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ABSTRACT

N

The plane wave reflection coefficient is an important geometry independent means of speci-
fying the acoustic response of a horizontally stratified ocean bottom. It is an integral step in the
inversion of acoustic field measurements to obtain parameters of the bottom' and it is used to
characterize an environment for purposes of acoustic imaging. This thesis studies both the gen-
eration of synthetic pressure fields through the plane wave reflection coefficient and the inversion
of measured pressure fields to estimate the plane wave reflection coefficient. , These are related
through the Sommerfeld integral which is in the form of a Hankel transform. The Hankel
transform is extensively studied in this thesis and both theoretical properties and numerical
implementations are considered. These results have broad applications. When we apply them to
the generation of synthetic data, we obtain hybrid numerical-analytical algorithms which pro-
vide extremely accurate synthetic fields without sacrifising computational speed. These algorithms
can accurately incorporate the effects of trapped modes guided by slow speed layers in the bot-

‘tom. We also apply these tools to study the inversion of measured pressure field data for the
plane wave reflection coefficient. We address practical issues amociated with the inversion pro-
cedure including removal of the source field, sampling, field measurements over a finite range,
and uncontrolled variations in source-height. A phase unwrapping and associated interpolation
scheme is developed to handle improperly spaced data.

A preliminary inversion of real pressure field data is performed. In parallel, an inversion
of a synthetically generated ficld for similar bottom parameters is also

Gresa's function obtained from the real data shares many features with
Greea’s function estimated from the syathetic data, suggesting that the total
the plane wave reflection coefficieat will soon be possible. Errors in the presen
plane wave reflection coefficient are associated with uncontrolled source-height
the acquisition of data.
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CHAPTER It
INTRODUCTION
1.1) Overview
The plane wave reflection coefficient is an importn!t geometry independent means of speci-
fying the acoustic response of a horizontally stratified ocean bottom. It is used both to calculate
fields in propagations models and as an input to a variety of inverse techniques which seek to
determine bottom parameters [1,2,3 ]. In this thesis we will study both the generation of syn-
thetic pressure fields through the plane wave reflection coefficient and the inversion of measured
pressure fields to estimate the plane wave reflection coefficient. We will consider only the fields
associated with a CW point source in the deep ocean over a horizontally stratified bottom and
will not allow the bottom to support shear waves. The results of this thesis, however, are appli-
cable to a wide class of wave problems and can be generalized to permit the source to be within
any isovelocity layer and the introduction of shear. Further, it is our hope that the tools

developed in the course of this work will find applications in many areas.

The foundation for our studies of the forward and inverse problems is the Hankel
transform, [4,5,6 ] which arises in these contexts because the Sommerfeld integral which relates
the plane wave reflection coefficient to the reflected field is in that form. We will derive general
properties of the Hankel transform to guide the work in these areas. We will aiso study and
develop numerical implementations to permit computer processing. A fast, accurate numerical
Hankel transform algorithm is developed and illustrated.

The Hankel transform results allow us to isolate significant sources of degnd.'ntion in
aumerically generated synthetic ficlds. To remove these sources we develop a hybrid analytical-
nnmaica! procedure which is significantly more accurate without sacrificing computational
speed. This hybrid algorithm performs some of the calculations analytically while koeping the
numerical computation in the form of a Hankel transform.

Through another hybrid technique we incorporate the effects of trapped modes that may be

———n
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guided by low speed layers in the bottom. The results are accurate both in the near and far
fields, in contrast with modal methods. The method developed for handling these modes can
also be used to control other complications associated with poles in the plane wave reflection
coefficient such as those .that would be introduced by allowing for shear wave propagation.

In Chapter V we begin to study the inversion of pressure field data to obtain an estimate
for the plane wave reflection coefficient. We draw upon our previous results to consider a
recently proposed method for performing this inversion by Frisk, Oppenheim and Martinez [7 ].
Frisk, Oppenheim and Martinez have proposed that the Sommerfeld integral be inverted
directly, without recourse to the specular approximation used by previous methods. [7 | With
such a direct inversion, estimates would no longer be confined to real angles of incidence and
regions where the specular approximation is valid. {8,9 ] Such a direct inversion has been made
possible recently by coherent measurements of the reflected pressure field resulting from a point
source over a horizontally stratified bottom. [10 ] In this chapter we study several practical issues
associated with this proposed direct inversion. We consider directly the issues of source field sub-
traction, sampling, windowing of the pressure field, and uncontrolled variations in source height.
The issue of source-field subtraction arises because the plane wave reflection coefficient is
directly related to the reflected field and not the total field, which is measured. Under the issue
of sampling we study both the sampling rate required to obtain a valid inversion and the effects
of improperly spaced data. To handle improperly spaced data, an interpolation procedure is
developed which is based on a new phase unwrapping procedure. In the discussion of window-
ing we determine the range to which field measurements must be taken in order to obtain a valid
inversion. In the section on source-height variation we characterize the degradation that results
from variation in the source-height and study canonical variations.

Having considered many of the issues affecting the direct inversion of pressure field data to
obtain the plane wave reflection coefficient we now actually perform a preliminary inversion of
real data. In parallel we invert synthetic data that we have generated using bottom parameters
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comparable to those we believe associated with the real data. We draw upon the previous
developments to interpret the results.

In the remaining portion of this chapter we briefly develop the acoustic framework upon
which this thesis rests. We also describe the experimental paradigm by which the real data was
gathered.

1.2) Plane Waves and o Horizontally Stratified Environment

A horizontally stratified environment is one for which the material parameters vary only
vertically. Such a simple environment makes possible an in depth study without the complications
that a more varied eavironment would introduce. The insights gained from studying this simple
eanvironment can provide an understanding of more complicated envonmeats. Also, for many
conditions, such as are found in the region of an abyssal plane in the deep ocean, the model is
itself sufficient.

Figure 1.2.1 shows an isovelocity water layer over a horizontally stratified bottom. Within
the water a single plane wave has the form d

cl(l,z +k,y +k,x)e ~fwt )

For this wavc to bc a solution to thc wave cquation within thc watcr (which has sound speed ¢ ):
v-L& loun=0
[ cz 52t (1 ) (2)
the wave numbers (%, , &,, and &, ) must satisfy:
2,32,.32 - 9
ky+ky+k — =5 =0 3)
¢
We define the vector & -k,[,-#k,[,*-k,i‘, and the scalar, k = %. k will point in the direc-

tion that the plane wave propagates. In terms of this vector, the requirement (3) can be written

k|| = Vi2+k2+k? =k )

1) Throughout this thesls we will suppress the € ' time dependence because it seperates out from all
the Seld expressions.
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If (4) is satisfied then (1) is formally a solution to the wave equation evea if k is complex. When
one or more of the components of £ are imaginary the plane wave is called evanescent and will
vary exponeatially in the direction of the imaginary component(s).

Considerations of symmetry guarantee that when a plane wave strikes a horizontally strati-
fied bottom the resulting wave will also be planar. Fur the purposes of field calculations, plane
waves are cigenfunctions of horizontally stratified systems. An incident plane wave given by :

P’el(l,x +k,y +k,1) 0))
will generate the reflected wave

Pye ik, x+k,y—k,1) ©)
The change in sign indicates that the reflected wave is returning in the z direction. The ampli-
tude change defines the plane wave reflection coefficient, which may be a function of k . Since
for fixed w only two of the three components of k can be specified independently we write the

plane wave reflection coefficient explicitly as a function of only two:

P
Te(k, k) = ﬁ Q)

Our plane wave reflection coefficient is defined for a single frequency only. This implies
that the incident signal has been preseat for all time. The returning wave, P,em" *h -."), is
influenced by the bottom at all depths. This is in contrast to the occasional usage of the term for

which only the surface contribution to a pulsed input is considered.

1.3) The Weyl Integral
Because the wave propagation we consider is linear we can determine the response to a
more complicated incident field by considering that field as a superposition of plane waves. [9 ]

To calculate the reflected responses to a point source shown in Figure 1.3.1 we first express
the field of the point source at z = z( as a superposition of plane waves. We write:!

1) We will use ko 0 denots the wave aumber in the water.




z=2, SOURCE \\\_)_)j
\/ e RECEIVER

WATER -

i '//////////m%%;zzxs |

Figure 1.3.1 Point source geometry
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Vet T T 1z +hyy)
Pi(x,y.2q) = “ g = o J JAk &)e dk, dk, ()
x +y -3

Equation (1) is a two dimensional Fourier transform and can be inverted to determine
Ak ok, ):

= —L e -l(."*.l’) =
b LT ey @

: Ny ey
Each plane wave in the superposition (1) propagates in the z direction as ¢! -1 or

¢V VH-H-E®) yorending on its direction. Because the incident waves are those which carry

enczgy from the source to the bottom we know that all the waves have Re (k,) > 0.! This allows
us to write the field at 2> zg as
- _1_’ r i IVi§ -k2-231)_i(k,x +k,y)
2> 24 P,(x,y,z) 2 l[--'—[-v&-g——k}—_kfe 7 e 4 dkxa, 3
When these waves strike the bottom at z =0 each is turned around (+k; -~ —k;) and is

scaled by the plane wave reflection coefficient. The reflected field at z =0 is givea by:

_ 1 % iTelkok)  Vag ~b2-k2zq) i(kex +kyy)
P.(XJ,O) 2n !-!’; 7&& _k‘z_k,z‘ ¢ dk,dk, @

The reflected field at any height z >0 is determined by propagating this reflected field up

just as we propagated the incident field down.

1 77 iTc(k k)  Vig-gi—= Iz +k
g+go>0 P.(x,’,z) - E—f Ime ¢ y’(li-u)‘ ( ’,)dk,dk’ (5)

Equation (5) is often called the Weyl integral. [13 ]

L.4) The Sommerfeid Imegral

1)mmnw[u|mumapmmn¢mw
3(}.}.:)-%?0'--—ﬁlrl’.[n]mmdumwhh&dudm

real part of the Poynting vector. A wave with podunfdmo!\/k}-k,i-k,’mwhmpo-
sitive ¢ direction.
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The field associated with a point source over a horizontally stratified bottom is symmetric
about the z axis of Figure 1.3.1. We can exploit this symmetry to reduce the two dimeasional
Weyl integral (1.3.5) to a one dimensional integral.

The symmetry of the problem guarantees that all the field variables in space show a cylindr-
ical symmetry. Because the two dimensional Fourier transform of a circularly symmetric function
will also be circularly symmetric, the Fourier domain will also display a cylindrical symmetry.
We define

r2 m xley?
krz - k}“‘ k’z (1)
With these definitions we write (1.3.5) in cylindrical coordinates as:
»2x
=1 i IV} -t}zo+1)  droose
Pr(r,z) = — I'(k, k,dk,d 6 2
2(r:2) 2"{{m( Je e 2
with I'(V k,2+k,z) = ¢ (k,,k,). Performing the 8 integration and using [14 ]
1 2w
m = [ olxon
Jolx) = 5= { elxon g (3)
Equation (2) becomes
- ¢ i 1Vad -k zg+1)
Py(r.z) _{ mﬂkr ) Tk, r )k, dk, 4
This is the Sommerfeld integral. [13 ]
The Sommerfeld integral has the form
Pl(’»‘) - {G(krvxvzb)"O('kr)krar (S)
where
i 1V 2 (z0+1)
G(k I'(k, 6
(k,,5,50) = /v ry (k. )e (6)

We will refer to G(k,,2,2¢) as the depth dependent Green’s function or the Greea's function.
The integral transform (5) is the Hankel transform. [4,5,6 ]
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Equation (4) represents the reflected field as a superposition of cylindrical waves of the
form J.,(k,r)e‘v___’(" cach of which can be considered to be a superposition of plane
waves all striking the surface with the same borizontal wave number, &,. Because I'(k,) is
related 30 directly to the planc wave reflection coefficient, [(VEI+E?) = ¢ (k, k,), we wil
tefer to it as the plane wave reflection coefficient.

1.S) Obaining the Reflection Coefficient

Preseatly most techniques for determining the plane wave reflection coefficient as a func-
tion of horizontal wave number, I'(k,), from the refiected pressure field, P, (7), do not concen-
trate on inverting Equation (1.4.4). Instead they consider the stationary phase approximation to

that Equation given by:! [9 ]

'*_°)¢ ok

Pp(r) = RR

where & is defined to be the water wave aumber, %, and R? = r2+(z9+2)?

I(

m

Equation (1.4.4) is inverted to provide

re )~[

H Equation (2) is used to estimate r(%) then |T(—2%

] Py(r) @

Pko .
)| can be estimated from the mag-

nitude of P,(r) alone through:

Il‘( Yl = R lp(r)] “@
Mhawmwiﬁhinpﬁaqdaqmﬁon(z)mtforioﬁMdnn.

x)mmu*ummm--mcqhhmwum-
hmnuml‘.w. lunhﬂudhﬂnﬂmm&nh
consistent with the rest of the mmt. i we denod hyhummm.nh»

u-n-p.umm-nmumr.m T(kosin(0)). k.;uum
wave sumber carrespendiag to the spesuler sagle.

-t
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Unfortunately the stationary phase approximation upon which (4) is based is appropriate only
for distances, R, large compared to s wavelength and only for specular angles less than criti-
cal.[8,9] It completely ignores near field effects associated with I'(k,) for k, > k¢. For applica-
tions that consider near field effects or the character of the pressure field close to or greater than
the critical angle, a more exact inversion of Equation (1.4.4) is required.

For such applications Frisk, Oppenheim, and Martinez 7] have proposed that both the
magnitude and phase of the reflected pressure field be measured and that the Sommerfeld
integral of Equation (I.4.4) be inverted directly, without recourse to the stationary phase
approximation. The Sommerfeld integral is in the form of a Hmkel transform. Since the
Haokel transform is its own inverse [S5], Equation (I.4.4) can be inverted and solved for the
plane wave reflection coefficieat in terms of Pz (r), the reflected response to a point source.
This gives:

ITk,)==-iV koz -k,z et -1 s +sol f Pg(r) o(k,r)rdr (s)
0

1.6) Experimental Model

In this thesis we will perform a preliminary inversion of measured pressure field data
according to Equation (1.5.5), as suggested by Frisk, Oppenheim, and Martinez. [7] The data
we analyze was taken by G. Frisk, J. Doutt, and E. Hays in 1981. In this section we present the
details of the experimental configuration they used. A similar experimentsl configuration bas
been described in the literature. [10]

Figure 16.1 shows the experimental configuration used by Frisk, Doutt, and Hays. As
shown, two receivers were moored 1.17 and 54.55 meters from the bottom of the ocean on an
nWMMIMMdm.mmwulmddbyabbwatipm&em-

face, and drifted slowly away at a height off the bottom of approximately 135 meters. Every 12
seconds the source emitted a 4 second 220 Hertz tone which the receivers recorded after quadra-

v e g | e T e




1900 m
1 tt KMz PINGER
220 Hz
PULSED
CW SOURCE FLOATS
' 135 m [; DIBOS 2

T——l;l HYDROPHONE 2 ;
| [

HYOROPHONE 1
0IBOS 1

ACOUSTIC RELEASES 7
ANCHOR ------ — S

5 g G
% f‘ .wﬁi.c. i«?&‘*w« sfﬂ{ﬁh .

Figure 1.6.1 Experimental configuration used by Frisk, Doutt and Hays to obtain real data
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ture demodulation and low pass filtering. In this way the complex amplitude of the field as a
function of range was recorded. The source strength was 177 dB re 1 wPa at 1 meter.

Recording by the receivers was initiated every 12 seconds upon recognition of an 11 kHz
trigger pulse sent from a pinger mounted on the source, and continued for 6 seconds. During this
time the output of the receivers was quadrature demodulated, low pass filtered to 2 Hz, digitized
by a 12 bit A/D converter at a 5 Hz rate and recorded on cassette tape. A schematic of the prel-
iminary data processing in the receiver system is shown in Figure 1.6.2.

The ship drifted at a speed of about 1/2 km allowing one sample of the field every haif
wavelength. The clocks in the source and receiver were synchronized and had a stability of about
one part in 10° per day. The 11 kHz emission times at the source and the arrival time at the
receivers were used to determine the slant range between the source and the receivers. As part of
the processing it was necessary to estimate the source height and convert from slant ranged to

horizontal range.

Frisk, Doutt and Hays determined that the signal was in a steady state condition by the 4th

data sample.

L7) Summary

In this thesis we consider the generation of synthetic pressure fields through the evaluation
of the Sommerfeld integral. This integral is in the form of the Hankel transform of the depth-
dependent Green's function. We also consider the iuversion of a measured pressure field to esti-
mate the depth-dependent Greea's function and from that the plane wave reflection coefficient.
mmmdmmmmhmmam. In the next chapter we will
both catalogue and develop the properties of the Hankel transform that will provide the founda-

tion for the work of this thesis.
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CHAPTER II:
THE HANKEL TRANSFORM

11.1) Overview

The relation of the Hankel transform to the two dimensional Fourier transform of a circu-
larly symmetric function makes it as important a tool for problems cast in cylindrical coordinate
systems as the Fourier transform for proplems in cartesian systems. Applications can be found in
such diverse fields as astronomy, electrodynamics, electrostatics, oceanography, physics, and
seismology. Because it relates the pressure field associated with a point source in a horizontally
stratified medium to the plane wave reflection coefficient, it forms the foundation of this thesis.

In this chapter we explore the properties of the Hankel transform.

We begin by presenting the most common definitions of the Hankel transform in Section
I.2. We show how the Hankel transform arises from the two dimensional Fourier transform of a
circularly symmetric function in Section I1.3. To relate the Hankel transform to the more fami-
liar one dimensional Fourier transform, in Section I1.4 we present its asymptotic form. In Section
II.S we complete our presentation of available properties with a summary of important results

available in the literature.

The remainder of this chapter is devoted to results previously unavailable. We derive these
results to provide the foundation for our work later in this thesis. Section I1.6 examines window-
ing and the Hankel transform. We will later use the results derived in this section to determine
the range over which pressure field data must be known in order to successfully estimate the
plane wave reflection coefficient. We will also later use the approximate results presented in this
section to determine the effect of varying source-height during data acquisition on the estimate of
the plane wave reflection coefficient. Section I1.7 studies the effect of sampling on the Hankel
transform. Sampling issues arise both when data to be transformed is available only on a discrete
set of points and when the Hankel transform is edmpnted oumerically. The results from this sec-
tion will be used extensively in Chapter IV.
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The addition of white Gausian noise is often a reasonable model for the accumulated
effect of many sources of corruption acting on a measured signal. Section II.8 discusses the
degradation introduced into the Hankel transform of a signal by the addition of white Gaussian
noise. It also shows that sampling such s function on a square root grid can improve the noise
behavior of the associated Hankel transform.

We begin now by presenting common definitions of the Hankel transform.

11.2) Definition of the Hankel Transform

In the literature a number of different integral transforms are referred to as the Hankel

transform.! Three of these are presented below:

mm{/(r)} = [£(*Mo(pr)rdr = F(p) Watson [1966]

0

2)HT z{[ (r)} - 21rff (r) o(2mpr)rdr = F5(p) Bracewell [1965]
0

3)HT 3{/ (r)} = {f (rWo(pr)Vordr = F3(p) Bateman [1953]

Definitions (1) and (2) are only superficially different since F(p) = 2nF y(2np). Definition (3)
is substantially different with

Fs(p)
22 - m {4 ®

As we will see, under definition (3) the Hankel transform has properties very similar to the
Fourier transform. We will use definition (1), never-the-less, because of its relationship to the
two dimensional Fourier transform.

1) Sometimes these transforms are also referred 10 gs the zero-order Hankel transform. We will aot make
that distinction in this thesis.
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11.3) The Hankel Transform as a Two Dimensional Fourier Transform

If we use the definition of Watson

m{r(r)} = [1 ) olor)rdr = F (5) )
then the Hankel transform is simply related to the 2 dimensional Fourier transform of a circu-
larly symmetric function. [1,2 ] To show this we write the 2 dimensional Fourier transform in

cartesian coordinates:
Folk b)) = o [ [ fo(xy)e!® ™ axy @
¥ fc(x,y) is circularly symmetric we can unambiguously define
f(r) = fo(x,y) where r = ViZ+y? 3)
Writing (2) in polar coordinates we bave:
»2w
Fp(p.4) = 2=J [£(r)e™C~9rdrdp @
2 00
A change of variables £ = 8- ¢ shows that:
=2y .
Fr(pd) = o0 [£(r)e'™rdras ®
oo

%0 Fp(p,b) is not a function of ¢. We suppress ¢, drop the subscript, P, and perform the §

integration using

2=
L [etroomge m Jo(x) ©)
2w 0
to see that any radial slice of the two dimension Fourier transform of the circularly symmetric

function £ (x ,y) is given by:

F(p) = {f(r)lo(pr)rdr ™
which is the Hankel transform.

By considering the Hankel transform as the two dimeasional Fourier transform of a circu-

Iarly symmetric function we can also relste the Hankel transform to the Abel! transform. The
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Abel transform frequently arises in optics, seismology and other fields. In this formulation it will
appear as the projection of a two dimensional circularly symmetric function onto its axis.

We begin by noting that the slice of the two dimensional Fourier transform in polar form,
Fp(p,0), equals the slice of the two dimensional Fourier transform in cartesian form, F¢ (p,0),
since both functions represent the same slice of the two dimensional Fourier transform. When
Sc(x,y) is circularly symmetric then its transform in polar form, F» (p,$), is circularly sym-
metric and equal to F (p), its Hankel transform, as we have shown. For this case we can there-
for write:

F) = Fp(p0) = Fo(00) = 5= f [ fcle.y)e'edsdy ®

If we perform the y integration first we have

F@) =5 | [ty |ema ©®

The integral in y generates the projection of f(x,y) onto the x axis. We define this projection

to be p (x ). If we use the circular symmetry of fc (x,y) we can rewrite this projection as:

Pe) = [fcndy = [fe(Vatortopy =2[fc(Vaieyi0y (o)

Or in the cylindrical coordinate system

Equation (11) is the Abel transform of £ (r). The Abel transform can therefor be considered as
the projection of a circularly symmetric f-(x,y) onto the x axis. Since the Hankel transform
was shown to be the Fourier transform of the projection we see that

F(P)'m{/(r)}'"{A[f(r)}} (12)

This relationship was presented by Bracewell. [3 ] Implementation of the Hankel transform
through Equation (12) is equivalent to the projection-slice method proposed by Oppenbeim,
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Frisk, and Martinez. [4 ]

Equation (12) relates the Hankel ransform and the one dimensional Fourier transform
through the Abel transform. When we consider only large values of p, the transform variable,
an approximate relationship between the Hankel transform and the one dimensional Fourier
transform can be developed that does not invoive the Abel ransform. This can be done through
the asymptotic form of the Hankel transform, which we present in the next section.

11.4) The Asymptotic Form

If the Hankel transform is aot dominated for all values of p by the behavior of the kernel
near the origin (as would be the case for 8(r)/r for example ) then the asymptotic behavior of
the transform can be studied by substituting in the asymptotic form for the Bessel function. If
we use the asymptotic form for the Bessel function presented by Lipschitz [S,6 ] !

v—
T dolx) = cos(x =) + %sin(x—%) - Tz_:ﬁ [cos(x—%) - e% ]x>0 1)

where |8 = 1 and we keep only the leading terms in x, the Hankel ransform becomes:

VIelF (o) = %{f (r)cos(lpr |- ) Vrar (2

If we expand the cosine term Equation (2) becomes:

ViplF(p) = -\;1; [{f (r)cos(pr)Vrdr + sgn (p),{f (r)sin(pr)Vrdr )

The integrals in Equation (3) are the Fourier cosine transform and the Fourier sine transform [8
]- In some cases this form allows us to extend results available for these Fourier transforms to
the Hankel transform. Whea the sgn (p) term can be ignored, for example, Equation (3) sug-
gests that a cally \’-I-p-IF (p) behaves much like the Fourier transform of \/Ir_lf (r).
The sgn (p) term can pot be ignored without further approximation when the values of the sine

1) A more recent refarence is the form of an asymptotic ssries with the same leading term is [7 )
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and cosine transforms for negative p effect the positive part of the spectrum. Such is the case
when these transforms are degraded by sampling or integration to a finite limit, for example. [9 ]
Had we used the definition of Bateman for the Hankel transform, Equation (3) would have

appeared even more like a Fourier transform:

Fi(p) = -\}; .{f (r)cos(pr)dr + sgn (p){f (r)tin(pr)dr] @

Bateman's definition (Equation I1.2.3) is more directly related to the Fourier transform than the
definition of Watson (Equation I1.2.2). Despite this, we use the definition of Watson because
we with to preserve the relationship between the Hankel transform and the 2-dimensional

Fourier transform presented in Section II.3.
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11.5) General Properties of the Hankel Transform

A number of properties for the Hankel transform are readily available in the literature.

[10,1,6,7] We preseat some of the more important of these hexe for completme-.‘

PROPERTY £(r) F(p) = {f (r W olpr)rdr
self —inverse F (p) f(r)
linearity a £i(r)+far) a F(p)+Fp)
scaling £ (ar) ;1-,'1" £
derivative V3£ (r) -p?F (p)
power {f (r)8" (r)rdr = {r (0)G" (p)pdp
moment F(p) = i C'maas o with m, = }r"f(r )dr

o0 (n)2> * o

In the remainder of this chapter we develop properties of the Hankel transform not avail-
able in the literature but of considerable importance to the later developments in this thesis. We
begin by determining the effect of on the Hankel transform of a function whea it is multiplied by

a range limited window.

I1.6) Windowing and the Hankel Transform
8) An exact windowing expression

The definition of the Hankel transform has infinity as the upper limit of integration. In

practice it is often impossible to carry out the integration to infinity. This may be because the
function to be transformed is only known out to a finite range or because the integration must be

T il comaidas
We will consider two functions to be equal if the result of coavolving their differsnce with 2 band-limited
function is alwsys mro. This is equality in the sense of generalized functions.
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performed numerically and only a finite number of calculations can be made. Following the
convention used with the Fourier transform we will write the upper limit of integration as infin-
ity but will make the function to be transformed zero beyond some finite upper limit by muld-
plying by a window of finite extent. [9 ] In this section we will explore the degradation intro-
duced into the Hankel transform of a fuaction by such windowing. The results of this section
will also find mﬁﬁm to the approximate evaluation of integrals of the form

»
QLo Loy )
which arise in this thesis in connection with source-height effects.
An exact but cumbersome expression for the effect of windowing can be derived from a
result presented by Bracewell. [10 ] If we define:

P(p) = .{p (r W olpr)rdr -
= 2
W(p) = { w (r W o(or )rdr

Then P, (p), the Hankel transform of the product of p(r) and w (7) is given by:

=2z

P,(p) = {p (r)w (rWolpr)rdr = { { P (§)W (V p*+E2—2pEcosd)ed 8d § 3)

We can relate the Hankel trandform of the windowed function, P, (p) to the Hankel transform

of the unwindowed function, P (p), by carrying out the theta integration in Equation (3) to
obtain:

= 2
Po@) = [POHG.OE with HG.E) = [W(Vo'+E~2pbcot)dd (@)
¥ H(p,£) had the form H(p—£&), then Equation (4) would be a convolution, reminiscent
of the windowing result for the Fourier transform. [9 ] By placing some restrictions of w (r) we

can derive an approximate expression for the effect of windowing that has the form of a convo-
lution.
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b) Approximation as a convolution

A simpler approximate expression describing the effect of windowing can be derived by

using the asymptotic expression for the Hankel transform:

ViiF@ =1 [{f (r)cos (pr)Vrdr + sgn(p)[f (¢ )sin (pr)VFdr]

_ 1)
= % [G. (p) + sgn (p)Go(p)]

G,(p) and Go(p) are a Fourier cosine transform and Fourier sine transform respectively. [8 ]
The cosine transform and the sin transform each have the property that the transform of a pro-
duct is the convolution of the transforms. Using this, the effect of windowing in the asymptotic

formulation of Equation (1):

VIiplFu(p) = = [{f (rYw (r)cos (pr)Vrdr + sgn(o) [ (ryw (¢ )sin (pr)Vrdr

)
can be written as:
VIoIFu () = G, ()*Wr(8) + 22n (9) [G. (0)*Wr (5)] @)
where we have defined: '
We(p) = [w(r)e'*dr @)

In general Equation (3) can not be rewritten as the convolution of F (p) with a window
term because of the sgn (p) term. However, if the Fourier transform of the window, Wy (p), is
effectively confined to a narrow band around p = 0, thea for p larger than this band (B,, ):

P >By Ge(p)*Wr () +38n(5) [Go ()W (5) | = Go(0)*Wr ()+ [s£n ()Go (5) |*Wr (slF)
Combining Equations (2), (3), and (5) we have:

VIeTF, () = [VIETF ) |*Wr () ©
which is our asymptotic result.

If Wp(p) is not negligible beyond some band, B,,, then the effect of windowing on the

e ——t)
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Hankel transform can not be put in this simple form. For such cases the exact result of Equation

(11.6a.4) must be used.
c) Resolution and leakage

Given Equation (I1.6b.6) we can address the practical issues associated with windowing.
As is frequently done for the Fourier transform, we divide the issues associated with windowing

into two general classes. The first we call resolution and refers to the local smearing affected by
the main lobe of the window. The second we call leakage and refers to the contribution of the
side lobes. [9,11 ]

We begin by expanding Equation (1.6b.6) to write:

p>0 VoF.() = [VEFQWr (=048 with Wr() = [w(r)e'™ar (1)
When p is sufficiently large ( p greater than some pg) then \/E can be considered constant over

the main lobe of W (p—£&). For these p, Equation (1) can be written approximately as

p>p0 VoF,(p) = VB{ F (§)Wr (p—£)dE @)
90 that
F (p) = { F (§)Wr(p—§)dE €))

Under this condition the issues of resolution for the Hankel transform are the same as those for

the Fourier transform. If we desire to resolve events in the Hankel transform on the order of 8

then the lobe of our window must be less than 3. Discussions about a variety of windows are

available in the kiterature. [9,11 ] For the Hanning class of windows, dlcmﬁnlobcwidthis%.

where B is the length of the window. Our requirement for resolution of events on the order 3
becomes:

B >% @

Leakage is the phenomena we amociate with the side lobes. For the purpose of this analysis
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we consider the iobe width to be sufficiently small that it can be approximated by an impulse so
that we ignore the smearing effects that we have assigned to resolution. We approximate W (p)

as a weighted superposition of impulses:

Wr(p) = }l:azb(p-T.-) ()
The g, indicate the rate at which the side lobes approach zero. The convolution of Equation (2)

becomes:

VoF () = [VAF ©Zad(e-4-Tds

S, Vo=TiF (-T) | ©
When we are concerned about the leakage due to a singularity, we must consider the weighting
ai\/ﬁ: which indicates the amount of leakage of an event at T; of strength 1 would have at
p. Here the Hankel transform differs from the Fourier transform because of the \/;—_T, term

which slows the decay rate. Consequently for equivalent leakage, the lobes of the window must

fall by a factor of vl- faster than that required for equivalent performance in the Fourier
P

transform. For this reason we have concentrated on the Hanning window rather than the Ham-
ming in many of our examples.
By weighting the side lobe heights by a factor of Vp, optimal windows could be designed

for Hankel transforms in 2 manner analogous to the Fourier transform.

d) Examples
In this section we present two examples of windowing and the Hankel transiorm. To each
we apply a rectangular window:

1 0<r <4000
w(r) =10 4000 <r O
which has 2 length similar to the range over which data is available in the experiment described
eV ried

in Section (1.6). The first function we transform is 72—22- for which the true Hankel
re+
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transform is given by v;-z‘—ze‘ -p'(2),
=p

ik Vri+ (2
€ . . .
Vo 0 <r <4000. As can be seen in the figure, this function decays almost four
r2+(2)% 5

Figure I1.6d.1 presents the log-magnitude of

orders of magnitude over the window length. Figures I1.6d.2a and I1.6d.2b present the magni;

tude and phase of its computed transform. Essentially no degradation due tv aliasing is apparent

the computed transform. F 6.3 £ T over

in the computed transform. Figure I1.6.3 presents the magnitude o . er the
Vr2+(133)2

window length this function has decayed roughly two orders of magnitude. Figures II.6d.4a and

IL6d.4b present the magnitude and phase of its Hankel transform. The correct transform is

. " i 1 Vi2-9%133) . .
given by: sz—_p—zre . The magnitude of the correct transform should look like
Py A r2+(2)?
72—2- for 0<p=<k. Instead the magnitude of the transform shown in Figure II.6d.4a
k=p~

shows considerably more degradation than that of Figure I1.6d.2a. This is due to the fact that

this is the transform of a function which has proportionally more energy outside the window.
One is tempted to assume the ripples apparent in Figure I1.6d.4a are due to leakage of the

v—k :_ pz singularity. This is not the source of degradation, however as may be seen by noting

that this same singularity is present in the first transform of Figure II.6d.2a for which no such

rippling is apparent. The rippling is due to the smearing of the transform in Figure I1.6d.3a over

1ViE2-g¥(

its rapidly oscillating phase term e 13) which is not apparent in the magnitude plot.

When the true phase varies rapidly over the width of the main lobe of the window the effect of

smoothing can actually be to introduce rippling into the computed magnitude.

e e . e A R 1 e
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1L.7) Sampling and Aliasing

It is often necessary to approximate the integral in the Hankel transform by a sum. This
approximation may be necessary because the function to be transformed is known only on a
discrete set of points or because the integral must be evaluated numerically. The resulting sum
will be a degraded version of the true Hankel transform. We will adopt the terminology of
Fourier transforms and refer to the replacement of the integral by a sum as sampling and the
resulting degradation is aliasing. In this section we examine the form that aliasing takes for the
Hankel transform.

The discrete sum approximation that we will concentrate on is the Fourier-Bessel series.
We will derive an expression that relates the output of the Fourier-Bessel series to the true
Hankel transform. Because the Fourier-Bessel series uses samples on a set of points that is
approximately evenly spaced, the results we derive will be approximately correct for any evenly

spaced sampling scheme.

We begin with the formulation of the Fourier-Bessel series (7, 6 | which states:!

»n 1 F k.
o<p<t F(p) =23 [T

Where A\, n=1,2,3, - - - are the ordered zeros of J o(x ).

JO(Au P) ¢))

I F(p) =0 for p> 1 then the integral in the expression above is just the Hankel
transform of F (p) evaluated at A, £ (A, ) so that the Hankel transform, F (p), can be expressed

exactly as a sum:

0<p<l F(p) =2 i‘Jle%%Jo(k, p) when | F(p) =0 forp>1 (¢))

Whea F (p) is not truly bandlimited to p < 1 and/or the sum is not carried out to infinity, Equa-
tion (2) is only an approximation to the Hankel transform. The study of the effect of finite N on

1) We will call two functions equal if the Fourier transform of their differsnce has no energy st sny finite
frequency. For this reason we need not single out the values of F (p) in Equstion (1) at points of discon-
tinuity.




the approximation is the study of windowing, covered in the previous section. Here we consider

only the degradation that occurs because the infinite series is used in place of the integral.
Finally, we note that it is because the zeros of Jo(x), A, rapidly approach nwé% that the
sampling above is approximately evenly spaced.

To determine the effect of approximating the Hankel ransform:

F(p) = {f(f)-’o(ﬂf)fdr 3)

by the Fourier-Bessel series:

0< p< 1 Is(p) = E
u-lle(}\n)

we express F (p) in terms of the correct transform, F (p), by inverting (3) to write f (r) in terms

f ()‘u )J 0()‘5 p) (4)

T Torrram ~ T mrar i

of F (p). We substitute this into Equation (4) to yield:

o N 2
0<p<1 F(p) = %1112()\)

Interchanging the order of integration and summation we have

{ F(EN g(ME)EDE | To(Ms0)

Fp) = { F (£)Ty(p.£)EdE (6)

Where, following the notation of Watson (page 582) (7 | we define:

TN (992) = 2.21 ‘,12(A )

The study of aliasing for the Fourier-Bessel series is the study of T.(p,£). We can obuain

N | JgMaE) o(Aap) ] -
an expression for T ,(p,£) by using an asymptotic result presented by Schlafli:!? [12 ]

sin Ay(p~€) _ sin Ay(2—p—§)
sin .‘;_'.(p-g) sin ﬂz__‘zt’.ﬁ).

v (p,§) - 5;%5[ where Ay ® (N +3)m ®

1) This differs from Watson's presentation of Sehlafli’s result,

2) Schisfii does not restrict the region of validity of his result. Watson, however, states that Schiafli's result
proceeds from s formula which is strictly valid only for 0<p+§<2 and p#§. We will later piot T1x(p,€)
to show that the results of this analysis appear valid inside the region 0<p+£52 snd approximately valid
outside that region.
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As N -x Ty(p,t) approaches a weighted sequence of impulses. We determine that sequence

here.

We begin our analysis of Equation (8) by first considering the expression:

_ sin[wa+33—
f1n ANx

4
sin 2% gin 2% @
2 2
Which equals
sioNwx . 7x  coSNmx . 7x (10)
sin XX 4  gn3Ix 4
2 2
In Appendix I we show that as N - = the first term in (10) approaches the limit:
S(-1)'8(5 -2%) a1
3

In Appendix I we also show that the second term in Equation (10) approaches 0. The limit

of Equation (9) is therefore given by:

sin Ayx
-
2
Using Equation (12) the first term in Equation (8) can now be seen to approach the limit:

= SC-1'a(5 %) (12)

lim sin Ay (p—§)

N-= n-n 1" Ez-gl

= 2;(-1)*6(‘»-&-4&) (13)

The second term in Equation (8) can be put in the form of Equation (9) by defining

y =2-p-¢§
sin Ay(2-p—§) _ sinAyy a4
sn lr.zL-zE-Q dﬂ %
Combining Equations (13) and (14) we have:
BANEPD) L 23(-1)82-p-t-4k) 1)
 §

N-= 0 112-22-51

ke




We can determine T .(p,£) by combining (13) and (15):!

I Ty(p.8) = = S0 [a(o~4-4k) - 82-p=¢-4b) a6)
If our transform is not severely aliased so that F (p) is negligible for p > 2 thea substituting

Equation (16) into Equation (6) shows that:

2
o 1 - -— -—
0<p <1 £) = [F@e [s60-0 - 32-p-0) Jeae an
which equals for 0<p<1 :2

Vi<

F@p) =F(p) - F (2- 18
() =F(p) —\7'2;; (2-p) (18)
We observe that the aliasing result most directly relates \/515 (p) o \/;F (p).

An example of aliasing is presented in Figure I1.7.1 where we see 4\/; times the Hankel
transform of e % generated with the Fourier-Bessel series. The figure displays the aliasing
terms generated by the impulses in Equation (16). In the region 0< p< 2 the figure matches
the result indicated in Equation (17) very well. In the region 0< p< 4 the figure does not
correspond exactly to what would be determined by substitution Equation (16) into Equation (6)
indicating the limited validity of Schilafli's result.

Figure I1.7.2 shows a plot of ZV;ET 128(p,§) 0< p< 10 0< £< 10. This picture sup-
ports the accuracy of Equation (16) for T x(p,§) for 0< p+£= 2 and suggests that Equation

(16) is at least approximately correct over the range of p and £ shown in the figure.

We conclude this section with a final example of aliasing for the Hankel transform that will

play an important role in the generation of synthetic data. Figure I1.7.3 shows the function

1
10) = o m(rg) >0 (19)

corresponding to two poles, one at 7 = rg and the other at r = —r,. This function has the

known Hankel transform: [8 ]

1) Over the region of validity for Schiafli's result.
2) We have included the point p+§ = 2, which is not strictly within the interval specified by Watson.
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F(p) = = HE" (rop) (20)
==t
Asymptotically H 6‘) (rop)zv-z—e 4 ¢"® 5o that its magnitude should appear
o P
V2 . 1
=v—. Consequently the magnitude of F (p) should appear smooth and decay as ViR
T op P
o xl .
Figure I1.7.4 we sce the numerically computed transform using the samples f 2048 | Rapid

oscillations are apparent which are not preseat in the magnitude of the correct transform. The
source of these oscillations is aliasing, which can be seen by using Equation (18) to approximate

the numerically computed transform:

3 V2 = ir V 4096 - V2 = (4096 -
F(p) = 4 P P e 4 piro P) 21
() v rep € c Vo Vrry(4096 -p) ¢ @
which equals »
in
o ~ 1 \/2- e irgp _ —irop
F(p) v;me [ e Ae ] (22)

withA = e(‘o%)i"’. This can be rewritten as:

in
& ~ _1 \/2- e [ irgp . mia s ]
F(p) = e 1-A 2iA sin(r 23
(» Vy Varg (1-A)e™™ + (rop) (23)
where the beating caused by the aliasing is apparent in the sin(rgp) term. The aliased output

displays the form of the vl- decay term times an extremely degraded estimate of ‘/;F (p)-
P

When the transform decays only at a rate of of Vl-’ this example shows that severe degradation
p

due to aliasing can be expected.

I1.8) The Effect of Additive Wkite Gaussian Naise on the Hankel Transform
a) Statement of the Effect of Additive White Gaussian Noise on the Hankel Transform

In practice it is seldom possible to know exactly the function whose transform we desire.

Frequeatly it is possible to model the uncertainty about the input function by assuming that the

S
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errors associated with each sample are random and uncorrelated from point to point. Since the
combined effect of many random factors can often be modeled with a Gaussian distribution (by
invoking the central limit theorem {13 ]) the assumption is often added that the distribution of
error around cach point is Gaussian. This model of the uncertainty corresponds to additive white
(the uncorrelated assumption) Gaussian noise. We assume the mean of the noise process is zero
so that the expectation of the noisy input signal is the true input. If we further assume that the
variance of the noise process is not a function of the input sample number then this Gaussian
noise process is stationary.

In this section we explore the effect of such uncertainty on the Hankel transform of the
input function. Since the Hankel transform is a linear operator and the noise process has zero
mean, the effect of the noise will be to inttoduce a variance in the output of the Hankel
transform proportional to the noise power but the expected output will not be corrupted. [14 ] In
this section we first show that unlike the Fourier transform the variance of the Hankel transform
of stationary white Gaussian noise is not stationary, but instead concentrates power near the ori-
gin. This result is important because frequently the Hankel transform is used in place of the two
dimensional Fourier transform in problems with an underlying circular symmetry. Because of
this property, a slice of the the two dimensional Fourier transform of noisy measurements made
over 2 two dimensional grid of a circularly symmetric field will differ from the Hankel transform
of a slice of that field.

In Section (b) we will show that if f(V7 ) is a stationary white Gaussian noise process then
F (\/5) will also be stationary white Gaussian noise. This result implies that if the input function
is sampled on a Vr grid and each sample is independently corrupted by (zero mean) Gaussian
noise that does not depend on the sample number, then samples of the Hankel transform on a
\0 grid will be independ.. Jy corrupted by Gaussian noise and the amount of corruption will

pot depend on the value of p. On these grids each sample represeats the same area of the under-

lying two dimensional circularly symmetric function and the noise properties of the Hankel

i
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transform are equivalent to the noise properties of the underlying two dimensional Fourier

transform.

To show that the Hankel transform concentrates noise power near the origin we first write:

} J
£ae) = [ [ Contr) o yrar ®
Where we have introduced the limit of integration, & , to insure convergence. n(r) is stationary

white Gaussian noise with variance No. The variance of #j is givea by
var [F.(p)‘} =
= £[ifa ) - EEa o0 ]
8
=E [l{ n (r)o(pr)rdr P]

”e )
= [[& 2@ |ssarsoopanaann
= ,Z z‘ Nob(a—B) o(pa) opB)aBdad B
= Nol'u(pa)u’da
For p = 0 Equation (2) above shows that
vaR [F, ] = N.,J:'qzda X ‘:‘fs ®)
When p#0
vaR £, ()] = Nozlé'(pa)a*da - %Zw&(e)de 0]
In units of normalized frequency v = p/B
R s No 5.
VAR [£34)] = Nofrd (pa)otda = [t 0)

which is plotted in Figure I1.82.1. As can be seen this function decays rapidly with v so that the
Hankel transform concentrates noise power near the origin. We can explain why this noise pro-
perty of the Hankel transform differs from that for the Fourier transform by considering the
underlying two dimensional circularly symmetric Fourier transform represented by the Hankel

transform.
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We recall from Section (I1.3) that the Hankel transform of a function, f (), corresponds to
a slice of the two dimensional Fourier transform of the function f (r,8) made by sweeping f (r)
around the origin in two dimensions (so that f(r,8) = f(r) for all 8). When we generate the

Hankel transform of the noisy input, f(r) + n(r), we obtain a slice of the two dimensional

Fourier transform of f(r)+na(r) swept around the origin. The result is very different from

sweeping f(r) around the origin and then adding SWGN (stationary white Gaussian noise) in
two dimensions. In the first case the noise field is circularly symmetric, in the second case it is
not. It is the symmetry in the underlying noise ficld implied by the Hankel transform that causes

the concentration of noise power near the origin.

We will now show that this behavior of the Hankel transform with respect to noise can be
averted by changing to a V7 coordinate system for the input and a V) coordinate system for the
output. Samples evenly spaced in these square root coordinate systems have the property that the
distance between any two samples always represeats the same area of the underlying two dimen-
sional (circularly symmetric) function. Each noisy sample of the function and its Hankel
transform represents the same amount of area in the underlying two dimensional spaces. Conse-
quently the noise properties are equivalent to those associated with samples evenly space on a

cartesian grid (associated with the two dimensional Fourier transform).

b) Proof that if f (\/;) is stationary white Gaussian noise then F (\/;) will also be stationary white

Gaussian noise, where F (p) is the Hankel transform of f (r)

The proof that if f(V7 ) is stationary white Gaussian noise (SWGN) then F (Vp) is also
SWGN, consists of three parts and a conclusion. First we will show that for the integral
transform defined as F;(p) = [f (rWo(pr)Vprdr that f(r) is SWGN if and only if Fy(p) is

[ ]
SWGN. Second we will use this to show that Vrf (r) is SWGN if and only if VpF (p) is SWGN.
Finally we show that if V7 f(r) is SWGN then f (V7 ) must be SWGN.

i) Proof that F.(p) is ssationary white Gaussian noise if and only if f(r) is stationary white Gaus-

e




sian noise, where F :(p) is the Hankel transform of f (r) as defined by Bateman.

We begin by recalling that the Hankel transform defined by Bateman [8 ] and presented in
Section (I.2) is given by Fa(p) = _Z’f(r).lo(pr)\/;dr. Because this operator is linear, Fy(p) is
Gaussian. For the same reason if the mean of f(r) = 0 then the mean of Fj(p) is also 0. We

need only show, then, that

E[FapFaen) | = Co(01-p2) &)
Now
E [F 2(p1)F2(p2) ] =

E [_[f (r )Jo(pxr)\/m'dr{f (E)o(p1€) VprEd €

- { {Noa(r —E)M o{p1r ) o(p26) Virpar Edrd €

- 2
= NoV P:Pz,!lo(mfllo(mﬂ“f

3(p,—
= NoVorm (ll':)l p2)

= Nod(p1=p2)
This proves that f(r) SWGN implies that F,(p) is SWGN. The converse is proven by noting

that the above integral transform is its own inverse so that the same argument applies, replacing

[ (r) with F(p).

#i) Proof that VpF (p) is stationary white Gaussian noise if and only if Vr f (r) is stationary rkite

Gaussian noise, where F (p) is the Hankel transform of f (r)

From (i) we know that if V7 £ (r) is SWGN then

{(V?f (r )M olpr)Vprdr = VS{f (r W o(pr)rdr = VoF (p) (3)
is SWGN. Since the Hankel transform, [f (r)/q(pr)rdr is its own inverse the converse follows by
0

starting with Vrf(r).
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itY) Proof rhat \/r-f (r) is stationary white Gaussian noise if and only if f (\/;) is siationary white

Gaussian noise

8(ry—r
First we show that if E [f rOf (rz)] = 8(ry=ry) then E [f(l[r,])f (1[r,])] - -(I—z'—l)i
This assumes that /(r) and /}(r) exist in the region of interest.
Proof:
farp =
= _f fQLED3(r -)a€ (O]
= P - - da
_J; S (@)8(r=17Y(a)) Tl
Using Equation (4) we can write E [f U[rDF @ [rZ])] as:
elrarnrelrD] =
1 12 (00f (@ | A= (@n8lra=1"Xay)ldard s
!’;!‘E [/( l)f( 2)] l-[l"l(al)][l-‘(az)] (s)
]- ]’s (a1=a2) 3ri=t"a))3lra~1"aa)ldarda
LA ¢ i1 (an) ][I Y(aa)]
} 8[ry=1"Ya)}8[rs=1"'(=)]
> 1I1Ya)]
Tf we define £ = [~Y(a) s0 that a = [(£) and da = [ (£)d& then
v = Fotri-060r,—0)-dE
slrarwrard] = faei-ose-o o

= 8("1-71)
I(ry)

We now show that f (Vr ) SWGN iff £ [f('x)f("z)] = 6('—',-'2

We apply the result of the first part of this section to our special case by defining !(r) = r?
so that (r)=2rdr With this definition we see that if some p (r) is SWGN then p(r?) will have a

variance proportional to -6—('::—"') This implies that if £ (Vr ) is SWGN then f(r) has a vari-

3ra=ra) 8(r1-r2)
1

ance proportional to _T— . Finally we note that if E[f(r,)f(r;)] = ———= then

r
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E[‘\/r—J (rl)\/r_zf(rg)] = §(r4—~r2) therefor if f(Vr) is SWGN then V7f(r) is SWGN. The

converse follows from the same steps in reverse.

iv) Conclusion

In (i) and (ii) we showed that if Vrf(r) is SWGN then VpF (p) will also be SWGN. In
(iii) we showed that V7 £ (r) is SWGN if and only if £ (Vr ) is SWGN. The argument of (jii) and
(iv) also showed that VpF (p) is SWGN if and only if F (Vp) is SWGN. Thus we have shown
that if £ (V7 ) is SWGN then F (Vp) must also be SWGN.

11.9) Summary

In this chapter we have developed the propertics of the Hankel transform in general. By
themselves these properties might be simply interesting but together with the ability to numeri-
cally perform the Hankel transform, they become tools for scientific research. In the next chapter

we will discuss methods for numerically performing the Hankel tracsform:.
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Chapter III:

Computing the Hanke] Transform

II1.1) Overview

Because of the importance of the Hankel transform there presently exist many algorithms
for its evaluation. As yet, however, there is no generally accepted algorithm analogous to the
FFT for the Fourier transform. This chapter presents a survey of numerical Hankel transform
techniques. It does not incdude all the published algorithms but does represent the major classes.
We begin in section III.2 by discussing perhaps the oldest and best understood algorithm, the
Fourier-Bessel series, that we used to derive our aliasing result of Chapter II. Section II.3
preseats the backsmear method and an example of an efficient class of realizations. Section III.4
discusses the asymptotic transform method as it has been proposed in the literature and presents
new results that can be used to improve this method or to asses the error in the standard realiza-
tion from the output transform alone. Section ITLS discusses a common combined transform
method and presents a caution about its use. Section ITI.6 presents a convolutional method fre-
quently used for electromagnetic problems which require the transform of smooth functions of
limited extent. Section II1.7 discusses the projection-slice method. In that section we develop a
fast algorithm for generating the projections (shown to be an Abel transform), which itself has
wide applications. [1 ] When it is followed by an FFT the result is an efficient Hankel transform.

Both the Abel and Hankel transform algorithms are illustrated with examples.

1I1.2) The Fourier-Bessel Series

Probably the first proposed method for evaluating the Hankel transform is the Fourier-
Bessel series, which was discussed in the aliasing section. The Fourier-Bessel series is summar-
ized by the ideatity: [2,3 ] .

|

0<p<l F(p) =23 f"'(i)-’o()\.ﬁ)ﬁdﬁ

Jo(Aap) Q1)

a=10 le()‘u)

et e a2 s o,
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Where A\, n=1,2,3, - - - are the ordered zeros of J 3(x).

This relation can be used to obtain the Hanke! transform of a band limited function, f (r),

defined by
F(p) = {f (r ) o(pr)rdr @
where F (p) = 0 for p>1 by noting that when F {(p)=0 p>1:
= 1
fn) = { F (o) o(phn )pdp = { F (p) o(pha)pdp 6)
Substituting into Equation (1) we have:
£ (M)
0<p<1l F(p) = 23:‘.1 7700) Jo(Aap) )

which is in the form of a sum as we desired. If F (p) is bandlimited to p<B, instead of p<l1,
Equation (4) can be modified by a change of variables. The resulting general form states that

when F (p) = 0 for p>B then

a:f(

0<p<B F(p) = 21 Jx(R) o2 5P &)

The properties of the Fourier-Bessel series have been extensively studied. [2,3 ] As a numerical

algorithm for implementing the Hankel transform it is usually appropriate only when a few
values of F (p) are required or when computation cost is less important than careful control over
the errors. This is because the Fourier-Bessel series requires than a new sum be computed for

every value of p. Further, it requires that the function to be transformed be available on the

A
nonuniform grid, —

Another algorithm that is appropriate when only a few values of F (p) are required, but

which accepts input values on an even grid, is the backsmear method. We present the backsmear

method in the pext section.

e T A S e D
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1I1.3) The Backsmear Method

The backsmear method exploits the efficiency of the FFT to provide an efficient algorithm
whea only a few output values of the transform are desired. This algorithm can be derived by
replacing the Bessel function with its integral representation the Hankel transform can be written

as the two dimensional integral:

» 2%
F(o) = [£(rWoloryrdr = 3= | [£(r)e®=rdr | do W
0 27y |0

If we define G(x) = f £ (7)re'™dr and note that cosd is even, the transform becomes:
0

. 7
F(p) = :lt- _({; G (pcosB)d 8 = :,1? { [G (pcosB) +G (—pcos) ]d 0 )

G (x) can be evaluated efficiently on an even grid using an FFT. [4 ] The integration called
for in Equation (2), bowever, must be performed for every desired value of p. Further, since the
integration of Equation (2) is in O, some interpolation scheme must be used to genmerate
G (pcos8) on the quadrature points required by the numerical integrator.

The backsmear method is appropriate when the transform is required at only a few values
of p. When this is the case and when G (x) is slowly varying so that the numerical integration
which must be carried out upon it can be done efficiently, then the backsmeuar method is effi-
cent. This is particularly true if the interpolation scheme used permits 2 quadrature formula to
be developed for the numerical integration.

One such development is presented below for the case of linear interpolation between the
points of L (x) = G (x) + G(~x).

We seek

z

2
F(p) = ;‘;{ L (pcosd)d ®

and have available only L (N—*T-) from the output of the FFT. We approximate L (x) by linearly

IR . BY W2 Sk o LTRSS T SR PR 7S v




interpolating L (FkT-) so that

¥
. I U PN
; 0521' L(x) Jg‘,oLj(x) )
‘ where
L(GE) + -y L (b -L (;,1',-)] <l
Ly(x)= 0 otherwise _ ®)

We can integrate L (pcos8) as follows

3 2 .
JL (pcos8)de = [ S L,(pcosd)dd = 3 [L;(pcosd)d8 (6)
0 0 j=1 /=10

The L; terms can be integrated term by term:

»

3 el
- iy - freitly Lyl - ity g
fLipooseyan “—{m L(+) ’{“m) L(NT)} w{:(w)u”)}w]u )
pNT

where

cos”ix |x|s1
0 |x|21 ®)
Evaluating this integral and substituting into Equation (6) we have

F) =
T | - -1, j+1 i j+1
=3 [ - o '(L;)][L(#,—) -j{L(‘L;,—) -L(-NJ,—.)}] ©)

k-1 .
VR - Vo8 e (4L - L=
+ 3 VA7 - vi om][u,,,) Lz
Whenkislnallorl"(—;?)isduiredforonlyafewvaluesofk,thisismefﬁdentpno-

cedure. When k is large and £ (—Nk?) is required for many values this is a slow method, how-

ever. In the next section we present a fast algorithm for the evaluation of the Hankel transform
at large values of the transform variable, p.
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I11.4) The Asymprotic transform

In the seismic community the Hankel transform is commonly evaluated approximately by
replacing the Bessel function with its asymptotic form so that the resulting integral looks like a
Fourier transform. {5, 6 ] The result will usually asymptotically approach the Hankel transform,

though pathological functions can be found for which this is not the case (ﬁg)- for example).

The main disadvantages of this method are that it is almost never suitable for small values of p
and that the error induced by the substitution is determined in part by the function being
transformed. The main advantage is that the resulting integral looks very much like a Fourier

transform and can be evaluated efficiently with an FFT.

An expression for the Bessel function, suitable for an asymptotic expansion is provided by

Lipschitz:* {7 )
forx>01/J (X) = ﬁ—\/i cos x—l) + L.u'n(x—l) - —9—lco:(x -3-) + 30(x) where [0]<1 (1)
0 Vax 47 & 4’ 18 x )7 64l ‘

In the literature describing this technique [S ] only the leading term is retained, providing:

F(p) = V\:,% { s (r)cos(pr-%)\/r-dr when p >0 (2)

This is written as a Fourier transform by noting that

cos(pr =) = z(cas or) + sin(or)) ©)
hence
F(p)= v’;; [{f (r)Vr coslpr)ar + [f(r)Vr sin(pr)dr] whea p >0 @

This expression can be evaluated with an FFT.

We can write the error associated with the transform technique as

) = frir)r [Jo(l”') - v%”' (or=) ]dr

= 117 ) (orr ®
Po

1) A more recent expansion with the ssme leading behsvior can be found in Wanon. [2 )
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o
with H(pr) = pr {"G(P’) - vﬂ—f)-;cos(pr - %)], H(x) is plotted in Figure IIL3.1. It looks

Y

very much like a slowly deczying sinusoid. e(p») decays with p both because H(pr) decays

(slow!y) with p aad because of the of the 1/p term. Because of the sinusoidal behavior of H (pr)
the error term of Equation (5) can be large at those frequencies where f () has a lot of energy.

By using the expression of Lipschitz we can develop an asymptotic Hankel transform with

an error term that decays much faster than the error term for the conventional asymptotic

ethod. This expression also makes it relatively easy to judge the validity of the conventional

asymptotic transform after it has been performed because it presents the leading error terms of

that transform as a function of the transform itself.

We substitute the expression of (1) for Jo(pr) in the Hankel transform to see that:

V2 i~ * ey
F(p) = 72- [ff(')\/’_co-‘(P"l)df + lf[é--ls:’n (pr—%)dr
(6)
- 1_23'b’_‘r-L(--)-cas(;.vr——)dr + o4 p 3f ~7 d(r)dr]

If we use

[eos(or) + singor) ]
, ™
[singer) = cos(or) ]

then Equation (6) becomes

Fo) = V:Tp [{f(r)\/?m(prwr + L1 ) Vrsin(or)ar

J—f%’-’)—xin {pr)dr + —1—{‘%'-1.\1'1: {or Jdr

A4 f‘LLlcos (pr)dr — -1?8“;;- sm (pr )dr

®
- 128

+ W{%’;}-O(pr)dr]

I we now define

F.(p) = {f (r)Vr cos(pr)dr

)

F,(p) = {f (r)Vr sin(pr)dr
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Figure 111.3.1 Plot of the error kernel for the asymptotic transform method

1St b




and note that

%{%&lcas(w)dr = —{f(r)\/;:in(pr)dr = —F,(p)

aip : L\%)-.u'n (pr)dr = E’f {r YVrcos(pr)dr = F.(p) -

L [ Ll cos ey = —F.(5)

aip,{ f;(;-}-s-'n (pr)dr = —F,(p)
then

1

[J [ 4
FO) = = [Fe@) i) + %fr.(e)ae + %fre(aae + 2

(X
Tz-s;;ffﬁ(ix)d&zd&

’ - (11)
g %t
17852 SfF.(g)dede + 537{ L",L:,)-O(P')d’

We can combine terms above by defining

Fy(p) = F.(p) + F,(p) (12)
so Equation (11) becomes

-1 1 o 17 37
F(p) = Vow Fi(p) + gfﬂ(ﬁdf + m?ffi't(fx)dhdﬁ + W{%)—O(pr)dr] (13)
The indefinite integrals above can be converted to definite integrals by integrating from 0 to

infinity and adding on the values necessary to force the resulting equation to match Equation (8)

atp =0
P [ =
Sr@dg = [Fi@dE+ €y wits €y = [LEar (19
ot plE =t :
[IFeanas = [{Fl(e)de + Cz]dﬁ +C; with C3=f L (1s)

Performing the integrations over the constants and replacing the iterated integral we are left with

the expression

» » -
re) = vf;[r.(p) i e - g5t fo-onone |- ;‘%{E‘;—}«wwl a6

The firgt term can be recognized as the usual asymptotic expression for the Hankel transform.
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The second and third terms are corrections to this expression which can in principle be deter-
mined from it. The final term is the remaining error term but which is considerably smuller than

the term associated with the usual asymptotic expression.

If it were desired to calculate the second and third terms directly as a Fourier transform,
the same procedure could be used as will be described in Section (III.7) where it is applied to cal-
culating the Abel transform.

Equation (16) can also be interpreted as providing first and second order error estimates
for the classical asymptotic transform. These estimates allow the error associated with the classi-
cal method to be estimated (to first and second order) from a knowledge of only the resulting
transform. Such estimates permit one to interpret the result of an asymptotic transform with a

questionable appearance.

11L.S) A Combined Transform Method

The Fourier-Bessel series and the backsmear methods both permit the caiculation of the
Hankel wansform on any output grid. The computational cost of each of these methods increases
linearly with the number of points computed. The asymptotic method is fast and usually gea-
erates pood estimates of the Hankel transform when p is large. A combined scheme is possible

which uses a slow method such as the Fourier-Bessel series or the backsmear to compute the

' Hankel transform point by point for low values of p and which switches to the asymptotic

transform for large values of p. Such 2 method has been proposed in the literature. [8 ]

The main issue with such a scheme is the point at which the algorithm should cease comput-
ing the transform point by point with the slow method and begin to accept the output of the
asymptotic transform. At present there is no reliable method for doing this. It has been sug-
gested in the literature that the transition be made at the first point for which the slow algorithm
produces a transform value which matches the value of the asymptotic transform within a speci-
fied tolerance. [8 ] This scheme for switching to the asymptotic transform would be eatirely ade-




quate if the error made by the asymptotic algorithm were monotonically decreasing in the

transform variable, p. This error is not always monotonically decreasing, however, as we will
illustrate by constructing a function for which it is not. The existence of such a function indicates
that the switching method proposed in the literature [8 ] will not always work. In fact, for the
function we construct, the error made by the asymptotic method will be zero at a point we
specify. The switching scheme proposed would begin to accept the asymptotic transform before
this point even though the error made by the asymptotic transform beyond this point might be
i greater than the specified tolerance.

As in Section (IT1.4) we write the error associated with the asymptotic transform as:

«0) = S L1 Gryar W
V2 m -
where H (pr) = pr |[Jo(pr) - Wcos (pr—-4—) and was plotted in Figure IOI.3.1. In

order to construct a function, f(r), such that e(p) is not monotonically decreasing we first

choose some small § and set

r1 0<r<$y
f(r)= 3 @
-LIH (por)dr
‘ Poso f<r<=
| -::_{ H (por )dr
For this f (r) the error made by the asymptotic transform is:
o) = S JHGr) ()er |
; 3 @ i
s p—f H(pyr)dr ‘
= - JH (pr)ar == ——— . [H (pr)ar '
’ = [H oo

When p = pg the error, €(pg), equals zero. In general for p > pg it will not. For this con-

structed function the error is not monotonically decreasing and the switching procedure described




in the literature will not work.
Until an adequate switching method has been found or until the class of functions for which
the proposed switching algorithm will work has been well defined, there can be no guarantee

that the combined algorithm will work properly and this method should be used with caution.

II1.6) A Convolutional Method

In this section we describe a method for computing the Hankel transform that puts the
Hankel transform in the form of a convolution by transforming to an exponential grid. Whea
this grid does not involve an extraordinary number of points to adequately represent the func-
tion, the Hankel transform can be efficiently evaluated with an FFT. We will discuss the presen-
tation of this method by Siegman [9 ], though other presentations are available in the literature.
(10]

Siegman converts the Hankel transform into a convoluton by sampling the function on an

exponential grid. He begins with the Hankel transform integral

F(p) = { £ (r W ofpr Yrdr (1)

After the following definitions:

= 'v=ln-&
p = poe (pﬂ)

rmreet §=in(-) @
ro
Equation (1) becomes:
F(ppe") =
= [ SV ooororYrde¥as
@

= 1§ e Coe [ralouroe*a

=r§ :l; [e “2f (roe "a) ]Jo(poroe""’)da
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which is the convolution of rde ~2f (rge ~*) with J¢(por o) and can be implemented with an
FFT.

The strength of this technique is the efficiency with which the Fourier transform can be
implemented. Its weakness stems from the requirement that f (r) be sampled evenly in e ¢, In
order to obtain the sampling density necessary to represent a function near the origin it is likely
that such a density of points is necessary to represent the function at larger ranges that the com-
putational savings are lost. Also, the presence of the gam factor e ™2 might be a severe problem
for the region 0< r < 1. It is unlikely that this transform technique would work efficiently for

functions with more than moderate range-bandwidth products.

In the next section we present another Hankel transform algorithm that exploits the compu-
tational efficiency of the FFt through a change of coordinate system. It requires only that the

function be represented on a square root grid, however.

I1.7) The Projection-Slice Method
a) Overview
In Section I1.2 we related the Hankel transform to the two dimensional Fourier transform

of a circularly symmetric function. We showed that the Hankel transform can be obtained by

first forming the projection, or Abel transform:

» * d
P(r) = Af () = 2fs (Vi eyhay = 2 {}gfﬁ )

which is then followed by a Fourier transform:

F) = [£ (- Woloriedr = 5= [p(r)e'™ar @
Oppenheim, Frisk, and Martinez [11 ] suggested that the computational efficiency of the FFT be
exploited by implementing the Hankel transform as a numerical projection followed by an FFT.
Previously, however, the projections were expensive to compute, requiring on the order of a2

operations and function evaluations or interpolations. As part of this thesis a computationally

.
e e T T U
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efficient method for computing the projections (the Abel transiorm) was developed. [12 ] Whea
followed by an FFT the result is a computationally efficient Hankel transform requiring on the

order of N*logN operations.

b) The Abel transform

We consider the Abel transform shown below:

= . r -2’ d
pey=afe) =2 LREEE

As suggested by Bracewell [1,2], we write this transform as a convolution by defining:

h(r)‘ 2 rao

r<0
;—r

and

F(r) =p(Vr) r=0
fr)y=f(Vr) r20

which leads to the convolution formula:

P(r)=f(r)* h(r)
The Abel transform of £ (r), p(r), is determined by:

p(r) =p(rH
Bracewell [2] proposed evaluating (6) by shifts and sums.

Because the Fourier transform of & (r) is the known analytic function:

1+i 1
H(v) 2 Y forall v
P (r) can be determined in principle by means of the Fourier transform:

#(r) = [i(v)-‘zi Vlv' 270 g,

(o))

@

(&)
@

(&)

(©)

®

where F (v) is the FT of f(r). Unfortunately the singularity st v = 0 makes this fanction dif-

o —— A

P
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ficult to represent in the computer and is responsible for the long tails of 5 (#) which cause alias-

ing problems when the convolution is implemented with a Fourier transform. We avoid these

difficulties by removing the Vl' factor from the numerical part of the transform (8) in such a
v

way that the remaining function is as well behaved as F (v) within the numerical portion of the

transform. The singular part of the transform is performed analytically and added in after the

numerical processing.

To this end the transform (8) is written

» [\] .
plr) = {f(v)-lzi -vlze'z""dv + !f(v)% Vl:e‘z""dv (9a)

- 1+i ’I':(V) - F-'(O)Z_bv(l-v;) i2avx dx + F(0 r 1-\/- ‘(b"lz'ﬂ")"d 9b
{ e ( )_{—v-— e v +(9b)

v
2 v v

[ . - v 0
+f F(v) - F!o; eb !1"\/;!"'2""" dv + f(O)flw—\-/-le(bﬁZ")" dv
- v -3 v

Where b is 2 parameter analogous to the real part of the exponential in a Laplace transform.

Our choice of b is described later.

The integrands in the first and third integrals of Equation (9b) do not have singularities at
v= 0. Because both the numerator and denominator of these integrands approach 0 as v
approaches 0, they can be evaluated by I' Hospital's rule to show that as v approaches 0 they
approach F (0).
Upon defining
F(0) v=0

L() = {(-F (v) - F(0) e"'"'(l-\/;))/\/; otherwise (19)
and performing analytically the two integrals that do not depead on F (v) we have :

o 148 L er covizere Va 1 _ iV _ 1
P() z !.L(v)c e dv + F(O) {VbL-zﬂr b=2nir Vb +2wir b+21rtr] an
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L (v) was defined in (10) such that L (0)=F (0) and L (v)= F (v) for large v. The parame-
ter, b , was chosen so that L (v) moves smoothly between its limits. If & were set to 0, L (v)
would have a DC term that would transform to an impulse. Theoretically this would be canceled
by the singularities in the portion of the transform performed analytically (see equation above)
but computational errors would certainly cause problems. If b were infinite, L (v) would suffer
from the 1/Vv singularity at the origin. b is chosen to smooth out the singularity somewhat
between these limits. We have been using values of b such that e * has decayed to e ! after
roughly 6 samples of F (v).

We present three examples of functions processed with the Abel transform algorithm
described above.

Example 1 (a)

The first example is the transform of the pillbox function

{15 r<% ,

1024 samples of this function were generated on a VaT grid with T= 1/32 and
transformed. The result is shown in Figure IT1.7b.1 as dots superimposed over a solid line which
is the transform computed analytically ( 2\/1_—_13 ). The output matches the analytic solution
well.

Example 2 (a)
For the second example we transformed the function

—"f” w(r) (13)

where w (7 ) is a Hanning window. 2048 samples on a VaT grid with T= 1/2 were input (Figure
II.7b.2). Figure I11.7b.3 shows the output (dots) superimposed over the correct transform (solid

line). The correct Abel transform was computed by evaluating the Fourier-Bessel series [11] to

< Vo TAATITYY, (2w o W A9 o I 0 A R
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Figure N1 7b.1 Superposition of the numerically generated Abel transiorm of a pillbox (dots)
and the correct transform
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Figure IL.7b.2 The ibput WW(&:T) with 1’--2— and n =0,1,2, -
W (nT) is a Hanning window.
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Figure I11.7b.3 The Abel transform of Figure I11.70.2. The dots are the output of the proposed
algorithm. The thin line is the correct output.
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obtain a slow but accurate Hankel transiorm of the windowed input. The Hankel transform was
then inverse Fourier transformed to generate the Abel transform. In the absence of the window

the result would have been sin(r)/r.

The output is coincideat with the correct solution.

Example 3 (a)

For the third example we again transformed 2048 points of

i—‘f’—)w (r) (20)
on the grid VAT but now T was chosen to be 4. This input is shown in Figure II.7b.4.
Increasing the sampling interval reduced the effect of windowing on the input because a greater
range of the function was represented but it also increased the sampling interval on the output.
Figure II1.7b.5 shows the output (dots) superimposed over the correct transform. Again, there is

no discernible error.

¢) The Hanke! Transform

To complete the Hankel transform it is necessary to Fourier transform the projection
obtained from the Abel transformer. Unfortunately this is available on a VaT grid and not the
even grid required by the FFT. To generate p (r) on an even grid it is necessary to interpolate.
If a simple interpolation scheme is used, like sample and hold or linear interpolation, the result
will be generated rapidly but may suffer some degradation. If a more sophisticated interpolator
is used, better results can be expected but at the expease of greater computation time. Because
the interpolation is from an uneven grid to an even grid (and not the reverse) it is difficult to
characterize the error theoretically beyond the fact that the finer the initial grid the better the
results. We complete the Hankel transform of the examples presented above using linear interpo-

lation to generate the uniform grid.

i
R
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Figure 1.7b.§ The Abel transform of Figure III.7b.4. The dots are the output of the proposed
algorithm. The thin line is the correct output. '




Example 1 (b)

Figure II1.7c.1 shows the result of using a FFT on the linearly interpolated projection generated
in Example 1 (a). The dots are the calculated output and are superimposed over the analytic
solution (solid line). The agreement is excellent. The time required to perform the total Hankel
transform (1024 input points to 1024 output points), including the required linear interpolation,

was less than 31 seconds on a PDP 11-55 with a floating point processor.

Example 2 (b)

Figure III.7c.2 shows the result of Fourier transforming the linearly interpolated output of
Example 2 (a). Again the dots represent the output of the Abel-Fourier scheme and the solid
line is the Hankel transform as computed by the Fourier-Bessel series.[11] The agreement is

excellent.

Example 3 (b)

Figure II1.7¢.3 compares the result of Fourier Transforming the linearly interpolated output
of Example 3 (a) (dots) with the correct transform (solid). Significant distortion is apparent in
this transform. Since the output of the Abecl transform in example 3 (a) essentially equals the
output in example 2 (a) (the correct projection) except for the sampling interval, we can associ-

ate this distortion with the linear interpolation performed before the FFT.

d) Discussion

We have found, as indicated by the examples above, that the Abel transformer works well.
When its output can be successfully interpolated and is followed by a FFT the result is a fast,
accurate Hankel Transform as illustrated by examples 1 and 2. As the spacing between output
samples of the Abel transformer is increased, the suitability of a simple interpolation scheme

becomes suspect. Example 3 was chosen to illustrate the effect of inappropriate interpolation on

the resulting Hankel transform. At this point it would be prudent to determine the validity of a
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Figure Ill.7¢c.1 The Hankel transform of a pillbox computed by using an FFT on the linearly
interpolated output of the Abel transformer presented in Figure ITI.7b.1.
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Figure IM.7¢c.2 The Hankel transform of "7‘;"77- W (nT) computed by using an FFT on the

lineasly interpolated output of the Abel transformer preseated in Figure III.7b.3, T = % case.
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Figure IM.7c.3 The Hankel transform of %;;,—- W (nT) computed by using an FFT oa the
linearly interpolated output of the Abel transformer presented in Figure II1.7b.5, T = 4 case.
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Hankel ransform performed with this algorithm by comparing the output for inputs of different
grid spacings.

e) Summary
The procedure for performing the Hankel transform H -f (r) = Fy(v) is summarized

below.

1) geacrate £(r) = £ (Vr)

2) Fourier transform to obtain F (v)

3) generate L (v) = F (v) — F(0)e 2 "!(1- Vo) Vy

4) perform the inverse Fourier transform and add in the analytic terms:

oo v o Voo 1 . _iVa 1
p(r) 2 {IFT L) +F(0){V;'-i2ﬂr b =2wir Vb +2mir b +2mir }}

S) interpolate to an even grid p(r) = g )
6) Fourier transform to obtain the Hankel transform
Fg() = FT-p(r)

Each of steps 2) thru 6) requires no more than the order of N log(N) operations. There-
fore the total transform can be accomplished on the order of N log(N) operations. Direct compu-
tation of projections from the 2 dimensional circularly symmetric function would have required
at least N function evaluations and N sums for each of N points hefore the final FFT, which
leads to an algorithm requiring on the order of N 2 operations. Therefore for sufficieatly large N

this method of calculatinig the projections can provide a considerable advantage in speed.

Steps 1) and 5) sbove indicate that in two places interpolations may be required. In many
cases, however, the function to be transformed can be generated initially on a grid evealy spaced

in Vr. Further, f(VaT ), as required by this algorithm, has the desirable feature that equal
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areas of the underlying two dimensional function f(r,0) are represented between samples. If
stationary white gaussian noise (SWGN) corrupts the measurement of f (V;I-') n=01,---
then the Hankel transform on a V4 grid will be corrupted by SWGN (corruption of equal areas
of the underlying two dimensional function produces corruption of equal areas of the underlying
2-D FT). This is not true iff(r;T) is corrupted by SWGN.

To implement a Haokel transform using this method it is necessary to perform the interpo-
lations of step 5). Because of the speed of the Abel transform portion of this algorithm we have
found it sufficient in many cases to simply generate an over sampled version of g (r ) and to use

linear interpolation to obtain p (r) .

1) Conclusion

For many applications this method of calculating the Abel transform appears to permit the
efficient calculation of the Hankel transform for large data files. This transform method is par-
ticularly appropriate for the evaluation of the Sommerfeld integral, in which the oscillations of
the kernel increase with the independent variable. As a general transform method issues of
representation on a vr grid must be further explored. Because of the equal area property
described earlier for f ('\/; ) and because the speed of this algorithm permits oversampling in
P (r?) it is not expected that these issues will pose serious problems. It appears that the Vr grid

is of fundamental importance in the Hankel transform.

I1.8) Summary
In this chapter we preseated a number of numerical techniques for evaluating the Hankel
transform. No one technique is ideal for all situations. When the value of the transform is

desired at only a few points, the Fourier-Bessel series or the backsmear method is appropriate. If

speed is extremely important, accuracy is not, and the transform is not needed for small argu-

ments, then the asymptotic method is justified. If the input function and its Abel transform can

be well represented on a square root grid (which is the case for functions which incresse in
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complexity with range) then the Hankel-Abel (or projection-slice) method is a good choice.

Having established the properties of the Hankel transform and examined its numerical

implemeantation we are now ready to consider using it to generate synthetic data.
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CHAPTER IV:

SYNTHETIC DATA GENERATION

IV.1) Overview

The geacration of high quality synthetic pressure fields is an important branch of acoustic
research. Because present methods can oaly approximately compute the fields associated with a
point source for complex environments, simplified environments are often considered for which
fewer approximations must be made. One important environment which leads itself well to
analysis but which has sufficient complexity to be of interest for practical problems, is the horizon-
tally stratified environment. It is an excelleat model for the conditions present in the deep ocean
over an abyssal plain, and consequently of direct interest to us. Currently, techniques for calcu-
lating synthetic fields arising from a CW point source in this environment exist in the literature
[7,11,3 ] These techniques are based upon the numerical evaluation of the Sommerfeld integral {1
], for which two major computational efforts are required. First, the plane wave reflection
coefficient for the bottom profile must be numerically generated. For this the propagator matrix
method [12,8 ] is used. Second, the pressure fleld is computed as the Hankel transform of the
depth-dependent Green's function (which is simply derived from the plane wave reflection
coefficient). Typically, in these techniques many of the degradations associated with the numeri-
cal evaluation of the Hankel transform are not carefully controlled. In this chapter we exploit the
properties of the Hankel transform derived in Chapter II to carefully control these errors. We

will show in Section (IV 3a) that a major source of numerical error is aliasing, which becomes
important because asymptoticaily the fields decay only as -:- . We associate this slow rate of decay

1
with the source singularity, ===—===—=_ {n the depth-dependent Green’s function and show how
v }-k 3

(d

to separate this portion of the computation from the numerically computed Hankel transform.

1) Assuming for the preseat that theze are no trapped modes sssociated with low speed laysrs within the
bottom.




The remaining numerical calculations are significantly iess degraded by aliasing and are well
behaved in general. They remain in the form of 2 Hankel transform for which we can exploit the
computation efficiencies now available [9 ] The result is a new hybrid procedure which is compu-
tationally efficient and significantly more accurate than existing methods. This hybrid scheme is

illustrated with exampies of synthetically genecrated fieids.

In Section (IV3b) we discuss the difficultics associated with numerically evaluating the

Hankel transform of the depth-dependent Green's function when slow speed layers are present in

1

r -k,‘l

the bottom which give rise to proper modes. Proper modes are associated with the

singularities (with k, near the real axis) in the depth-dependent Green’s function and contribute
terms to the field which decay asymptotically as T/l'_ This very slow decay in the field causes
r

severe aliasing problems when it is calculated using a numerical Hankel transform algorithm. In
Section (IV.3b) we show how to separate the effects of proper modes from the numerical calcula-
tions by perforﬁing part of the Hanke! transform analytically. We make this separation in such a
manner that the portion of the field assigned to the analytical calculations is exact and finite for
all ranges. This makes it possible to numerically calculate the residual numerical contribution to
the field accurately and add the result to the analytically determined expression. The result of the
total hybrid algorithm is a fisld which is accurate for all ranges and which can accurately include
the ¢ffects due to proper modes arising in the presence of slow speed layers. We present an exam-
ple of a field generated synthetically with this total hybrid method and show how the result is

significantly better than what would have been achieved without removing the effact of the poles.

In this chapter we also develop a numerical implementatior. of the propagator matrix method
for generating the plane wave reflection coefficient that is well behaved numerically. We begin
the chapter by descriding the computation of the plane wave reflection coefficieat by means of the
Thomson-Haskell method [12,8 ).

. e ———— - Cm me oo - e ey -

so.dm

g ey

Y NI TN - TPy SV P M~ e g (g




1V.2) The Propagator Matrix Approach to Generating the Plans Wave Reflection Coefficiens
8) The Method in Principle

i) Overview

To calculate the plane wave reflection coefficient we consider the response of a layered bot-
tom to an incident plane wave as shown in Figure IV.2ai.l. Within the n** isovelocity layer we

express the field as the vector:

(2)

[U )|, Jolk,r)e™ )
where P, (z) is the pressure in the n** layer and U, (2) is the normal component of the velocity.
We have chosen this representation because P (2) and U (z) are continuous in 2, even across
layer interfaces. In the discussion which follows we will suppress the time and radial dependence

of the field because they are the same in all layers.

In the propagator matrix approach, the impedance at the bottom layer:

P(zy+1)
CN +1 - U (zN *1)

is available from the material parameters. In principle this impedance is used to determine the

)

reflection coefficient at the top interface in three steps. First the field at the top interface is
related to the field at the bottom interface by the propagator matrix:

P(z0) P(zn)
veo)| = ® {vew @

Next the incident and reflected pressure waves at the surface are related to the field at the top

interface and then to those at the bottom through:

P(z0) P (zv) ay; ay| |P(zy)
Alveof "A®lven)| ™ len ax| U@ @

Finally, the reflection coefficient is calculated in terms of the impedance, {y .1, using

Poo| [ou @1
Poo) = laz az) ltw oV @¥) )

o T e Y Y™ 1Y g et T v
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Figure IV.2a.t.1 The waves generated in a layered bottom in responses to an incident plane
wave




so that

- r=Ft-0_outivaen
% Peo oy tiysion

(6)

il) The Propagator Matrix

The essential element of this approach is the propagator matrix, 9, of Equation IV2a.13. In
this section we review its derivation.
Within any isovelocity layer, the field can be considered as the superposition of a positive

and a negative traveling wave. The pressure field is given by

P(a)=P,e™" +p_e™™ @)
The normal component of velocity, U (z2), is related to P (z) through the telegraph equations {2 ]
F P U , R
or the non-normal case we use -?z- - p—a‘— = —jwpl which implies that:
ik ik -
Uz) = —=P " -~ —tp "t @)
iwp iwp
, k,
or defining Yo & ——:
wp
U(z) mYoPoe™ —yop_e™* )
In matrix form Equatioas (1) and (3) become:
[P(z)] [.a,. e Tt [ -o-]
UG) ~ voe™' —rpe™*| IP- @
P@z)] o P(z2) N
It Uz, is known at some point in the layer then U(zy) can be computed in principle by
P. [P (z7) P(z3) P,
_inverting Equation (4) to find P. in terms of U (z2) and then calculating UGy) from Pl

Combining these operations into one step gives:

P(zy) et o "t 1 Pl o bt - P(zy)
U(zz) = Yola'" _Yo‘-a,u, Yo‘i&,q _Yo‘-u,n, U(:;) £

which gives us:
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U] = |iYesink, (23-21)  cosk, (2329 | [U(zy) ©)

i
cosk, (23— —sink, (2;—
{P(zz) 8(22 zl) YO t( é zl) [P(zl)]
The values of k, and Y, are functions of the material parameters of the layer under considera-
tion. In particular if ¢, is the sound speed in {ayer n, p, its deamsity, £, the horizontal wave

number of the incideat plane wave (by Snell’s law common to ail layers), and w the temporal fre-

k
quency of the CW source, then k, = -cl' k, = Vki—k2 and Y, = :;;—

‘To indicate explicitly the dependence on the material properties of the nh layer we write:

{P (z2 P(z 1)]
™

Uzs) =®, (222 1)[[] (zy)
when 2z, and 2, are both within layer n.
To calculate the field at the top interface in terms of the field at the bottom interface, as

shown in Figure IV.2ai.1, we can use the previous discussion which was applicable only to a single

layer, to relate the field at 2, to the field at 2, _;:

P (zn-‘.) P (Z,.) P (Z,‘)
UGa-n)] = P17y )] = e lU(ay) ®
We then iterate the procedure through all the layers to find
P(z0) P(z,) P(z,)
UG ™ PP Py, Plue,) @)

b) Numerical Implementation

§) The modified propagation masrix

The bulk of computation associated with the propagator matrix approach is the accumulation
of the matrices ®;®, - - - ®,. When these are accumulated on the computer, the actual opera-
tion is ®(P,( - - - ®y))). It is possible for the scale of the accumulated product to differ

dramatically from any particular @,. Because of the limited dynamic range in the computer it is

advisable to scale terms to make them comparable before accumulation. Fortunately the final cal-
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culation for the reflection coefficient depends only on ratios of elements in ®. For this reason we
normalize each of the ®; so that its largest value equals 1. This procedure alone could cause
another problem stemming from the differeat sczles in general for P and U, which is due to their
different units. To bring P and U into the same units we do not actually relate
[P (2a-1) [P (24)
0

U (sn-1) U (z) @
but rather consolidate units by multiplying the normal componeat of velocity by the characteristic

impedance of that layer. Therefore we actually calculate:

1 o R M |
LoU(z0)]  |8101 6141 T |enby Ewan| [INU Gy) @
where
k:.l - V("’/ct) =k,
- 2P
& %,
- bict
£ 3

a; = cosk, ;(z—2-)
by = —isin k, ;(2,—2-1)

1) Relation of the modified propagation matrix to the incidens and reflected waves

We now relate the field variables to the incident plane wave and the resulting reflected plane

wave by slightly modifying Equation (IV.2a.ii.4). We assume that the top interface is at 2 = 0 so

o) - ol 40

that:

and

4 ¢.o (0)
P -.o

;ov ©) @




P

-.96_

By defining:
[¢u ¢u} N [‘l b ]
by b2 ‘r_lx §:ib; §.a @
and using Equation (IV2b.i2) we have:
[P +ol [1 1 [¢1i ¢xz] P(zy)
Pool T 211 -1 |én buf [tn¥Gy) @

We now need to use the fact that the pressure and velocity fields in the last layer are made up of

only positive traveling waves so that (referring to Equation IV2aiid) Py, = P(zy) and

Uver = 1 P (zy) we have
v+t
Peol o1 butdy dptédy| |1 p
P_o| 2[0u—dn bu—dnj| Ly |'¥™ ©)
(v

If we now use

in
Eve ™ (6)
v+
we have the reflection coefficient
P. - + -
T R Vi Yl 1 20\ G ) ™

Pep  Ou+dy + Enai(dntdy)
Equations (IV.2b.i.2) and (7) show that this approach uses only the ratios of the impedances

in adjacent layers and never the impedances themselves. T uese ratios are much better behaved in
general than the individual impedances. For this reason, because the use of P and Y U instead of
P and U, and because of the scaling of the layer propagation matrices this implementation of the

propagator matrix approach has good numerical properties.

¢) Selected Propertiss of the Reflection Cosfficient

-

In Figure IV.2c2 we present a perspective plot of the log magnitude of the reflection

coefficient as a function of k, for the bottom of Figure IV.2c.1 calculated using the aumerical
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Figure TV.2¢.1 The bottom parameters used to generate the reflection coefficient shown in Fig-
ure IV.2¢.2
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WATER WAVENUMBER

Figure IV.2¢.2 Perspective plot of the log magnitude of the plane wave reflection coefficient for
the bottom of Figure IV.2c.1
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algorithm just described. The reflection coefficient is displayed both for those horizontal wave

numbers corresponding to real angles of incidence (0 < Re(k,) <k, where kg is the water wave

number) and for horizontal wave numbers corresponding to complex angles of incideace

(kg < Re(k,)). The complex angies correspond to evanescent waves. Single evanesceat waves do

not carry any time average power flow (their Poynting vector is imaginary) and consequeatly the

magnitude of the reflection coefficient is not limited to be less than one in the evanescent region,

ko<k, [6]

In Figure IV.2c2 a pole is apparent in the reflection coefficient on the real &k, axis in the

evanescent region. This on axis pole corresponds to a proper mode propagating in the low speed

layer within the bottom. Other off axis poles corresponding to leaky modes are also apparent in

‘ the reflection coefficient. A discontinuity, or cut, can be seen extending from k4 along the real &,

axis to infinity. This is the branch cut exteading from the branch point at k5. Another cut extend-

ing from kg to infinity falls on this same line and is therefore not apparent. The origin of these

L e et e TS s 4 S e 7

branch points and cuts can be found in our derivation of the reflection coefficient where we asso-

ciated

e"ka-"" with P, Q)

and

SRR e b ')

Clearly the roles of P, and P _ would be reversed by changing the choice of sign for the square

root. For incident and reflected wave this would correspond to inverting the reflection cosfficient

(if no other waves were affected). The two sheets corresponding the the branch point at kg

reflect the two choices of sign for the incident wave. We have displayed the choice associated with

positive real power flow for the incident wave,

In the intermediate layers such as layer 1 of this sxample, changing the role of P, and P ..

would not affect the reflection coefficient. For the intermediate layers, the physical problem does

not name (or distinguish between) forward and backward traveling waves. Conssqueatly thers are




no branch poiats associated with intermediate layers.

If the opposite sign were chosea for the square root, V. —k,°, amociated with the
emerging wave, P, y .; from the bottom of the stack of layers (into the isovelocity half space) the
direction of energy flow associated with that wave would change. Unlike the intermediate layer,
there is no returning wave in the isovelocity half space. Consequently, the physical problem would
change. For this reason we see a branch point at ky ,; reflecting the two different “physical” prob-
lems.

In Figure IV2c2 we have chosen to display the Riemann sheet for which both
Re(\/m) > 0and Re(m) > 0. On this sheet only waves with real power flow in
the positive direction are associated with P .. This constrains our incident waves to be those with
power flow from the source to the layered bottom and specifies that there is no power flow return-
ing from infinity.

When we perform the integrations discussed later we must choose which side of the cuts to
integrate upon. For reasons of convergence we choose the side for which Im(\/m) >0
wh;n j=0and N +1, is satisfied. Consequently, whenever we integrate the reflection
coefficient in the complex k, plane, we always satisfy both Re(\/l?-_k,!) > 0 and

Im(Vvk ,’-—k,:) > 0for j=0and N +1.

1V.3) Evaluating the Sommerfeld Integral

" Once the plane wave reflection coefficient, I'(k,), has been computed it is necessary to

evaluate the Sommerfeld integral:
T i ) (Vi =231 erq1
P - r
) =f Vi I olrk, M, d, ™

in order to compute the reflected premure field. The Sommasrfeld integral is in the form of a
Hankel transform of the depth dependent Green's function,
i

sz -k,!

I'(k,)c' ViF% 4% The properties of the Haakel transform were

Gk, 2,20 =
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developed in Chapter II. In Sections (6) and (7) of that chapter we discussed the effect of trun-
cating the integration at some finite value, and the effect of sampling. The truncation was accom-
plished by multiplying the function to be transformed by some finite length window. For the gea-
eration of synthetic data we find that windowing of the Green's function is not an important con-
sideration in general because when 2 +2¢9 > 0, G (%, ,2 ,2¢) decays exponentially in &k, for k, > k.
Except when 2 +2; is very small we can integrate Equation (1) until the Greens function is negli-
gible and truncate at that point. It is not necessary to multiply by a windowing fuaction.

The issue of sampling and ¢e associated degradation introduced into the transform, aliasing,

can be very much a problem however.

8) The Sowrce Singularity

i

VEE k2

propagation terms in the Sommerfeld integral, we first consider the evaluation of Equation

In order to highlight the issues associated with the source singularity, , and the

(IV 3.1) for a hard bottom case where I'(k,) = 1.

For the hard bottom case the pressure field is given by the known integral:

Pr(r) -;' i ¢¢ - '.ml-’o(ir)Ede - eu,\/ﬂm o
R 0 \/k} -g’ Vrz+(: -4-:0)2

We evaluated this integral numerically with the Fourier-Bessel series to obtain an estimate for the

field:

A A\,
5 X Gz olr=S)
TS HOW
where for this example, A was chosen to be 2000 and Iz +249! = 2. In Figure (JV3a.1) we com-

Pa(r) = 0<r<aA @3)

pare the log magnitude of the result (dots) with the known transform (solid curve).! We see that

* the magnitude of the numerically generated field, Ay (), oscillates rapidly in contrast with the

1)The output of the Pourier-Bessel series has besn displayed to twice its region of validity o betwar fllue
trate the sourcs of degradation.
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Fignre IV.32.1 A comparison of the log magnitude of the reflected field generated by a poiat
. source over & hard bottom (solid line) to the field numerically computed using the Fourier-Bessel
series (scatter) which is shown to twics its presumed region of validity




true Hankel transform. As we will now show these oscillations are due to aliasing in the numeri-

cally computed Hankel transform.

In Section (11.7) we showed that the effect of sampling on the Hanke! transform is to
approximately produce an aliased estimate of the true transform, Vr Px(r). Since for this exam-
ple, Px(r) decays asymptotically as 1/r, V;P, (r) decays asymptotically only as 1/Vr . What we

see in Figure (IV.3a.1) is given approximately by: .

o 1 ‘%V'!*(- *-:)’ ¢u;‘,\/(za s Yoy 0.;31
0<r <24 (Pp(r)t = [==|VF ~VZA-r 4
L v7 [ VPG *igp V@A =1 Y+ +2o) @
When 7 is much greater than z +2q, Pp(r) is approximately:
. | 1 eiky el’lolu—rl ]
< < 2 I | = — - ——————
0< r< 24 1Pp(r) v v~ Y e )
Since we are in the region r <2A this can be rewritten:
- ' 1 ¢u°' euou =ikor
<r< | | | | e =~
0<r<24 |Pp(r) |\/r- v me 6)
We can write Equation (6) in terms of the desired transform and a modulation term as:
k024 . k24
. 1 1 e ikgr , e .
BT Jorms | { e o c—— -+
P v;[[v; vzxt:]‘ z‘vﬁ:’“‘"““ @
et
Which defini =
ich upon defining ¢(r) Y e
IPp(#) = n-l--‘-(’-llc“‘f + 2i8 % gin korl ®)
r Vr r

When r << 24 «(r) is small, so that the magnitude of By(r) appears as roughly the correct

transform with a modulation term.

We note at this point that if we had sampled the output of our transform at an integral mul-
tiple of 27 /ko we would not have seen these oscillations. At this sampling rate the cosine would
have appeared as a DC offset in the magnitude of the pressure field. If the output sampling rate
were near but not exactly an integral multiple of 21 /kq the cos (ko7 ) would have appeared as a

low frequency modulation because the sampling is in effect demodulating the cosine down to a

IRy e

e




low (but not now gerc) frequency. This result is an important one because frequently pressure
ficlds are generated by using an FFT based approximation to the Hankel transform (IV.3.1) and
the water wave number is the maximum wave number used [S,4 ] The grid resulting from such
processing i. exactly an integral multiple of 2w /kq. Carrying the integration to higher wave
number would make evident the modulation in the answer by automatically providing the output

on a finer grid.

The problem of aliasing arose because the field being computed decayed only as -:'- which

forces us to use a very high sampling rate to properly sample the Hankel transform. We now note

that this vl.- décay is due to the 1 singularity in the Green's function. It is well known

that the asymptotic, or far field, character of such a transform is determined by the singularities

of the kemel over the path of integration [10 . The Green's function which is transformed in

Equation (IV 3.1) was

G (kr 53 0) -
The asymptotic character of the transform, P (7 ), is dominated by the singularity

1
\/kn? —k,2

The integral

euo V"*'! bt

Vri+gl -{ \/lc-;._k’“ Fti \To(k, 7 )k, dE, an
0 "%

shows us that this singularity is in fact associated with the 1/7 decay rate. Physically this singular-
ity was due to the angular spectrum of the poiat source. The 1/7 decay associated with this singu-
larity is often associated with the point source by noting that the field around a point source must
decay at that rate in a manner such that the intensity, which decays as the field squared,
integrated over any three dimensional shell eaclosing the point source, would not be a function of

O
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The source of slow asymptotic decay we have isolated suggests a procedure for reducing the

problem of aliasing. We remove the source singularity from the keranel, aumerically transform

what is left, and add the result to the analytically determined transform of the source singularity.
When we remove the singularity we must do %0 in a manner such that the numerical transform we

must perform is well behaved. We allow for a geaeral I'(k,) but at this time assume that ['(k,)

has no singularities along the real k, axis with asymptotic contributions to the field capable of

dominating those of the singularity.

]
Virw

To this end we rewrite integral IV .3.1) as:

Pr(r) = [ Tl )—mm e VEETR 10 3k, = (12)
0

ViE =k}

. [ - 1 i .\/AT:?un ! p i ‘m"" [
_{ {F () =T (1)) Vs 0 01 o(k, P )k, dk, +I‘(k)_.; vy 0 7ok, P )k, dk, (13)
If we define:
Lk)m [Ck,) = Pk )] —tomg e VRE =01 420! 14
[re., vz = al 3 14
so that L (k, ) does not have the 1/Vk 0’ —lc,2 singularity at k, = k(,.I then we can write Equation
(13) as:
} e ik Vrie(s +10)
Pp(r) = J L (k, W olk,7)k,dk, + (k)
R 0 (7 O\®y r 4 v;w (15)

Because L (k,) does not have this singularity along the path of integration the output of the

numerical transform will decay at a rate faster than 1/r. The asymptotic U/r decay is provided by

We saow in the sppendix that if the impedance and its first derivative at the interface is flaite for
k, = kqthen the

r -2
m o= 2,

whers 2 is the impsdance of the bottom at k, = kg, @ is 2% source frequency, and pg is the density of
the water. For an isovelocity half space this expression reduces to

L) =Sy

Which is finits.




the analytic term which can be recognized as the specular reflection when r is very large (glancing

incidence). These observations are confirmed in the examples which follow.

In the following examples we illustrate the generation of syathetic presuie fieids through
the hybrid algorithm implied by Equation (15) where the integral is performed with a numerical
Hankel transform algorithm and the analytical expression is the result of integrating the singular-

ity.

1) Hard Bottom

This is the degenerate example because for I'(k,) constant, the eatire transform is per-
formed analytically. The result of the analytic transform was compared to the direct numerical

transform Figure (IV.3a.1).

i) Slow bottom

Figure (1V.3aii.1) shows the bottom parameters for this example. Figure (IV.3aii2) shows
the result of the hybrid calculation (solid line) versus a direct umerical calculation. The improve-
ment is dramatic. Figure (IV.3a.ii3) compares the hybrid field of Figure (I1V.3aii2), with its
numerically generated component. As can be seen, the near field is dominated by the numerically
generated component. As range increases this numeric term begins to suffer from aliasing prob-
lems but the analytic term begins to dominate, minimizing the effect of aliasing on the computed

field at large ranges.

2
ilf) Fast Bottom

Figure (IV3aiii.l) shows the parameters of the fast bottom for this example. Figure
(IV 3aiii2) shows the hybrid calculation versus the direct numerical- calculation. Figure
(IV 3a.ii3) presents the hybrid field and its numeric component. The improvements are similar to

the fast bottom case.

b) Poles Due to Slow Speed Layers
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Figure (IV.3b.1) shows the parameters of a slow speed layer between two isovelocity half
spaces. These are the same parameters used to generate the perspective plot of the reflection
coefficient presented in Figure AV 2¢c2). Figures (IV3b2a) and (IV.3b2b) show the magnitude
and phase of the reflection coefficient for this bottom as a function of horizontal wave number.
We see that for this example the reflection coefficient has s singular point beyond the water wave
aumber, kg. That singularity is a simple pole associated with a proper mode excited in the fow
speed layer. Such a proper mode can appear oaly for kg < &, < ky,;. In this region conserva-
tion of energy is not violated because the waves are evanescent. Proper modes are generated
when the low speed layer acts like a diclectric waveguide. When this happens energy diffuses (tun-
nels) from the point source to the low speed layer but does not otherwise propagate vertically.

Energy from the field is now constrained to decay in only two dimensions instead of three and we

expect that the field associated with the pole will decay asymptotically as —‘}.- 80 that the integral
r

of the flux over any two-dimensional ring surrounding the source remains constant.

Poles such as this disrupt the asymptotic character of the field derived in the previous sec-

tion. As before we would like to analytically determine the contribution of these poles and

remove them as we removed the singularity. To do so it is aecessary to evaluate the

i
Vk} -k,z

integral:

) P 1 i (v:’:i?|l+l°|
I(r z+z9k,) ™ j; [-_—-k,’-k,"] mc Jolk, 7 Yk, dk, Q)

In Appendix (I) we show that for Im(k, ) & O (associated with no return from r == )
I(r 2 +20ik, ) is given by:

o1 f VNG
I(r 2 +20k,) = ?91-‘ '“;.r_ﬁe PRt

g - EHP @I @)

where

p= + » -k 3)
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The first integral is easily evaluated on the computer. In addition as r becomes large the first

term rapidly approaches:

-1 eﬁoV’,*(""’o)!
4
282 \PTH(z +20) @

The second term decays as 1/VF whea k,, is real.

Equation (2) is also correct for Im(k, ) > 0, but when Im(k, ) >> 0 the poles no longer

contribute asymptotically as 1/Vr because the Hankel function decays exponentially. Under these

conditions

i(l,._r -n/4) o} (k,‘) ilk’.‘ .+a'l_ “r
B e

HE (k,r) = /I, Ne v ()

- C (kr‘) ’ly""c ik, -7 6

Y- (6)

As Im(k, ) becomes large the exponential decay dominates the 1/Vr decay even over the finite

range that concerns us. It is for this reason that we consider only those poles near the real axis

(close to the path of integration) and leave the others to the numerical part of the transform.

With / (r ,z +2;k, ) so defined, the reflected pressure field can be written:

i

P -
2 (r) J; Vi

r("')‘zfz{‘T-z VIR ey G e, + Sal(ra+zaik,) (7)
t %r (A t

Where the expression in brackets no longer has any poles near the line of integration and so can

be evaluated as before.

In order to remove the poles as required in Equation (7) it is necessary to determine with

- precision the pole locations, k, , and their scales, (a-1);. The pole locations can be found using

standard compiex root finding techniques, though care must be takea to provide the root finding
algorithm with values of the reflection coefficieat on the Riemman surface s0 that it appears ana-
Iytic except at isolated singularities. This means that the braaches chosen for the square roots

must be taken in such a manner that a branch cut is never placed between points simultaneously

considered by the root finder. Once the root locations are known, the scale factors can be found
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for those singularities far from any others by determining a least squares fit to:

a-
P(k,,)-(—‘k)‘- j=12, -+ ,N 8)
provided that the &, are taken sufficiently close to k, that I'(k,) is well approximated by just one
pole in that region.

If many poles are clustered together, they can be determined simultaneously by solving:

(@1
rk,)= 3 —St
( J) I‘Zx kr,z-krlz

for N sufficiently large. If a pole is near a branch cut then the poles on the other side of the cut,

1-1'2’...,N (9)

on the opposite sheet, and near the cut must also be considered to be near that pole.

Figures (IV.3b3a) and (IV 3b3b) show the magnitude and phase of the reflection coefficient
of Figure (IV.3b2a) minus the pole contribution:

a-1
(k) = ———— (109)
’ (krz-kr,z)
For this example a-y = 168971241072 i 5.027826* 107 and

k, = 9.069830*107" + i 2488749105,

Note the difference in scale between Figures (IV3b2a) and (IV3b.3a). The small notch visi-

ble at k, = k, is due to a small amount of error in the estimate of &, .

A notable feature of Figure (IV.3b.3a) is the uamasking of the off axis seros in the region
ky+1 < k, < kg where previously IT'(k, )| = 1. Thess zsros can be clearly sesn ia the perspec-
tive plot of the total reflection coefficient in the complex plane that was pn vated ia Pigure
ava2).

FiﬂﬂﬂVJbA)M“Mh’bﬁde(‘dﬂﬂu)wﬂwmm
removing the pole from the reflection coefficient (but otherwiss removiag the VAT -3 sage-

larity as in the previous hybrid examples). The spread in the directly computed fieid due to alise-
ing is severe becauss aliasing in the Hankel transform seversly affects a fuaction that decays a

preyagoary

ppcnpeo e
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Figure TV.3b.3a Magnitude of reflection coefficient for slow speed layer example after the pole
has been removed
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Figure 1V.3b.4 Log-magnitude of the field calculated using the total hybrid method with pole
removal (solid line) verses the field calculated without pole removal (scatter)
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1/Vr . The hybrid field does not exactly follow the contour of the top of the spread just as the
hybrid computations in the previous examples did not exactly follow those contours whea the
aliasing became severe. Figure (IV3bJS) preseats the log-magnitude of the analytically generated
pole contribution (solid line) and the remainder of the fiefd exclusive of the pole contribution.
The non-pole contribution is most significant for short ranges, while for this near bottom

geometry the pole contribution dominates farther out.

The expression for / (r ;3 +20;k,,) in Equation (2) shows that the contribution of the pole to
the.field decreases exponeatially with (2 +2¢!. In this example iz +249! = 2 to emphasize the
near field behavior associated with the pole. For larger values of 1z +24! the pole contribution

would be considerable less. Equation (2) can be used to estimate the magnitude of the pole con-

tribution if the pole location, k, , and |z +z,! are known.
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CHAPTER V:
THE INVERSION PROCEDURE

V.1) Overview

In.ChaptarnwedevelopedtheptopertiaoftheHlnkcltrmdom. These properties pro-
vided our foundation for the developmeat of an accurate procedure to sumerically generate syn-
thetic presure fields, presented in Chapter IV. In this chapter we will use the results of Chapter
nmuploxetheprobm;fdmm;thophuwuem&eﬁmweﬁdmﬁmmm-
ments of the pressure field arising in a horizontally stratified environment in response to a CW
point source. The estimation of the plane wave reflection coefficient from measurements of the
field is an extremely important problem. Determining the plane wave reflection coefficient is an
emential step in the inversion of pressure field data to obtain the parameters of the bottom. In
this context it is of interest to geophysicists and others who wish to determine the composition of
the ocean bottom. The plane wave reflection coefficient is also used as a geometry independent
characterization of the bottom. As such, if it is estimated in a region from one set of acoustic
measurements, then the fields associated with an arbitrary source-receiver geometry in that
region can be determined. This is of great value in problems of acoustic imaging.

The inversion procedure that we consider in this chapter was proposed by Frisk,
Oppenheim, and Martinez {1 ]. It requires as input, coherent measurements of the pressure field
as a fuaction of range resulting from a CW point source over a horizontally stratified ocean bot-
tom. From this the (complex) reflected pressure field, Py(r), is extracted. The Hankel
transform of this field is computed to provide the depth-dependent Green's function as a func-
tion of horizontal wave sumber:!

G (kx50 = [Pa () olkor)rdr &)
Finally, the plane wave reflection coefficient is obtained by multiplying the Green's function by

We will sometimes shorten "depth-dependent Gresa's function” to "Green’s function”.

B

= i
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terms which compensate for the source spectrum and for the source-receiver distance:

Ik,) = ~1 Vi =5l Vi Flulg (k, 2,2g) @)
This eatire procedure is summarized in Figure (V.1.1).

In this chapter we will concentrate on the estimation of the depth-dependent Green's func-
tion. We divide the imues addressed directly into the categories of source-field subtraction, sam-
pling, windowing, and source-height variation. The issue of source-field subtraction arises
because the plane wave reflection coefficient is directly related to the reflected pressure field and
not the total pressure field, which is measured. The issue of sampling covers the effects caused by
having the pressure field available for computation only on a discrete set of points. We discuss
both the effect that sampling rate has on the estimate of the depth-depeadent Green's function
and the practical problem of interpolation, which is required to move the field from one grid to
another (often to compensate for missing data points). We develop a phase unwrapping pro-
cedure that allows us to interpolate the magnitude and unwrapped phase, which vary slowly

compared to the quadrature componeats.

In the section on windowing we discuss the cffect that having the pressure field available
only to a finite range-has on the estimate of the depth dependent Green’s function. We deter-
minc the range over which the data must be known in order to accuratcly detcrmine the dopth-
dependent Green's function. We do this by using the properties of the Hankel transform
developed in Section (I1.6).

In the section on source-height variation we exploit the results of Section (II.6) once again,
but this ime we use them to determine the effect that variations in the source-height has on the
estimate for the depth-dependent Green's function. Such variations are inevitable during the

acquisition of real data. We illustrate these effects by considering the effect of three specific vari-
ations. |
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Figure V.1.1 The inversion procedure to estimate the plane wave reflection coefficient from the
total field generated by a CW point source over a horizontally stratified bottom
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V.2) Source-field subtracrion

In this section we consider the removal of the source field when the source-receiver
geometry is known. In Figure (V.1.1) we showed the source field removed before the Hankel
transform. We did this because conceptuslly we wish to desl with the reflected field alone. In this
section we show that numerically it is better to remove the source field in the trangform domain,
after the Hankel transform of the total ficld has been computed.

Because the Hankel transform is a linear operator, in principal the estimate for the Green’s
function can be made by subtracting the source field cither before ransforming:

\/m
G(k,,z,20) = f Pr(r )-7—(-;:— Jo(k, r )rdr (n

or by subtracting in the trangform domain:

= &. Vid+(z -5
G(k,,z,zp) = fPT (r ) o(k,r)rdr — fm] olk,r)rdr 2

which becomes upon performing the second integral analytically:
i elVl} e AT |

kg —k}2
K Py(r) is available only over the finite range 0<r <7y, thea the field integrals can only be

G(k,.2,30) = {Pr(')-’o(kr’)’d’ - 3
carried out 10 7 g, Substituting 7 54 for = in Equations (1) and (3) will make these two formu-
lations no longer equivalent because the analytically performed integration is not windowed.

The function transformed in Equation (1) is the reflected pressure field, P (7). In Section
(IV.3) we argued that the reflected field decayed asymptotically as -:-.1 f the total Sield, Py (r),

1

deupmpmﬁalymm-;.wemap.ahttheimuhﬁonofsquﬁon(”b

suffer less from windowing effects than the formulation of Equation (1). We will now show that
the total field does in fact decsy faster than the reflected field alons. In fact, by transforming the

1) ia the abssnce of trapped modes.

I PP
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total pressure field and then subtracting the source contribution in the Hankel domain, we have

performed the dual o the removal of the V:Té"ﬁ singularity discussed in Section (IV.34).
=Ky

Before we begin, an analogy to a similar procedure for determining the Fourier transform
of a function known only over a finite range but with a large, known constant offset might pro-
vide some insight. If such a function is (Fourier) transformed directly, the offset will transform

to an impulse at the origin which is smeared into the rest of the trandform. The smearing will

occur because the transform is taken over only a finite aperture (windowing). The alternative is
to subtract the offset from the function, transform the result, and add an impulse (with a
strength which is determined analytically from the known offset) to the origin. This second pro-
cedure will give superior results because the transform of the offset is not degraded.
Transforming the reflected field alone is analogous to generating the Fourier transform
directly from the the field wiﬁt the known offs.et. In the case of the reflected field, however,

instead of a simple constant offset, the function has a known asymptotic behavior. It decays as

-:-. We are about to show that adding the source field to the reflected pressure field is analogous

to subtracting the offset in the Fourier transform example. In the Hankel transform case we m
actually considering it corresponds to subtracting a term with the same asymptotic % behavior.

The difference will decay faster than -:-

We begin by considering the Greean's function associated with the total field for zy>z
which is givea by:

Gr(k, .z ,20) = Vﬁ-i-? [r(g,),‘ 1§ -txotn)  IVRE -A,’(:.-.)] @
IV -2}s4-13)
™ & V&Z-k,; term is the source term. If we rewrite Equation (4) in terms of the reflec-

tion coefficient at kg, it will be more clear why adding this term in the transform domain

corresponds to subtracting the asymptotic bebavior in the pressure domain. We must use the fact




T T T YT W T T e e e

T

that for all bottoms I'(kg) = —~1 (except the de;eneu@ case ['(k,) = 1 ). We write Equation
(4) as:

-2Vig -tX1) ]e IV -k¥szo-1)

GT(kr»z sz) = m [r (kr) = r(kO)e (5)

As we discussed in Section (IV.3) the asymptotic behavior in the pressure domain is determined
by the behavior at the singularities in the transform domain. [2 ]| At k, = kg the phase term,

e VMO L ials 1 50 that unlike the Green's function amociate with the reflected field

alone, the numerator of the total Green’s function approaches zero as k, approaches the

_-Vk—;-?in;\m.ﬁtynko. We wish now to determine the contribution of the singularity at

k, = kg in the total Green's function in order to show that the “softening” introduced by the
addition of the source term has made the associated total field more range limited. We can
bypass a great number of issues by instead considering the asymptotics of the simplified Green's
function:

-2 Vg <£2) ]e:\/ga ~3(zg—1)

simple(y, . = i -1~
Gi™™Pe(k, ;2 ,20) = m[ 1 =~ F(ko)e ®

By considering Equation (6) we exclude those issues associated with f'(k,). Our examples

in thc synthctic data gencration scction showcd that thesc terms do not give risc to tcrms which

decay as slowly as %

Equation (6) is the Green's function for a dipole and has the known Hankel transform:
&V r2+(s -2 oV ird+(z +10)?
Py(r) = 7——’ - 7——’ )]
r2+(z—z24)% r2+(z +120)?
It is well known that this field decays asymptotically a3 -5 and that this asymptotic behavior
r
begins more quickly when 2z is small than whea it is large.

Since the total field will be more range limited than the reflected field, it is better to

transform the total field numerically and subtract the (analytically determined) transform of the
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incident field than it is to subtract the incident field before transforming.

V.3) Sampling
a) Overview

Typically, data is not availgble on the grid required for processing. In the experiment pro-
viding the data for this thesis, for example, the range values for which the data has been
obtained is determined by the drift rate of the boat and the source away from the receivers. The
individual samples do not occur exactly where we would like them and while the experiment was
designed to provide samples as close to the Nyquist rate as possible, typically the aumber of sam-
ples on averages is less than we would like. Finally, there are isolated cases of missing samples, a
reality of data collection. Section (V.3b) discusses the issues associated with the average sam-
pling rate. The issues associated with the grid in general are discussed in Section (V.3c).

b) Sampling rate
In Chapter (I1.7) we saw that when f () is sampled on approximately a linear grid and the

transform:

F(p) = _{f (r W opr)rdr ()

is computed from these samples, then f (7) must be sampled on a grid at least as fine as 2} in

order to correctly perform the transform for F (p) negligible p>A . In this chapter we consider

the transform of the presure field, to obtain the depth-dependent Green's function. This

transform has the form:

{T@) VAT e
k§ -k}

G (%, 2 +2) is negligible for k, >ko+¢! except pomibly near the poles of I'(k,) (for some

Gk, s +20) = = { Py (r ) o(k,r)rdr @)

1) For some small €>>0.




small ¢) because when k, >k, it decays exponentially. Consequently when there are no poles in

T'(k,) for real k,, then the pressure field need only be available on a grid as fine as -"A—“ with

A = k,+e to accurately determine G (k,,z +2;) in the region 0<k, <kq. If we wish to obtain
G (k, ,z +z() in the region where it is exponeatially decreasing (k, >kg), however, we must sam-
plefnnenou;htoxepxemtd:eignﬂintha'trqionuwdl.

I a pole is present in I'(k,) at k, = k, the Green's function will be significant near &,
despite the exponential decay. If the presence of the pole is ignored and the field is transformed

on the grid -”ki, then the pole will be aliased into the Green’s function at lower wave numbers.

If there is only one pole present we can write the Green's function, G (k,) (we suppress the
z variation) as:

a-1

kP—k,

G(k) = G(,) + for k, >k @)

A
The results of Chapter (I1.7) show that if the pressure field is transformed on the grid T." then

the aliased Green's function computed will approximately be given in the region 0<k, <k by:

G(k,) =G (k) - V2K, —1G (2 —k,) = G (k,) — VK, ~1—_

@y, @

50 that the Greens function at 2kg—k,, will be corrupted.

If the amplitude, a_;, is very small (which would be the case for large source-receiver
geometries) and some smearing is present due to windowing (the field is not measured out to
ranges where the trapped mode dominates), we may not see the pole’s effect and it can safely be
ignored.

In general the possibility of trapped modes must be considered before deciding upon a sam-

pling rate, particularly in geometries with small source-receiver heights. For such geometries it is

AT

not always sufficient to sample at X
(]




c) Sampling grid

When data is not available on the grid required for processing we must first interpolate.
Successful interpolation is possible only if the signal is adequately represented by the original
samples. If we know only that our signal has a Hankel transform which is negligible beyond

some bandwidth, A, then the signal is adequately represented by samples on the grid % for

C =A and where A\, n=0,1,2, - - - are the ordered zeros of Jo(r). [2 ] This is true in
theory. In practice, if the the samples are not originally spaced as required, it may be impossible
to actually perform the interpolation onto another grid. If the samples are only availabie on the

A
grid ?'- with C <A, then it is not possible to interpolate without making additional assump-

tions.

We will show that for the class of pressure ficlds examined, an additional assumption seems
reasonable. This assumption makes interpolation possible even when the sampling rate is slightly
too low. We will assume that the magnitude and phase of our pressure fields are smooth com-
pared to their quadrature componeats. Figure (V.3c.1) shows the magnitude of the pressure field
associated with a point source over a pressure release bottom. Between calculated points the
curve varies so little and so regularly that a plot of the points appears to be a smooth line. Fig-

ure (V.3c.2) shows the result of first subsampling the points plotted in Figure (V.3c.1) (which
N .
were available on the grid —25- ) by a factor of two, and then interpolating back onto the original

grid using splines.! The differences between the two curves are negligible.

We can compare this successful interpolation to the result of subsampling the quadrature
componeats, spline interpolating, and computing the magnitude. The result of this operation is
shown in Figure (V.3c.3). The spparently smooth line comes from the subsampled set of values

which the splines was constrained to match in the quadrature componeats. It actually consists of

1) Splines wers used because the original grid is given by A, /A , where A, are the ordersd zeros of
o{x ). This grid is uneven and makes other intarpolstion schemes less desirable.
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every other point of the displayed curve. The surrounding scatter is the magnitude of interpo-
lated points supplied by the splines. Clearly, splines did not successfully interpolate the quadra-

ture components.

Figure (V.3c.4) shows the phase of Figure (V.3c.1) computed by

- 6 = tan™! —] (o))
where P; is the imaginary component of the field and P, is the real component. The rapid vari-
ation in § suggests that it is not adequately represented by the grid upon which it is presented. &
is not the only representation of the phase of the pressure field, however.

d) Unwrapping the Phase

The phase displayed in Figure (V.3c.4) is the principal value of the phase, often referred to
as the wrapped phase. The wrapping comes about because of the ambiguity concerning which
phase should be associated with the quadrature components. If 0 satisfies:

Me'®* =P, +i P, (4 )

then so must 8 + 2wm where m is any integer, since
Mel(.+2ﬂ m) - Me"ez""" = Mel® = P, + ‘-P‘ (2)
Given just P, and P; there is no way to determine the correct value of m. The arctan routine

used by Fortran follows the convention of choosing m such that

—w<fmo+2mm<= 3)
The output value § is the principal value of the phase, or the wrapped phase.

If the phase of the pressure field were approximately increasing at a rate of kgR where
R = Vr2 + (z - 29)? and the field were sampled at the Nyquist rate of 1/2k, then the phase
difference between samples would be roughly w and the wrapped phase every sample or two

would suffer 8 jump to a diffevrent m in order to smtify the condition —n < 0+2wm < =.
This would obscure any underlying regular behavior that we expect from most physical
phenomena. These frequent jumps are responsiblie for the rapid oscillation appareat in the phase '
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of Figure (V.3c.4). We wish to compensate for the wrapping that takes place when the principal
value of the phase is generated. To do so we must make use of our knowledge of how the phase
is varying from point to point. '

We conjecture that the phase of the total field is dominated by a component at the water
wave number asociated with the dominant specular path and that the remaining portion of the
phase is slowly varying compared to the sampling rate. We write

Pr(r) = M(r)e'*®) @

where M (r) and 8(r ) are real, and write
0(r) = koR +e(r) ®
where R = V72 + (z—z20)%. We will call koR the modeled portion of the phase and €(r) the
residual phase. We are going to show that as long as the residual phase is sampled fast enough,

we can reconstruct the true phase.

In this notation the difference in true phase value from sample to sample can be writtea:

0(".) = 8(ra-p) = ko(R, - Ry_y) + €(R,) - «(R,-y) (6)
so that
8(r,) - 9(’.-1_) - kO(Ru =R,_3) = E(Ru) - ¢(R,-1) _ ™
Precisely stated, our requirement that the residual phase be slowly varying compared to the sam-
pling rate is:
IE(Rn) - ‘(Ru-l)l <= forallR, ®
To unwrap the phase we first form:

6(’-) - 6(’5-1) = ko(Ry = R,-1)
= 8(r,) = m2w = 8(r,-1) = m,_12% — ko(R, = R, ;)
= 8(r,) = 8(r, 1) = 2w(m, — m,_;) ®)
= ¢(R,) — €«(R,_)
from the measured data. We now do the unwrapping by defining mo = 0 and picking the

integers, m,, (8 = 1, 2, - - - ) sequentially to satisfy:

e aida = . A -
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16(ra) = 6(ra-)) = ko(Ry = Ry-y) = 2n(m, = m,_))| = |e(R,) = (R, )| <= (10)
and define the unwrapped phase to be:

8(ra) = 8(r,) + (m,)2m ay

Figure (V.3d.1) shows the result of running this algorithm on the phase of the synthetic

data with magnitude shown in Figure (V.3c.1) and wrapped phase shown in Figure (V.3c.4).

The resulting phase is dominated by the linear term kgR we defined in our model. Figure

(V.3d.2) shows the residual phase. The smooth and small variation of the residual phase over

the intervals |r,_; , r,] for all n, is a strong confirmation of our phase unwrapping assump-

tion.
Figures (V.3d.3a) and (V.3d.3b) present the magnitude and residual phase of the fast bot-

tom example of Section (IV.3a). For this example, too, the residual phase is well behaved.

Figures (V.3d.4a) and (V.3d.4b) present the magnitude and residual phase of the slow
speed layer example of Section (IV.3b). For this example, too, the residual phase is well
behaved. The field in this example was shown to be dominated in the far field by the contribu-
tion due to the pole beyond the water wave number. The upward slope of the residual phase
apparent in Figure (V.3d.4b) reflects the fact that this pole is contributing the dominant com-
ponent to the phase (in the far field) which is slightly larger that the kgR term subtracted out.

¢) Imerpolating the magnitude and unwrapped phase

In Figures (V.3c.1) and (V.3c.2) we showed that the magnitude of the dipole field could be

up-sampled from the grid -XIL to -sz In Section (V.3d) we saw that the unwrapped and resi-

dual phase components eajoy smooth, regular variation ideally suited for interpolation. Figure

A\ A
(V.3e.1) shows the residual phase for the dipole field up-sampled from the T" to the -24 grid.

A
It is indistinguishable from the residual phase gemerated on the T" grid shown in Figure

(v.3d.2).
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We now show that for the dipole field we can actually interpolate the magnitude and
unwrapped phase to increase the sampling rate of the quadrature components of the field. This
allows us to determine the Green's function to a higher horizontal wave number than the

Nyquist criteria applied to our original sampling scheme would have us believe.
A\
We recall from Section (I1.7) that if the pressure field for the dipole on the grid —1'- were
transformed and displayed in the range 0<k, <2 the result would be severely aliased and com-
pletely inaccurate in the region 1<k, <2. To obtain a transform accurate on 0<k,<2, the qua-

A
drature components must be at least sampled on the grid T‘ We can still obtain the transform

A
in the range 0<k, <2, never-the-less, by interpolating the field onto the grid -24 through its
magoitude and unwrapped phase. Figures (V.3e.2a) and (V.3e.2b) show the magnitude and
phase of the transform generated by such a procedure. First the magnitude and residual phase of
A
p(-i"-) were generated. These were up-sampled as just discussed. From this up-sampled magni-
tude and residual phase (and the modeled, koR , portion of the phase) the associated quadrature
components were generated. This was transformed. Figures (V.3e.3a) and (V.3e.3b) show the
A
magnilude und phase of the Hunkel runsform of p (—1“-) generated withoul interpolation. Only
small differences in the magnitude are apparent. The phase curves also display only small differ-
ences though in the inhomogeneous region (where the phase is oscillating rapidly as evidenced by
the two parallel lines) the small difference has caused a slightly different picture of the oscilla-
tions. By contrast, Figures (V.3e.4a) and (V.3e.4b) present the magnitude and phase of the
A

Hankel transform of p(-f-) up-sampled by direct spline interpolation of its quadrature com-
ponents. Clearly, once again, a direct interpolation of the quadrature components did not work.

We apply this scheme for interpolating the magnitude and residual phase to the field of the
fast bottom example of Section (IV.3a). We first generate the magnitude and unwrapped phase

A P BT Pt S e
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A A
of P(E‘;_)’ interpolate up to the grid -E'-. generate the quadrature components, and then

Hankel wansform. The magnitude and phase of the result is shown in Figures (V.3e.52) and
A
(V.3e.5b). The magnitude and phase of the correct transform (of p(?') geaerated without

using this interpolation scheme) is shown in Figures (V.3e.62) and (V.3e.6b). We see that the
Hankel transform of the up-sampled data and the Hankel transform of the data originally avail-
able on the fine grid do not agree exactly. Figures (V.3e.7a) and (V.3e.7b) present the magni-
tude and phase of their complex difference and Figure (V.3e.8) presents the magnitude of the
Hanke! transform of that complex difference. This transform represents the errors made in the
pressure domain by our up-sampling procedure that gave rise to the error in the Green's func-
tion. We see that practically all the efror energy was conceatrated at the origin. This error could
be due to a breakdown in our phase unwrapping asumption near the origin or to a poor han-
dling of the rapid change in maguitude by the splines. This problem can be carrected by a dense
sampling of the original field near the origin so that there is no room for interpolation error
thege.
D) Phase unwrapping errors

At this point we consider briefly the kinds of error that might be expected when the
assumption underlying this phase unwrapping technique is violated. If for some n

|8(Ry) = 8(Ry-1) = ko(Ry = Ry-1)| > 7 @

the wrong m, will be chosen. From that point on, each my (k= n,n+1, - - - ) chosen by the
procedure will also be wrong by the same amount. A plot of this error is a step function of
height A, — m, centered at » as shown in Figure (V.3f.1). If multiple violations occur, the
mtwﬂllooklikc.themofuphadoanumumuinﬁmo(v.sﬁ). The smoothness
:ppuminth.rdduﬂphmhaﬂotmmphuummnmmhnm

If the phass unwrapping schems is used to intsrpolate the field, thess errors are not serious.
As part of the interpoiation procedurs, the quadrature components are regenerated from the
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interpolated magnitude and phase. The error curve shown in Figure (V.3£.2) would have no
affect on the quadrature components regenerated from the unwrapped phase. In general, after
the interpolation, the error curve will not be a simple sum of steps but will be smeared by the
interpolator. This will usually affect the quadrature components. If the interpolator is well
chosen, the leakage will be small and limited to the area near the error. Finally we note that
errors in the phase unwrapping scheme will occur when the unmodeled portion of the phase is
varying rapidly between samples. When this happeas the interpolator is likely to have difficulties
even without errors in the unwrapped phase and this scheme is probably not appropriate.

V.4) Windowing

In Section (I1.6) we stated that in terms of resolution the Hankel tranxform behaves very
much like a Fourier transfoml.. We wish to consider the resolution required to gemerate the
Green'’s function and the window that this implies.

The total Green's function is given by

Gr(k,,z) = Vké_-k? [r(k,)el Kg-riaerg e 4- z('—"')] when z>z9 (1)

The most rapid variations in Gy (excluding possible poles in the reflection coefficient beyond the
e Vg -rXz+2q)

water wave number) occur near k, = ko. Whea I'(%, ) is smooth compared to W
=&y
el Vig -2 +10)
k& —krz

sample of the pressure field we can not bope to determine the exact behavior of G at k, = kg,
IVag -}z +q)

the rapidity of these variations is dominated by the term. With a windowed

whea z +2zq is large the rapid variation in G is due to primarily the e term. We
can obtain an ad hoc estimate of the resolution we require by considering the lobe widrhs associ-

ated with the phase for k, near k.

That is we define £, , by the relation:

e s o st e

A i i

A et N
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Vid-k? w(z+20) = nw )
and define the lobe, 3, by:
S, =k, o1~k » 3)

Kweuse (ko=k, )(kotk, ) = ( ‘::o )? then when k, , = k we have:

1 nw 2
(ko—k, ) = 2y [';4,—‘0'] “

and

N e

Section (I1.6c) indicates that the required window width, B, is related to the desired resolution

approximately as:
z)2
px3am3d 3Gt 1 1 ©
3 8, w2 2kg 2n—1
Thus to resolve the lobe closes to k when z +z5 = 136 and kg = .9246 we require a win-
dow of about:
136 1
B =3* —————— = 3% (1013) = 3040 meters
{ }(z)( o2ig) > 101) @

V.8) Source-Height Variation

a) General expression
The procedure proposed to estimate the plane wave reflection coefficient, I'(k,), and
shown in Figure (V.1.1), requires that the pressure field be measured with the source at a fixed
height, z¢. [1 ] Frequently, experimental conditions cause the souzce-height to vary. In this sec-
tion we will explore the effect that s varying source-beight has on the estimate, I'(k,).
Instead of considering the effect of a varying source-height on the estimate for the plane
wave reflection coefficient directly, we will consider its effect on the depth-dependent Green’s
function given by:!
mﬁomdhwcm'ﬂudanz ad 24,
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ir(k,) ‘:Vta- 2z +14) @
k¢ -k} »
which is the Hankel transform of the reflected pressure field. By considering the effect on the

G(k,) = {r.(r;zyo(k,r)rdr -

depth-dependent Green's function we can make use of the properties of the Hankel transform
that we derived in Chapter II. The plane wave reflection coefficient is determined by multiplying
the estimate of the depth-dependent Green’s function by terms which compensate for the source |
strength and the source-receiver separation as was shown in Equation (V.1.2).
We consider the effect of a source height given by
2(r) = 2g+h(r) | @

To explore the effect of Hankel transforming a pressure field measured at a source height that is
a function of range, we write the Green's function estimated by Hankel transforming this field
as:

G (k)=

'I’n (r 2(r))olk,r Irdr

- { [ ‘{Vik%“_]z?" Vid -2 +1g+ae)) Jo(Er)ed E]lo(k' r)rdr
SI ‘kr&. “ V ‘3'(’(‘ +19) [‘E.‘ V ‘z 'éﬁ(”lo(er )Jo(k,r)rb]“e

®

We now define:

Vag-

H,.0) = ¢! M ol W ok, Yrdr “@

which with (3) becomes:

Ck,) = {G (OH (&, ,£)dE O)

Equations (4) and (5) exactly describe the effoct that source-height variation has on the
estimate of the depth-dependent Green's function. As written, however, they do not provide

much insight into what variations are tolerable or into the qualitative effect of source-height vari-
ation. To provide us with this insight we develop an approximate expression for H (k,.£) by
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using the windowing result of Section (IL.6). We do this by considering ¢’ * *6 “*) a5 2 win-
dow. The result will be reasonable provided that the Fourier transform (in r) of e 13-06() is
narrow, as discussed in Section (I1.6b).
We write
H(k,,8) = §[e" SOy o(er ok, r)rdr with = ViE-¢ ©)
0
The Hankel transform of J o(£7) equals B(k;_-ﬁ)_ %0 that :
Vi, ~ g|(vi 39, N _
k H (k. .£) = §|(VE, _k—-) Wek,) | = VEW (k —£) ™
where
Wilk,) = [e! VI-EHO) ibr g, ®

This provides us with approximate expressions for the kernel, H (k,,£), and an approximate

expression for the estimated Green's function in terms of the actual Green's function:
V3
B (kR = AW (k,—9)
4

- ©)
=11 -
6) = 5o VI @OW it -0as

In the following sections we apply this result to some special cases.

b) Particular variations
1) No source-height variation
When the source-height is constant, A(r) = 0. For this case our approximate result above
gives W ((k, =) = 2w8(k, —£) and G (k,) = G (k,), which is as we would expect.
B) Linear source-height variation

If the source-height varies linearly then h(r) = ar and

el = TS = WPt W R Y =
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Wek,) = fe‘[“ﬂ’l'dr = 2u8(k, +a Vk& —£%) . This gives us

G(k,) = 7‘;{ VEG (£)8(k, ¢ +a Vi —)dE )

To evaluate the integral we have to simplify the argument of the delta function. We define

s mg—a* V¢ £, 50 that

2 + Visi=(1+ad)(s®-a%d)

1+a? @

€=

Substituting into Equation (1) we huve:

@) = 7‘;{ VEs1G (¢ls D8k, -s);%;—_;«zs
§o—p @

1
7;\/56«0) Py -

k, +Vi2-(1+a)(k2-a%E)
§ = T7a?
+a

_k +a'V(a?+1)kd -2 @

2

a‘+1

asuming that § is real. We see that G(k) is a distorted version of
k +aV(ai+1)kE —k32

G
. a’+1

. This approximate analysis also correctly indicates that as the
slope of the linear variation, a, goes to zero G (k,) goes to G (k,).

1) Sinusoidal source-height variation
Whean the source-height variation is given by

h(r) = ae'™’ ()]

Welk,) = [e Vi lr gy o [ tmie Rrg, @

1) Provided § < k. The integral is not defined for complex srguments and a different analysis would be
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withw = g Vk&-ﬁz.

To perform the integral in Equation (2) we expand the exponeatial in its Taylor series to

obtain:
{ioe
Wk,) = f 2 ™ ar
- E -(—-)-'“' fe“""e""dr 3
s=0 B —»

» .
=2n 3 {9 30 _pa)
a=0 n!

We use this to determine the effect of the real cosinusoidal variation:

lar ~iar

ae + ae

—— 4
> O
Substituting (4) into Equation (V.5a.8), for cosinusoidal variation W (k. ) is seen to be given by:

h(r) =

Ve Vil B
e(k’)a fel kg g LY 92 ea’,dr ©

Equation (5) is the Fourier transform of a product of terms in the form of Equation (2). Conse-

quendy we can write Equation (5) as the convolution of terms in the form of Equation (3):

Welk,) = 'il;' 2w§o-("7"’!)f-a(k, —na)] ; [zw“% -Qf!l'-a(k,ﬂa)]

m+ 6
{‘a A\ /kg _ez (6)
» = 2
= ?“;gauz-o ey 8(k, —(n -m)a)
If we perform the integration (V.52.9) we obtain:
$§ («VH-G=G-mer }'
C k)= [V'] k §'(='l:-)rl — Vi —(r-mpGh-(r-m)a)| )

The cosinusoidal source-height variation with an amplitude, a, and a frequency a, has the

effect of reverberating, or comb filtering, \/k-:G (k,) in two dimensions. The impulses of the
required for this case. .
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filtler are spaced at the variation frequency a«. The weightings, which we define to be
w (k, m ,n), determine the eavelope of the reverberation. They depead on the amplitude, a:
{ia\/k& —k2 }'"' {la kg2 }" {ia\/t& —k2 }'

2

2 2
min! mi n!

w(k,om,n) = ®

We can write the estimate for the Green’s function in terms of these weighting functions as:

3>
Gt,) = [71;] ES@mom)a wik -(---)a.n.-)v y =(n—m)aG (k, -(n-m)a)](9)

The weighting functions, w(k, — (n —m )a;m ,n), are greatest when m = n = ngy,, and
decay rapidly from that point in m and n. This result can be shown by replacing the factorials in

(8) with Stirling’s approximation (excellent even for small n: n! = V2un { } ) and defining

ia Vi -k?2

X = 2

. The weighting functions then become:
wlkemon) = ot 72-1;{:»} W«T{n } (10)
The {-’:—:—} term has its maximum at m =x and falls off in m with greater than geometric
decay. The vl— term pulls this maximum only very slightly lower.
m
The result is that w (k,  ,») is large form, n = =2 Vk&—kzmdmlldnwlnu Whea
l—Vk}-kz —— | <<1 we can ignore the (n-m)atctmm(Q):otImG(k,)ulim
approximately by

{—VT-?]

aim!

V&, =(n =m)aG (k =(n =m)a) (11)

JOLEC S ;'(:'::.).
By defining:
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. o {%\/i?-—ﬁ}' {%\/W} )
cemmor 5 e
we can obtain the result, valid for ‘T“ << 1 that
, 3
VEC() = S Clhm)VE=naG(t, ~n0) o

A perspective plot of C(k,,n)/(i)" is presented in Figure (V.Sc.1a) for the case @ = 3
and ko = .9246159. The back of this figure corresponds to k, = k¢ and consequeanty k, = 0.
The Green's function in this region corresponds to plane wave components of the field which are
directed entirely in the radial direction and which do not vary in z. Figure (V.5c.1b) presents
the slice of Figure (V.5c.1a) corresponding to this region, C (kg,n). C (kg,n) is zero everywhere
except at & = 0, where it is 1. Referring to Equation (13) we see that the degraded estimate of
the Green’s function at k, = kg is given by:

&

G(ko) = -vlk-: cz -C (ko,n Y Viko=naG(k, ~na) (14)

am—x
Substituting for C (kq,n ) in Equation (12) we see that
G (ko) = G (ko) (15)

The portion of the spectrum, k, =kg, corresponds to field components that do not vary in
2. It is reasonable, then, that the cosinusoidal source-height variation did not affect that portion
of the angular spectrum.

In Figure (V.5c.1a) moving forward towards the leading edge corresponds to decressing &,
and increasing k,. With decreasing k,, C (£, ,n) becomes increasingly less impulsive, indicating
greater amounts of degradation. Figure (V.Sc.1c) preseats the slice C(0O,s). This slice
corresponds to that portion of the angular spectrum which has the maximum amount of vertical
varistion. In Figure (V.Sc.1c) the value C(0,0) is not even as large as the adjscent values,
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C(0,—1) and C (0,1). The Greens function will be degraded by cosinusoidal source-height vari-
ation in this region.

Figure (V.5c.2) presents a perspective plot of C (k,,n)/(i)* for the case a = 12 and
kg = .9246159. Once again C (kq,n) is the discrete delta function, 8(n), and the Green's func-
tion will not be degraded at k, = kg Because a is larger now, -;-\/ZFI? of Equation (12)
grows more rapidly as k, becomes smaller than it did for @ = 3. As a result the figure shows

that serious degradation begins for k, much closer to kg. The increased amplitude, a, has

‘resulted in an increased amount of degradation. The product, ak, = a Vk§ —k2, determines

the severity of this effect.
We note also that because of the (i)* factor in Equation (12), the phase of C(k,,n)
increases by -"21 with each n. This suggests that cosinusoidal source-height variation may dramat-

ically affect the phase of the estimated Green's function, G (k,), even before it significantly

,

affects the magnitude.

Thus we have seen that the effect of sinusoidal source-height variation is to comb-filter the
estimate of V, G (k,). The spacing between impulses in the comb filter is the frequency of the
source-height variation. The amplitude of the source-height variation and the vertical wave
number, k¢ —k?2, together determine the weightings of the impulses. When the product of the
amplitude and the vertical wave number is small, the only contribution comes from the low lag
components. As this product increases, the higher lag components begin to contribute and the
comb- filtering will become increasingly appareat. If the frequency of the source-height variation
is very low, causing the spacing of the impulses in the filter to be very small, the degradation

will appear as a smearing.

V.S) Summary

In this chapter we have studied the imues associated with the inversion of presure field
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data through the Hankel transform to estimate the depth-dependent Green's function and the
plane wave reflection coefficient. We have developed a phase unwrapping procedure that allows
us to interpolate the magnitude and unwrapped phase and thereby determine from the set of
field samples available, the values of the field at the ranges we require for processing. We have
also shown that jt is better to estimate the total depth-dependent Greea's function from the
Hankel transform of the total field, and to later remove the affects of the source. Finally, we
have examined the effects of source-height variation to belp us understand the possible degrada-
tion that this effect would would introduce into the depth-dependent Green's function estimated
from real data.

We are ready to perform a preliminary processing of real data.
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CHAPTER Vi)

Inverting Real and Realistic Data

In Chapter V we described the procedure for inverting coherent field measurements arising
in response to a CW point source, to obtain the plane wave reflection coefficient. In that
chapter we addressed some of the practical issues that must be faced when real data is to be
inverted. In this chapter we perform a preliminary inversion of real data. [1 ] To help interpret
the results, in parallel we invert data generated synthetically for a realistic geometry and set of

bottom parameters.

The real data that we invert was obtained by G. Frisk, J. Doutt, and E. Hays in 1981.
The amociated experimental geometry was described in Section (1.6) and is presented again in
Figure (V1.1). We will be using the data obtained from the lower receiver shown in this figure.
In Figure (V1.2) we present a velocity profile and density parameters for a bottom that we
believe is comparable to the bottom where the real data was taken. We use this geometry, velo-
city profile, and these density parameters to generate the synthetic data of this chapter. This
synthetic data is generated using the hybrid procedure described in Chapter IV and the numeri-
cal Hankel transform that was described in Section (II1.7) 1 [2 ] The efficiency of this Hankel
transform algorithm made it possible to obtain high quality results over a large range that would

otherwise not have been practical.

We begin by generating the synthetic data for this geometry and bottom. We use the
numerical procedure described in Section (IV.2) to generate the plane wave reflection coeffi-
cieat, I'(k, ), as a function of horizontal wave number. Its magnitude and phase are presented in
Figures (V1.3a) and (V1.3b). We see that a pole is preseat in I'(k,) beyond the water wave
number. This pole is due to the low speed channel just below the water-bottom interface.
Because the source+receiver height is large, this pole will contribute an insignificant amount to

1) This algorithm was implemented in Fortran on a8 VAX-11780 by Mike Wengrovitz.
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Figure V1.1 Experimental geometry associated with the real data
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the pressure field and need not be removed as was done in Section (IV.50). Consequently we
can generate the field with the hybrid procedure described in Section (IV.3a). The magnitude
and residual phase of the associated synthetic field are presented in Figures (V1.4a) and (VI.4b).
In these figures very little high frequency ripple is apparent even at large ranges, implying that
the field is indeed adequately represeated and not suffering from spatial aliasing.

Figures (V1.5a) and (VI.5b) preseat the magnitude and residual phase of the synthetic
field after inclusion of the incident field. The regular behavior in these plots suggests that the
magnitude and residual phase are good representations of the total field. As further confirma-
tion of the vaiidity of the total syathetic fields generated for this example, we present the output
of a ray program that was run for this profile in Figure (VI.Sc:).i'2 The two synthetic fields are
in good agreement except in the region of the caustic, 1500m < r < 2000m, where the ray
method is known to be inaccurate.

Figures (V1.6a) and (VI1.6b) present the magnitude and residual phase of the real data
(which includes th‘e source field). In the region beyond the first hundred meters, the magnitude
and residual phase of the real data behave regularly, which gives us confidence in them. The
interference pattern apparent in the magnitude is similar to that of the synthetic data. The zeros
in the magnitude are well matched by the the changes in the residual phase for large ranges. The
first few hundred meters of the residual phase, however, looks significantdy different from the
residual phase of the synthetic field. In this region, changes in the source-height have their
greatest effect on the measured field because the geometry is most significantly affected by
source-height variation in this region. We recall that the residual phase is given by:

«(r) = 8(r) - koVr?+(z ~2 )
The large negative slope of the residual phase for low ranges could be due either to an estimate
of kg which was too large, in which case the residual phase would display a negative phase

everywhere, Or to an estimats of (z~zq)> which was too large. We believe that this

1) But with s slightly different source beight of 125 meters rather than 135 meters.
2) 1 wish to thank Jim Doutt for providing this synthetic field.
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uncharacteristic behavior is due to imperfect knowledge of the source height in taat region. The
gentle negative slope of the unwrapped phase for the real data for large ranges is probabiy due

to a slight overestimate of the water wave-number, k.

Before we attempt to invert the real experimental data to estimate the depth-dependent
Green's function two major factors must be considered. First, the experimental dau is available
only over a finite range and second, it is available only at discrete points which are not spaced
propezly for our processing. The first issue can be resolved by referring to Chapter V where we
showed that for the source-height and geometry used to obtain the experimental data, it was only
necessary to know the field out to about 3040 meters to minimize the degradation due to win-
dowing. The experimental data is available to 6000 meters. We believe, therefor, that window-
ing should not prevent its successful inversion. The second issuc can also be resolved by refer-
ence to Chapter V where we showed that by interpolating the magnitude and unwrapped phase
it was often possible to translate the pressure field data available on one set of ranges to another.
We will use the procedure developed there to interpolate the experimental data onto the set of
ranges that we require for processing by the Hankel trangform. In parallel we will process the
synthetic data. The processed synthetic data provides a useful measure of the success of our pro-
cessing because the depth-dependent Green’s function that we obtain can be compared to the
true depth-dependent Green's function which is known for the synthetic data, and presented in
Figures (VL 7a) and (V1.7b).

Figures (V1.8a) and (V1.8b) present the magnitude and phase of the Greea’'s function cal-
culated by processing the synthetic data. The synthetic data was originally available on the grid

aw n=0,1,2, - --. It was linearly interpolated (through its magnitude and unwrapped

yhnuducibdhmnw.k))mmsﬂrquhedfmm,%fm

8=0,1,2, --- withA =1.2andwhere\, n=0,1,2, - - - are the zeros of Jo(x).

The agreement betweea the estimate of the synthetic Green's function obtained by process-
ing the synthetic field and shown in Figures (V1.82) and (V1.8b) and the true Green's function

i b a

o b

oy
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Figure V1.7a Magnituds of the true depth-dependent Green’s function for the synthetic data
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for the synthetic data shown in Figures (V1.7a) and (VL.70) is cxceiient, particulariy the agree-
ment in the magnitudes. The phases differ slightly for low horizontal wave numbers. We believe
that this is due to small errors in the synthetic field for low ranges. The phases differ dramati-
cally in the evanescent region beyond the water wave number, where the magnitude of the
Green's function is very small and consequently the phase is probably dominated by noise. The
agreement in general between the true Green's function for the synthetic data andtheGrgen’s
function estimated from the syathetic data is excellent, however, and confirms the results of
Chapter V which indicated that for the sampling rate and range of values over which the data is
known, it should be possible to determine the depth-dependent Green’s function.

Figures (V1.9a) and (VL 9b) present the magnitude and phase of the Green’s function cal-
culated from the real data. Except for low wave numbers, the magnitude of this Green’s function
displays many of the features of the synthetic Green's function, including the same overall

1 . ..
mvdopeduetothemmspm term, and the interference pattern arising from

the interaction of that portion of the Green’s function associated with the source and that portion

asociated with the reflected field. The total Green's function also decays rapidly at the water

wave number, as it should due the the e' V8~ s %ol

migration terms. In the evanescent
region, k,> kg, we see only noise, comparable to the noise we see superimposed upon the rest
of the spectrum.

At low horizontal wave numbers the Greea's function for the real data does not look like
the Green'’s function for the synthetic data. Very near the origin we see a large peak not
apparent in the total Green's function for the synthetic data. This peak is probably due to con-
centration of noise power thers by the Haakel transform as discussed in Section (IL8). For
slightly larger wave numbers the magnitude displays a jagged appearance not seen in the total
Grosn's function for the syntbetic data. In this region, the sationary phase approximation for
the Sommerfeld imtegral is fairly good, allowing us to asmociate the bebavior of the Greea's func-

tion at low horizontal wave sumbers with the behavior of the pressure field at low ranges. The
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uncharacteristic behavior of the Green’s function at low Gorizon:al wave aumbers is consistent
with the uncaaracteristic behavior of the residual phase that we observed for low ranges and may
be due to variations in the source-height. Some of this apparent jitter in the Green's function of
the real data may be due in part to variation in the source-height. A rough sampling of the
source-height over the course of the experiment was available from the experimental records.
We interpolated between available samples using splines to obtain a rough estimate of the
source-height variation present during the course of the experiment. The result is presented in
Figure (VL.10). This curve is sufficiently similar to the sum of the two low frequency cosines dis-
cussed in Section (V.5b.iii) to qualitatively interpret the effect of source-height variation for this
experiment in term of the results presented there. The analysis of Section (V.S) shows that
sinusoidal variation in the source-height causes the cstimated Green's function to be a rever-
berant version of the ttue Green's function, particularly for low k, corresponding to large k,.
Because the frequency of the variation is very small, the main effect is to smear the estimate of
Vk,G (k,). As stated in that section, the phase of the estimated Green's function might be more
seriously corrupted than its mgmmde The phase of the depth-dependent Green'’s function
estimated from the real data and shown in Figure (VI.9b) does not strongly resemble the phase
of the synthetic Green's function. The overall good appearance of the magnitude of the total
Green's function and the poor appearance of it phase is consistent with the the degradation that
would be expected from source-height variation.

Figures (VL11a) and (VI.11b) show the magnitude and phase of the plane wave reflection
coefficient generated from the Green's function calculated from the synthetic data and shown in
Figures (V1.8a) and (V1.8b). Figures (V1.12a) and (VI.12b) present the magnitude and phase
of the plane wave reflection coefficient calculated from the Green's function for the real data.
The estimate for the reflection coefficient for the real data does not appear to be a good one at
this time.

Because the plane wave reflection coefficient is obtained from the total depth-dependent
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Green's function by first coherently subtracting the source contribution and then muitipiying by a

term with a rapidly varying phase (e ]

) errors in the phase of the total Green's
function would seriously degrade the estimate of plane wave reflection coefficient. The estimate
for the reflection coefficient is probably much worse than the estimate for the Green's function
because of the phase errors .in the estimate for the total depth-dependent Green’s function.

In conclusion, we belicve most of the error appareat in the Green'’s function for the real
data to be due to variation in the source-height near the origin. Direct evidence of this is the
anomalous residual phase variation in the region r < 300 meters. The &ror in the estimated
Green’s function for very small horizontal wave aumbers is probably due to additive noise. The
errors in the estimatedreflection coefficient are probably due to imperfect knowledge of the
source-receiver geometry that affects the coherent additions. Overall, however, we are gready
eancouraged by the good appearance of the magnitude of the total depth-dependent Green's func-
tion determined from the real data. The interference structure and the overall eavelope suggest

that we are very close to being able to estimate the plane wave reflection coefficient from real
data. Work still needs to be done to compensate for the effect of source-height variation.

The potential returns from the successful inversion of pressure field data to obtain the plane
wave reflection coefficient are enormous. Such a successful inversion is a vital step in the process
of inferring the physical parameters of the bottom from acoustic measurements. [3,4 ] The abil-
ity to make such inferences is of great interest to oceanographers and to exploration geophysi-
cists. A successful inversion would also make it possible to predict the fields associated with an
arbitrary source-receiver geometry from one set of measurements. This would greatly facilitate

acoustic imaging in the ocean.
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CHAPTER VII:
CONTRIBUTIONS AND FUTURE WORK

VI1.1) Contributions

In this thesis we bave studied both the numerical generation of synthetic pressure fields
from the plane wave reflection coefficient and the inversion of measured presure field data to
estimate the plane wave reflection coefficient. We developed and implemented algorithms that
cfficiently generate high quality synthetic fields. We studied the major issues affecting the inver-
sion of experimental data and were able to estimate the depth-dependent Green’s function from
measured data taken in the ocean with a high degree of success. We isolated source-height varia-
tion as a major factor preventing the successful estimation of the plane wave reflection coefficient
at this time.

As a foundation for our studies we explored the Hankel transform in depth. In Chapter I
we derived a number of important properties including the effects that windowing and sampling
a function have on its Hankel transform. Our sampling resuits show that the associated degrada-
tion is often a more severe problem for the Hankel transform than for the Fourier transform. In

particular it can seriously degrade synthetically generated pressure fields which decay as -E- or
even more slowly and its effect should always be carefully considered.

In Chapter Il we also studied the noise properties of the Hankel transform. We showed
that if a function is sampled on a square root grid in a noisy environment, its Hankel transform
will have superior noise properties more characteristic of the underlying two dimension Fourier
transform which the Hankel transform represents in the presence of cylindrical symmetry.

In Chapter Il we considered a number of aumerical techniques for performing the Hankel

transform. We presented new results strengthening exising procedures such as the asymptotic
and backsmear methods as well as an efficient, exact method developed as part of this thesis.

In our development of algorithms to geaerate high quality synthetic data we preseated a




- 209 -~

number of hybrid numerical-analytical techniques that greatly improve the quality of synthetic
data. In the course of developing a technique that can adequately handle the effects of guided
modes in slow speed layers under the ocean bottom, we derived an expression that may be of use
for developing field expressions in modal expansions required to be accurate in both the near
and far fields. We also presented a well behaved numerical procedure for implementing the

Thomson-Haskell approach for generating the plane wave reflection coefficient.

In Chapter V we developed the major issues affecting the inversion of measured field to
obtain the plane wave reflection coefficient. On the basis of this development we were able to
identify the sources of error in an actual inversion. The phase unwrapping and interpolation
results presented in this chapter also significantly improved the results of the processing of the
experimental data in Chapter VI.

In Chapter VI we performed a preliminary inversion of real data to obtain estimates for
the depth-dependent Green’s function and the plane wave reflection coefficient. The results
presented in this chapter represent a significant advance towards the complete inversion of meas-
ured pressure field data to obtain the plane wave reflection coefficient. We were able to generate
a good estimate for the depth-dependent Green's function and were able to associate the effects
of source-height variation with the degradation in the estimate for the plane wave reflection

coefficient.

At this point work is continuing towards the complete estimation of the plane wave reflec-
tion coefficient from real data. The foundations laid by the work presented in this thesis provide
a strong base for future work in this area. In addition they suggest research in a number of

related areas. Some of these are presented in the next section.




-210 -

V11.2) Future work

8) Cylindrical to Cartesian Coordinate Systems

In this thesis we have dealt with problems cast in a cylindrical coordinate system. In that
coordinate system the familiar Fourier transform of cartssian systems became the less familiar
Hankel transform. In. that coordinate system the clean properties of additive white Gaussian
noiss through the Fourier transform were obscured obscured until a square root grid was intro-
duced. In that coordinate system windowing and aliasing approximately affected Vrf(r)

instead of f (7). In that coordinate system the familiar impulse 8(x) became ég)- In that

eoordiutzsymthe—af-opuatorbeamev2-£+-l--iwthntthcommwhich
ax2 art  roar
nulls 3 pole in s cartesian coordinate system:
s + pf ftx) - |5 + pf } 1 e'®dp = } _pz+prc‘”dp = =3(x) ¢))
axz ! ax? 2 p?=p} 2= PP-pf

became the less familiar:

» » - 2+ 2
v+ o |r(r) = [92 + 0| [ L5 orIode = [5—F-Jo(or)edp = - 221 @)
[72 i = 1= r
In short we frequeatly found that familiar problems in a cartesian system became more difficult
when caste in a cylindrical coordinate system. The reverse is also true, however. In Section
(I11.7) we developed an efficient numerical algorithm for the Hankel transform by mapping it

into a Fourier transform. The mapping was accomplished with the Abel transform:

rfo)-eufo)

The Abdl transform also serves to map other linsar operators in cylindrical form into linear
operators in carsssian form (it must do s0 for any function that can be represented by a Hankel

M).wam:‘%brmph.hhmﬂm:
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In Section (INI.7) we developed an efficient numerical algorithm for evaluating the Abel
transform. One exciting area of future research is the exteasion of maximum entropy and other
spectral estimation techniques into the cylindrical domain as we now describe.

An estimation scheme that might be of value for estimating the plane wave reflection coef-
ficient is illustrated in Figure (VII.2a.1). Instead of estimating the plane wave reflection coeffi-
cient directly we estimate the position and residue of its poles (and possibly zeros) in the complex

plane. We do this because the estimation of parameters instead of a function is a much better
posed problem when the signal available for analysis has been corrupted. Because the plane wave
reflection coefficient is related to the measured field by the (cylindrical) Hankel transform and
not the l-‘ogrier transform, spectral estimation techniques available in the literature of digital sig-
nal processing do not apply. If we first process the presure field data with an Abel transform,
however, the resuiting signal has the same poles and zeros but now in its Fourier transform.
Modern spectral estimation techniques can therefore be used. We introduce the caution that the
effect that branch cuts have on this procedure must be studied with care.

b) Analytical-Numerical Algorithms
The bybrid analytical-numerical technique used to implement the Abel transform in Section
(111.6) is a very general procedure and springs from classical numerical methods of lopg standing.

1 Traditionally, difficult integrals are evaluated numerically by removing their singular behavior as

much as possible through coordinate changes and changes of variables and then numerically
transforming the result. The success of the hybrid method points out that in fact it is often desir-
able to do just the opposite. The integral should be manipuiated to produce as much singular
bebavior as posible. The singularities can be integrated analytically and will not suffer from

aumerical degradation. If the singularities are removed properly, the remaining numerical por-
i tion of the integral will be well behaved where it dominates and subordinate to the analytically
determined portions of the integral where it does not. The art in this procedure is casting the
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Figure VI1.2a.1 The Proposed method allowing MEM to be used for problems casts in cylindri-
cal coordinatcs
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analytically determined portions of the integral carefully to insure that the numerical portion
does not have infinities or undesirable asymptotics to cancel. Had the ¢ ™ factor not been
included in the procedure of Section (III.6), for example, the hybrid method for the Abel
transform would not have worked.

Manipulating functions so that they can best be represented by parameterized functions and
samples is part of the general issue of computer representation. As software systems become
- smarter this kind of approach will become increatingly more important.

c) Waveguides

In the course of generating synthetic data, we evaluated the integral:

»
i 1 iVe-@is
I(r,z,p;) = e Jo(pr)pdp (1)
'(’:sz-pz p2~p?
and showed that it satisfied
V2402 ok Vries? 0
[ r+pi ]I(r.z,m) Y/ o i @
We associated /(r,z,p;) with the contribution of the pole at p; because our integrals
always included the terms : - e/ VE~@l1| 35 well. The advantage of this formulation was
k“-p

that I (r ,z,p;) is everywhere finite, even at r = 0. The dassical contribution associated with a

pole is

_.151”51) (p;r) when Im(p,)>0 (3)

The Hankel function above has a logarithmic singularity as the origin. Physically, poles in
the depth-dependent Green'’s function make only finite contributions to the field. The migration

vig

term ¢’ *| windows the pole in the Hankel domain so that its contribution to the pressure

Sield is everywhere finite. For this reason we included the migration term into our pole expres-

M.medmwelhoindudedthemmv;;—;;.

———- -
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Our formulation was carefully constructed to insure that the numerics were not required to
gonerate infinities. It is potentially useful for many problems other than those considered
directly in this thesis. One set of problems concerns the calculation of fields inside (pomibly
leaky) waveguides.

We develop an expression for the field inside a (dielectric) waveguide arising from a point
source using the plane wave formulation of this thesis.! Figure (VIL.2c.1) presents the geometry
ofﬁenngﬁde'mddlenmm

The radial and time variation of all fields is given by:

Jolk,r)e ™' ')
and will be suppressed. We will use B for the vertical wave number. B and k, are related
through

k2 = p2+k? ©)

iBlz~zo|

The source field is given by P;e and is the portion of the field that would be
present cven in the absence of impedance contrasts. We specify the boundary conditions at
z = h by giving the plane wave reflection coefficient there, I'z(k,), and at z = 0 by [ (k,).
These two interfaces together give rise to an up-going wave, P .e/®’, and a down-going wave
P _e™'P*, that would not be present without the impedance contrasts in the regions z =k and
z=<0. The total up-going and down-going fields for o<z <h is given by:

P.e'P + P,e"('-") UP

P_e~iPe DOWN : ©)
The plane wave reflection coefficieat at z =h provides the boundary condition:

I - P_e™'P

r= =
P e'Pr +P,¢"(' %)

In the region 05z <zq we have

P_e~'¥ 4 pe'™™)  powN
P ,e'® UP (8
AMM&MM.‘!M“I&NMHH]
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{ Figure VII.2c.1 The geometry and waves for extending the results of this thesis to waveguides | i




P.e'® P
T, = e = " ©)

P_ei® 4 pifo  p_ 4 opiPre
. i i .
P; is the known point source strength = —. Iy and Ty are given as well.
Vk’-k,z B
The two boundary conditions are sufficient to determine P, and P _ from these quantitics. We
write:

I';-P+e’” + I'r}’lem"e’m"’ = P-e"“

10
| )Y +I‘,P,em"=l’+ (10)
Solving for P, and P _ we have
[e =B r) _ [r B -r) ] P,
P,= =C.P; 63V
1 i Treifs
B
and
[I‘, LB+ _ L iBO~z)) ] P,
P_= 1 : =C_pP (12)
€ ~iBh _ I',e"”'
Ty
The total field in the waveguide ( 0<z <k ) is given by
- p i I'Videk3 -1, iVl h ~iVil-xi
p(r,z) ‘{[V;cz_—k?] [e O+ Cye +C_e ]Jo(k,r)k,dkr (13)
with
e-—ls(h t+10) _ rrelﬂ(h -20)
C,= 1 (14)
Loe-iph i
3
and
FaeP®t90) _ B =20)
C_m -'f (15)

Lot et
Iy

The zeros of ¢ /P — [pTre/P* = 0 contribute poles to the depth-dependent Green's
function and give rise to the modes of the waveguide. Each of these poles in Equation (13)

© o ———— et
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makes a contribution to the field of the form

i Vi _1
I(r.z.p) = ] gmmmye Jo(pr)pdp (16)
{ kz-pz Pz‘l’t2

and the development we used for calculating fields in the presence of poles applies.

It should be noted that the inverse problem, that of resolving modes in a waveguide, can be
cast into the clamical signal processing form of finding poles in the Fourier transform by first
generating the Abel transform of the pressure field! The effect of branch lines on this approach ‘
needs to be studied, however. ‘

It is also possible to construct nulling operators to estimate the pole positions (as is done in

Maximum Entropy spectral estimation techniques) by using Equation (2), which does include
some branch line effects.
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APPENDIX 1:
DETERMINING LIMITS FOR THE ALIASING RESULT OF SECTION (IL.7)°

In this appendix we determine the limits as N -= for the expressions:

sin N mx nx
sin 2= o 4 ™
2
and
cosN»nx . =x
= 0 @
2

To evaluate the limit in Equation (1) we use the known limit:

1
sin2ex(N-=) ,
; 27 _ im 3B 2mxN - _
2‘.‘; sinmx Bﬂ sin nx cos mx ?8(: k) @)

The limit in Equation (3) is zero except at the zeros of sinmwx, which occur at x = k for

k=0, 1, £2, - - -. At these points cosmx = coswk = (—1)*. The effect of deleting the cosnx

term is to generate alternating signs:

fm 252 = Bt ®
A change of variables shows that
tim 22 = S_apa(E-k) ©®)
n'mr? :

We determine the limit of Equation (1) by multiplying by cos% to find:

lim SRENE oo, BE o oy TE 31— 1)8(5-4) ©
limr-z-' 4

We can simplify Equation (6) by using the fact that £ (x)8(x —xq) = f (xo)8(x —x¢) and that

1 k=048, - -
wk 0 k=159, -
08 = =1 _11£=26,10, - ™
0 k=37,11, -

Ak
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im HO7NE 7 S nis(E - 2k) ®
Nax . P 4 4 & 2
n—
2
This is the result needed in the text.
To evaluate the limit of Equation (2):
cosNwx . =x
i ®
2
weﬁ:neoniderthebehaviorof%g'-nufx = 0. The behavior at the other zeros of sin-T-
ﬁ—
2

will be similar. Weulmnetlntxisaxtﬁdenﬂymaﬂsothatsinzzlmberephadtheﬁru

term of its Taylor series, 172_1: We consider:

im costVwx (10)
No» 2x
2

Instead of evaluating the limit directly, we look at the Fourier transform of the limit. We
evaluate this by taking the limit of the Fourier transforms of each term and write:!

FT |lim SosNmx | lim FT SosNnx (11)
N-= JX N-= I
2 2
The Fourier transform of &s:;r_x can be found by convolving the Fourier transform of
2
cosN nx with the Fourier transform of -ﬁ-.

Fr|ofe| ﬂ{cow-nx}‘n{-z—} (12)
2x nx
2

20 that:

1)These steps can be rigorously justified by xaing generalised functions. [1 ] They presume that two funo-
tions are said to de equal if the result of coavolving their difference with any band-limited fuaction is al-
ways 2010. Alternetely, two fusctions are said to be equal if the Fourier transform of their difference is
sero for any finite dend.
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Fr|Sedinx | _ S(f—%’-) +8(f +-§-)]‘ [-Zi sgn(f)] (13)

nx
—

2

—~

This function is plotted in Figure Al.1. It is given by

(
L. i N ]
4i f< 2
cosN#x | _ _N N
FT r 0 2<f<2 (149)
2 N
4i 2<f

i \

As N -x this Fourier transform becomes equal to zero over any finite interval. Consequently, as

a generalized function

. . COsN wx
i 'l;;-; = -0, (15)
2
where 0, means 0 as a generalized function. Basically this means that as N «» co::iwx oscillates
2

rapidly around zero in such an manner that when it is convolved with any bandlimited function,
the result is zero. Since we will only use this functions inside integrals (strictly speaking impulses
are only defined inside integrals) we will simply call it zero.

Given that this limit is zero, the limit of 2—'"-1;—‘ which is simply a periodically repeated
sin=—

2.
version of ”“:r"" near the zeros of sin(-’-;‘-'-) (with sign changes), must aiso be zero. Since
[ —
2
1
dn';—x is finite everywhere, we have the result needed in the text by multiplying: '
( COsN 7x . ax _
Em ——in-"é'- sin>= =0 (16)

2
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Figure Al.1 Fourier transform of wﬁ"
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APPENDIX II:
THE VALUE OF THE KERNEL
FOR THE NUMERICAL PORTION OF THE HYBRID ALGORITHM
AT THE WATER WAVE NUMBER

In this appendix we derive the value of L (ko) discussed in Section (IV.3a). L (k,) is

defined by Equation (IV.3a.15) as:
i|L (k) = L(ko) iVig-riiz|
L(k) = -%,‘-3:;’7—1‘ | ®
and we seek to evaluate the limit

}'igo L(k) @

under the condition that the impedance of the bottom, Z (k, ), is finite at k, = k.

At k, = ko Equation (1) takes the indeterminate form % We evaluate the limit (2) by

using L' Hospital’s rule:

i[l"(k,) - r(kq) %‘{r(k') - r(ko)}’l Vk&-&,’h'

Ak, Vk& -k2 B k, <k 9 —32
. ’ ak’ k& kf

After separating out the terms that approach zero as k, -k this expression becomes:

}‘c‘\/t}-g}m

(&)

IVag=a2l|

@

SALTEL SRS

.l'igl.l-(kr)'.l'ig.

We now express ['(k,) in terms of the characteristic impedance of the upper half space, Z,,

muw«hmm-m«ma.noanz.. Both Z, and Z, are functions of
&, in general. In terms of these I'(k,) is given by:

) = 255 ®

Taking derivatives we find:

2:1+2,)?

f(g;) -2 [M] (%)
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We now use the characteristic impedance of the upper half space:

pow
Za =
° V_ki-k,z Q)
whuep,isthedenﬁtyomehmqm,unmempomﬁequency,andk.,-c%owheec.,i.

thepeedofsomdintbuppahl!m. Substituting Equation (7) into Equation (6) and

evaluating Z, we bave:
; P boaw LY.
) = 2 va.a_.'z Y] _.’3)”21 » Z1pow '3 _k"z, ®
’ Zp+2z— e pu? Z3(3-22)+22,00 VR -k3 + pfed
Vid-p2 At}
Substituting (8) into (4) we find
Ny s L.
tim L (k) = lim R 5 VAR o
k, kg k, <ty k’ z‘z (k‘ _k’2)+22lmvk? _k'z.‘_pa“z
or .
—-24Z (k.
Lo - 2220 o)

provided that lim Vid-k2Z,(k,) =0
"0

If the interface is between two isovelocity half spaces, the expression (10) for L (k) can be

written directly in terms of the material parameters. For this case Z,(k,) = 71'3:;7 Zy(k) is
&y

finite because k, #kq ( if k; = ko there would be no interface). L (kg) is given by

L(ke) = ;.—\5;2%7 )
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APPENDIX III:
EVALUATION OF THE POLE CONTRIBUTION TO THE FIELD FOR SECTION (IV.3B)

Here we evaluate the pole contribution to Equation (1):

I(r’z lpl) fpz P‘ k:-p ‘ .3 s I"O(p')Pdp (1)

We evaluate Equation (1) by determining a partial differential equation that it satisfies and solv-

ing that equation.

- Taking the second partial derivative of Equation (1) with respect to z we have

Tl(r,z,p;) ‘rp’ p:VgL-‘ -1ty olor ypdp+28(2)f ——ivl—"‘\'ﬁ"'la(w)ﬂo v}

1-p3 o-of Vii-g?
If we use
8(z) f(z) = 8(z) £(0) forany f(z) ®
thea Equation (2) becomes
F ® 2,2 . \/"_,
21 Caion) =[5 emye M 'Jotpr»dp-zsmf il COLTIN O

Putting it all together we have:

az ) = . \/_z__' = 1
[;,—;,- = (o - &) ]I(r.z ) = [T elor)edp = 28(2) [t olor o)
If we define p2 = p? — &2, choosing real part of § > 0, and use
- aVeiegd

{ kz-pzcle-p’hI.,o(pr)pdp - £ —— ©)

together with

{—,——P :p‘,u(w)odp = E-sgnlimp)] inr) = HE (r) wheaim(p) >0 (7)
then (A2.5) becomes

+ 1w8()HEY (p,7) ®)

Vrrec
[‘;.zf-pz]’('v‘;pl) - ‘:3"_ 2
whea Im(p;) > 0.
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The Green's function for this differential equation is given by

=1, -ls-¢ip
G r.z, W — (9)
20" %
Using this for the impulsive response and convolving with the continuous driving function to

obtain the particular solution we obtain:

bt '3 e’ . .
1(r,z;0) = —f.va.zg_z- e Pli-tlge ~ %H&l)(pgr)c-’l‘l (10)

When Im (p;) > 0.

'l'hegemmlfomofthisexprwhichisnlidfonnp,isﬁmby:

=1 e 7 o 1 iorr)e-Bl!
10s) = 5o § St + GEol-spnlim Glibir)e an
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