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ABSTRACT

Thne plane wave reflection coefficient is an important geometry independent means of spari-
fying the acoustic response of a horizontally stratified ocean bottom. It is an integral step in the
inversion of acoustic field measurements to obtain parameters of the bottom and it is used to
characteriz an environment for purposes of acoustic imaging. This thesis studies both the gen-
eration of synthetic pressure fields through the plane wave reflection coefficient and the inversion
of measured pressure fields to estimate the plane wave reflection coefficient. These are related
through the Sommerfdd integral which is in the form of a Hankel transform. The Hankel
transform is etensively studied in this thesis and both theoretical properties and numerical
implementations are considered. These results have broad applications. When we apply them to
the generation of synthetic data, we obtain hybrid numerical-analytical algorithms whica pro-
vide extremely accurate synthetic fields without sacriling computational upeed. These algorithms
can accurately incorporate the effects of trapped modes guided by slow speed layers in the bot-
tom. We also apply these tools to study the inversion of measured pressure field data for *e
plane wave reflection coefficient. We address practical issues associated with the inversion pp-
cedure including removal of the source field, sampling, field measurements over a finite rane,
and uncontrolled variations in source-height. A phase unwrapping and associated interpolatibn
scheme is developed to handle improperly spaced data.

A preliminary inversion of real pressure field data is performed. In parallel, an inversion
of a synthetically generated field for similar bottom parameters is also performed and the results
of jrocessing the real and synthetic data are compared. The estimate for the depth dependent
Green's function obtained from the real data shares many features with the depth dependent
Green's. function estimated from the synthetic data, suggesting that the total inversion to obtain
the plzne wave reflection coefficient will soon be possible. Errors in the present estimate of the
plane wave reflection coefficient are associated with uncontrolled source-height variations during
the acquisition of data.
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K ABSMRCT
The plane wave reflection coefficient is an important geometry independent means of spec-

fying the acoustic response of a horizontally stratified ocean bottom. It is an integral step in the
inversion of acoustic field measurements to obtain parameters of the bottom and it is used to
characteriz= an environment for purposes of acoustic imaging. This thesis studies both the gen-
eration of synthetic pressure fields through the plane wave reffection coefficient and the inversion
of measured pressure fields to estimate the plane wave reflection coefficient.. These are related
through the Sommerfeld integral which is in the form of a Hankel transform. The Hankel
transform is extensively studied in this thesis and both theoretical properties and numerical
implementations are considered. These results have broad applications. When we apply them to
the generation of synthetic data, we obtain hybrid numerical-analytical algorithms which pro-
vide extremely acerate synthetic fields without sacifring computational speed. Thes algorithms
can. acurately incorporate the effects of trapped modes guided by slow speed layers in the bot-
tom. We also apply them tools to study the inversion of measured preure field data for the
plane wave reflection coefficient. We address practical issues associated with the inversion pro-
edure including removal of the source field, sampling, field meamurements over a finite range,
and uncontroled variations in source-height. A phas unwrapping and associated interpolation
scheme is developed to handle improperly spaced data.

A preliminary inversion of real pressure field data is performed. In araliel, an inversion
of a synthetically generated field for similar botm parameter is also ed and the results
of processing the real and synthetic data re compared. Th. estiomate depth dependent
Grms's function obtained from the real data sares many f atres t depth dqpmmdt
Gren's function esimated from the synhetic data, mggesting that the total to obtain
the plane wave reflection coefficient will won be possible. Errors in the Prmn ate of the

t plane wave reflection coefficient are associated with uncontrolled source-height during
the acquisition of data.
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CHAPTER I:

INTRODUCTION

1.1) Overview

The plane wave reflection coefficient is an important Seometry independent means of speci-

fying the acoustic response of a horizontally stratified ocean bottom. It is used both to calculate

fields in propagations models and as an input to a variety of inverse teniques which seek to

determine bottom parameters [1,2,3 ]. In this thesis we will study both the generation of syn-

thetic pressure fields through the plane wave reflection coefficient and the inversion of measured

pressure fields to estimate the plane wave reflection coefficient. We will consider only the fields

associated with a CW point source in the deep ocean over a horizontally stratified bottom and

will not allow the bottom to support shear waves. The results of this thesis, however, are appli-

cable to a wide class of wave problems and can be generalized to permit the source to be within

any isovelocity layer and the introduction of shear. Further, it is our hope that the tools

developed in the course of this work will find applications in many areas.

he foundation for our studies of the forward and inverse problems is the Hankel

transform, [4,5,6 1 which arises in these contexts because the Sommerfeld integral which relates

the plane wave reflection coefficient to the reflected field is in that form. We will derive general

properties of the Hankel transform to guide the work in these areas. We will also study and

develop numerical implementations to permit computer processing. A fast, accurate numerical

Hankel transform algorithm is developed and illustrated.

The Hankel transform results allow us to isolate significant sources of degradation in

numerically generated synthetic fields. To remove these sources we develop a hybrid analytical-

numerical procedure which is significantly more accurate without sacrificing computational

speed. This hybrid algorithm performs some of the calculations analytically while keeping the

numerical computation in the form of a Hankel transform.

Through another hybrid technique we incorporate the effects of trapped modes that may be

tI
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guided by low speed layers in the bottom. The results are accurate both in the near and far

fields, in contrast with modal methods. The method developed for handling these modes can

also be used to control other complications associated with poles in the plane wave reflection

coefficient such as those that would be introduced by allowing for shear wave propagation.

In Chapter V we begin to study the inversion of pressure field data to obtain an estimate

for the plane wave reflection coefficient. We draw upon our previous results to consider a

recently proposed method for performing this inversion by Frisk, Oppenheim and Martinez [7 .

Frisk, Oppenheim and Martinez have proposed that the Sommerfeld integral be inverted

directly, without recourse to the specular approximation used by previous methods. [7 ] With

such a direct inversion, estimates would no longer be confined to real angles of incidence and

regions where the specular approximation. is valid. [8, 9 1 Such a direct inversion has been made

possible recently by coherent measurements of the reflected pressure field resulting from a point

source over a horizontally stratified bottom. [10 ] In this chapter we study several practical issues

assouated with this proposed direct inversion. We consider directly the issues of source field sub-

traction, sampling, windowing of the pressure field, and uncontrolled variations in source height.

The issue of source-field subtraction arises because the plane wave reflection coefficient is

directly related to the reflected field and not the total field, which is measured. Under the issue

of sampling we study both the sampling rate required to obtain a valid inversion and the effects

of improperly spaced data. To handle improperly spaced data, an interpolation procedure is

developed which is based on a new phase unwrapping procedure. In the discussion of window-

ing we determine the range to which field measurements must be taken in order to obtain a valid

inversion. In the section on source-height variation we characterize the degradation that results

from variation in the source-heiSht and study canonical variations.

Having considered many of the isues affecting the direct inversion of pressure field data to

obtain the plane wave reflection coefficient we now actually perform a preliminary inversion of

real data. In parallel we invert synthetic data that we have generated uing bottom parameters
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comparable to those we believe associated with the real data. We draw upon the previous

developments to interpret the reaits.

In the remaining portion of this chapter we briefly develop the acoustic framework upon

which this thesis rests. We also describe the ezpeimental paradigm by which the real data was

gathered.

1L2) Plan. Wave and a Horizrntally Sat nied En'vironnem

A horizontally stratified environment is one for which the material parameters vary only

vertically. Such a simple environment makes possble an in depth study without the complications

that a more varied environment would introduce. The insights gained from studying this simple

environment can provide an understanding of more complicated envonments. Also, for many

conditions, such as are found in the region of an abyssal plane in the deep ocean, the model is

itself sufficient.

Figure 1.2.1 shows an isovelocity water layer over a horizontally stratified bottom. Within

the water a single plane wave has the form :1

e 102 +t,y +k, )e -ii (1)

For this wave to bc a solution to the wave equation within tho water (which has sound spccd c):

[V2 1(xt) =0 (2)

the wave number. (k,, k., and k,) muit satisy:

l k,2  2)
kx2+ +V -- - 0(3)

We define the vectori k=k, t+ky, +k, , and the scalar, k k win point in the direc-

tion that the plane wave propaptes. In terms of this vector, the requirement (3) can be written

Ilk I I =- Vii -+ - k (4)

1) Thunheu Ms d&s we W Om mn C f depmndm bomus. It MtpemM out u

C 

7
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If (4) is atisfie then (1) is formally a olution to the wave equation even if k is complex.Whe

one or more of the components of k are imaginary the plane wave is called evanescent and will

vary exponentially in the direction of the imaginary component(s).

Considerations of symmetry guarantee that when a plane wave strikes a horizontally strati-

fled bottom the resulting wave will also be planar. Fu; the purposes of field calculations, plane

waves are eigenfunctions of horizontally stratified systems. An incident plane wave given by:

Pie ( hz + k,7+ , ) (5)

will generate the reflected wave

Pte I(k'X kY-kz) (6)

The change in sign indicates that the reflected wave is returning in the z direction. The ampli-

tude change defines the plane wave reflection coefficient, which may be a function of k. Since

for fixed w only two of the three components of k can be specified independently we write the

plane wave reflection coefficient explictly as a function of only two:

PRrc(k,,k,) -(7)

Our plane wave reflection coefficient is defined for a sinle frequency only. This implies

that the incident signal has been present for all time. The returning wave, PRe is

influenced by the bottom at all depths. This is in contrast to the occasional usage of the term for

which only the surface contribution to a pulsed input is considered.

1.3) The Weyl Iiueoral

Because the wave propagation we consider is linear we can determine the response to a

more complicated incident field by considern that field as a superposition of plane waves. [9]

To calculate the reflected responses to a point source shown in Figure 1.3.1 we first expres

the field of the point source at z - z0 as a superposition of plane waves. We write: 1

1) we wa anks sw dmom ve umbe fathe wuMr.

_ , ,,,.£ ,,W t
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VPi - 11 fAk,,e(Z+,)dkxdk,
A-YZ e" - -A 1--fA(k,,k,)ei("4)k k 1

Equation (1) is a two dimaonl Fourier transform and can be inverted to determine

_______ I kI+j

AA ~k, kre____ -Ikz i,,)____:__

A (k-, f f s ,-2 2 ev +dy V 2- k-,2  (2)
2w, -- SW-V (,) o

Each plane wave in the mperpoiion (1) propagates in the z direction as e I kor

-I V -b depending on its direcion. Because the incident waves are those which carry

werg fron the souce to the bottom we know that all the waves have Re (k,) > O.' This alows

us to write the field at : > z0 as

m n jIj/,j-,2-,,2,) l(kk,,,,,Y -

,> ,O P,(x, y z) id . vk -5 k-2 " (3)

When these waves strike the bottom at r "0 each is turned around (+k -k) and is

scaled by the plane wave reflection coefficient. The reflected field at z =0 is given by:

. trc (k,.k,) V --2k2,)lk~
P,(x"Y,O) = -L f -k-'YEO bp (z)e V )J +,dk&, (4)

The reflected field at any height z >0 is determined by propagating this reflected field up

just as we propagated the incident field down.

, +z0>O P,(.y.)- ze,1_,k_,b._,(5)

Equation (5) is often caled the Weyl inte al. [13 1

1.4) The Somerfeid Inepal

1) MWe [p ssug. 11 1 woodsle wMt a pbm wUW bI #v= by

S (j,) - .LPU' -,k-k.- 12. aU.I MWg (l "hpw of M Gmithe eafto o

teI Wt A"t" ATwave wth poive ra pm of 'o-tk5 - I * -k7 ' a w i Soe p-"fv I Iowe
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The field asocated with a point source over a horizontally stratified bottom is symmetric

about the: axis of Figure L3.1. We can exploit this symmetry to reduce the two dimem omsial

Weyl integral (1.3.5) to a one dimensional integral.

The smmetry of the problem garantes that all the field variables in space show a cylindr-

ical symmetry. Because the two dimeional Fourier transform of a cirularly symmetric funcion

will also be crculauly symmetric, the Fourier domain wil also display a cylindricl symmetry.

We define

P2 mXZ~
2 +

-kk, 2  (1
With thes definitions we write (1.3.5) in cylindrical coordinates as:

2w

P,(~z)= - , ' reAF" -kvdkde (2)

with r(Vki.i) - rc(k..k,). Performing the S integration and using [141

2v

Jo(x) - -Lfe"x ndO (3)Zir o

Equation (2) becomes

PR ) 2 r(k,),'Vk --*AS+o')J.(k, )k,dk, (4)

b V1kj -k,2

This is the Sommerfeld integral. [13 ]

The Sommerfeld integral has the form

Pz() - fG(k,,zzO,)Jo(rk,)k,dk, (5)

Where

G(k,.-xz,) 2 r(') (6)o+,)

We will refer to G (k, pzo) a the depth depandent Gram's function or the GrOm's fuctiom.

Tt



Equation (4) represents the refeltud field u a mperpostion of cylndrical waves of the
f or (k)e 'V FN '), each of which can be cnsideed to be a superposition of plane

waves all striking the mrdac with the same horizontal wave number, k,. Beamue r(k,) is

related so directly to the plane wave reflection. coefficient, r(Vi ,,(..i).w)wl

refer to it as the plane wave reflectin coefficient.

1.S) Obuiiq nte Reflection Coelcent

resemly most techniques for determinng the plane wave reflection coefficent as a fune-

tio. of horizontal waveyumber, r(k,), from the refnected presure field, Pr (r), do not concen-

taW on inverting Equation (1.4.4). Instead they conider the stationary phase approximation to

that Equation given by: [9 1

N
Plr) R (1)

N

where ko is defined to be the water wave number, E., and R2 - r 2 +(Z O+Z) 2

C

Equation (L4.4) is inverted to provide

L r 1
r(R [,a R (r) (2)

rk rk
N Equation (2) is nsed to estimate r(-T) the r(-k) Ican be etimated from the mag-

n i t u d e o f P , ( P) a l o :tr o u g h :

Thi fact tolther with the implicity of Equation (2) acount for its widespread use.

1) UM qm*u to * d w * m ma a ib m of ,a is d rangh as WM.
A spqieos to w4.ui p L We ra m se a fMAsm o bommmwave m bw be
~mm go u s a tin do If W dreas re(9) a A pt . waoe rafeas Me OWN as an ae.

dse a^ a n ef Wa ste i re9) - r(kgln(o)). kGo is .O hedml
- sin. invmi Au .in q .b.

.. . ..*. .". . . . .. . ... . .IlI -' 1 ! ' . . _ . - , i _ , , i. ... : i . . .-" . . .. . , .. d
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Unfortunately the stationary phase approximation upon which (4) is based is appropriat only

for ditances, R, large compared to a wavelength and only for specular angles 1.s than mid-

cal.[8,91 It completely ignores near field effects associated with r(k,) for k. > kO.For applies-

tions that consider near field effects or the character of th pressure field dom to or greater than

the critical angle, a more exact inverion of Equation (1.4.4) is required.

For sich applications Frisk, Oppenheim, and Marinez [71 have proposed that both the

magnitude and phase of the reflected pressure field be measured and that the Sommerfeld

integral of Equation (1.4.4) be inverted directly, without recourse to the stationary phase

approximation. The Sommerfald integral is in the form of a Hankel transform. Since the

Hankel transform is its own inverse (5], Equation (1.4.4) can be inverted and solved for the

plane wave reflection coefficient in terms of PR (r), the reflected response to a point source.

This gives:

r(k,) = -V, i- 0 fPR (r - , (5)
IZ E~P)(k,d5

1.6) Experimental Model

In this thesis we will perform a preliminary inversion of measured pressure field data

according to Equation (..5.5), as suggested by Frisk, Oppenheim, and Martinez. [71 The data

we analyze was taken by 0. Frisk, J. Doutt, and E. Hays in 1981. In this section we present the

details of the experimental configuration they used. A Amilar expedmental comigumtion has

been described in the literature. (101

Figure L6.1 shows the experimental configuration used by Frisk, Doutt, and Hays. As

shown, two receivers were moored 1.17 and S4.55 mters from the bottom of the ocea as

abyal plain under 1I00 ments of ocean. The so was attached by cable to a ship en the sw-

ifm, and drifted sowly away at a height off the bottm of approximatey 135 metem Every 12

5503ds the soure emitted a 4 seond 220 Hertz tons which the reeivers recorded after quadra-
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- 21 -

ture demodulation and low pas filtering. In this way the complex amplitude of the field as a

function of range was recorded. The source strength was 177 dB re I t.Pa at 1 meter.

Recording by the receivers was initiated every 12 seconds upon recognition of an 11 kHz

trigger pulse seat from a pinger mounted on the source, and continued for 6 seconds. During this

time the output of the receivers was quadrature demodulated, low pas filtered to 2 Hz, digitimd

by a 12 bit A/D converter at a 5 Hz rate and recorded on cessette tape. A schematic of the prd-

iminary data processng in the receiver system is shown in Figure 1.6.2.

The ship drifted at a speed of about 112 kt allowing one sample of the field every half

wavelength. The docks in the source and receiver were synchronized and had a stability of about

one part in 109 per day. The 11 kHz emission times at the source and the arrival time at the

receivers were used to determine the slant range between the source and the receivers. As part of

the processng it was necessary to estimate the source height and convert from slant ranged to

horizontal range.

Frisk, Douct and Hays determined that the sia was in a steady state condition by the 4th

data sample.

L) Sumary

In this thesis we consider the generation of synthetic pressure fields through the evaluatuon

of the Sommerfeld integral. This integral is in the form of the Hankel transform of the depth-

dependent Oreen's function. We also consider the inversion of a measured pressure field to esi-

mate the depth-dependent Green's function and from that the plane wave reflection coefficient.

ib foundation of both them procedures is the Hankel transform. In the next chapter we will

both catalogue and develop the properties of the Hankel transform that will provide the founda-

dan for the work of this dthsi.

I _________
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CHAPTER II:

'THE HANKEL TRANSFORM

11.1) Ovevi w

The relation of the Hankel transform to the two dimensional Fourier transform of a circu-

larly symmetric function makes it as important a tool for problems cast in cylindrical coordinate

systems as the Fourier transform for proplems in cartesian systems. Applications can be found in

such diverse fields as astronomy, electrodynamics, electrostatics, oceanography, phyics, and

inmology. Because it 'telates the pressure field anoiated with a point source in a horizontally

stratified medium to the plane wave reflection coefficient, it forms the foundation of this thesis.

In this chapter we explore the properties of the Hankel transform.

We begin by presenting the most common definitions of the Hankel transform in Section

11.2. We show how the Hankel transform arises from the two dimensional Fourier transform of a

circularly symmetric function in Section 11.3. To relate the Hankel transform to the more fami-

liar one dimensional Fourier transform, in Section 11.4 we present its asymptotic form. In Section

11.5 we complete our presentation of available properties with a summary of important results

available in the literature.

The remainder of this chapter is devoted to results previously unavailable. We derive these

results to provide the foundation for our work later in this thesis. Section 11.6 examines window-

ing and the Hankel transform. We will later use the results derived in this section to determine

the range over which pressure field data must be known in order to successfully estimate the

plane wave reflection coefficient. We will also later use the approximate results presented in this

section to determine the effect of varying source-height during data acquisition on the estimate of

the plane wave reflection coefficient. Section 11.7 studies the effect of sampling on the Hankel

transform. Samplng issues arise both when data to be transformed is available only on a discrete

set of points and when the Hankel transform is computed numerically. The results from this sec-

tion will be used extensively in Chapter NY.

'i
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The addition of white Gausian noise is often a reasonable model for the accumulated

effect of many sources of corruption acting on a meamured signal. Section 11.8 discusses the

depadatiou introduced into the Hankel transform of a signal by the addition of white Gaussian

'oise. It als shows that sampling such a function on a square root grid can improve the noise

behavior of the assomiated Hankel transform.

We bel i now by pracaf common definitions of the Hanel tranform.

!U.2) Deftido of tw Hanket 7'rujbnn

In the literature a number of different integral transforms are referred to as the Hankel

transform. 1 Three of these are presented below:

l)HT1f(r)} =ff(r)Jo(pr)rdr - FI(p) Watson [1966]

2)HT2 (r) = 21riff(r)J(27rpr)rdr - F2(p) Bracewell [1965]
1 0

3)HT3f(r))-ff(rJo(Pr)V rdr F3(P) Bateman [1953]

Dednitions (1) and (2) are only superficially different since F 2(p) = 2wF 1(27fp). Definition (3)

is mbstantially different with

- J (4)

As we will me, under definition (3) the Hankel tansForm has properties very similar to the

Fourier transform. We will use definition (1), never-the-les, because of its relationship to the

two dimensional Fourier transform.

1) Smefdu tramrms we saso rdared t ao the =a-order HMkel transform. We w/lM not makesdot disdaddo in ths dbdLn.
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11.3) The Ienkal Tranorm as a Two Dimensional Fourier Transform

If we use the definition of Watson

HT F(r)} - ff(r)Jo(pr)rdr m F (p) (1)

then the HJankel tramorm is smply related to the 2 dimaional Fourier transform of a circu-

larly symmuja tunction. [1,2 ] To show this we write the 2 dimemnional Fouier transform in

mreedan coordiate:

Pc(k.:,) - (xf f Y( )e (k +k'Y)dxdy (2)

N fc (x ,y) is crculrly symmetric we can unambiguously define

f(r) fc (xy) where r -(3)

Writing (2) in polar coordinates we have:

w2v
F,(p,) = -. f ff (r)e'Prcl(O-)rdrd9 (4)2ir 0 0

A change of variables 4 w 0-+ shows that:

'2w

Fp (p,O) = -Lff (r)e"' rdrdt (5)

so Fp(p,+) is not a function of +. We suppress +, drop the subscript, P, and perform the 4

interation using

2v

-10d JO(x) (6)

to se that any radial dice of the two dimension Fourier transform of the crcularly symmetric

function fC (z y) is, giMe by:

F(p) - if (r)o(pr)rdr (7)

which is the Hankd tnsform.

By cemidkuing the Hankel trandorm as the two dimensional Fourier transform of a cim-

lrly symmetric function we can abo relate the Hankel transform to the Abel transform. The
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Abel transform frequently arises in optics, seismology and other fields. In this formulation it will

appear as the projection of a two dimensional crcularly symmetric function onto its axis.

We begin by noting that the slice of the two dimensional Fourier transform in polar form,

Fp (p,O), equals the slice of the two dimensional Fourier transform in cartesian form, Fc(p,O),

since both functions reprmnt the same slice of the two dimensional Fourier transform. When

fc (zy) is crcularly symmetric then its transform in polar form, Fp (p,*), is cirularly sym-

metric and equal to F (p), its Hankel transform, as we have shown. For this cas we can there-

for write:

F(p) = F ,(pO) = FC(pO) = f fc(x y)e'P1' ddy (8)

If we perform the y integration first we have

F(p) = 1- e'(9)

The integral in y generates the projection of fc (x,y) onto the x axis. We define this projection

to be p (x). H we use the crcular symmetry of fc (x ,y ) we can rewrite this projection as:

p (x) = ffc(xy)dy = fC(Vx+,O)dy = 2fC( V 2+;,0 (10)
-s -ue 0

Or in the cylindrical coordinate system

p,(x) - 2l (rZ-dx(11

Equation (11) is the Abel transform off (r). The Abel transform can therefor be considered as

the projection of a circularly symmetric fc (x,y) onto the x axis. Since the Hanku transform

was shown to be the Fourier transform of the projection we see that

F(p) = HT (P)} FT{4 (1r) (12)

This relationship was presented by Bracewell. [ 1 Implementation of the Hankel transform

through Equation (12) is equivalent to the projection-slice method proposed by Oppenheim,
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Frisk, and Martinez. [4

Equation (12) relates the Hank6d transform and the one dimensional Fourier transform

through the Abel transform. When we consider only large values of p, the transform variable,

an approximate relationship between the Hankel transform and the one dimemional Foune

transform can be developed that does not involve the Abel transform. This can be done through

the asymptotic form of the Hankel transform, which we present in the next sectioa.

11.4) The Asymptotic Form

If the Hankel transform is not dominated for all values of p by the behavior of the kernel

near the origin (as would be the case for 8(r)Ir for example ) then the asymptotic behavior of

the transform can be studied by substituting in the asymptotic form for the Bessel function. if

we use the asymptotic form for the Besl function presented by Lipschitz [5, 61

Oi~(x) =co(x -- ) + -Lsin(x - -) - 9~ [cs(X-j) - O#L JX)O (1)

where 1I 1 S 1 and we keep only the leading terms in x, the Hankel transform becomes:

I piFf(p) ff (r)cos( pr I - 4) V dr (2)

If we expand the oine term Equation (2) becomes:

I 'p F (p) = I(r)cos(pr)N 7dr + sgn(p)f( )sim (pr )VdrJ (3)

The integrals in Equation (3) are the Fourier cosne transform and the Fourier ine transform [s

]. In some cases this form allows us to extend remit available for these Fourier transforms to

the Hank transform. When the ip (p) term can be ignored, for example, Equon (3) se-

jets that asymptotically "'pF (p) behaves much like the Fourier transform of VI-f (P).

The sg'p(p) term can not be ignored without urther approximadon when the values of the ms

1) A arue m nareoe is the fom li o pmlpwto wie wis h s he e leadIng UN is 17

I



- 30 -

and coine transforms for negative p effect the positive part of the spectrum. Such is the case

when these transforms are degraded by sampling or integration to a finite limit, for example. 19]1

Had we used the definition of Bateman for the Hankel, transform, Equation (3) would htave

appeared even more lik a Fourier transform:

FA)fr)coa(pr)dr + jgn (p)f(r)sinprd (4)

Bateman's definition (Equation H.2.3) is more directly related to the Fourier tr-ansform thaun the

definition of Watson (Equation 11.2.2). Despite this, we use the definition of Watson because

we with to preserve the relationship betweeni the Hankel transform and the 2-dimensional

Fourier transform presented in Section 113.
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1. 5) General Properties ofthe Henkel TraWor.

A number of properties for the Hankel transform are readily available in the literature.

[10, 1, 6,71 We present some of the more important of thene here for completene.

PROPERTY f (P) F(p) - f(4Io(pr)rdr
0

self -inverse F (p) f (r)

lin~earity a fI (r)+f 2 (r) a Fl(p)+F 2 (p)

scaling f1(01) I A)

derivative V2f (p) -p 2F (p)

power f(r)g(r)rdr =fF(P)G*(p)pdp
if 0

moment F (p) P Awt f( d

In the remainder of this chapter we develop properties of the Hankel transform not avail-

able in the literature but of considerable importance to the later developments in this thesis. We

begin by determining the effect of onthe Hankedtransform of afunction when itis multiplied by

a range limited window.

11.6) Windoian ad ske, Henkel Transorm

a) An exact windowing exprean

The definition of the Hanke transform has infinity as the upper limit of integration. In

pracice it is ohmuz impossible to carry out the integration to infinity. This may be because the

function to be transformed is only known out to a finite range or because the integration must be

1We wil conider two fitseds to be equal if the resut of iaovMag their difsae with a bead-UaiM
faawiom Is alwp aw. 7Ua is equait inathe mmof pawaedW ftwkm.

_L
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performed numerically and only a finite number of calculations can be made. Following the

convention used with the Fourier transform we wil write the upper limit of integration as infin-

ity but will make the function to be transformed zeobeyond some finite upper limit by multi-

plying by a window of finite extent. [9 ] In this section we will explore the degradation intro-

duced into the Hankel transform of a function by such windowing. Ihe results of this section

will also find application to the approximate evaluation of integrals of the form

ff(r)Jj(pr)Jo(4r)rdr()

which arise in this thesis in connectio w ith source-height effects.

An exact but cumbersome expression for the effect of windowing can be derived from a

result presented by Bracewell. [10 ] If we define:

P (P) - fp (r)J O(pr )rdr
0

* (2)

W (p) = fw (r )J O(pr )rdr
0

Then Pw (p), the Hankel tranform of the product of p () and w (r) is given by-

* *2u

PW (p) - f (r )w (r)J0 (pr )rdr - f fP (4)W ( X'p+ --2p~oosO)4d Sd (3)
op 00

We can relate the Hankel transform of the windowed function, Pw, (p) to the Hankrel transform

of the unwindowed function, P (p), by carrying out the theta integration in Equation (3) to

obtain.

P P- fP(4)H(p,4)d4 with H(p.4) - W(Vp2 +i2 -2p~coS8)d9 (4)
0

If il(p,f) had the form flt-4), then Equation (4) would be a convolution, reminiscent

of the windowing resul for the Fourier transform. [91 By placing some restrictions of w (r) we

can derive an approximate expression for the effect of windowing that has the form of a convo-
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b) Approximation as a com'olution

A simpler approximate expression describing the effect of windowing can be derived by

using the asymptotic expression for the Hankel transform:

V[lF(p [ff (r )cos (pr )V*r dr + sgn (p),(f (r )sin (pr )V7rdr

I .. G(P) +4 aSn(P)GO(P)] 1

G,(p) and GO(p) are a Fourier cosine transform and Fourier sine transform respectively. [8 ]

The cosine transform and the sin transform each have the property that the transform of a pro-

duct is the convolution of the transforms. Using this, the effect of windowing in the asymptotic

formulation of Equation (1):

V'l F.(p) ± 1_. (r)w (r)co: (pr)V'irdr + sgn (p)1 (r)w (r)sin (pr)N'rdr (2)

can be written as:

VTlpF.(p) = G,(p)*Wp(p) + sgn(p) [G. (P)*WF (P)] (3)

where we have defined:

U

Wr(p) " fw(r ePdr (4)
-m

In general Equation (3) can not be rewritten as the convolution of F(p) with a window

term becm of the sgn (p) trm However, if the Fourier transorm of the window, Wp (p), is

dfectivdy confined to a narrow band around p = 0, then for p larger than this band (B,):

p >BW G. (p)'W, (p) +sgn (p) [G. (P)W, (p)] f 0. (P)W, (p)+ [Sn (p)G. (p)] W (pIS)

Combining Equations (2), (3), and (5) we have;

V-p'FwCP) = [V-j F CP)]*WjrCP) (6)

which is our asymptotic result.

If Wp(p) is not negligible beyond some band, B,, then the effect of windowing on the

LI

II
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Hankel transform can not be put in this simple form. For such cases the exact result of Equation

(II.6a.4) must be used.

) Resolution and leaka e

Given Equation (IL6b.6) we can address the practical issues associated with windowing.

As is frequently done for the Fourier transform, we divide the isues associated with windowing

into two general classes. The first we call resolution and refers to the local inearing affected by

the main lobe of the window. The second we call leakage and refer to the contribution of the

side lobes. [9, 111

We begin by expanding Equation (I.6b.6) to write:

* U

p >0 VpF(p) fV-()w,(p-0)d with WF(p) = fw(r)e'P'dr (1)

0 -
When p is sufficiently large ( p greater than some P0) then V can be considered constant over

the main lobe of WF (p-4). For these p, Equation (1) can be written approximately as

U

P>PO VpFp) -V'pjf (o)wF(pOadt (2)
0

so that

Fw (p) = ofF(k)WF (p-t)d4 (3)

0
Under this condition the issues of resolution for the Hankel transform are the same as those for

the Fourier transform. f we desire to resolve events in the Hankol transform on the order of 8

then the lobe of our window must be Is. than 8. Discussions about a variety of windows are

available in the literature. [9,11 ] For the Hamming dan of windows, the main lobe width is 5_B'

where B is the length of the window. Our requirement for resolution of events on the order B

becomes:

B > (4)

Leakage is the phenomena we amociate with the side lobes. For the purpose of this analysis
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we consider the lobe width to be sufficently small that it can be approximated by an impulse so

that we ignore the smearing effects that we have assigned to resolution. We approximate Wp (p)

as a weighted superposition of impulses:

WF(P) -- laa(p-Ti) (5)
£

The ag indicate the rate at which the side lobes approach zero. The convolution of Equation (2)

becomes:

U

Ma'4 P-TF(P-T) (6)

-

When we are concerned about the leakage due to a ungularity, we must considter the weighting

aV' , which indicates the amount of leakage of an event at Tj of strength 1 would have at

p. Here the Hankel transform differs from the Fourier transform because of the V term

which slows the decay rate. Consequently for equivalent leakage, the lobes of the window must

fall by a factor of faster than that required for equivalent performance in the Fourier

transform. For this reason we have concentrated on the Hanning window rather than the Ham-

ming in many of our examples.

By weighting the side lobe heights by a factor of Vp, optimal windows could be designed

for Hankel transforms in a manner analogous to the Fourier transform.

d) Examples

In this section we present two examples of windowing and the Hankel transform. To each

we apply a rectangular window:

ft 0<r <4000
w (r) 0  4000<r (1)

which has a length similar to the range over which data is available in the experiment described

in Section (1.6). The frst function we transform is for which the true Hankel
r2+22
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transform is given by I ev k 7 .- Figure II.6d.1 presents the log-magnitude of

e 2 0 < r < 4000. As can be seen in the figure, this function decays almost four

orders of magnitude over the window length. Figures 11.6d.2a and II.6d.2b present the magni-

tude and phase of its computed transform. Essentially no degradation due tw aliasing is apparent

e it X W;
in the computed transform. Figure Hl.6.3 presents the magnitude of Over the'/r2+(133) 2 "

window length this function has decayed roughly two orders of magnitude. Figures I.6d.4a and

IL6d.4b present the magnitude and phase of its Hankel transform. The correct transorm is

given by: l '- ( 133) . The magnitude of the correct transform should look like

1 lka 2_p2 for 0pSk. Instead the magnitude of the transform shown in Figure H.6d.4a

shows considerably more degradation than that of Figure fI.6d.2a. This is due to the fact that

this is the transform of a function which has proportionally more energy outside the window.

One is tempted to assume the ripples apparent in Figure L.6d.4a are due to leakage of the
1.

k2 _.p2 singularity. This is not the source of degradation, however as may be seen by noting

that this same singularity is present in the first transform of Figure H.6d.2a for which no such

rippling is apparent. The rippling is due to the smearing of the transform in Figure fI.6d.3a over

its rapidly oscillating phase term e V * -- O(M ) which is not apparent in the magnitude plot.

When the true phase varies rapidly over the width of the main lobe of the window the effect of

smoothing can actually be to introduce rippling into the computed magnitude.
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11.7) Sampling and Aliasing

It is often necessary to approximate the integral in the Hankel transform by a sum. This

approximation may be necessary because the function to be transformed is known only on a

discrete set of points or because the integral must be evaluated numerically. The resulting sum

will be a degraded version of the true Hankel transform. We will adopt the terminology of

Fourier transforms and refer to the replacement of the integral by a sum as sampling and the

resulting degradation as aliasing. In this section we examine the form that aliasig takes for the

Hankel transform.

The discrete sum approximation that we will concentrate on is the Fourier-Bessel series.

We will derive an expression that relates the output of the Fourier-Bessel series to the true

Hankel transform. Because the Fourier-Bessel series uses samples on a set of points that is

approximately evenly spaced, the results we derive will be approximately correct for any evenly

spaced sampling scheme.

We begin with the formulation of the Fourier-Bessel series [7,6 ] which states:1

1_",F (k)Jo(X, k)4d4
O<p<l F(p) = 2Xfl j 2 ( JO(X.P) (1)

B-10 1
Where k, n = 1,2,3, • are the ordered zeros of Jo(x).

If F (p) = 0 for p > I then the integral in the expression above is just the Hankel

transform of F(p) evaluated at X,,, f(,\) so that the Hankel transform, F(p), can be expressed

exactly as a sum:

<p<l F(p) -2 - Jo(k.p) when F(p) - 0 for p >1 (2)

When F (p) is not truly bandlimited to p < and/or the sum is not carried out to infinity, Equa-

lon (2) is only an approximation to the Hankel transform. The study of the effect of finite N on

1) We wi ad two tAcmos equal it Oe Fourier uadorm of dir dWUhemo has so amnr at any flalt
frequecy. For this rmes we need not elat& out the dues of F (p) in Equalion (1) at poiat of du.

auity.

CJ
£I
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the approximation is the study of windowing, covered in the previous section. Here we consider

only the degradation that occurs because the infinite series is used in place of the integral.

Finally, we note that it is because the zeros of J 0(x), X., rapidly approach n r--i that the

sampling above is approximately evenly spaced.

To determine the effect of approximating the Hankel transform:

a

F(p) - ff (r)JO(pr)rdr (3)
0

by the Fourier-Bessel series:

N 2
0<p<I P() (4)

we express P (p) in terms of the correct transform, F (p), by inverting (3) to write f (r) in terms

of F (p). We substitute this into Equation (4) to yield:

N 2 ('
0 <p < 1 P(p) = f2 j F(k)Jo(Xk,)Mdt Jo(XP) (5)

Interchanging the order of integration and summation we have
U

A (p) = fF (4)TN(p,k)4d (6)
0

Where, following the notation of Watson (page 582) [7 1 we define:

N [ 1Okw~.
TN (PA) an 2.j k. ('7)

The study of aliasng for the Fourier-Bessel series is the study of T.(p,4). We can obtain

an expression for T.(p,k) by using an asymptotic result presented by Schlafli: 1'2 [12 ]

- V Ax(p-) -unA(2-p-0 whereAir - (N + -L)r (8)

1) a fo Wafon'm don of Mhlmfis reul t4

2) Sa dod e not ruwa ke rei= of vaidity ot his result. Wabon, howeer, sma tat Seldi's rest
proeds from a formula whiab is ariedy valid only for O<p+t<2 nd p* . We will lar plot Tts(p,()
to show that the esults of this anlyts appear valid inlde the region O<p+S2 and approximately valid
outide at reion.



-45-

As N .r TN (p,) approaches a weighted sequence of impulses. We determine that sequence

here.

We begin our analysis of Equation (8) by first considering the expression:

SAIX- (9)

d~~sn N wrxm + ME r in x(0
sin Ax i4sin- sin- 9

2 2
Which equals

in N ir OD W cos Nffx in wx (10)

2 2
In Appendix I we show that as N - = the first term in (10) approaches the limit:

7,-)(L-2k) (11)

In Appendix I we also show that the second term in Equation (10) approaches 0. The limit

of Equation (9) is therefore given by:

sin A -vx =( 2k) (12)
I"T

Using Equation (12) the first term in Equation (8) can now be seen to approach the limit:

Jim sin AV(P-0 . 2T(_1)kb(pg_4k) (13)

2

The second term in Equation (8) can be put in the form of Equation (9) by definin

y -2-p-4:

•in AN(2-p-4) . n ANY (14)

dn '(2-P-0 
sn

2 2

Combining Equations (13) and (14) we have:

M sin AN( 2 p-Op 2 (_1)'8(2_pJ_4k) (1S)

R.-, n -(2-P-12
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We can determine T(p,4) by combining (13) and (15):1

Jim T(p,1) '(- 1 ) [8(p-4-4k)- b(2-p-4-4k)] (16)
MH N- 7,P-g I, -1), 1

If our transform is not severely aliased so that F (p) is negligible for p > 2 then substituting

Equation (16) into Equation (6) shows that:

2
O<p < 1 t(p) fF(:.-[(- - (17)

which equals for O<p<l :2

JP (p) =F (p,) - -..- EF(2-p

We observe that the aliasing result most directly relates Vp7, (p) to V'pF (p).

An example of aliasing is presented in Figure H.7.1 where we see 4V'/p times the Hankel

transform of e -' generated with the Fourier-Bessel series. The figure displays the aliasing

terms generated by the impulses in Equation (16). In the region 0< p< 2 the figure matches

the result indicated in Equation (17) very well. In the region 0< p< 4 the figure does not

correspond exactly to what would be determined by substitution Equation (16) into Equation (6)

indicating the limited validity of Schlafli's result.

Figure 11.7.2 shows a plot of 2Vp4TjU(p,k) 0< p< 10 0< t< 10. This picture sup-

ports the accuracy of Equation (16) for T.(p,k) for 0< p 4-S- 2 and suggests that Equation

(16) is at least approximately correct over the range of p and 4 shown in the figure.

We conclude this section with a final example of aliasing for the Hankel transform that will

play an important role in the generation of synthetic data. Figure 11.7.3 shows the function

f IM(ro) > 0 (19)()-r2_rj

corresponding to two poles, one at r = ro and the other at r - -r o. This function has the

known Hankel transform: [8 1
1) Over he region of validity for Sc.aflfi's reult.
2) we have inluded tae point pI + 2, which is not stiedy within the intrval qMMed by Wamon.
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Figure 11.7.2 2VP-Tus(p,0)



- 49 -

j02

w

0

M

102

I- lop

10- 1

0 2 3 4

RANGE (m)

FIure 1.7.3 The 1o magnitude of the function

C .

.. ,



F(p) = -- H) (rop) (20)
2

Asymptotically HSl)(rOp)= V 2_ e4 te so that its magnitude should appear

Vr2_ 1

. Consequently the magnitude of F (p) should appear smooth and decay as -7-. In

Figure 11.7.4 we see the numerically computed transform umn the samples f 20 . Rapid

osciillations are apparent which are not present in the magnitude of the correct transform. The

source of these oscillations is aliasng, which can be seen by using Equation (18) to approximate

the numerically computed transform:

4 i r - e (2 1)
77=0P V- / Vo(4096-p)

which equals

ip(P t e r° - Ae (22)

with A e (4096)'r0. This can be rewritten as:

1(p) i [(1 A)e"*p +2iA sin(rop) (23)

where the beating caused by the aliasing is apparent in the sin(rop) term. The aliased output

displays the form of the .- decay term times an extremely degraded estimate of V'pF (p).

When the transform decays only at a rate of of Ip, this example shows that severe degradation

due to allasing can be expected.

1.8) The Effect of Additive White Gausian Noise on the Henkal Transform

a) Statement of the Effect of Additive White Gaussian Nose on the Hankel Transform

In practice it is seldom posmble to know exactly the function whose transform we desire.

Frequently it is posble to model the uncertainty about the input function by assuming that the



- 51 -

100

. ....... .... ...0- . ....... ......

w

F-

10-30-
o-4

i0-I

0 500 1000 1500 2000 2500p (m")

Figure 11.7.4 The log maSnitude of the numerically computed Hankel transform of the function
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errors associated with each sample are random and uncorrelated from point to point. Since the

combined effect of many random factors can often be modeled with a Gaussian distribution (by

invoking the central limit theorem [13 ]) the assumption is often added that the distribution of

error around each point is Gaussian. This model of the uncertainty corresponds to additive white

(the uncorrelated assumption) Gaussian noise. We assume the mean of the noise process is zero

so that the expectation of the noisy input signal is the true input. If we further assume that the

variance of the noise process is not a function of the input sample number then this Gaussian

noise process is stationary.

In this section we explore the effect of such uncertainty on the Hankel transform of the

input function. Since the Hankel transform is a linear operator and the noise process has zero

mean, the effect of the noise will be to introduce a variance in the output of the Hankel

transform proportional to the noise power but the expected output will not be corrupted. 114 ] In

this section we first show that unlike the Fourier transform the variance of the Hankel transform

of stationary white Gaussian noise is not stationary, but instead concentrates power near the ori-

gin. This result is important because frequently the Hankel transform is used in place of the two

dimensional Fourier transform in problems with an underlying crcular symmetry. Because of

this property, a slice of the the two dimensional Fourier transform of noisy measurements made

over a two dimensional grid of a circularly symmetric field will differ from the Hankel transform

of a slice of that field.

In Section (b) we will show that if f('r ) is a stationary white Gaussian noise process then

F (Vi) will also be stationary white Gaussian noise. This result implies that if the input function

is sampled on a V7 grid and each sample is independently corrupted by (zero mean) Gaussian

noise that does not depend on the sample number, then samples of the Hankel transform on a

V~p grid will be independ.. ,y corrupted by Gaussian noise and the amount of corruption will

not depend on the value of p. On these grids each sample represents the same area of the under-

lying two dimensional circularly symmetric function and the noise properties of the Hankel



. -53 -

transform are equivalent to the noise properties of the underlying two dimensional Fourier

transform.

To show that the Hankel transform concentrates noise power near the origin we first write:

)' -P f()+n (P)IJC(pr)rdr()

Where we have introduced the limit of integration, B, to insure convergence, n (r) is stationary

white Gaussian noise with variance No. The variance of F is given by

• "[0. (p)-

M [iI (r)Jo(pP)rdr
to (2)

M .(fE [, (ax), (5) jJo(pu)Jo(P)a~d ad A

Ba
- ffNo5(a-PJo(pa)p)3dadO

= Nof4(pa)a2da

For p = 0 Equation (2) above shows that

VAR [tj(0)I = od NonB3  (3)
0

When p*O

VAR [Fa(p) =Nof#4(pa)adat = -7 fJj(4)dk (4)
0

In units of normalized frequency v - p/B

[t [~ (P)] No f4j(pa)am2da N J 2 (~~ 5

which is plotted in Figure fl.8a.l. As can be seen this function decays rapidly with v so that the

Hankel transform concentrates noise power near the origin. We can explain why this noise pro-

perty of the Hankel transform differs from that for the Fourier transform by considering the.

underlying two dimensional circularly symmetric Fourier transform represented by the Hankel

transform.

£T

- - -
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We recall from Section (11.3) that the Hankel transform of a function, f(r), corresponds to

a slice of the two dimensional Fourier transform of the function I(r,O) made by sweeping f (r)

around the origin in two dimensions (so that I(r,O) = f(r) for all 0). When we generate the

Hankel transform of the noisy input, f(r) + n(r), we obtain a slice of the two dimensional

Fourier transform of f(r)+n(r) swept around the origin. The result is very different from

sweeping f (r) around the origin and then adding SWON (stationary white Gaussin noise) in

two dimensions. In the first case the noise field is circularly symmetric, in the second case it is

not. It is the symmetry in the underlying noise field implied by the Hankel transform that causes

the concentration of noise power near the origin.

We will now show that this behavior of the Hankel transform with respect to noise can be

averted by changing to a VT coordinate system for the input and a V coordinate system for the

output. Samples evenly spaced in these square root coordinate systems have the property that the

distance between any two samples always represents the same area of the underlying two dimen-

sional (circularly symmetric) function. Each noisy sample of the function and its Hankel

transform represents the same amount of area in the underlying twu dimensional spaces. Conse-

quently the noise properties are equivalent to those associated with samples evenly space on a

cartesian grid (associated with the two dimensional Fourier transform).

b) Proof that if f (vr ) is stationary white Gaussian noise then F (V~p) will also be stationary white

Gaussian noise, where F (p) is the Hankel transform off (r)

The proof that if f (Vr) is stationary white Gaussian noise (SWGN) then F (Vpj) is also

SWON, consists of three parts and a conclusion. First we will show that for the integral

transform defined as F2(p) - ff(r)4o(pr)Vprdr that f(r) is SWON if and only if F2(p) is
6

SWGN. Second we will use this to show that rf (r) is SWON if and only if VNpF (p) is SWON.

Finally we show that if V"f (r) is SWON then (V) must be SWON.

i) Proof that F(p) is stationary white Gaussian noise if and only if f (r) is stationary white Gaus-

Ci€ 1
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sian noise, where F2 (p) is the Hankel transform off (r) as defined by Bateman.

We begin by recalling that the Hankel transform defined by Bateman [8 ] and presented in

Section (11.2) is given by F 2(p) - ff(r)Jo(pr)V;prdr. Because this operator is linear, F2 (p) is
0

Gaussian. For the same reason if the mean of f(r) = 0 then the mean of F 2(p) is also 0. We

need only show, then, that

E[F2 (p,)F 2(p2)] = CS(p1-p 2) (1)

Now

E [F2(PO)F.(P2)]

E [ff (r )Jo(Pir )Vp'trdrff ( )Jo(pjt)*v'jd
00

- ffN o( )O(PIr)Jo(p 2 PI)'P 2 (drdC
0 0 -- a(2)

- AIN/pV fJo(piJOp~jojd(
0

P2

= No0(pl-p2)
This proves that f(r) SWGN implies that F2(p) is SWGN. The convene is proven by noting

that the above integral transform is its own inverse so that the same argument applies, rep!acing

f(r) with F2 (p).

11) Proof that V"pF (p) is stationary white Gaussian noise if and only if V~rf (r) is stationan, hire

Gaussian noise, where F (p) is the Hankel transform off (r)

From (i) we know that if Wr-f (r) is SWON then

f(-rf (r))JO(pr)V-pdr - V'/f(r)O(pr)rdr - V'pF(p) (3)
x 0

is SWGN. Since the Hankel transform, ff (r)Jo(pr)rdr is its own invere the converse follo.s by
0

starting with V'rf (r).

4 , . .e. ,: , ! : L : --,. , ,; , -.. L .. . , . . .. . ... , ... .
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Ill) Proof that V~rf (r) s stationary white Gaussian noise if and only if f (Vr ) is stationary white

Gaussian noise

First we show that ifE (r= (rl-r 2 ) then E [([T)f (1[r 2 1 8(r-r 2 )
If ( Of r 2)1 Ifi(rj)

This assumes that i(r) and 1-1(r) exist in the region of interest.

Proof.

f(lfrl) =

= f (I [(])(r- ()dt (4)
-0

= ff(a)8(r -U1 (a)) dx
- il-'(a))

Using Equation (4) we can write If (I[ri])f (L[r2])] as:

L£ [Lr I)f(QL[r2])] -

.1' [(aM)f ( 2)] [r, -1 - 1( 1)](r 2- -1( 2)]dcd 02
i[I 1020 -'(-2))(5)

.... i [ 1 - (a)[t -'( ) ]

8S[ri-1-(u6[ra-1(C)]

If we define 1 -1(a) .w that a = 1(g) and da = i(k)dt then

E [fQrDfOm.r2Dl = f8(r-t)8(r2 )-L
-a I(t) (6)

8(r[]r-)

We now show thatf (V,) SW N iffE (rl)f(r2) -(r-r 2)

We apply the result of the first part of this section to our special case by definingI (r) - r2

so that i(r)-2rdr With this definidon we see that if some p (r) is SWGN then p(r2 ) will have a
i(,l-r2)

variane proportional to This implies that if f(V) is SWON then f(r) has a vai-

rl

CleFp~udt = r the
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g [Vf (r)VI (,,)] 8(,,-r) therefor if f/( ) is SWGN then V/f(r) is SWoN. TIe

converse follows from the same steps in reverse.

iv) Conclusion

In (i) and (ii) we showed that if W rf(r) is SWGN then VpjF(p) will also be SWGN. In

(iii) we showed that %VW-f(r) is SWGN if and only if f(rW) is SWON. The argument of (ii) and

(iv) also showed that V,'p(p) is SWON if and only if F (Vp') is SWON. Thus we have shown

that if f ('VW) is SWON then F (V/p) must also be SWON.

11.9) Summary

In this chapter we have developed the properties of the Hankel transform in general. By

themselves these properties might be simply interesting but together with the ability to numeri-

cally perform the Hankel transform, they become tools fer scientific research. In the next chapter

we will discuss methods for numerically performing the Hankel transfortr.
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Chapter III:

Computing the Hankel Transform

11.1) Overview

Because of the importance of the Hankel transform thee presently exist many algorithms

for its evaluation. As yet, however, there is no generally accepted algorithm analogous to the

FFT for the Fourier transform. This chapter presents a survey of numerical Hankel transform

techniques. It does not include all the published algorithms but does represent the major classes.

We begin in section M.2 by discussng perhaps the oldest and best understood algorithm, the

Fourier-Bessel series, that we used to derive our aliasing result of Chapter 1I. Section M.3

presents the backsmear method and an example of an efficient class of realizations. Section .4

discusses the asymptotic transform method as it has been proposed in the literature and presents

new results that can be used to improve this method or to asses the error in the standard realiz-

tion from the output transform alone. Section 111.5 discusses a common combined transform

method and presents a caution about its use. Section M1.6 presents a convolutional method fre-

quently used for electromagnetic problems which require the transform of smooth functions of

limited extent. Section 1.7 discusses the projection-slice method. In that section we develop a

fast algorithm for generating the projections (shown to be an Abel transform), which itself has

wide applications. [11 When it is followed by an FFT the result is an efficient Hankel transform.

Both the Abel and Hankel transform algorithms are illustrated with examples.

1.2) The Fourier-Bessel Series

Probably the first proposed method for evaluating the Hankel transform is the Fourier-

Bene series, which was discussed in the allasing section. The Fourier-Bessel series is summar-

ind by the identity: [2,3 1

=10O<p<1 F(p)" 2- x~ (__ (_______ -

C
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Where Xx n 1,2,3, are the ordered zeros of J0 (x).

This relation can be used to obtain the Hankel transform of a band limited function, f(r),

defined by

F(p) - ff(r)Jo(pr)rdr (2)
0

where F(p) = 0 for p>l by noting that when F(p)=O p>l:

3 1

f(k.) = fF(p)Jo(pX,)pdp = fF(p)Jo(pX,,)pdp (3)
0 0

Substituting into Equation (1) we have:
- f (k.)

O<p<l F (p) = 21Jo\. (4)

I (k.)

which is in the form of a sum as we desired. If F (p) is bandlimited to p<B, instead of p<1,

Equation (4) can be modified by a change of variables. The resulting general form states that

when F (p) = 0 for p>B then

2 f(Y) x.
O<p<B F(p) B - Jo(:p) (5)

B 2 _Ij?(Xj\ B

The properties of the Fourier-Bessel series have been extensively studied. [2, 3 1 As a numerical

algorithm for implementing the Hankel transform it is usually appropriate only when a few

values of F (p) are required or when computation cost is less important than careful control over

the errors. This is because the Fourier-Bessel series requires than a new sum be computed for

every value of p. Further, it requires that the function to be transformed be available on the

nonuniform Sid, --.

Another algorithm that is appropriate when only a few values of F(p) are required, but

which accepts input values on an even grid, is the backsmear method. We premst the backsmear

method in the next section.
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111.3) The Backsmear Method

The backsmear method exploits the efficiency of the FFT to provide an efficient algorithmV

when only a few output values of the transform are desired. This algorithm can be derived by

replacing the Bessel function with its integral representation the Hankel transform can be written

as the two dimensional integral:

2. *
F(p) - ff(r)Jo(pr)rdr = -f ff(r)e'$wODrdr dO (1)

If we define G(x) - ff(r)rl*dr and note that oosO is even, the transform becomes:

0M

F(p) - 1-fG(pcoso)d0 = If G(pcos8)+G(-pcoso) do (2)
Ito0I

G (x) can be evaluated efficiently on an even grid using an FFT. [4 ] The integration called

for in Equation (2), however, must be performed for every desired value of p. Further, since the

integration of Equation (2) is in 0, some interpolation scheme must be used to generate

G (pcosO) on the quadrature points required by the numerical integrator.

The backsmear method is appropriate when the transform is required at only a few values

of p. When this is the case and when U (x) is slowly varying so that the numerical integration

which must be carried out upon it can be done efficiently, then the backsmear method is effi-

cient. This is particularly true if the interpoladton scheme used permits a quadrature formula to

be developed for the numerical integration.

One such developments presented below for the case of linear interpolation between the

poinv'ofL(x) - G(z) + G(-x).

We seek

() 
2

F(p) - LfL(pcosO)de (3)

and have available only L (--) from the output of the FM. We approximate L (x) by linearly) n

A -
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interpolating L ( ) so that

N

s- L(x) ELj(x) (4)
j=O

where

LJ (x) 0"L otherwvise(5

We can integrate L (pCOS8) as follows

UN

2 2 -12

fL (pcosO)d = f Lj (pcos@)d 8 1 fLj (pcosO)d 9 (6)
0 o-1 J-1 o

The Lj terms can be integrated term by term:

2

NTNT NT NT*OO4 7
p~r

where

C641-1r M CS-IX jx 1St 8Cto Ix (8)

EvaluaLing thi integral and substituting into Equation (6) we have

( )=

- [cos-I(L) - ws71( )41- Ilr,[~ L ,.(-L) -,+dL (9)

+ .- [,..) (j+) - L(*)

When k is small or A(P) is desired for only a few values of k, this is an effient pro-

cedure. When k is large and t (k) is required for many values this is a slow method, how-

ever. In the next section we present a fast algorithm for the evaluation of the Hankel transform

at large values of the transform variable, p.
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111.4) The Asymptotic transform

In the seismic community the Hankel transform is commonly evaluated approximately by

replacing the Bessel function with its asymptotic form so that the resulting integral looks like a

Fourier transform. [5, 6 ] The result will usually asymptotically approach the Hankel transform,

though pathological functions can be found for which this is not the case ( for example).

The main disadvantages of this method are that it is almost never muitable for small values of p

and that the error induced by the substitution is determined in part by the function being

transformed. The main advantage is that the resulting integral looks very much like a Fourier

transform and can be evaluated efficiently with an FFT.

An expresion for the Bessel function, suitable for an asymptotic expansion is provided by

Lipschitz:1 [7 1

41 9 1 7,forx > 0 Jo(x) Co - c(x--) - i(- 7 ) - + Where 181<1 (1)

In the literature describing this technique [5 1 only the leading term is retained, providing:

F (p) = --ff (r)cos(pr - -)V'dr when p > 0 (2)
VP'f 4

This is written as a Fourier transform by noting that

cos(pr = cos(pr) + sin (p)) (3)

hence

F(p) f ()r'fr cos(pr)dr + ff (r)V 'sin(pr)dr when p > 0 (4)
Slia0

This expression can be evaluated with an FFr.

We can write the error associated with tfe trandorm technique as

"(P -if(Jr IdPr - __ V-cos (iw -M) Jdr

-.f(P)H (pr)dr
P a

1) A war@ reant expeaion with the same leading behavior an be found in WaseD. 121

i

-*- '-*-
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with H (pr) - pr (pr) - N/2 cos(pr - =)i. 1(x) is plotted in F.Sure 1.3.1. It looks
L. (,) , ) 7)J

very much Hke a slowly decaying sinusoid. e(p) decays with p both because H(pr) decays

(slowly) with p and because of the of the 1/p term. B-cause of the sinusoidal behavior of H(pr)

the error term of Equation (5) can be large at those frequencies where f (r) has a lot of energy.

By using the expression of Lipschitz we can develop an asymptotic Hankel transform with

an error term that decays much faster than the error term for the conventional asymptotic

method. This expression also makes it relatively easy to judge the validity of the conventional

asymptotic transform after it has been performed because it presents the leading error terms of

that transform as a function of the transform itself.

We substitute the expression of (1) for J0(pr) in the Hankel transform to see that:

F(p) = -~. ;If(r)V'"cos(pr--2-)dr +- -- f4)s (9r-M~)dr

SL3(6)
9 1 ,f Ucos( r- " a ;

128 p2 r3-2 4 64 r1 2

If we use

cos (pr 1 [cos(pr) + sin(pr)j

sin (pr - M) = - I sin(pr) - cos(pr)I 7

then Equation (6) becomes

Fp) = .~ f(r)VIrros (pr)dr +4f(r)Vrsin(pr)dr

0 vfLr si(Pr )dr + 4. ~J 4 rin (pr )dr

U' we now define

-. -o(pr) = 'f ()L .o. r)d

F, (p) - ff(r)V'r(-cs(pr)d(

(0)
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Figure T11.3.1 Plot of the error kernel for the asymptotic transform method
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and note that

fracos (p~r "-ff(r) rs (pr)dr = -F, (p)
ap 0 r 0

0
-W r aa

2 (10)

'2 L r ,,o(p)d, -F,(p)
7 a r 34

then

1 p IF.(p) +F. (p) + -LF Jd9+ (gd4+ 9 jgdjt
9 l L t 3 ~ a 2  (11)

j~-~fa~i~d +64 p3 ~
We can combine terms above by defining

F1 (p) - F, (p) + F, (p) (12)

so Equation (11) becomes

F(p) = 1 -+ -rffFjc)dud + 3  (ap)dr (13)

The indefinite integrals above can be converted to definite integrals by integrating from 0 to

infinity and adding on the values necessary to force the resulting equation to match Equation (8)

at p = 0:

fF 1 (E)d -= fFi(t)d4 + C1 with C I- ft dr (14)
0

ffP~ )~d =t J1 J(>d-cd+ C2  with C2 - if- Udr (15)0 0o

Performing the integrations over the constants and replacing the iterated integral we are left with

the expresion

I'(p) , + - i,(Od, +- 2S + -2-.L ( ,,(t+ C2 + 3 L , P,)&
Fr(P) 7,- F(P 0 noj' 4 64J (16)P

The firt trm can be recognized as the usual asymptotic expresuion for the HMakel transform.

- .- . . .. - . .- !
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The second and third terms are corrections to this expression which can in princple be deter-

mined from it. The final term is the remaining error term but which is consderably smler than

the term associated with the usual asymptotic expression.

If it were desired to calculate the second and third terms directly as a Fourier transform,

the same procedure could be used as will be described in Section (M1.7) where it is applied to cal-

culating the Abel transform.

Equation (16) can also be interpreted as providing first and second order error estimates

for the classical asymptotic transform. These estimates allow the error assocated with the clami-

cal method to be estimated (to first and second order) from a knowledge of only the resulting

transform. Such estimates permit one to interpret the result of an asymptotic transform with a

questionable appearance.

111.5) A Combined Transform Method

The Fourier-Bessel series and the backsmear methods both permit the calculation of the

Hankel transform on any output grid. The computational cost of each of these methods increases

linearly with the number of points computed. The asymptotic method is fast and usually gen-

erates good estimates of the Hankel transform when p is large. A combined scheme is possible

which uses a slow method such as the Fourier-Bessel series or the backsmear to compute the

Hankel transform point by point for low values of p and which switches to the asymptotic

transform for large values of p. Such a method has been proposed in the literature. [8 1

The main issue with such a scheme is the point at which the algorithm should cease comput-

ing the transform point by point with the slow method and begin to accept the output of the

asymptotic transform. At present there is no reliable method for doing this. It has been ag-

gested in the literature that the transition be made at the first point for which the slow algorithm

produces a transform value which matches the value of the asymptotic transform within a speci-

fled tolerance. [8 J This scheme for switching to the asymptotic transform would be entirely ade-
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quate if the error made by the asymptotic algorithm were monotonically decreasing in the

transform variable, p. This error is not always monotonicaly decreasing, however, as we will

illustrate by constructing a function for which it is not. The existence of such a function indicates

that the switching method proposed in the literature [8 ] will not always work. In fact, for the

function we construct, the error made by the asymptotic method will be zero at a point we

specify. The switching scheme proposed would begin to accept the asymptotic transform before

this point even though the error made by the asymptotic transform beyond this point might be

peater than the specified tolerance.

As in Section (M4) we write the error associated with the asymptotic transform as:

U

G (p) = 1-ff (r )H (pr )dr(1
Po

where H(pr) = pr O(Pr) - .z rCOS(pr-.-) and was plotted in Figure MTT.3.1. In

order to construct a function, f(r), such that e(p) is not monotonically decreasing we first

choose some small 8 and set

I O<r<8
f (r) a (2)

fl(pr)dr
Po o PO 0 - 8< r< =

.LfH (por)dr
Poa

For thisf (r) the error made by the asymptotic transform is:

1(p) i fH(pr)f (r)dr
P 0

1 fHt(p)dr~ 3

-fH (pr~dr- P fH (pr )dr
0~ fNJY(por)dr P

PO a

When p the ror, (p), equals zero. In gmeral for p > po it will not. For this con-

structed function the error is not monotonically decreasing and the switching procedure described

__________ __________
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in the literature will not work.

Until an adequate switching method has been found or until the class of functions for which

the proposed switching algorithm will work has been well defined, there can be no guarantee

that the combined algorithm will work properly and this method should be used with caution.

M.) A Cowvol i nal Method

In this section we describe a method for computing the Hankel transform that puts the

Hankel transform in the form of a convolution by transforming to an exponential grid. When

this grid does not involve an extraordinary number of points to adequately represent the func-

tion, the Hankel transform can be efficiently evaluated with an FFT. We will discuss the presen-

tation of this method by Siegman [9 1, though other presentations are available in the literature.

[10]

Siegman converts the Hankel transform into a convolution by sampling the function on an

exponential grid. He begins with the Hankel transform integral

F (p) = ff (r )J o(pr )rdr (1)
0

After the following definitions:

p Poe " v fI/np-)

PO (2)r-roe, &= ( ,)

Equation (1) becomes:

F(p ) =
F

*(3)
rif [24fi(roe I) jJJ(W(P+')d4

- ,.f [e"f (rOe-a) IO(prOe(w&)dm

CJ
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which is the convolution of roe -2Vf (roe-") with Jo(p0roe P) and can be implemented with an

FFT.

The strength of this technique is the efficiency with which the Fourier transform can be

implemented. Its weakness stems from the requirement that f (r) be sampled evenly in e -4. In

order to obtain the sampling density necessary to represent a function near the origin it is likely

that such a density of points is necessary to repreient the function at larger ranges that the com-

putational savings are lost. Also, the presence of the pin factor e -2 might be a severe problem

for the region 0< r < 1. It is unlikely that this transform technique would work efficiently for

functions with more than moderate range-bandwidth products.

In the next section we presnt another Hankel transform algorithm that exploits the compu-

tational efficiency of the FFt through a change of coordinate system. It requires only that the

function be represented on a square root grid, however.

M. 7) The Projection-Slice Method

a) Overview

In Section 11.2 we related the Hankel transform to the two dimensional Fourier transform

of a circularly symmetric funcion. We showed that the Hankel transform can be obtained by

first forming the projection, or Abel transform:

p(r) - A'f (r) n 2ff( 2 )dy 2 t2 2 (1)

which is then followed by a Fourier transform:

F(p) - ff (r)J(pr)rdr - +-fp(r)eIPrdr (2)

Oppeaheim, Frisk, and Martinez [111 suggesed that the computational efficiency of the FFT be

exploited by implementing the Hankel transform as a numerical projection followed by an FFr.

Previously, however, the projectons were apensive to compute, requiring on the order of n2

operations and function evaluations or interpolations. As part of this thesis a computationaly
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efficient method for computing the projections (the Abel transform) was developed. [121 When

followed by an FFT the result is a computationally efficient Hankel transform requiring om the

order of N*logN operations.

b) The Abel traOform

We consider the Abel transform shown below:

p(r) = A .f(r) = 2f t) (1)

As suggested by Bracewell [1,21, we write this transform as a convolution by defining:

h 0)- -to (2)

and

J5(r) M. p(Nr') r zo (3)

f(r) .f(V';) rZO (4)
which leads to the convolution formula:

,P(r) = f(r) * h(r) (5)
The Abel transform off (r), p (r), is determined by:

p(g) zm,(r) (6)

Bracewell [2) proposed evaluating (6) by shifts and sUM.

Because the Fourier transform of h (r) is the known analytic function:

fo= all forAI, (7)
2

jF (r) can be determined in princple by mems of the Fourier transform:

i (r) " F f (V) 1+1'L # 12w= rdv

()o2 ) (8)
where IF() is the FT of f(r). Unfortunately the ingularity at v 0 makes thit function dif-
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ficult to represent in the computer and is responsible for the long tads of , (r) which cauealias-

ing problems when the convolution is implemented with a Fourier transform. We avoid these
I

difficulties by removing the + factor from the numerical part of the transform (8) in such a

way that the remaining function is as well behaved as P (v) within the numerical portion of the

transform. The singular part of the transform is performed analytically and added in after the

numerical procesing.

To this end the transform (8) is written

U 0
,t(r)= (ID )J1 e2"?vdv+ fit (v)el 2 'r' v d v (9a)

0 3

.i [ f F() 1(O)V)e (1Me V),. d-b + ,(O)f 12i e-(b - 2 u?)v dv +(9b)

I - -

I(V)- f(o)" , -lVV 2 v ,, d, + o, )udJ-adv

Where b is a parameter analogous to the real part of the exponential in a Laplace transform.

Our choice of b is described later.

The integrands in the first and third integrals of Equation (9h) do not have ingulariies at

v= 0. Because both the numerator and denominator of these integrands approach 0 as v

approaches 0, they can be evaluated by I' Hospital's rule to show that as v approaches 0 they

approach ,e (0).

Upon defining

11(0) ,-0
,.( I) (() - F() e -b I,(I- V))' oth.erwis, (0)

and performin analytically the two integrals that do not depend on IF (v) we have:

'(+ ) -2wir -h +2,i, rb+2wfr

#(r)" J!
1

.ltFLv~e/(0 1 ____ - iJ (11

<'L
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L (v) was defined in (10) such that L (0) - f (0) and L (Y)---IF (v) for large v. The parame-

ter, b , was chosen so that L (v) moves smoothly between its limits. If b were set to O, L (v)

would have a DC term that would transform to an impulse. Theoretically this would be canceled

by the ingularities in the portion of the transform performed analytically (see equation above)

but computational errors would certainly cause problems. If b were infinite, L (v) would suffer

from the VV' ingularity at the origin. b is chosen to smooth out the singularity somewhat

between these limits. We have been using values of b such that e -b has decayed to e-1 after

roughly 6 samples of F (v).

We present three examples of functions processed with the Abel transform algorithm

described above.

Example I (a)

The first example is the transform of the pillbox function

f (r) - 5  = 1 (12)
f 1 >1

1024 samples of this function were enerated on a V grid with T= 1/32 and

transformed. The result is shown in Figure ML7b.1 as dots superimposed over a solid line which

is the transform computed analytically ( 2V-r 2 ). The output matches the analytic solution

well.

Exampke 2 (a)

For the scond example we transformed the function

Sw(r) (13)

where w (r) is a Haing window. 2048 samples an a V7 grid with T- 1/2 were input (Figure

m.7b.2). Frqpm m.7b.3 shows the output (dots) superimposed over the correc tranform (olid

line). The correct Abel transform was computed by evaluating the Fourier-Bel series [111 to

_41.
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Figure flLUb Superposition of the numericaily generated Abel transform of a pilbox (dats)
and the correct transform
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Fipe U~b. Mmibut 7--W ()with T- 1 and a -0,1, 2, .2047 where

W (AT) is a HanainS window.
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Frgre m.7b.3 The Abel Uadorm of Figure Ifl.7b.2. The dots are the output of the proposed
algorthm. Th thia line is the correct output.
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obtain a slow but accurate Hankel transform of the windowed input. The Hankel transform was

C then inverse Fourier transformed to generate the Abel transform. In the absence of the window

the result would have been sin(r)Ir.

The output is coincdent with the correct solution.

Exampe 3 (a)

For the third example we again transformed 2048 points of

J1(r) w (r) (20)

on the grid V but now T was chosen to be 4. This input is shown in Figure MI.7b.4.

Increasing the sampling interval reduced the effect of windowing on the input because a greater

range of the function was represented but it also increased the sampling interval on the output.

Figure 11I.7b.5 shows the output (dots) superimposed over the correct transform. Again, there is

no discernible error.

c) The Hankel Transform

To complete the Hankel transform it is necessary to Fourier transform the projection

obtained from the Abel transformer. Unforumately this is available on a VnT grid and not the

even grid required by the FFT. To generate p (r) on an even grid it is necessary to interpolate.

If a simple interpolation scheme is used, like sample and hold or linear interpolation, the result

will be generated rapidly but may suffer some degradation. If a more sophisticated interpolator

is used, beu results can be expected but at the expense of greater computation time. Because

the interpolation is from an uneven gid to an even grid (and not the reverse) it is difficwlt to

characteri the error theoretically beyond the fact that the finer the initial grid the better the

results. We complete the Hankel transform of the examples presented above usg linear interpo-

laon to Seerie the niform grid.

c4
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Figure !1.7b.4 The input - W(nT) with T-4 and a -0,1,2, ,2047 whom

W (nr) isa Hannnt window.
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Example 1 (b)

Figure M.7c.1 shows the result of using a FFT on the linearly interpolated projection generated

in Example 1 (a). The dots are the calculated output and are superimposed over the analytic

solution (solid line). The agreement is excellent. The time required to perform the total Hankel

transform (1024 input points to 1024 output points), including the required linear interpolation,

wab les than 31 seconds on a PDP 11-55 with a floating point processor.

Example 2 (b)

Figure 111.7c.2 shows the result of Fourier transforming the linearly interpolated output of

Example 2 (a). Again the dots represent the output of the Abel-Fourier scheme and the solid

line is the Hankel transform as computed by the Fourier-Bessel series.[11] The agreement is

excellent.

Example 3 (b)

Figure Ifl.7c.3 compares the result of Fourier Transforming the linearly interpolated output

of Example 3 (a) (dots) with the correct transform (solid). Significant distortion is apparent in

this transform. Since the output of the Abel transform in example 3 (a) essentially equals the

output in example 2 (a) (the correct projection) except for the sampling interval, we can associ-

ate this distortion with the linear interpolation performed before the FFT.

d) Discussion

We have found, as indicated by the examples above, that the Abel transformer works well.

When its output can be successfully interpolated and is followed by a FFT the result is a fast,

accurate Hankel Transform as illustrated by examples 1 and 2. As the spacing between output

samples of the Abel transformer is increased, the suitability of a simple interpolation scheme

becomes suspect. Example 3 was chosen to illustrate the effect of inappropriate interpolation on

the resulting Hankel transform. At this point it would be prudent to determine the validity of a



.4

Y .2

0

-.21
0 20 40 60 so t00

x

Figure M1.7e.. The Hankel transform of a pilibox computed by using an FF7 an fts linearly
interpolated output of the Abel transformer prusented in Figure M.7b. I
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Figure UI.7c.2 The Haukiel transform of W~-- W(0) computed by usiag an FFr an the

Kneay intepolated output of the Abel transformer presented in Figue flL7b.3, r an.
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FIgure UI.7c.3 The Hankd transform of W (nT) computed by using an FFT on the

linearly interpolated output of the Abel transformer presented in Figure lMl7b.s, T 4 am.
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Hankel transform performed with this algorithm by comparing the output for inputs of different

grid spacings.

e) Summary

The procedure for performing the Hankel transform H f (r) FH (v) is summarized

below.

1) generate I(r) - (V7)

2) Fourier transform to obtain P (v)

3) generate L (v) = (v) - (o)e -b 11(1-v )/v

4) perform the inverse Fourier transform and add in the analytic terms:

( r ) _= ...+ TF .-L ,( ) + P ( 0 ) 1 -'2 b -2rrir )/b +2mrir b +2ir

5) interpolate to an even grid p (r) = j0 (r2)

6) Fourier transform to obtain the Hankel transform

' (V) = F" -p (r)

Each of steps 2) thru 6) requires no more than the order of N log(N) operations. There-

fore the total transform can be accomplished on the order of N log(N) operations. Direct compu-

tation of projections from the 2 dimensional circularly symmetric function would have required

at least N function evaluations and N sms for each of N points before the final FFT, which

lads to an algorithm requiring on the order of N 2 operations. Therefore for sufficiently large N

this method of calmlatiW8 the projections can provide a considerable advantage in speed.

Steps 1) and 5) above indicate that in two places intepolations may be requred. In many

casm, however, the function to be transformed can be generated initially on a grid evenly spaced

in Vr'. Further, f (VU-) , as required by this algorithm, has the desirable feature that equal
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areas of the underlying two dimensional function f (r ,O) are represented between samples. If

stationary white gaussian noise (SWON) corrupts the measurement of f (Vj/Tn) n = 0,1, - - -

then the Hankel transform on a V' grid will be corrupted by SWGN (corruption of equal areas

of the underlying two dimensional function produces corruption of equal areas of the underlying

2-D FT). This is not true if f(nT) is corrupted by SWON.

To implement a Hankel transform using this method it is necessary to perform the interpo-

lations of step 5). Because of the speed of the Abel transform portion of this algorithm we have

found it sufficient in many cases to simply generate an over sampled version of , (r) and to use

linear interpolation to obtain p (r).

f) Conclusion

For many applications this method of calculating the Abel transform appears to permit the

efficient calculation of the Hankel transform for large data files. This transform method is par-

ticularly appropriate for the evaluation of the Sommerfeld integral, in which the oscillations of

the kernel increase with the independent variable. As a general transform method issues of

representation on a VXrI grid must be further explored. Because of the equal area property

described earlier for f C ) and because the speed of this algorithm permits oversampling in

p (r 2) it is not expected that these issues will pose serious problems. It appears that the %7 grid

is of fundamental importance in the Hankel transform.

MI.8) Summary

In this chapter we presented a number of numerical techniques for evaluating the Hankel

transform. No one technique is ideal for all situations. When the value of the transform is

desired at only a few points, the Fourier-Bessel series or the backsmear method is appropriate. If

speed is extremely important, accuracy is not, and the transform is not needed for small argu-

ments, then the asymptotic method is justified. If the input function and its Abel transform can

be well represented on a square root grid (which is the case for functions which increase in

N-
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complexity with range) then the Hainkel-Abel (or projection-ulice) method is a good choice.

Having established the properties of the Hankel transform and examined its numerical

implementation we are now ready to consider using it to generate synthetic data.
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CHAPTER IV:

SYNTHETIC DATA GENERATION

IV.1) Oveview

The generation of high quality synthetic pressure fields is an important branch of acoustic

research. Because present methods can only approximately compute the fields associated with a

point source for complex environments, simplified environments are often considered for which

fewer approximations must be made. One important environment which tends itself well to

analysis but which has sufficient complexity to be of interest for practical problems, is the horizon-

tally stratified environment. It is an excellent model for the conditions present in the deep ocean

over an abyssal plain, and consequently of direct interest to us. Currently, techniques for calcu-

lating synthetic fields arising from a CW point source in this environment exist in the literature

[7,11,3 1 These techniques are based upon the numerical evaluation of the Sommerfeld integral [I

1, for which two major computational efforts are required. First, the plane wave reflection

coefficient for the bottom profile must be numerically generated. For this the propagator matrix

method (12,8 1 is used. Second, the pressure field is computed as the Hankel transform of the

depth-dependent Green's function (which is simply derived from the plane wave reflection

coefficient). Typically, in these techniques many of the degradations associated with the numeri-

cal evaluation of the Hankel transform are not carefully controlled. In this chapter we exploit the

properties of the Hankel transform derived in Chapter II to carefully control these errors. We

will show in Section (IV.3a) that a major source of numerical error is aliasing, which becomes

important because asymptotically the fields decay only as _ . We associate this slow rate of decay

with the source singularity, in the depth-dependent Green's function and show how

to separate this portion of the computation from the numerically computed Hankel transform.

1) Assumial for the present that there ara. trapped modes associated with low speed layers within the
bottom.

C.
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The remaining numerical calculations are significantly iess degraded by aliasing and are well

behaved in general. They remain in the form of a Hankel transform for which we can exploit the

computation efficiencies now available (9 ] The result is a new hybrid procedure which is compu-

tationally efficient and significantly more accurate than existing methods. This hybrid scheme is

illustrated with examples of synthetically generated fields.

In Section (IV.ib) we discuss the difficulties associated with numerically evaluating the

Hankel transform of the depth-dependent Green's function when slow speed layers are present in

the bottom which give rise to proper modes. Proper modes are associated with the

singularities (with k., near the real ais) in the depth-dependent Green's function and contribute

terms to the field which decay asymptotically as This very slow decay in the field causes

* severe aliasing problems when it is calculated using a numerical Hankel transform algorithm. In

Section (IV.3b) we show how to separate the effects of proper modes from the numerical calcula-

tions by performing part of the Hankel transform analytically. We make this separation in such a

manner that the portion of the field assigned to the analytical calculations is exact and finite for

all ranges. This makes it possible to numerically calculate the residual numerical contribution to

the field accurately and add the result to the analytically determined expression. The result of the

total hybrid algorithm is a field which is accurate for all ranges and which can accurately include

the effects due to proper modes arising in the presence of slow speed layers. We present an exam-

pie of a field generated synthetically with this total hybrid method and show how the result is

significantly better than what would have been achieved without removing the effect of the poles.

In this chapter we also develop a numerical implementatin of the propagator matrix method

for generating the plans wave refiection coefficient that is well behaved numerically. We begin

the chapthr by describing the computation of the plane wave reflection coefficient by means of the

Thomson-Haskell method [12, 8.

:ItI:
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IV.2) The Propagator Matrix Approach to Generating the Plane Wave Reflection Coefficient

a) The Method in Principle

i) Overview

L. To calculate the plane wave reflection coefficient we consider the response of a layered bot.

tom to an incident plane wave as shown in Figure IV2.Aj.l. Within the n:h isovelocity layer we

express the field as the vector:

[U (z) 1o(k )e"

where P,,(:) is the pressure in the n'h layer and U,.(:) is the normal component of the velocity.

We have chosen this representation because P (z) and U (:) are continuous in :, even across

layer interfaces. In the discussion which follows we will suppress the time and radial dependence

of the field because they are the same in all layers.

In the propagator matrix approach, the impedance at the bottom layer:

,tl +" 0 (2)

is available from the material parameters. In principle this impedance is used to determine the

reflection coefficient at the top interface in three steps. First the field at the top interface is

related to the field at the bottom interface by the propagator matrix:

[P4z0) 1 [~v
L ' (o " (()J 3)

Next the incident and reflected pressure waves at the surface are related to the field at the top

interface and then to those at the bottom through:

"+ -ALU(ol U'A(f ) 1.. 1[o(at)] rU(,,) (4)
..I L ) P(ON) a 12 1 21  40

Finally, the reflection coefficient is calculated in terms of the impedance, t., using

- ( 1 1
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zZO PO (0), U0(O) P+.,0  P-

PN-1 (4-1 UN-l (ZN-1) P+' N- 4

Z=N N (ZN), UN (ZN) P4.'N ~~

Figure IV.2a.1.1 The waves generated in a layered bottom in responses to an incdent plane
wave
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so that

r - - ='al+ FG2
P", 0  C21 + (6 1)22

n) The Propagator Matrix

The essential element of this approach is the propagator matrix, 4, of Equation IV2a.13. In

this section we review its derivation.

Within any isovelocity layer, the field can be considered as the superposition of a positive

and a negative traveling wave. The pressure field is given by

P(z) P +e"' +P." _e (1)

The normal component of velocity, U (z), is related to P (:) throagh the telegraph equations [2 ]

a P a U
For the non-normal case we use - = P -i wpU which implies that:

U(z) A .---L- ' ehS -.-- P(2)
L~p iJip

k2
or defining Yo n -:

WP

U (z) - YoPs+ek - YoP_* -'k'"  (3)

In matrix form Equations (1) and (3) become:

P (Z) I[e -- - (4)

I 1v(: )j is known at some point in the layer then [u(;24can be computed in principle by

inverting Equation (4) to find [P -J in terms of [U (z )J and then calculating lu (z2)J from [P.

Combining these operations into one step gives:

[ (22 llfikg, yehiiS yk It IIi* [(z 1 1[yZ O e8 uef~ s .. Y0 Cidkai [I
which gives us:
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[UzJ 2 cYosink'(z 1-z) cOsP(z-zO .(z 1) (6)

The values of k. and Y0 are functions of the material parameters of the layer under considera-

tion. In particular if c. is the sound speed in layer n, p. its density, k, the horizontal wave

number of the incident plane wave (by Snell's law common to all layers), and t the temporal fre-

quency of the CW source, then k. -!, k, - N\/: , and Y0 -= k

To indicate explicitly the dependence on the material properties of the nzh layer we write:

42)1 Z ) fP(z ) 17
[U(z2)] .l (z ()

when z , and :I are both within layer n.

To calculate the field at the top interface in terms of the field at the bottom interface, as

shown in Figure IV2.a.i.l, we can use the previous discussion which was applicable only to a single

layer, to relate the field at :X to the field at z,,_I:

[p c,_) 1 [Pcz 5)] [Pcz,) 1
U 4,01 i.- (:.)Lu1(.J -i [u(:.)j (8)

We then iterate the procedure through all the layers to find

E4P:0) [P(Z.)I [P 4.)1
U(4 0)] " 10 O[U (Z.)j [ (:.)J (9)

b) Numerical Implemenation

o The modified propagation matrix

The bulk of computation associated with the propagator matrix approach is the accumulation

of the matrices. 012 ' - • 0, . When thene are accumulated on the computer, the actual opera-

tion is 0 (02(. ON))). It is possible for the scale of the accumulated product to differ

dramatically from any particular 0j. Because of the limited dynamic range in the computer it is

advisable to scale terms to make them comparable before accumulation. Fortunately the final cal-
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culation for the reflection coefficient depends only on ratios of elements in 4. For this reason we

normalize each of the tj so that its largest value equals 1. This procedure alone could cause

another problem stemming from the different scales in general for P and U, which is due to their

different units. To bring P and U into the same units we do not actually relate

- [P(z4-*) 1 [P(")1
to tU(z)I ()

but rather consolidate units by multiplying the normal component of velocity by the characteristic

impedance of that layer. Therefore we actually calculate:

[P (:0) [a [I bj [ax by1 1 [P (zN)
[COU (: O)j -tb [ 1b l ...J IttNby tN8N] 1CU(Z11 J 2

where

k,4 - (/,)- z

VP"i -1
to i

a m cos k. , (i- - -_)

b = -i sin kS (zg-21 z_.)

i1) Relation of the modified propagation matrix to the incident and ref lected waves

We now relate the field variables to the incident plane wave and the resulting reflected plane

wave by slightly modifying Equation (IV.2aji.4). We assume that the top interface is at z - 0 so

that:

[ P o) 0 r.* t, 0L[CO ()J" o  o-o -.J)

and

--0 IFr 0 rP (0) 1P l -i o r co) 1
. I -/ o (2)

-. , -
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By defining:

40 *1 Ei9 (3)

and using Equation (IV2b3.i) we have:

LP-,2o CMUO-.401 -11 fi 4 ii [. ] 1 (:9,) )1
We now need to use the fact that the pressure and velocity fields in the last layer are made up of

only positive traveling waves so that (referring to Equation IV2a i.) Pt,+1 =P (zN) and

UIV +1 - P (zv) we have

FP+,.oi[11+11 +U+-022j~[P_.. =J2 " *z-*1 *u-zzJ M 1P" 1 (5)

If we now use

4 + (6)

we have the reflection coefficient

r - + (7)

Equations (IV.2blii2) and (7) show that this approach uses only the ratios of the impedances

in adjacent layers and never the impedances themselves. -uese ratios ar much better behaved in

general than the individual impedances. For this reason, because the use of P and YOU instead of

P and U, and because of the scaling of the layer propagation matrices this implementation of the

propagator matrix approach has good numerical properties.

c) Selected Properties of the Reflection Coeffickat

In Figure IV.2c. we presnt a pearpective plot of the log mapitude of the rdsction

coefficient as a function of k, for the bottom of Figure IV.2c.l calculated using the numerical
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f z=220 Hz

k0 .8975979 m

Co z 1540 rn/s

PO lg/crn3

C, 1493.8 rn/s

=f1.5 g/cm3  Wg10m

C2 u1700 rn/s

P2 2.0 g/cm3

( Figure IV.2c.1 The bottom parametmn used to generate the reflecton coefficient shown in Fit-
ure 1V.2c.2

t:
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WATER WAVENUMBER

Figure IV.2c.2 Peruective plot of the log magnitude of the plans wave refection coefficiest for
the bottom of Figure IV.2c.1
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algorithm just described. The reflection coefficient is displayed both for those horizontal wave

numbers corresponding to real angles of incidence (0 < Re(k,) <k 0 where k0 is the water wave

number) and for horizontal wave numbers corresponding to complex angles of incidence

(k0 < Re(k,)). The complex angles correspond to evanescent waves. Single evanescent waves do

not carry any time average power flow (their Poynting vector is imaginary) and consequently the

magnitude of the reflection coefficient is not limited to be less than one in the evanescent region,

i€0<k, [6]

In Figure IV.2c a pole is apparent in the reflection coefficient on the real k, axis in the

evanescent region. This on axis pole corresponds to a proper mode propagating in the low speed

layer within the bottom. Other off axis poles corresponding to leaky modes are also apparent in

the reflection coefficient. A discontinuity, or cut, can be seen extending from kj along the real k,

axis to infinity. This is the branch cut extending from the branch point at k2. Another cut extend-

ing from ko to infinity falls on this same line and is therefore not apparent. The origin of these

branch points and cuts can be found in our derivation of the reflection coefficient where we asso.

ciated

e tvtr'' S with P, (1)

and

-  P with P.- (2)

Clearly the roles of P + and P would be reversed by changing the choice of sign for the square

root. For incident and reflected wave this would correspond to inverting the reflection co,-fficient

(if no other waves were affected). The two sheets corresponding the the branch point at k0

reflect the two choices of sip for the incident wave. We have displayed the choice associated with

positive real power flow for the incident wave.

In the intermediate layers sueh as layer I of this maple, changing the role of P+ and P.

would not affect the reflection coefficient. For the intermediate layers, the physical problem does

not name (or distinguish between) forward and backward traveling waves. Consequently there are

C- V
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no branch points associated with intermediate layers.

If the opposite sign were chosen for the square root, /kr ' ,  associated with the

emerging wave, P. ,V 1 from the bottom of the stack of layers (into the isovelocity half space) the

direction of energy flow associated with that wave would change. Unlike the intermediate layer,

there is no returning wave in the isovelocity half space. Consequently, the physical problem would

change. For this reason we see a branch point at km +1 reflecting the two different 'physical' prob-

lems.

In Figure IV.2c2. we have chosen to display the Riemann sheet for which both

Re(V'k- k, ) > 0 and Rs(vi'k-)> 0. On this sheet only waves with real power flow in

the positive direction are associated with P . This constrains our incident waves to be those with

power flow from the source to the layered bottom and specifies that there is no power flow return-

ing from infinity.

When we perform the integrations discussed later we must choose which side of the cuts to

integrate.upon. For reasons of convergence we choose the side for which Im(v7=) > 0

when j-0 and N +1, is satisfied. Consequently, whenever we integrate the reflection

coefficient in the complex k, plane, we always satisfy both Re(vI 7)> 0 and

Im(Vrk" k,) > 0 for j - 0 and N+1.

IVJ) Evauating the Soeswwf eLd Integral

Once the plane wave reflection coefficient, F(k.), has been computed it is necessary to

evaluate the Sommerfeld integral:

PR (r) a ~ ,e~~'"J~k)~k 1

in order to compute the reflected preewre field. The Sommefed inteeral is in the form of a

Hankel transform of the depth dependent Green's function,

G(k,, 0 )i ' -F' ) . The properties of the Henkel transform were



I1 - 101-

developed in Chapter II. In Sections (6) and (7) of that chapter we discussed the effect of trun.

cating the integration at some finite value. and the effect of sampling. The truncation was accomw

plished by multiplying the function to be transformed by some finite length window. For the Sen.

eation of synthetic data we find that windowing of the Green's function is not an important con-

sideration in general because when s +s0 > 0, G (k, ,t o) decays exponentially in k, for k, > ko .

Except when z +z 0 is very small we cam integrate Equation (1) until the Greens function is negli-

gible and truncate at that point. It is not necessary to multiply by a windowing function.

The issue of sampling and the associated degradation introduced into the transform, alising.

can be very much a problem however.

a) The Source Singudarity

In order to highlight the issues associated with the source singularity, , . and the

propagation terms in the Sommerfeld integral, we first consider the evaluation of Equation

(IV3.1) for a hard bottom case where r(k,) - 1.

For the hard bottom case the pressure field is given by the known integral:

We evaluated this integral numerically with the Fourer-Bessel series to obtain an estimate for the

field:

o A 0 < A (3)

where for this examsple, A was chosen to be 2000 and I z +zo I - 2. In Flgure (Va..I) we com.

pae the log magnitude of the result (dots) with the known transform (solid curve).' We s that

the magnitude of the numerically generated field, Pt(r), owcillates rapidly in contrast with the

)The ounpt of the Potia.-Deud s tee hu bea dispayed i to Wee its non of vaUtj t bes lm.
trat the mus of depdoadon.
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true Hankel transform. As we will now show these oscillations are due to aliming in the numeri.

cally computed Henkel transform.

In Section (11.7) we showed that the effect of sampling on the Hankel transform is to

approximately produce an aliased estimate of the true transform, VP m (r). Since for this exam-

ple, Pjt (r) decays asymptotically as 1r, VP Pjt (r) decays asymptotically only as 1/%P. What we

see in Figure (IV.3a.1) is given approximately by:

O< r < ZA IP(r)l I VV 3r+zo)o (4)+(+2)V('2A-, )+( + o) (s =s ()

When r is much greater than : +-o, AP(r) is approximately:

_L e 1r
< , < .A lP (') -- , L (

Since we are in the region r < 2A this can be rewrAiten:

I_ 1 io e ik~ 02A
O<r<2A IPj](r)I = V V .- r ''j (6)

We can write Equation (6) in terms of the desired transform and a modulation term as:

IPRt(r)I= I- [e 2i + e , $in k or (7)

Which upon defining (r) - &

When r << 2A t(r) is small, so that the magnitude of Pa (r) appears as roughly the correct

transform with a modulation term.

We note at this point that if we had sampled the output of our transform at an integral mul-

tiple of 2w/ko we would not have seen these oscillations. At this sampling rate the cosine would

have appeared as a DC offset in the magnitude of the pressure field. If the output sampling rate

were near but not exactly an integral multiple of 2w/k 0 the cos(kOr) would have appeared as a

low frequency modulation because the sampling is in effect demodulating the cosine down to a

-7-7-' o em k .. . ... . . I. .. . 1-' +.. - -I 'A ''ll - - .Ai I ". __ . - : . .. . ,
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low (but not now ero) frequency. This result is an important one because frequently presure

fields are generated by using an FFT based approximation to the Hankel transform (V3.1) and

the water wave number is the maximum wave number used [5,4 ) The grid resulting from such

processing i.4 exactly an integral multiple of 2w/ko. Carrying the integration to higher wave

number would make evident the modulation in the mswer by automatically providing the output

on a finer grid.

The problem of aliasing arose because the field being computed decayed only as - which
r

forces us to use a very high sampling rate to properly sample the Hankel transform. We now note

that this -L decay is due to the singularity in the Green's function. It is well known

that the asymptotic, or far field, character of such a transform is determined by the singularities

of the kernel over the path of integration [10 3. The Green's function which is transformed in

Equation (IV3.1) was

G(k,,:,o)" VV (9)

Thi asymptotic character of the transform, P (r), is dominated by the singularity

:1
- (10)

The integral

- e I VI Jocr)kdk (11)

shows us that this singularity is in fact associated with the 1/? decay rate. Physically this singular-

ity was due to the angular spectrum of the point mso . The 1/p decay associated with this singu-

larity is often associated with the point source by noting that the field around a point source must

decay at that rate in a manner such that the Intensity, which decays as the field squared,

integrated over any three dimensional shell enclosing the point source, would not be a function of

r.

-, t

.' ('.
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The source of slow asymptotic decay we have isolated suggests a procedure for reducing the

problem of aliasing. We remove the source singularity from the kernel, numerically transform

what is left, and add the result to the analytically determined transform of the source singularity.

When we remove the singularity we must do so in a manner such that the numerical transform we

must perform is well behaved. We allow for a general r(k,) but at this am assume that F(k,)

has no singularities along the real k, axis with asymptotic contributions to the field capable of

dominating those of the i/ - singularity.

To this end we rewrite integral (IV3.1) as:

PR(r) =f r(k,) l J(k)k,dk, (12)0 v
f [ri&.P 182'.k~-kt +rk.'ed77"#OJ~,~kd,(3

If we define:

L(k,) NA [Ik7  I +t) *k Y ~ ' (14)Ir ( , r k )] 7 k Tk,f
so that L (k,) does not have the 1/Vr7" singularity at k, - k0 .1 then we can write Equation

(13) as:

Pi(r) f (k,)Jo(tr)k,dk, + r(k)
oVr+( + 2

Because L (k,) does not have this singularity along the path of integration the output of the

numerical transform will decay at a rate faster than Vr. The asymptotic /r decay is provided by

We show in the appendix that if the impedance and it. first derivative at the interface is finite for
k, - k0 then the

where ZI is the impedancs of the bottom at k, - k0. a is 2M source frequency, and po is the density of
the water. For an isovelocity half spac. this epesion reduce to

L (to) - -- "Ik

Which is finits.



the analytic term which can be recognized as the specular reftection when r is very large (glancing

incidence). These observations are confirmed in the examples which follow.

In the following examples we illustrate the generation of synthetic pressure fields through

the hybrid algorithm implied by Equation (15) where the integral is performed with a numerical

Hankel transform algorithm and the analytical expression is the result of integrating the singular-

ity.

1) Hard Bottom

This is the degenerate example because for rok?) constant, the entire transform is per-

formed analytically. The result of the analytic transform was compared to the direct numerical

transform Figure (IV.3a.l).

U) Slow bottom

Figure (IV.3aii.1) shows the bottom parameters for this example. Figure (IV.3a.ii2) shows

the result of the hybrid calculation (solid line) versus a direct numerical calculation. The improve-

ment is dramatic. Figure (IV.3a~i3) compares the hybrid field of Figure (IV3a~ii.), with its

numerically generated component. As can be seen, the near field is dominated by the numerically

generated component. As range increases this numeric term begins to suffer from aliasing prob-

lems but the analytic term begins to dominate, minimizing the effect of aliasing on the computed

field at large ranges.

W) Fast Botom

Figure (IV.3aiii.1) shows the parameters of the fast bottom for this example. Figure

(IV.3aii2) shows the hybrid calculation versus the direct numerical- calculation. Figure

(IV3a.iii3) presents the hybrid field and its numeric component. The improvements are similar to

the fast bottom case.

b) Poles Due to Slow Speed Layers
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f a220 Hz

2Z + Zola Z rn

k0:.8975979 mn

Co a1540 rn/s
PO~ 1 g/cm 3

C1  1493.8 rn/s

Pia1.5 g /cm 3

Figure TV.3s.li.1 Parametaa Of bottom used for slow bottom example
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Figure IV.ilL.3 Compmzisou of hybrid field =cliltod for fast bomtm example with its numeri-
caly Sencrated wmponent
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Figure (IV3b.1) shows the parameters of a slow speed layer between two isovelocity half

spaces. Theu are the same parameters used to generate the perspective plot of the reflection

coefficient presented in Figure (IV .2c). Figures (IV Sb2a) and (IV.3b2b) show the magnitude

and phase of the reflection coefficient for this bottom as a function of horizontal wave number.

We see that for this example the reflection coefficient has a singular point beyond the water wave

number, ko. That singularity is a simple pole associated with a proper mode excited in the low

speed layer. Such a proper mode can appear only for k0 < k, < k ,t. In this region conserva-

tion of energy is not violated because the waves are evanescent. Proper modes ar generated

when the low speed layer acts like a dielectric waveguide. When this happens energy diffuses (tun-

acts) from the point source to the low speed layer but does not otherwise propagate vertically.

Energy from the field is now constrained to decay in only two dimensions instead of three and we

expect that the field associated with the pole will decay asymptotically as - so that the integral

of the Bux over any two-dimensional ring surrounding the source remains constant.

Poles such as this disrupt the asymptotic character of the field derived in the previous sec.

tion. As before we would like to analytically determine the contribution of these poles and

remove them as we removed the - singdarity. To do so it is necessary to evaluate the

integral:

I P..+ZO, )a . , , (1)

In Appendix (I) we show that for Im(k,) at 0 (associated with no return from r - , )

I(r z +zo;k,,) is given by:

+X , AO f ,'""-, 6 ) - 02+801 (2)

where

" (3)

_ _______ 1
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Figure IV.3b.1 Parameters of bottom used for slow speed layer example
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The first integral is easily evaluated on the computer. In addition as r becomes larse the first

* term rapidly approaches:

213 r +O z°) (4)

The second term decays as 1V7 when/k, is real.

Equation (2) is also correct for Im(k,,) > 0, but when Im(k,,) >> 0 the poles no longer

contribute asymptotically as 1v7 because the Hankel function decays exponentially. Under these

conditions

C (k,,) , , L. (6)

As Im(k,) becomes large the exponential decay dominates the I/Vr" decay even over the finite

range that concerns us. It is for this reason that we consider only those poles near the real axis

(close to the path of integration) and leave the others to the numerical part of the transform.

With I (r ,z +:0 k,,) so defined, the reflected pressure field can be written:

P 0(F V o-k,. j J L~I5 o(kpP)kpdkr + YajI(r +so; k,.) (7)
v7 IIPP

Where the expression in brackets no longer has any poles near the line of integration and so can

be evaluated as before.

In order to remove the poles as required in Equation (7) it is necessary to determine with

precision the pole locations, k,, and their scales, (a-,),. The pole locations can be found using

standard complex root finding techniques, though cars must be taken to provide the root finding

algorithm with values of the reflection coefficient on the Ri emmas surfae so that it appears ana-

lytic except at isolated singularitis. This means that the branches chom for the square roots

must be taken in such a manner that a branch cut is never placed between points simultaneously

considered by the root finder. Once the root locations are known, the scale factors can be found
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for those singularities far from any others by determining a least squares fit to:

( (a,) - , -1,2, , (8)

provided that the t, are taken sufficiently cle to k,, that r(k,) is well approximated by just one

pole in that region.

If many poles are clustered together, they can be determined simultaneously by solving:

r(,(a-0i J - 1,2, . ,N (9)
() k,j2-t,,2

for N sufficiently large. If a pole is near a branch cut then the poles on the other side of the cut,

on the opposite sheet, and near the cut must also be considered to be near that pole.

Figures (IV.3b.3a) and (IV.3b3b) show the magnitude and phase of the reflection coefficient

of Figure (IV3b2,a) minus the pole contribution:

r(k,) - a-, (10)

(k,-k,2)

For this example a-_1  1.68971 10-  i S.1726 10 4  and

k- 9.069830* 10 "' + i 2.4887490 10- .

Note the difference in scale between Figures (IV3b2a) and (IV3b.3). Tie small notch visi-

ble at k, = k,, is due to a small amount of error in the estimate of k,.

A notable feature of Figure (IVJb.a) is the unmasking of the off aids um is the region

kt+I < k, < ko where previously I(,)i - 1. Thme auar s= be deal - ite p*a I .

tive plot of the total redaction coefficient in the comple plane thet wa p.ieted in Pipn t

(IV2c2).

Figure (IV3bA) presents the hybrid fild (sold H) vwe do Asi d em jld wieot

removing the pole from the reection coeffiueat (but othewwim n vi8 t e ila-
larity as In the previous hybrid examples). The sprMdisI the *uuso" eopuu ed dU e Ont all.

inj is severe because allasinS in the Hankel tradum seedy ibm a mami due t am e s

............-. --. --
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1/V. The hybrid field does not exactly follow the contour of the top of the spread just as the

hybrid computations in the previous examples did not exactly follow those contours when the

aliasing became severe. Figure (IVb.5) presents the loS-magnitude of the analytically generated

pole contribution (solid line) and the remainder of the field exclusive of the pole contribution.

The non-pole contribution is most significant for short rang, while for this near bottom

geometry the pole contribution dominates farther out.

The expression for I (, , +zo;k,) in Equation (2) shows that the contribution of the pole to

the.field decreases exponentially with Iz +z0I. In this example I x+z01 - 2 to emphasize the

near field behavior associated with the pole. For larger values of 1: +:01 the pole contribution

would be considerable lea. Equation (2) can be used to estimate the magnitude of the pole con-

tribution if the pole location, k.,. and I: +z I are known.

..................
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CHAPTER V:

THE INVERSION PROCEDUREI V.1) Overvie,

In Chapter H we developed the properties of the Hankel trandorm. Thes properties pro-

vided our foundation for the development of an accurate procedure to numericaly generate syn-

thedc premure field, presented in Chapter IV. In this chapter we will use the resuks of Chapter

I to explore the problem of det e ning the plane wave reflection coefficient from measure-

meats of the pressure field arising in a horizontally stratified mavironment in response to a CW

point source. The estination of the plane wave reflection coefficient from measurements of the

field is an extremely important problem. Determining the plane wave reflection coefficient is an

essential step in the invesion of pressue field data to obtain the parameters of the bottom. In

this contwt it is of interest to geophysiciut and others who wih to determine the composition of

the ocean bottom. The plane wave reflection coefficient is also used as a geometry independent

characterization of the bottom. As such, if it is estimated in a region from one set of acoustic

measurements, then the fields associated with an arbitrary source-receiver geometry in that

region can be determined. This is of great value in problems of acoustic imaging.

The inversion procedure that we consider in this chapter was proposed by Frisk,

Oppenheim, and Martinez [1 ]. It requires as input, coherent measurements of the pressure field

as a function of range resulting from a CW point source over a horizontally stratified ocean bot-

tom. From this the (complex) reflected pressure field, P&(r), is exmacted. The Hankel

trandorm of this field is computed to provide the depth-dependent Green's function as a func-

tion of horimndtl wave number:1

0 (k,,z,zo) - ()o(kr)r*d (1)

Finaly, the plans wave reflection coeffmnt is obtained by multiplying the Gren's function by

We wN aememus dht "spl.dspmdmt Or@.' tuoaeoa" to "One's fvtnW .

£t
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tam which compensate for the source spectrum and for the uource-receiver distance:

r(k,) - .1 N/kl2.I/iii - e +rOIG(k,,z ) (2)

This entire procedure is summarized in Figure (V.I.1).

In this chapter we will concenUtrate on the estimation of the depth-dependent Grem's func-

tion. We divide the isues addressed directly into the categories of source-field subtraction, sam-

pling, windowing, and soire-height variation. The issue of ource-field subtraction arises

bemuse the plane wave reflection coefficimt is directly related to the reflected presure field and

not the total pressure field, which is measured. The issue of sampling covers the effects caused by

having the pressure field available for computation only on a discrete set of points. We discus

both the effect that sampling rate has on the estimate of the depth-dependent Green's function

and the practical problem of interpolation, which is required to move the field from one grid to

another (often to compensate for misan data points). We develop a phase unwrapping pro-

cedure that allows us to interpolate the magnitude and unwrapped phase, which vary dowly

compared to the quadrature components.

In the section on windowing we discum the effect that having the pressure field available

only to a finite range -has on the estimate of the depth dependent Green's function. We deter-

mine thc rangc over which thc data must be known in ordcr to accuratcly dctcrminc th depth-

dependent Green's function. We do this by using the properties of the Hankel transform

developed in Section (M6).

In the section on source-height variation we exploit the resulft of Section (11.6) once again,

but this time we use them to determine the effect that variations in the source-heiSht has on the

esimate for the deptb-depmdwt Ore's funcion. Such vaiations are inevitable during the

acquisition of real data. We ilustate thes effects by considering the effect of three qmcfic vari-

atons.

, . .I
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Figure V.1.1 The invesion procedure to estimate the plane wave reflection coefficient from the
mul field Senerated by a CW point source over a horizontally stratified bottom
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V.2) Source-fleld suhomadon

In this section we consider the removal of the source field when the sourcr-rceiver

geometr" is known. In Figure (V.1.1) we showed the source field removed before the Hankel

transform. We did this because conceptually we wish to deal with the reflected field dlont. In this

section we show that numericaly it is better to remove the source field in the transform domain,

after the Hankel transform of the total fAld has been ammputed.

Because the Hankel transform is a linear operator, in principal the estimate for the Green's

function can be made by subtacting the source field either before transforming:

G(k,,z,zo) e P(r)- 2 IJ(kr)rdr (1)

or by subtracting in the transform domain:

G(k.,z,zo) = fPr(T)JO(k,r)rdr - f (2)
0 0V, (z-zo)

which becomes upon performing the second integral analytically:

G (k,,zzo) - fPr(r)10 (k,.r),drp 2- iV'n 212-aD (3)

If PT (p) is available only ove the finite range O<r <rx then the field integrals can only be

carried out to r.. Substituting r. for = in Equations (1) and (3) will make then two formu-

lations no longer equivalent because the analytically performed integration is not windowed.

The function trndormed in Equation (1) is the reflected presmue field, PR(r). In Section

(IV.3) we argued that the reflected field decayed asymptotically as f the total -- ed, Pr(r),F

decays asymptticaly faster than -, we can expect that the formulation of Equation (3) to

suffer ess from windowing effects than the formulation of Equation (1). We wil now show that

the t field doa in fact decay faster thas the reflected Add alone. In fact, by transforming the

1) Mi alaum of upM modu.

.1* -
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total pressure field and then subtracting the source contribution in the Hankel domain, we have
perfomed the dual to the ranoval of the v , singula dised in Section (lV.3a).

Before we begin, an analogy to a similar procedure for determining the Fourier transform

of a function known only over a finite range but with a large, known constant offset might pro-

vide some indight. If such a function is (Fourier) transformed directly, the offrt will transform

to an impulse at the origin which is neared into the rest of the transform. The smearing will

occur because the transform is taken over only a finite aperture (windowing). The alternative is

to subtract the offset from the function, transform the result, and add an impulse (with a

strength which is determined analytically from the known offset) to the origin. This second pro-

cedure will give superior results because the transform of the offset is not degraded.

Transforming the reflected field alone is analogous to generating the Fourier transform

directly from the the field with the known offset. In the case of the reflected field, however,

instead of a simple constant offset, the function has a known asymptotic behavior. It decays as

1 -,We are about to show that adding the source field to the reflected press=e field is analogos

to subtracting the offset in the Fourier transform example. In the Hankel transform case we are

actually considering it corresponds to subtracting a term with the same asymptotic I behavior.

The difference will decay faster than 1

We begin by considering the Green's function associated with the total field for zo>z

which is given by:

0,(k,,,jo) - +e [ )_"(4)

The tNrM is the source term. I we rewrite Equation (4) in terms of the reflo-Vkj _k,2

tim coeffidant at ko, it will be more cear why adding this term in the transform domain

corponds to subtracting the asymptotic behavior in the pressure domain. We must use the fact

... C
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that for all bottoms r(k 0 ) - -1 (except the degenerate case r(k,) 1). We write Equation

(4) as:

(rY(ko,z,zo) 2 [r(k,) - -(5)

As we discusied in Section (IV.3) the asymptotic behavior in the preme domain is determined

by the behavior at the singularities in the transform domain. [2 J At kr = ko the phae term,

- / - ,), equals Iso that unlik the Green's function auociate with the reflected field

alone, the numerator of the total Green's function approaches zero as k, approaches the
1

Vk, 2 dnularity at k0 . We wish now to determine the contibution of the ingularity at

k= k0 in the total Green's function in order to show that the "softening" introduced by the

addition of the source term has made the associated total field more range limited. We can

bypass a great number of issues by instead conuidering the asymptotics of the simplified Green's

function:

G#"*O(k,a,zo) =~oeI tjk2, 2 -~jk2(O (6)

By considering Equation (6) we exclude those issues associated with f(k,). Our examples

in thc synthetic data generation section showcd that these terms do not givc rise to terms which

1
decay as slowly as .

Equation (6) is the Green's function for a dipole and has the known Hankel transform:

PAO .r + -. e (7,)O ,o

Vr 2 +(..-9o)  Vr 2 +(z +0)2

It is well known that this field decays asymptotically as and that this asymptotic behavior

begins more quickly when so is small than when it is lrge.

Since the total field will be more range limited than the reflected field, it is better to

trandorm the total field numerically and subtract the (analytically determined) transform of the
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incdent field than it is to subtract the incident field before trnsforming.

U
V.3) SempfIbs

a) overview

Typically, data is not available on the grid required for processing. In the experiment pro-

viding the data for this thes*s for example, the range values for which the data has been

obandis determined by the drift rate of the boat and the source away from the receivers. The

individual samples do not ecur exactly where we would like them and while the experiment was

designed to provide samples as close to the Nyquist rate as possible, typically the number of sam-

ples, on averages is leos than we would like. Finally, there are isolated canes of missing samples, a

reality of data collection. Section (V.3b) discusses the issues associated with the average sam-

phng rate. The issues associated with the grid in general are discussed in Section (V.3c).

b) SamptinS rate

In Chapter (11.7) we saw that when f1(r) is sampled on approximately a linear grid and the

transform:

F(p) = ff (r)JO(pr)rdr()
0

is computed from thewesamples, then f (r) must be sampled on a grid at least as fine as a- n
A

order to correctly perform the transform for F (p) negligible p >A. In this chapter we consider

the transform of the pressure field, to obtain the depth-dgendent Green's function. This

transform has the form:

I r(k.) ,iit+.
2. -k, +o fPa(u4J(kpr)rdr (2)

G (k,zx +to) is negligible for k, >k*+ t exept pousibl near the poles of r(&,) (for some

1) Far am* sma t>O.



small e) because when k, >k0, it decays exponentially. Consequently when there are no poles in

r(k,) for real k,, then the pressure field need only be available on a grid as fine as R with

A = k0+e to accurately determine G (k, ,z +zo) in the region O<k, <ko. If we wish to obtain

G(k,,z +z0) in the region where it is exponentially decreasing (k,>ko), however, we must sam-

ple fat enough to represnt the signal in that region as wel.

v a pole is present in r(k,) at k, = k,, the Green's function will be significant near k,

despite the exponential decay. If the presence of the pole is ignored and the field is transformed

on the grid -t, then the pole will be aliased into the Green's function at lower wave numbers.

If there is only one pole present we can write the Green's function, G (k,) (we suppres the

z variation) as:

G(k,)-;(k,)-+ for k,>k (3)
k 2 -k, 2

The results of Chapter (11.7) show that if the pressure field is transformed on the grid -- , then
k

the aliased Green's function computed will approximately be given in the region O<k, <k by:

e(k,) : G(k,) - \/ k,-IG(2k-k,)= r c(k,) - V4 )k-1r (2k-_,?2-ki (4

so that the Greens function at 2k0 -k,, will be corrupted.

If the amplitude, a-t, is very small (which would be the case for large source-receiver

geometries) and some smearing is present due to windowing (the field is not measured out to

ranges where the trapped mode dominates), we may not see the pole's effect and it can safely be

Ignored.

In general the pousibility of trapped modes must be considered before decding upon a sam-

pling rate, particularly in geometries with mall source-receiver heights. For sich eometrie it is

not always sufficent to sample at

kot



c) Samnpling grid

*When data is not available on the grid required for procesing we must first interpolate.

Succesful interpolation is potable only if the signal is adequately represented by the original

samples. If we know only that our signal has a Hfankel transform which is negligible beyond

some bandwidth, A, then the signal is adequately represented by samples on the grid L for
C

C --A and where X. n- 0 1, 2, are the ordered zeros of Jo(r). [2 This is true in

theory. In practice, if the the samples are not originally spaced as required, it may be impossble

to actually perform the interpolation onto another grid. If the samples are only available on the

grid with C <A, then it is not possible to interpolate without making additional assump-
C

tions

We will show that for the class of pressure fields examined, an additional assumption seems

reasonable. This assumption makes interpolation possible even when the sampling rate is slightly

too low. We will assume that the magnitude and phase of our pressure fields are smooth com-

pared to their quadrature components. Figure (V.3c.1) shows the magnitude of the pressure field

assocated with a point source over a pressure release bottom. Between calculated points the

curve varies so little and so regularly that a plot of the points appears to be a smooth line. Fig-

ure (V.3c.2) shows the result of first subsampling the points plotted in Figure (V.3c.1) (which

were available on the grid )by a factor of two, and then interpolating back onto the original2

gid using splines.' The differences between the two curves are negligible.

We can compare this succesful interolation to the result of subsampling the quadrature

components, spline interpolating, and computing the magnitude. Thse reult of this operation is

shown in Figure (V.3c.3). The apparently smooth line comes from the subsampled set of values

which t splines was constrained to match in the quadrature components. It actually consists of

)Spln were used bmau the orImu Vid b is m by )h6IA, where k~, ane te ordered uero of
7M).Th pid is unewn sad mss other lnoerpokea scbmsee le derabe.
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every other point of the displayed curve. The surrounding scatter is the magnitude of intrpo-

lated points supplied by the splines. Clearly, splines did not successfully interpolate the quadra-

ture components.

Figure (V.3c.4) shows the phase of Figure (V.3c.1) computed by

where Pi is the imaginary component of the field and P, is the real component The rapid var-

ation in 6 suggaes that it is not adequately represented by the grid upon which it is presented. S
is not the only representation of the phase of the pressure field, however.

d) Unwrapping the Phase

The phase displayed in Figure (V.3c.4) is the principal value of the phase, often referred to

as the wrapped phase. The wrapping comes about because of the ambiguity concerning which

phase should be associated with the quadrature components. If satisfies:

Me t' = P, + i Pi (1)
then so must 0 + 2mrm where m is any integer, since

M +I($ + 2vi n) = Me 1e 2 i m = Met = P, + iP4  (2)

Given just P, and Pi there is no way to determine the correct value of m. The arctan routine

used by Fortran follows the convention of choosing m such that

-i< u'S O+ 2'ui<ir (3)
The output value 6 is the prinapal value of the phase, or the wrapped phae.

If the phase of the presure field were approximately increasing at a rate of k0R where

t "= /Vp2 + (z - z0n) ad to field were sampled at the Nyqui rate of ik 0 dthenthe phase

difference between sampls would be roughly w and the wrapped phase every sample or two

would sufe a jump to a diffsrent m in order to saddy the condition -w < 0+2m < v.

This would obscure any underlying regular behavior that we epect from most phyical

phenomena. The frequat jumps are respon ible for the rapid osiflatlon apparent in th phae
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Figure V.3c. 4 Mwe pinidpz vaiue of the phase of the field anociated with Figure V.3c. I



of Figure (V.3c.4). We wish to compensate for the wrapping that takes place when the principal

value of the phase is generated. To do so we must make use of our knowledge of how the phase

is varying from point to point.

We conjecture that the phase of the total field is dominated by a component at the water

wave number aucciated with the dominant specular path and that the remaining portion of the

phase is slowly varying compared to the sampling rate. We write

PT(r) " M(r)e'I (') (4)

where M (r) and O(r) are real, and write

O(r) = kR + (r) (5)

where R - Vr 2 + (Z -Zo)2. We will call k0R the modeled portion of the phase and a(r) the

residual phase. We are going to show that as long as the residual phase is sampled fast enough,

we can reconstruct the true phase.

In this notation the difference in true phase value from sample to sample can be written:

O(r.) - O(,.-,) = ko(R. - R.-1 ) + e(R.) - a(R._) (6)

so that

0(r.) - 0(r.-) - k0(R. - R._.) = f(R.) - a(R.-) (7)

Precisely stated, our requirement that the residual phase be slowly varying compared to the am-

pling rate is:

e(R.) - a(R._.)l <w for a "R. (8)

To unwrap the phase we first form:

6(r,) - (r, -I) - k0(R, -R,-1)

O(r,) - mr2ir - 0(,,-I) - mr.- 12w - ko% - R.-I)

- O(,) - 0(r- 1) - 2ir(m. - rn..) (9)

- G(R.) - .(R.-.I

from th meuured data. We now do the unwrapping by denin wo" 0 and piing thu

intern, m., (A- 1, 2, ),equentialy to saay:

C_
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I&(r.) -
6(r3 R) - R...1 ) - 2 ff(1N3 - Mljj (R55) -,E(R. -I)I <M (10)

and define the unwrapped phase to be:

O(r.) = 6 (r.) + (m.)21r (11)

Figure (V.3d.l) shows the result of running this algorithm on the phase of the synthetic

data with magnitude shown in Figure (V.3c.1) and wrapped phase shown in Figure (V.3c.4).

7he resulting phase is dominated by the linea term k0R we defined in our model. Figur

(V.3d.2) shows the residual phase. The smooth and small variation of the residual phase over

the intervals [r.,. , r. I for all n, is a strong confirmation of our phase unwrapping assump-

tion.

Figures (V.3d.3a) and (V.3d.3b) present the magnitude and residual phase of the fast bot-

torn example of Section (lV.3a). For this example, too, the residual phase is well behaved.

Figures (V.3d.4a) and (V.3d.4b) present the magnitude and residual phase of the slow

speed layer example of Section (WV.3b). For this example, too, the residual phase is well

behaved. The field in this example was shown to be dominated in the far field by the contribu-

tion due to the pole beyond the water wave number. The upward slope of the residual phase

apparent in Figure (V.3d.4b) reflects the fact that this pole is contributing the dominant Com-

ponent to the phase (in the far field) which is slighitly larger that the k0R term subtracted out.

e) Interpoluui the ragninhde and unwrapped phase

In Figures (V.3ci1) and (V.3c.2) we showed that the magnitude of the dipole field could be

up-sampled from the grid La to Li-. In Section (V.3d) we maw that the unwrapped and resi-

dual phase components enjoy smooth, regular variation ideally sited for interpolation. Figre

(V.3e.1) shows the reidual phase for the dipole field upsampled from the T* to the L4-grid.

It is indistinguishable from the residual phase generated on the grid shown in Figure

(V.3d.2).
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We now show that for the dipole field we can actually interpolate the magnitude and

unwrapped phase to increase the sampling rate of the quadrature components of the field. This

allows us to determine the Green's function to a higher horizontal wave number than the

Nyquist criteria applied to our original sampling scheme would have us believe.

We recall from Section (IL7) that if the pressure field for the dipole on the grid were

I

transformed and displayed in the range O<k, <2 the result would be severely aliased and mm-

pletely inaccurate in the region l<k,<2. To obtain a transform accurate on O<k,<2, the qua-

drature components must be at least sampled on the grid -s-. We can still obtain the transform
2

in the range O<k, <2, never-the-less, by interpolating the field onto the grid through its

magnitude and unwrapped phase. Figures (V.3e.2a) and (V.3e.2b) show the magnitude and

phase of the transform generated by such a procedure. First the magnitude and residual phase of

p were generated. These were up-sampled as just discussed. From this up-sampled magni-

tude and residual phase (and the modeled, k0 R, portion of the phase) the associated quadrature

components were generated. This was transformed. Figures (V.3e.3a) and (V.3e.3b) show the

magnitude and phase of the Hankel transform ofp (Lit ) generated withouL interpolation. Only

small differences in the magnitude are apparent. The phase curves also display only small differ-

ences though in the inhomogeneous region (where the phase is oscllating rapidly as evidenced by

the two parallel lines) the small difference has caused a slightly different picture of the osclla-

tions. By contrast, Figures (V.3e.4a) and (V.3e.4b) present the magnitude and phase of the

Hankel transform of p up-sampled by direct spline interpolation of its quadrature com-

ponents. Clearly, once again, a direct interpolation of the quadrature components did not work.

We apply this sdeme for interpolating the magnitude and reddual phase to the field of the

fast bottom example of Section (IV.3a). We first Senerate the magnitude and unwrapped phase

NEEL_
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of p interpolate up to the grid generate the quadrature components, and then

Hank.! transform. The magmtude and phas of the result is shown in Figures (V.3e.Sa) and

(V.3e.Sb). The magnitude and phase of the correct transform (of p(- -) generated without

using this interpolation scheme) is shown in Figures (V.3e.6a) and (V.3e6b). We se that the

Hankel tranetorm of the up-sampled data and the mnkel tranfom of the data odiginally avail-

able on the fins grid do not aSe exactly. Figures (V3c.7a) and (V.3.7b) present the magni-

tude and phase of their complex difference and Figure (V.3e.8) presents the magnitde of the

Hank! transform of that complex difference. This transform represents the erron made in the

pressure domain by our up-sampling procedure that Save ris to the eror in the Green's func-

tios. We see that practically all the error energy was concentrated at the origin. This error could

be due to a breakdown in our phasm unwrapping assumption near the origin or to a poor han-

dling of the rapid change in magnitude by the splines. This problem can be corrected- by a dais

sampling of the original field near the origin so that there is no room for interpolation error

th.

f) Phase unwrapping errors

At this point we consider briefly the kinds of error that might be expected when the

assumption underlying this phase unwrapping technique is violated. If for some n

O -(R,) - O(R3 ) - ko(R, - Rx-)I > (1)
the wrong m. will be chosen. From that point on, each m (k - n, n +1, •)chosmn by the

procedure will also be wrong by the same amount. A plot of this eror is a step function of

height A. - m. centered at x s shown in Filsre (V.3f.1). If multiple violations ooce, the

mor wil look Ike the mu of amp fmaam u Miustatd in Figure (V.36). n smoonss

apparent in the residual phsm in all of our examples sggeam that no eors have ocacrrd.

It the phase unwrapping scheme is ued to intrpolat thes field, them error ar not swriom.

As part of the interpolation procedure, the quadrature compones are regerated from the

_____
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interpolated magnitude and phase. The error curve shown in Figure (V.3f.2) would have no

affect on the quadrature components regenerated from the unwrapped phase. In general, after

the interpolation, the error curve will not be a imple sum of steps but will be smeared by the

interpolator. This will usually affect the quadrature components. If the interpolator is well

chosen, the leakage will be small and limited to the area near the error. Finally we note that

errors in the phase unwrapping scheme will occur when the unmodeed portion of the phase is

varying rapidly between samples. When this happens the interpolator is likely to have difficulties

even without errors in the unwrapped phase and this scheme is probably not appropriate.

V.4) Windowing

In Section (71.6) we stated that in terms of resolution the Hankdl transform behaves very

much like a Fourier transform. We wish to consider the resolution required to generate the

Gree's function and the window that this implies.

The total Green's function is given by

I [r(k,)e'N'-2' "' + - -,) when z>zo (1)

t The most rapid variations in CG. (excluding possible poles in the reflection coefficient beyond the

water wave number) occur near kr = kO. When r(k,) is smooth compared to e */kz-k)2

the rapidity of these variations is dominated by the 2 t With a windowed

sample of the presure field we can not hope to determine the exact behavior of G at k, - k0,

when z +z 0 is lap the rapid variation in G is due to primarily the eIi +S) term. We

can obtain an ad hoc estimate of the resolution we require by considering the lobe wi" aod-

ated with the phase for kp near k0 .

0 That is we define k,,. by the relation:
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'ko -k,.,.( +so). ,n.W(2)

and define the lobe, B. by:

. - , .- 1-k .(3)

If we use (ko-k,.,)(ko+k,, ) - ( nf )2 then when k,,. k k we have:
s[ - l'

....L. I 2 (4)
2k0 Lz +sj

and

8(".-(n-l)2) (2n +1)

Section (1.6c) indicates that the required window width, B, is related to the desired resolution

approaimately as:

3 _ 3 _ 3(z +zo) 2  1)
8 w, 2  2ko 2n -

Thus to resolve the lobe doses to k when z +z0 - 136 and ko - .9246 we require a win-

dow of about:

B 3 = -3=6 30 (1013) = 3040 meters (7)I v ) (2)(9246)

V.5) Source-Height Varfiaion

a) General expression

The procedure proposed to emimate the plane wave refection weffident, r(k.), and

shown in Figure (V.1.1), requires that the pressr field be measured with the source at a find

height, :s. [1 I Frequently, epelmnMtal condition cause the somur-height to vary. in this sec-

tion we will explore the effect that a varying somme-height has on the estimate, t(k,).

Instad of consdiring the effect of a varying source-height on the estimate fr the plane

wave reflection eiffident directly, we will canider its effect on the depth-dependent Oree's

function given by:1

1) We rU p As depmie d uft dspdi*hd Grsams famam oa Z ad Zo.

4-gi ..1.
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Uis (k,) "V~I -4(j,+10)
Gy(k,) jPr)JO(kr)rdr - e(1

is ~pi the e o k-k,2

whchisth HWtransform, of the reecd resure field. By considering the effect on the

depth-dependent Green's function we can make use of the properties of the Hmnkrel transform

that we derived in Chapter M1 The plane wave reflection coefficient is determined by multiplying

the estimate of the depth-dependent Green's function by terms; which compensate for the soure

srength and the source-receiver separation as was shown in Equation (V. 1.2).

We consider the effect of a souc height given by

* :(r) - r 0+h(r) (2)

To explore the effect of Hankel transforming a pressure field measured at a source height that is

a function of range, we write the Green's function estimated by Hankel transforming this field

infPn (rz (r))JO(kr)rbr(3

We now define:

H(k,,4) in 4f'*-()Ok)Ok~d (4)
0

which with (3) becomes:

d(k,) - fG(4OH(k,,,4dj (5)

Equations (4) and (5) exactly desalbe the effect that source-height variation h as oh

estimate of the depth-dependent Greens function. As written, however, they do not provide

much insight Into what variations are tolerable ot into the qualitative effect of source-height varn-

ation. To provid, us with this Insight we develop an approximate exprendon for H(k,.O by

C'
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using the windowing result of Section (I3.6). We do this by consideringe k (r) as a win-

dow. The result will be reasonable provided that the Fourier transform (in r) of e  is

narrow, as discussed in Section (11.6b).

we write

Hr(k,.) efth(r)Jo(r),O(kr),dr with w - k v _ei (6).0
SKk1 -0)

The Haunkel transform of Jo(f') equals so that:

VkHkk VP8(k, -4) =*e, V4W 4(k, - ) (7)

where

WI(k,) - feViT -h(P/ dr (8)
-U

This provides us with approximate expremions for the kernel, H (k,,4), and an approximate

expresson for the estimated Grew's function in terms of the actual Green's function:

H (,_k Wt(k,-0

U (9)

2-v

In the foilowing sections we apply this result to some special cases.

b) Prndlai variadew

) No oswce4eiSeh vrdon

When the ,ou€-height is consant, h (r) s 0. For this cae our approximate result above

glvesW gk. -t) - 2ur(k, -4) and d(k,) A G (k,), which iss wewould epec.

1) Lhm aurce-.hII varisgtn

If the source-beight varies linearly then h (r) o r and
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S2

W(A) f e +ld = 21rb(k,+aViOF2)I. This gives us
-u

(2
(k,) = oViG(4)8(kk+aVi (1)

Ip 0
To evaluate the integral we have to simplify the argument of the delta function. We define

8 -a - +Vk.j-s, o that
a + V3 2-(+a 2)('2 -a$ k°?) (2)

l+a - o 2

Substituting into Equation (1) we have:

r; (k, ) =- '.w~jG([J8k '-.AsV.- 2a2~ +< -
* / C( +4op (3)

=''P V&(40 ,O'22+,-p

Where

k' + Vk2-('+ 2)(k 2 -a 2  )

1+a2

k, +a V(a 2 + -)kj- (4)
a2+1

amuming that to is real. We see that O(k,) is a distorted verion of

G Ik. a Va 2 .41)O ' I This approxinate analysis also correctly indicates that as the

dope of the linear variation, a, goes to zero 0 (k,) goes to G (k,).

i) Si Oidal source-heit variation

When the source-heitht variation is given by

hQ() - at'" ' (1)

WI(k,) - f 4 elt - & d (2)

1) ?mdd 4 < k. Mll is act dbmpdl fb o omeW torw a m al g a a sd Um m ls i wol, be

Ci
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with w a Vk2-e.

To perform the integral in Equation (2) we expand the exponential in its Taylor series to

obtain:

W !, ,e Ar~d

-0 I

We use this to detmie the effect of dho redl csinuoidal variation:

h(r) = aelf + ae-la.,4
2 4

Substituting (4) into Equation (V.Sa.8), for €osinusaidal variation Wl(k,) is seen to be liven by:

W r 2~ e - i

w-,,=J e dr (3r)

Equation (h) is the Fourie transfom of a product of tems in the form of Equaton (2). Conn-

quetuy we can write Equation (5) as the convolutio vriain f i s the form of Equation (3):

W , - :p £8(, - "a) 5)+)

lal ;J-tzn +a(6)
2w~( 2 1(k I!(ln( - UL

a. -On 0 X !M

If we perform the integration (V.Sa.9) we obtain:

d(,.) = r % i-J, 1>5_)= RINI ''..)o (..)

Ib cadnusolal source-hight variation with an amplitude, a, and a frequeM a, has *he

effect of reverberating, or comb filterin, VrkG (k,) in two dimenaions. The imrpulses of the

fsultei far No Me.
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filter are spaced at the variation frequency a. The weightings, which we define to be

w (k,;m ,n), determine the envelope of the reverberation. They depend on the amplitude, a:

.ia ./k -IV - k .4a _k

w (k,;m A) - 2 28)

We can write the esimate for the Oreen's function in tms of these weightiug fusctons as:

e,(k,,) :[kr>(x-m)cL w(k,-(x-=lalm~n)Vk,-(x-m)°G(k,-(x-m)a) (9)

"te weihnfunctions, w (k, (n -m )a;m ,n), are greatest when m - n -x.. and

decay rapidly from that point in m and x. Tis remit can be shown by replacing the factorials in

(8) with Stirling'. approximation (excellent even for small u: n! = NI2an ) and defining

X M 2 k The weighting functions then become:z" 2 "

= (L,1, (10)
M! Rs! 2 wm 'is' n

The (A}m term has its maximum at m -x and falls off in m- with greater than geometric
1

decay. The "- term pulls this maximum only very slightly lower.

The remalt is that w (k, ;usxi) i. large for m, x :w-IVj.-j and smali elewhere. Wham
2

~Vki -kMI a 11f «1 we can ignore the (n- earm ()utadk)gvui

approximately by I U

By defin&n:

CI
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- ,--max ,V') "(n +m{)! v2

we can obtain the result, valid for << I1 that

Vi?,(k,) C(k,;n) Vk-i- G(k,-n a) (13)

A perspective plot of C(k,,x)/()n is presented in Figure (V.5c.la) for the cae a -3

and ko .9246159. The back of this figure orresponds to k, = ko and consequently k, -0.

The Green's function in this region corresponds to plane wave components of the field which are

directed entirely in the radial direction and which do not vary in z. Figure (V.5c.lb) presents

the slice of Figure (V.Sc.a) corresponding to this region, C (kon). C (ko,n) is zro everywhere

except at n - 0, where it is 1. Referring to Equation (13) we see that the degraded estimate of

the Green's function at k. = ko is given by:

I(kk) , s , ) 1ko"7-a0(k,-,na) (14)

Substituting for C (ko,n ) in Equation (12) we se that

0(ko) = G (ko) (15)

The portion of the spectrum, k, -ks, corresponds to field components that do not vary in

z. It is reonable, them, that the cosinsodal mource-height variation did not affix* that portion

of the angular spectrum.

in igure (V.Sc.la) moving forward towards the leading edge corresponds to deeasing k,

and increasing k. With decreasng k,, C (k, ,n) becomes inaeaingly I= impuldve indicadtng

greater amounts of degradation. Figure (V.Sklc) premt the die C(0n). This dim

correspoads to that portn of the angular spectum which has the maximum amount of vertical

variation. In Figure (V.Sc.1c) the value C(0,0) is not evem as large as the adjacent vaIn.,

- -_-i4
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C (,-1) and C (0,1). The Greens function will be degraded by cosinusoidal source-height vari-

ation in this region.

Figure (V.5c.2) presents a perspective plot of C(k,,n)l(i)* for the case a = 12 and

ko = .9246159. Once again C(ko,n) is the discrete delta function, 8(n), and the Green's func-

on will not be degraded at k, - ko. Because a is larger now, S-v'i-k of Equation (12)

grows more rapidly as k, becomes smaller than it did for a - 3. As a result the figure shows

that serious degradation begins for k, much closer to ko. The increased amplitude, a, has

resulted in an increased amount of degradation. The product, ak, = a VT ik ,detamines

the severity of this effect.

We note also that because of the (i) m factor in Equation (12), the phase of C(k,,n)

increases by - with each n .- This suggests that cosinusoidal source-height variation may dramat-

icaily affect the phase of the estimated Green's function, ( (k,), even before it significantly

affects the magnitude.

Thus we have seen that the effect of sinusoidal source-height variation is to comb-filter the

estimate of Vk-?G (k,). The spacing between impulses in the comb filter is the frequency of the

source-height variation. The amplitude of the source-height variation and the vertical wave

number, ki -kp 2 , together determine the weightings of the impulses. When the product of. the

amplitude and the vertical wave number is small, the only contribution comes from the low lag

componentL As this product increases, the higher lag components bein to contribute and the

comb- filtering will become increasingly apparent. If the frequency of the source-height variation

is very low, causing the spadng of the impulses in the filter to be very small, the degradation

wit appear as a smearing.

V.5) Summary

In this chapter we have studied the imus asociated with the inversion of presure field
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data through the Hankel transform to estimate the depth-dependent Green's function and the

plane wave reflection coefficient. We have developed a phase unwrapping procedure that allows

us to interpolate the magnitude and unwrapped phase and thereby determine from the set of

field samples available, the values of the field at the ranges we require for proceming. We have

also shown that it is better to estimate the total depth-dependent Green's function from the

Hankel transform of the total field, and to later remove the affects of the source. Finally, we

have examined the effects of source-heisht variation to help us understand the possible degrada-

tion that this effect would would introduce into the depth-dependent Green's function estimated

from real data.

We are ready to perform a preliminary processing of real data.
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CHAPTER Vi)

Inverting Real and Realistic Data

In Chapter V we dascribed the procedure for inverting coherent field measurements arising

in reponse to a CW point source, to obtain the plane wave reflection coefficient. In that

chapter we addrassd some of the practical issues that must be faced when real data is to be

inverted. In this chapter we perform a preliminary inversion of real data. [1 ] To help interpret

the results, in parallel we invert data generated synthetically for a realistic geometry and set of

bottom parameters.

The real data that we invert was obtained by G. Frisk, J. Doutt, and E. Hays in 1981.

The associated experimental geometry was described in Section (1.6) and is presented again in

Figure (VI.1). We will be using the data obtained from the lower receiver shown in this figure.

In Figure (VI.2) we present a velocity profile and density parameters for a bottom that we

believe is comparable to the bottom where the real data was taken. We use this geometry, velo-

city profile, and these density parameters to generate the synthetic data of this chapter. This

synthetic data is generated using the hybrid procedure described in Chapter IV and the numeri-

cal Hankel transform that was described in Section (II.7) .1 [2 ] The efficiency of this Hankel

transform algorithm made it possible to obtain high quality results over a large range that would

otherwise not have been practical.

We begin by generating the synthetic data for this geometry and bottom. We use the

numerical procedure dencribed in Section (IV.2) to generate the plane wave reflection coeffi-

,elt, r(k,), as a fuacion of horizontal wave number. Its magnitude and phase are presented in

Figurs (VI.3a) and (VI.3b). We see that a pole is present in r(k,) beyond the water wave

number. This pole is due to the low speed channel just below the water-bottom interface.

Because the sourcesreceiver height is large, this pole will contribute an insignificant amount to

1) ma &aipa was Ijapimsmd In Fouta on a VAX-11J870 by Mike Wgrovitz.
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the pressure field and need not be removed as was done in Section (7iV.3b). Consequently we

can generate the field with the hybrid procedure described in Section (1V.3a). The magnitude

and residual phase of the associated synthetic field are presented in Figures (VI.4a) and (VI.4b).

In these figures very little high frequency ripple is apparent even at large ranges, implying that

the field is indeed. adequately repremseted and not suffering from spatial aliasing.

Figures (VI.$a) and (VI.Sb) present the magnitude and residual phase of the synthetic

field after inclusion of the incdent field. The regular behavior in these plots suggests that the

magnitude and residual phase are good representations of the total field. As further confirma-

tion of the vaiidity of the total synthetic fields generated for this example, we present the output

of a ray program that was run for this profile in Figure (VI.5c). 1 -2 The two synthetic fields are

in good agreement except in the region of the caustic, 1500m < r < 2000m, where the ray

method is known to be inacecurate.

Figures (VI.6a) and (VI.6b) present the magnitude and residual phase of the real data

(which includes the source field). In the region beyond the first hundred meters, the magnitude

and residual phase of the real data behave regularly, which gives us confidence in them. The

interference pattern apparent in the magnitude is similar to that of the synthetic data. The zeros

in the magnitude are well matched by the the changes in the residual phase for large ranges. The

first few hundred meters of the residual phase, however, looks significantly different from the

residual phase of the synthetic field. In this region, changes in the source-heiSht have their

greatest effect on the measured field because the geometry is most significantly affected by

source-height variation in this region. We recall that the residual phase is given by:

G() - W)-ZZ (1)

The large negative slope of the residual phase for low ranges could be due either to an estimate

of k0 which was too large, is which case the residual phase would display a negative phase

everywhere, or to an admate of (z -zo)2 which was too large. We believe that this

1) set s h do* mMum surs WSt of IS mam rsr thn 13S mOs.
2) w e to *mttk Jim Doet ft We rIva. tis entdita &i.
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uncharacteristic behavior is due to imperfect knowledge of the source height in that region. The

ntle negative slope of the unwrapped phase for the real data for large ranges is probably due

to a slight overestimate of the water wave-number, ko.

Before we attempt to invert the real experimental data to estimate the depth-dependent

Grem's function two major factors must be considered. First, the experimental data is available

only over a finite range and second, it is available only at discrete points which are not spaced

properly for our processing. The first issue can be resolved by referring to Chapter V where we

showed that for the source-height and seometry used to obtain the experimental data, it was only

necessary to know the field out to about 3040 meters to minimize the degradation due to win-

dowinS . The experimental data is available to 6000 meters. We beieve, therefor, that window-

ing should not prevent its successful inversion. The second issue can also be resolved by refer-

en to Chapter V where we showed that by interpolating the magnitude and unwrapped phase

it was often possible to translate the pressure field data available on one set of ranges to another.

We will use the procedure developed there to interpolate the experimental data onto the set of

ranges that we require for processing by the Hankel transform. In parallel we will process the

synthetic data. The processed synthetic data provides a useful measure of the success of our pro-

cessing because the depth-dependent Green's function that we obtain can be compared to the

true depth-dependent Green's function which is known for the synthetic data, and presented in

Figures (VL7a) and (VI.7b).

Figures (VI.8a) and (V Lb) present the magnitude and phase of the Green's function cal-

culated by procesing the synthetic data. The synthetc data was originally available on the grid

n n - 0, 1, 2, • It was linearly interpolated (through its magnitude and unwrapped

phs as deseribed in Section (V .3a)) onto the grid required for processing, - for
A

a - 0, 1,2, with A - 1.2andwher A n- 0, , 2, are the Zos ofJo(X).

The agreement betwen the esimate of the syntheti Gra's function obtained by proces

lug the Whetc field and shown in Figures (VI.Sa) and (VI.Sb) and the true Green's functon
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for the synthetic data shown in Figures (VL7a) and (VL7b) is cxcegent, particuluiy the agree-

£meat in the magnitudes. The phases differ slightly for low horizontal wave numbers. We believe

that this is due to small errors in the synthetic field for low ranges. The phases differ dramati-

caRy in the evanescent region beyond the water wave number, where the magnitude of the

Green's function is very sall and consequently the phase is probably dominated by noise. The

apeemet in general between the true Oren's function for the synthetic data and the Green's

function estimated from the synthetic data is excellent, however, and confirms the results of

Chapter V which indicated that for the sampling rate and range of values over which the data is

known, it should be possible to determine the depth-dependent Green's function.

Figures (VL9a) and (VL9b) present the magnitude and phase of the Green's function cal-

culated from the real data. Except for low wave numbers, the magnitude of dis Green's function

displays many of the features of the synthetic Green's function, including the same overall

envelope due to the 1 source specum term, and the interference pattern arising from

the interaction of that portion of the Green's function associated with the source and that portion

associated with the reflected field. The total Green's function also decays rapidly at the water

wave number, as it should due the the e migration terms In the evanescent

region, k,> kO, we see only noise, comparable to the noise we see superimposed upon the rest

of the Spetum.

At low horizontal wave numbers the Green's function for the real data does not look like

the Green's function for the synthetic data. Very near the origin we see a large peak not

apparent in the total Orem's function for the synthetic data. This peak is probably due to con-

eatiomn of noe power there by the Hank@ tmiom as discussed in Section (ILS). For

ghody larger wave numbers the magniude displays a Jagged appearance not seen in the total

Ore's fPno. for the synhetc data. in tu region, the ationay phas approximation r

tho Sommeduld intesral is fairly good, alowing us to amociate the behavior of the Green's func-

to at low horntal wave numrs with the behavior of the prei: ed at low ranges. The

C&
~................ --. ......
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uncharacteristic behavior of the Gree's function at low aorizonal wave numbers is consistent

with the uncaracteristic behavior of the residual phase that we observed for low ranges and may

be due to variations in the source-heisht. Some of this apparent jitter in the Green's function of

the real data may be due in part to variation in the source-height. A rough sampling of the

source-height over the course of the experiment was available from the experimental records.

We interpolated between available ampsle umug splines to obtain a rough estimate of the

source-hei .t variation present during the course of the experi ment. The result is presented in

Figure (VLI0). This curve is sufficiently similar to the suam of the two low frequency cosines dis-

a-sued in Section (V.Sb.iii) to qualitatively interpret the effect of source-height variation for this

experiment in term of the results presented there. The analysis of Section (V.5) shows that

sinusoidal variation in the source-height causes the estimated Green's function to be a revr-

berant version of the true Green's function, particularly for low k, corresponding to large k,.

Because the frequency of the variation is very small, the main effect is to smear the estimate of

Vi'?G (k,). As stated in that section, the phase of the estimated Green's function might be more

seriously corrupted than its magni7Ude. The phase of the depth-dependent Green's function

estimated from the real data and shown in Figure (VI.9b) does not strongly resemble the phase

of the synthetic Green's function. The overall good appearance of the magnitude of the total

Green's function and the poor appearance of it phase is consistent with the the degradation that

would be expected from source-height variation.

Figures (VL1a) and (VI.llb) show the magnitude and phase of the plane wave reflection

coefficient generated from the Gree's function calculated from the synthetic data and shown in

Figures (VL8a) and (VI.Sb). Figures (VI.12a) and (VI.12b) present the magnitude and phase

of the plane wave reflection coefficient calculated from the Orem's function for the real data.

The eaimate for the reflection coefficient for the reed data does not appear to be a good one at

this time.

Bemuse the plane wave reflection coefficient is obtained from the total depth-dependent

-n -
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Green's function by first coherently subtracting the source contribution and then multiplying by a

term with a rapidly varying phase (e- ik-kI2tr-zl ) errors in the phase of the total Green's

function would seriously degrade the estimate of plane wave reflection coefficient. The estimate

for the reflection coefficient is probably much worse than the estimate for the Green's function

because of the phase errors in the estimate for the total depth-dependent Oreen's function.

In conclusion, we believe most of the error apparent in the Green's function for the real

data to be due to variation in the source-height near the origin. Direct evidence of this is the

anomalous residual phase variation in the region r < 300 metrs. The error in the estimated

Green's function for very small horizontal wave numbers is probably due to additive noise. The

errors in the estimated reflection coefficient are probably due to imperfect knowledge of the

source-receiver geometry that affects the coherent additions. Overall, however, we are greatly

encouraged by the good appearance of the magnitude of the total depth-dependent Green's func-

tion determined from the real data. The interference structure and the overall envelope suggest

that we are very dose to being able to estimate the plane wave reflection coefficient from real

data. Work still needs to be done to compensate for the effect of source-height variation.

The potential returns from the successful inversion of pressure field data to obtain the plane

wave reflection coefficient are enormous. Such a successful inversion is a vital step in the process

of inferring the physical parameters of the bottom from acoustic measurements. [3,4] The abil-

ity to make such inferences is of great interest to oceanographers and to exploration geophysi-

cists. A mccessful inversion would also make it posible to predict the fields associated with an

arbitrary source-receiver geometry from one set of measurements. This would greatly facilitate

acoustic imaging in the ocean.
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CHAPTER VMh

CONTRIBUTIONS AND FUTURE WORK

VII.1) Convibaaius

In this ths we have studied both the numerical generation of synthetic pressure fields

from the plana wave reflection coefficent and the inverson of measured pressure field data to

esuimate the plane wave reflection coefficient We developed and implemented algorithms that

efficiently generate high quality synthetic fields. We studied the major issues affecting the inver-

don of experimental data and were able to estimate the depth-dependent Green's function from

measured data taken in the ocean with a high degree of success. We isolated source-height varia-

don as a major factor preventing the successful estimation of the plane wave rflection coefficient

at this time.

As a foundation for our studies we explored the Hankel transform in depth. In Chapter 11

we derived a number of important properties including the effects that windowing and sampling

a function have on its Hankel transform. Our sampling results show that the associated degrada-

tion is often a more severe problem for the Hankel transform than for the Fourier transform. In

particular it can seriously degrade synthetically generated pressure fields which decay as - or

even more slowly and its effect should always be carefully considered.

In Chapter 31 we also studied the noim properties of the Hankel transform. We showed

that if a function is sampled on a square root grid in a noisy environment, its Hankel Utrasform

will have superior noise properties more characteristic of the underlding two dimendon Fourier

transform which the Hankel transform represents in the presence of cylindrical symmetry.

n Chapter ill we considered a number of numerical techniques for performing the Hankel

transform. We presented new results strengthening existing procedures such as the asymptotic

and backsmear methods as well as an efficient, exact method developed as part of this thesis.

In our development of algorithms to generate high quality syndedtc data we presented a

(t
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number of hybrid numerical-analytical techniques that greatly improve the quality of synthetic

data. In the course of developing a technique that can adequately handle the effects of guided

modes in slow speed layers under the ocean bottom, we derived an expression that may be of use

for developing field expressions in modal expansions required to be accurate in both the near

and far fields. We also presented a well behaved numerical procedure for implementin the

Thomson-Haskeil approach for generating the plane wave reflection coefficient.

In Chapter V we developed the major isues affecting the inversion of measured field to

obtain the plane wave reflection coefficient. On the bas of this development we were able to

identify the sources of error in an actual inversion. The phase unwrapping and interpolation

results presented in this chapter also sinificantly improved the results of the processing of the

experimental data in Chapter Vl.

In Chapter VI we performed a preliminary inversion of real data to obtain estimates for

the depth-dependent Green's function and the plane wave reflection coefficient. The results

presented in this chapter represent a significant advance towards the complete inversion of meas-

ured pressure field data to obtain the plane wave reflection coefficient. We were able to generate

a good estimate for the depth-dependent Green's function and were able to associate the effects

of source-height variation with the degradation in the estimate for the plane wave reflection

coefficient.

At this point work i continuing towards the complete estimation of the plane wave reflec-

tion coefficient from real data. The foundations laid by the work presented in this thesis provide

a srong bae for future work in this area. In addition they sugget research in a number of

related areas. Some of these are presented in the next scton.
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VII.2) FumWW Wor

a) Cyfaicakl to Cwwaieo Coovdbaat Sysem

In this thsis we have dalt with problems cast in a cylindrical coordinate my . In that

codinate sysmm the familiar Fourier transform of cartasian symms became the Ies familiar

Hankel transiom. In. that coordinate sysem the dun properties of additie whit Gamian

mia throuvh the Fourier tmform wae obscured obscured ani a square root grid was intro-

duced In that coordinate sy windowing and aliasing approximately affeced V'i (r)

instead of f (r). In that coordinate system the familiar impulse S(x) became ..i t

82 l
coordinate system the - operator became V2 - v2 + -1-L so that the operator which

ax2 432 P ar

muds a pole in a catesian coordinate system:

82 + p2 f - 2 1 ,, -p;+p?

OXT(x X2'ffp f - . PdP= -8(x) (1)

became the IU f2iliar:

2 + p2](r) - 2 + P2 if JO(Pr)p? p 2+. P 2 JtPr)ld p  8r) (2)
IV17 1Ii 2p p2-p2 r

In ihort we fequently found that faliar problems in a cartesian systm became more difficult

whea cas in a cylindrical coordinate system. The reverse is also tue, however. In Secton

(1317) we developed an efficient numerical algorithm for the Hankel trnform by mapping it

into a Fourier transform. The mapping was accomplished with the Abel transform:

Ifi (r)) - FT(A+fr)}} (3)

The AbI tranaudo a e mves to map other ler operaors in cylidrical form ism linear

operators in cnariean form (it sust do so for any furda.o that can be repreuted, by a Hankel

.It Mast L for example, in on mue. that
ax2



In Section (11.7) we developed an efficient numerical algorithm for evaluating doe Abel

transfom. One exciting area of future research is the extnsion of maximum entropy and other

spectral estimation technques into the cylindrical domain as we now deseibe.

An estlmation scheme that might be of value for estimatMn the plane wave reflocaio coef-

Sent is Wfautrated in Pigw. (VIJ.2a.1). Instead of estimating the plane wave rdiedon couffi-

aent diretly we estimate the position and residue of its polos (and possibly nrc.) in the complex

plane. We do this because the estimation of parameters instead of a function is a much beona

posed probiem when the sigal available for analysis has been corrupted. Because the plane wave

reflection coefficient is related to the measued field by the (cylindrical) Ilankel transform and

not the Fourier transform, spectral estimation techniques available in the literature of digital sig-

al processing do not apply. If we firs proces the pressure Soeld data with an Abel transform,

however, the resulting sal has the same poles and arc. but now in its Fourier transform.

Moderm spectral estimation techniques can therefore be used. We introduce the caution that the

effect that branch cuts have on this procedure must be studied with cae.

b) Analyuical-Naerlcai Al~oenthra

The hybrid analytical-numerical technique used to implement the Abel transform in Section

(M1.6) is a very general procedure and springs from classical numerical methods of long standing.

Traditionally, difficult integals are evaluated numerically by removing their singular behavior as

much as possible through coordinate changes and changes of variables and then numerically

transforming the result. The sccess of the hybrid method points out that in fact it is often desir-

Able to do Just the opposite. Mwe integral should be manipulated to produce as much singular

behavior a posibe. The singularte can be integated analytically and will noa ufe from

numerical, degradation. Nf the singularities are removed properly. the remaining mnmerical por-

ton of doe integral will be well behaved where it dominates, and subordinate to the analytically

detrmined pardions of the integral where it does not. The art In this procedure is casting the
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analytically determined portion of the integral carefully to inureS that the numerical portion

do=s not have infinities or undesirable asymptotics to cancel. Had the e br factor not been

included in the procedure of Section (111.6), for example, the hybrid method for the Abel

tranuform would not have worked.

Manipulating functions so that they can beut be represented by paaeeidfunctions and

samples is part of the general issue of computer remp rsttion. As software systemis become

smarter this kind of approach will become increasingly more important.

C) Wavevaes

In the course of generating synthetic data, we evaluated the integraL

I~~r~z~p') - VL2 1 1 2-..9 'Jo(pr)pdp (1)

and showed that it satisfied

+i Xi)- = 0 (2)

We associated (r ,z ,p,) with the contribution of the pole at p, because our integrals,

always included the term I e " ' as well. The advantage of this formulation was

that I (rz ,p,) is everywhere finite, even at r =0. The classical contribution associated with a

pole is

--..iLHA')(pF) when Im(p,)>0 (3)
2

The Hankel function above has a logarithmic singularity as the origin. Physically, pok. in

the depth-dlependlent, Greow's function make only finite contributions to the field. 'he migration

ter "*/ -P Is I windows the pole in the Hankel domain so that its contribution to the pressure

field is everywhere fiits. For this reon we included the migration teminto our pole cmre-

sion. For convenience we also indcied the source term
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Our formulation was carefully constructed to insure that the numerics were not required to

& generate inflniies. It is potentially useful for many problems other than those omidered

directly in this this. One set of problems concerns the calcuation of fields inside (pomebly

leaky) waveguides

We develop an exprmmon for the field inside a (dielectric) waveguide add from a point

source using the plane wave formulation of this thes. 1 Fqure (VU.2c.1) presents the geometry

of the waveguide and the waves praest

The radial and time variation of all fields is given by:

Jo(k,r)e -" (4)

and will be suppressed. We will use 0 for the vertical wave number. 0 and k, are related

through

+ (S)

The source field is given by P.e'011- r° l and is the portion of the field that would be

present even in the absence of impedance contrasts. We specify the boundary conditions at

z = h by giving the plane wave reflection coefficient there, r.(kr), and at z = 0 by [r(k,).

These two interfaces together give rise to an up-goin j wave, P +e'P', and a down-going wave

P_e - 10, that would not be present without the impedance contrass in the regions z Mh and

: S0. The total up-going and down-Soing fields for z 0<z Sh is given by:

C ~P +e Il f + p eI CI (- O) u

P _e -il DOWN (6)

The plane wave reflection coefficient at z -h provides the boundary condition:

C

Pr - +e + p _, ) (

In the region Os: <so we have

Pe -08 + p ,-() DOWN

P + idsu UP () ,
A 1wmtm o the &M Id ik se w-weuIde m 8o be I~u Is (I



- 215 -

zzh - T P(krIp PqI(z-zo) P4.
z: z0  SOURCE PeL(zz

SzO 0 - P8 (kr)
rzO

z

r

Figure VIIL2c.1 The Scomtuy and wavn for etmnding the reults of dais thesis to wavoguides



-216-

and

P +ei f°  P +

P..-P ' =(9)p-e-100 + Pie i ° I ps _ + pl e i p~z e

i i

P, is the kown point o rength V/k=2_ -. r and r, a givn a wdl.

The two boundary conditions are safficient to determine P + and P - from hem quantities. We

write:

Frp e'Pk + rTpleipe -iPS° . P -IPA

mP- + FPze f  P+ (10)

Solving for P + and P_ we have

( 0-10-.) .re I (h -za)]

p+ = 1- M C +PF (11)
1. e-7'P- rrePh

and

PeI P(h +) e I P C.P (12)
1 e-iPh _ F eiph

T.
The total field in the waveguide ( O<z <h ) is given by

p(r,Z) f + c+,+ C. JO(kr)kdkr (13)

with

C-W(htr) - r (1p(h4-)o)

1 - -,ph r-_ TCh

and

-rIA _ e p(h-a) (1a)

The zeos of e - IPA - r,re - 0 contribute poles to the depth-dependent Own's

function and iva rime to the modes of the waveguide. Each of then poles in Equation (13)
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makes a ontribution to the field of the form

I ,z ,Pj) p I JO(pr)pdp (16)
p2-p2

and the development we used for calculating fields in the presence of poles applies.

It iould be noted that the inverse problem, that of resolving modes in a waveguide, can be

cat into the clanica signal procesiq form of finding pole in the Fourier transform by first

generating the Abel transform of the pressure field! The effect of branch lines on this approach

needs to be studied, however.

It is also posible to construct nuiling operators to estimate the pole positions (as is done in

Maximum Entropy spectral estimation tohniques) by using Equation (2), which does include

some branch line effects.
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APPENDIX 1:

DETELMINLG LIMITS FOR THE ALIASLING RESULT OF SECTION (fl.7)"

In this appendix we determine the limits as N - for the expressions:

sin N wx cox
sin z (1)

2

and

cosNwx x (2
s 4(2)

2

To evaluate the limit in Equation (1) we use the known limit:

1
sin2,x (N - - sin 2rxN

m Jim- s cns 2 =7,8(x-k) (3)
N- sini'z N.- sn wx k

The limit in Equation (3) is zero except at the zeros of sinvx, which occur at x = k for

k= 0, :-1, -t2, At thuse points oswx = oswk = (-1)". The effect of deleing the coswx

tam is to generate altanating sips:

Jin2-Nx (_I)AB(xk) (4)

A change of variables shows that

sniwNx= lim j-1r84-k)(5)

We determine the limit of Equation (1) by multiplying by cosM- to find:

Hm inwNx ., lrx- Z-)s (6)

We can ampliy Equation (6) by using the fact that f (x)S(x -xg) - f (z)b(z-x) and that

1 k-0,4,S, .'"

wk 0 k-1,5,9, - • •ms "F " -1 k -2.6,10, • • • 7

0 k-3,7,11, ' " .

to find:
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m inNz cosix - X(-1)hS(L- 2k) (8)
sN-u. 4 & 2

fl2

This is the result needed in the tet.

To evaluate the limit of Equation (2):

Cos N wx si M.(9)
sin M 4

2

we first consider the behavior of COW wx near x - 0. The behavior at the other zeros of sin--
MEz 2
2

will be uimilar. We assume that x is mafficiently small so that sin.!! can be replaced the first
2

term of its Taylor series, M-. We consider:

cosNwxUrn- (10)
N u 'W

2

Instead of evaluating the limit directly, we look at the Fourier transform of the limit. We

evaluate this by taking the limit of the Fourier transforms of each term and write:1

in-E -UMFT c x(11)

The Fourier transform of cos can be found by convolving the Fourier transform of

2

coiN wx with the Fourier transform of 2
'rx

fl2~.} mT~wsNwJF{} (12)

so that:

17 mm as m be rlmoy JlMWs by uf enau hoaosi. 111 Th, wum atm ha&.
gl sm mid m be eql It So em of wmallta S.k ifem m wif ow bad-iaW hwdae Is &d.
wipm s. Almualy, we fausm w m mo be qul if do Fourlw tfahm a lrt dwiram is
-o hr Owmy lab bent
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-T COI +8(4[a 10;[-2i uan V)j (13){WI V- 21)

This function is plotted in Figure Al. 1. It is given by

2
wr" - o 1 <f<- (14)

-41 -<f
2

As N -= this Fourier transform becomes equal to zero over any finite interval. Consequently, as

a generalized function

where 0, means 0 as a generalized function. Basically this means that as N-= €oSN -z oscllates
ME
2

rapidly around zero in such an manner that when it is convolved with any bandlimited function,

the result is zero. Since we will only use this functions inside integrals (strictly speaking impulses

are only defined inmde integrals) we will simply call it zero.

Given that this limit is zero, the limit of cosnx, which is simply a periodically repeated

2.

version of osN 1r near the zeros of sin(-L) (with sip changes), must also be zero. Sine

2

sin - is finite everywhere, we have the result needed in the text by multiplying:
2

am coNr Ux- 0 (16)
Nrn .E2 2

C

_ _ . _ .--:
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APPENDIX H:
C THE VALUE OF THE KERNEL

FOR THE NUMERICAL PORTION OF THE HYBRID ALGORITHM

AT THE WATER WAVE NUMBER

In this appendix we derive the value of L(ko) discussed i Section (IV.3a). L(k,) is

defined by Equation (IV.3a.15) as:

L(k,) [ ) -)

and we seek to evaluate the limit

lir L(k,) (2)

under the condition that the impedance of the bottom, Z(k,), is finite at k, = kO.

At k, - k0 Equation (1) takes the indeterminate form We evaluate the limit (2) by(2b

usin8 L' Hospital's rule:

{fr(k,.) - Fk}e Aiz .ir(k,) - r(ko)}I\'~s
lim lim W- Ir()

Vkj -k, 2  h,-A0 82VJ-,
ak,

After separating out the terms that approach zero as k,-ko this expresson becomes

Mm L (k,)- tim ar )ui(4)

4,-o a,.o. r(k,)&- (4
We now expre t(k,) in terms of te ch ,,arteristic impedance of the upper half space, Z9,

and the impedance at the interfm whch we will denote at Z. Both Z@ andZ are functiow of

/I pneral. in tarmsofthse F(k,)islva by:

r(k,) - z!-ze ()

Tas desivatives we And.

2zz-z. 1 (6)
t, iZZ)2
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We now use the charactestic impedance of the upper half qmace

zo M o (7)

where p is the density of the half space, aw is the temporal frequency, and k. o where CO is

te qeed of sound in the upper hal space. Subsiutig Equation (7) into Equation (6) and

evaluating io we have:

r~)-2-v" - 2 )k T 7(8

Z?+2z1  t ( u. 2(jp.V"- + (8)
v1 &2 ha -k2

Substituting (8) into (4) we find

k,pgow

Amn Lk) -i .2.V?.k, (9)

L (ko) -- 21Z1(kq) (10)

provided that lim V~IJ ki&,) - 0

If the interface is between two isovelocity half spaces, the expression (10) for L (k,) can be

written directy in term of the material parameters. For this ase ZI(k,) - . Z1(ke) is

finite because kI Ok(if k1 -ko tewould beno interface). L (ka)is given by

L (ke) - 21pl 1
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APPENDIX III:

EVALUATION OF THE POLE CONTRIBUTION TO THE FIELD FOR SECTION (IV.3)

Here we evaluate the pole contribution to Equation (1):

I(r z;p) - f- j-y -P p 2Jo(pr)pdp (1)

I Vk2 -p 2

We evaluate Equation (1) by determining a partial diff.etial equation that it satisfi and solv-

ing that equation.

Taking the second partial derivative of Equation (1) with repet to z we have

(rz;p =42,jfPrP2~~ I t-p j _a,. '.d'2 1IJ(pr)pdp (2)

If we uue

b(z)f(z) =8(z)f(0) for any f(z) (3)

then Equation (2) becomes

a2 2 ~2 )
.-!(';oo f 2 r'"71 IJ.(pr)pdp-2?J~z)f..j(p.)pdp (4a p2_p2 Vk 2 _p2  a Pa

Putting it all together we have:

[ (p2  k )I(,.z;pi)= -2 - 2  2 Uopv-25(z)o V72 -p,2P2___ (P)PV

If we define 2  p-k 2 ,choosing real part of 0 > 0, and use

f__ ' c NikV'72412~pd (6)
Vr2+Z2

-oed with

f..1FL!.(pr)pd p Are((*g Im (PA i pfr) M41 Z!~ (p, F) when in (pi) > 0 m7
Sp-P? 2

thm (A2.S) Ieoe

Wh-en (r o,) -( I) > 0

' whumm (pg)> 0 .

- -
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ThC Green's fuinction for this differential equation is given by

0 (r,zA) --.--W -t P

Usig this for the impulsive response and convolving with the continuous drivicg function to

obtain the particular solution we obtain:

-1Powl g , d f 'HA)(o,)-Pl (10)

When Im (p) > 0.

The general form of this expremion which is valid for all PI is liven by:

I(",z;p,) , r -,2-.d( + ±LO(-,[I(p()ip,.).PIZ (11)! (~z;m "2p .Vr2+e
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