBOARD library
of time series analysis mainline programs and computer subroutines {Newton
(1982))}. TIMESBOARD provides tools for a decision-maker seeking forecasting
models developed by identifying the information and memory in the time series.
Qur program DTFORE produces several sets of forecasts for each time series.
Each set is optimal in a statistical sense, depending on how the forecaster
desires to interpret the diagnostics concerning information and memory of the
series. For example, faced with the problem of forecasting a series that is
undergoing explosive growth, one can obtain a set of forecasts for continued
growth, for leveling off, and for decline. The forecaster, together with
the decision maker, can decide which method to use. Of course, the rules of
the competition demanded that we produce a single set of forecasts for each
series. This was done automatically.

The question remains, then, how to improve the results of the JoF
Competition. We have two suggestions.

First, produce plots of the various forecasts appended one above the
other, together with the true future values. Obviously, publishing such a
graph for 1001 series is impractical. However, a representative sample of
each type could be published.

Secondly, forecasting methods are, in our opinion, best compared by
forming the time series of forecast errors and studying them. An approach
to studying distributions of errors are the quantile and functional
statistical inference methods being developed by Parzen (1979) that compute
medians, inter-quartile ranges, and various measures of distributional shape.
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