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Seymour V. Pa:rter( 2) and Michael Steuerwalt(3) 1

ABSTRACT

) Direct iterative methods for solving the linear system AU = Y
split 4 into a difference M—N. By viewing N as a weak multiplica-
tion operato?;e’determine the convergence rates of block direct ’
iterative methods for solving the system of equations that arises in
the finite element approximation of an elliptic boundary value
problem. %ustrate the theory with an a'nalysis of second order
Dirichlet problems in the unit square, using Hermite cubic finite

element spaces. However, the method of analysis extends to gen-

eral elliptic boundary value problams of order 2m on bounded

domains in d space dimensions, and to a broad class of finite ele-

ment spaces. (_\
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Discrete approximations of linear elliptic partial differential equations lead

to a linear system of algebraic equations

AU =Y, (1.1)

in which the matrix A represents a discretization of the partial differential
operator and U is a discrete approximation of the true solution. Typically this is
a large, sparse algebraic system: on a mesh of size k in a d-dimensional region,
U has O(h™%) components, and 4 has only a few times that many nonzero ele-
ments. The development of computers made practical the solution of such sys-
tems. Hardware limitations and a desire to solve multidimensional problems,
together with the size and sparseness of the system, combined to stimulate the
development of direct iterative methods for solving (1.1). Elliptic difference
equations, which lead to big systems (1.1) partly because the standard finite
difference schemes have O(h2) accuracy, received special attention: see [8],
[22)], [1]. [12). [20]. and [13]. But the development of finite element methods —
particularly higher order accurate methods on irregular meshes -- and of direct
factorization methods suitable for finite element systems (1.1) (see e.g. [5], [24].
[2), [19], [4]. [8]. [17]. [9]). together with the discovery of fast factorization
methods for nice elliptic difference equations (see [15] for some references),

combined to lessen interest in iterative methods.

Nevertheless, iterative methods for flnite element equations have received
some attention. Fix and Larsen [7} and Varga [21] studied the convergence of
the successive overrelaxation (SOR) method, based on point and k-line block
splittings of the finite element matrix A, for self-adjoint elliptic problems of
order 2m. They showed for such problems that there are choices of the relaxa-

tion parameter o for which the spectral radius p, satisfies the inequality
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Pss 1 — Kh™; when w = 1, which is the Gauss-Seidel method, the corresponding
inequality is pgs € 1 — Kh®™. Each inequality is what one would expect for finite
difference approximations. But in neither instance could they determine the

constant XK.

In [18] Rice experimentally compared direct factorization methods to point
SOR methods for Hermite cubic finite element approximations of some second
order elliptic problems. He concluded that point SOR and Jacobi conjugate gra-
dient iterative methods are more efficient than Gaussian elimination when the
approximation is sufficiently accurate. For the problems he considered,

"sufficient accuracy" is a surprisingly coarse 0.1%.

A direct (or cyclic) iterative scheme splits the matrix 4 into the difference
A=H-N, (1.2)
and generates a sequence §{ U} according to
HUM = NUO-D 4 y, (1.3)

Convergence of the sequence is governed by the spectrai radius p of M~!N:
§UM] converges to the solution of (1.1) for any U iff p <1, and smaller p
implies faster convergence. To determine the convergence rate of (1.3) there-

fore requires not only that we establish estimates like
pR1=KhP,

but also that we determine p and X.

In [13] one of us (Parter) developed a.general approach for estimating the

rates of convergence of the classical {terative schemes — Jacobi, Gauss-Seidel,

and SOR ~ for self-adjoint elliptic finite difference problems. In [15] we




simplified the presentation and extended the method of analysis to parabolic

problems and to nonself-adjoint elliptic finite difference problems. The key to
the method is that the matrix N looks like a weak mulitiplication operator: there
is a function g for which (NU,V)~ (qU,V). In this work we employ the same
basic approach to deal with finite element equations arising from elliptic prob-
lems, even problems that are not self-adjoint. However, the analysis of (1.3) for

finite element equations requires several new ideas.

The theory of [13] and [15) asks that the splitting (1.2) satisty four basic
proper:ies. To verify the third (A.3 in this paper, A.4 in [15]), which asserts that
N behaves properly, can be a little complicated, even in the finite difference
case. For the finite element case it appears to be very difficult. Part of the
difficulty stems from the fact that finite element methods involve derivatives as
well as function values. For example, in a second order elliptic problem the
finite element method based on tensor products of Hermite quintic splines will
involve several derivatives beyond the first. These derivatives appear in the ele-
ments of N. Nevertheless, the finite element method only yields H! estimates —
that is, L2 estimates on the approximate solution and its first derivatives. In [3]
Boley and Parter studied a finite element approximation of a simple one-
dimensional problem. Their treatment of derivative terms cannot be extended

to multidimensional problems.

Sections 8 through 8 discuss the model problem that seeks u satistying Dir-

ichlet boundary conditions and the equation
= =[(aug )y + (bus)y + (buv)s + (cu'y)v] +du; + dzu'y +dou =f (1.4)

in the unit square {1, with do(z,y) 2 0. The finite element subspaces S, are ten-
sor products of Hermite cubic splines. We consider both k-line iterative

methods and the point Gauss-Seidel method. In these cases we find that one




need consider only the function values (as in the finite difference case) -- that is,
we can igriore certain derivative terms. Thus the necessary calculations are
similar to those carried out in our earlier work [15]. In particular, the spectral

radius py(k) of the k-line block Jacobi iterative method is given by
pslk) %1 - 2K roay? (1.5)

asymptotically as Ay + 0. Here [; is the minimal eigenvalue of the elliptic eigen-

value problem
Lp=Xc(zy)pe inQ), =0 ona. (1.6)

Because this iterative scheme satisfies block property A, the corresponding
spectral radius p,(k) for the successive overrelaxation (SOR) k-line method with

relaxation parameter @ is fixed by the equation
(pa tw- 1)2 = ”2p3pu'

Thus the Jacobi spectral radius determines the smallest SOR spectral radius p,.

its corresponding wy, and the Gauss-Seidel spectral radius pgs:

Pos := pj.
(1.7)
2

1evi-p} "

Wy = Po =y =1

(see [1], (20, chapter 4], [23]). It is interesting to compare the estimate (1.5)

with our earlier estimates in [12], [13], and [15] for a (particular) finite

difference approximation. In that case we have
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ps(k) ™ 1 = E-Tony? (1.8)

with the same T'y!

While the detailed analysis leading to these results is carried out only for
the model problem, it is clear that these ideas apply under much more general
circumstances. For example, this analysis is easily extended to those cases
where the finite eilement subspaces are "nodal" finit= eiement subspaces (see
[18] or [19]) and the block splitting is based ou a reasonable geometric choice of
blocks. The region {} may be any smooth region in R%, whiie the elliptic operator
may be any strongly elliptic operator of order 2m. In section 9 we comment

further on the generality of the analysis contained herein.

Sections 2 through 5 are concerned with the general approach and develop
the basic theory. In section 2 we describe the general class of flnite element
approximations to elliptic boundary value problems that can be written in a
weak form. We also describe the related algebrajc problems (1.1). In sectior 3
we recall the classical iterative methods. In section 4 we extend our earlier
thoretical work for finite difference approximations to the finite element setting.

The basic hypothesis is assumption A.3:

There are a constant gg and a function g € ~'(0}) with
g(z)=ge>0 (z €0)).
and a function 7(t), defined for £ 2 1 and satisfying
n(t) -0 ast - =,

such that for every v and v in S, we have
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RGP ND = fq'u.ﬂdz + ep(u,v),

lea(u.v)| < p(r)[llwlIf + vl + fulh + liviL]

While this may appear to be an unusual condition, we believe that it is
satisfled by most natural splittings. The basis for this belief for finite differences
is described in [15, section 9]. For finite elements, our belief is grounded in that
discussion and the fact that we can ignore derivative terms to estimate g. As we
shall see later, the exact form of the bounds on the error term &,(u,v) can be

exploited to give some interesting results.

In section 5 a new convergence theorem is proven. Loosely speaking, if (i)
the subspaces S, satisfy certain inverse inequalities, (ii) there is a particular
bound on &,, and (iii) there is an eigenpair (A.ff) associated with the spectral

radius p so that |A| = p and
Re (U°ND)=2 0, (1.9)

then for small 2 the method is convergent and we can estimate the asymptotic
form of p. While it is not at all obvious that one should expect (1.9) to hold in the
generality of the finite element equations and for nonself-adjoint problems,
nevertheless condition (1.9) is always true for block Jacobi schemes that have

block property A.

Finally, in Section 9 we discuss the significance of the results.

For the reader’'s convenience, we collect some notation in the rest of this

section.

Let Q be a bour. 2d dom’’ in R®. If u and v are in L%(), their inner




product is

(wwle:= fyulz)v(z)dz

The corresponding norm is denoted by

ll2llo.0 := V{w u)g.

Customarily we write (v ,v) and ||z ||, when the set Q) is clear from the context.
Let u:(}»R. We denote the partial derivative of « with respect to z; by

Diu .= Bu Conventionally, if a = (x;, ag, - -

3z, ©, otg) is a 2-tuple of nonnegat.iv'e

integers, then we set |a|:=a;+az+ - ' +ayq. and by D% we mean

Dl“l RN D:du.

By H™(Q)) we mean the set of functions » that together with all their partial

derivatives up to order m ace in L3((). Symbolically, we have
H™(D) = fu € L¥Q) : D*uw € L3N for 0 < |a| s m].
H™(Q) is a Hilbert space with norm defilned by

)iz := ¥ (D%, D%u).

jzjsm

It will be convenient to define the seminorms |-|; on AM(Q) for 0sj<m

by

lw|f:= |2 (D%, D%). (1.10)
al|=y

Observe that |-|qis the L2 norm ||']lo, and |[u|l& = ¥ [u |}

Oogfem
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: Throughout the text, C and K denote generic constants. Constants of more

than local importance are numbered.

i We are indebted to Carl deBoor and Louis Nirenberg for useful discussions.
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2. The problem.

Let 1 be a smooth, bounded domain in R®, and let L be the linear elliptic

operator of order 2m defined by

Lu:= ¥ (-1)191D%a,4(z)Dfu). (2.1)

lal.|gtem
We consider the boundary value problem
Lu=f inQ bu=0 ondQ (0<j<sm-1), (2.2)

where the boundary operators b; are linear and independent. We assume that
the problem (2.2) is equivalent to the following "weak" formulation: there is a

subspace A™ of H™(Q) and we seek © € ™ such that

B(uw)=F(v) forallv € ™, (2.3)
where
B(uw):= fnb(u.v)dz (2.4a)
with
b(u,v):= " %}l‘ma, #(z)DPuDrg, (2.4b)
and
Fv):= [ f(@W(z)e=. (2.4¢)

Note that this formulation of the problem is in effect a statement about the

nature of the boundary conditions of (2.2).
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We also assume that the form B(u,v) is continuous and coercive on Am.
That is, we assume there are positive constants K; and Kj such that for all © and

v in B™ we have

|B(uv)| < Killumlivilm (continuity),
(2.5)
Re B(u,u) = Kyl|uild (coercivity).

A simple computation shows for any ©v € H™ that
K,
[Im B{u.un)| € ——|Re B(u,u)|.
Ko

This inequality is called the engle-bounded property of B. A finite element
approach to the numerical solution of this problem is given by a sequence {S,}

of finite-dimensional subspaces of ™, satisfying
dim(S,) = n, (2.6)
and the solution u, € S, of the finite-dimensional discrete problem
B{u, v,) = Flv,) forallv, € 5,. (2.7)

With each S, we associate a basis {g¢;{f=;. and a positive constant k = h,, the

“mesh size"”; we suppose thath, - 0asn - =,

The problem (2.7) is brought into computable form by setting

a4 := Blps.p) (1S jsn) (2.8)

Probiem (2.7) now takes the form: find
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n
Uy = ’2 U,‘¢j in Sp. (293)
=]
where the vector
D= (U, . U) (2.9b)

corresponding to the function u, satisfies
’fqduﬁfnfmdz:)f(m) = F (1<isn) (2.9¢)
=1

Thus, if 4 is the nxn matrix and F is the n-vector

A= (q,). {2.10a)

Fo={(F. -, F). (2.10b)
then (2.7) reducss to the problem of finding I that solves

AD=F (2.10¢)

The matrix A is called the problem mafriz. Another matrix of interest is

the mass matriz @ given by
Qs = [, vspidz. (2.11)
It 7 and ¥ are the vectors associated with functions u and v in S,, we have

9’QD=fnw¢z, (2.12)




= T (2.13)
The coercivity condition (2.5b) implies that
Re (TP4aD) = kK, U° QD (2.14)

Because @ is a positive definite matrix, (2.14) implies that the system (2.10c)

has a unique solution U, .

We consider a direct iterative method for the computation of 5,.. and hence

of u,. We write
A=H-N, (2.15)

where / is nonsingular and, in some sense, it is easy to solve problems of the

form # U= G. Let afirst guess 0 be chosen. Succeeding iterates are given by

HOW = NTO-D ¢ B (2.16)

1t is well known that this procedure is convergent for any initial guess if and

only if the spectral radius

p:=max {|A] : Ais an eigenvalue of ¥ ~!N|
(2.17)

= max {|A] : det(AM=N) = 0f
of M~IN satisflesp < 1.

Our problem is the following. Imagine a sequence {Sn{ of subspaces and the

corresponding matrix problems

Sa it e it e e
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AU, = F,, (2.18)

where we have now used subscripts n on the problem matrices 4, and the
moment vectors f‘,, to emphasize this sequence. Suppose the splittings
Ay = M, —N, of (2.15) are chosen in some regular fashion. We seek to determine

the asymptotic behavior of the corresponding spectral radius p, asn -+ =.




3. The classical iterative methods.

Suppose 4 is an nxn matrix. The block structure of a direct iterative

scheme for the problem

is completely determined by a block partition of the n-vector X. Suppose every

vector X is decomposed into subvectors
X=(X, Xe. . %)

and each X; is itself an n;-vector. This partition of X incuces a block partition
A = [A;] in which each 4 ; is an nyxn; matrix. The corresponding block Jacobi

iterative scheme is
A X = =Y 4 X + Y, (3.2)
sni

In terms of (2.18), M is the block diagonal matrix M := diag{4;;]. The

corresponding Gauss-Seidel scheme is

A XM = = A X =T A XD + T (3.3)
s>t

s<i

while the SOR scheme with relaxation parameter w is

A XD = =0 A X -0F A XV + oY + (1 = w)dg X, (3.4)

s<i s>t

We will be interested in specific block structures that arise in a natural

geometric way.

o SR m RS S
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4. A general approach.

Our analysis of the iterative scheme (2 16) is an extension of the approach

taken in [13] and [15]. We make four basic assuraptions.

p < 1, so the iterative scheme is convergent.

p is an eigenvalue of //~!N: there is a mesh vector V # 0 such that
pHV =NT.
There are a constant g4 and a function g € C}(Q) with
g(z)=go>0 (z €0l),
and a function 7(¢). defined for £ = 1 and satisfying
n(t) »0 ast - =,
such that for every u and v in S, we have
RM P ND = fqm‘i dz + e, {uw,v),
where
lealuw)| < nlr)[ilwlif + vl + llulh + vy

Let q be the function of A.3. The eigenvalue problem that seeks A € C and

g € B™ to satisty

Bpv)= J\fq¢ﬂdz torallv € A™ (4.1)




has a minimal eigenvalue

A = Ag +1iT.

By minimal we mean that for any eigenvalue A it is true that
0 <Ao< Re A, and that if Re A = Ag then |A| 2 |An |

Note that if A, is a minimal eigenvalue thenso is A, ; if T = 0, then

Am = Ao < |A| for any eigenvalue A.

Observe also that the eigenvalue problem (4.1) is equivalent to the problem

Lye=Ag¢ inQ, bjp=0 ond (0sj<sm-1).

Condition A.4 actually asserts that there is at least one eigenvalue. In the
self-adjoint case, and in the case of a second order operator with Dirichlet boun-
dary conditions, A.4 is always valid and A,, = A;. We surmise that A.4 is always
true, but we prefer to make the assumption explicit. Conditions A.1 and A.2 are
readily verified for self-adjoint problems for which the splitting (2.15) satisfies
block property A; see e.g. [1], [13]). For standard finite difference approxima-
tions of general second order Dirichlet problems, A.1 and A.2 follow from the

Perron-Frobenius theory of positive matrices: see [20] and [15].

While one should write M,, Nn. pn. 2nd h,, we wiil usually drop the subscript

n when its use is not essential for the clarity of the discussion.

Let A # 0 be an eigenvalue of the iterative scheme (2.16), and let Weo0be

an associated eigenvector, so that

AM#=NW (4.2)
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Subtract AN # trom both sides and divide by A to see that

AW = )\ NW. (4.3)
Now set
w= YW, po= ih_Eni\ : (4.4)
Then the eigenvalue problem (4.3) can be restated in the equivalent forms
AW=u(h?mN) W,
(4.5)

Blww) = uV (R2™N)W forallv € S,.

A basic result about this eigenvalue problem is
Lems 4.1. Suppose A.3-A.4 hold.

(a) Let {u,} be a bounded sequence of eigenvalues of (4.5), so that there is a

constant C > 0 for which

ln| = C

Then the limit

#- = limn'an ‘/.n’

of every convergent subsequence {u, | is an eigenvalue of (4.1).

(b) Let A bé an eigenvalue of (4.1), and fix 6 > 0. Then there is an n, so that for

each n & n,; there is an eigenvalue u, of (4.5) satisfying |A ~ up| < 6.

Proof. This result is essentially contained in the general theory for the
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spectral approximation of compact operators (see [11]). However, for the sake
of completeness, and to indicate an approach that applies in more general situa-

tions (see [14]), we give the proof in the appendix; (a) is Lemma A.1 and (b) is

Theorem A.4.

THEOREMW 4.2. Suppose A.3-A.4 hold. Then
P =pp =1 —Ah®™ + a(h2™). (4.6)

Proof. Lemma 4.1b implies that there is a sequence of eigenvalues of prob-

lems (4.1), which we denote by {un}, that converges to A,. Thus Re u, -+ A, and

Re (1 + uph?™) > 1,

whence

1 + uph™
is a well defined eigenvalue of (4.2), |A| < 1, and
M)l = 1 = Aghy¥™ + 0 (™).

Therefore the theorem follows from the definition of 5.

THEOREM 4.3. Suppose A.1-A.4 hold. Then

P =pn =1 = Ah?™ + o (h2™). (4.7)
Proof. Set
g = ﬁf_, (4.8)

T, A e
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From A.1 and Theorem 4.2 we then see that

0<pu <A+ 0a(1). (4.9)

More important, A.2 implies that ﬁ' is an eigenvalue of (4.5). From Lemma 4.1

and the deflnition of A,, we then have

Ao+o0(1)=Rep =g < Ag+o0(1).

Therefore iz -+ Ag asn - =, and (4.7) holds.

REMARK. Because g is an eigenvalue of (4.5), Lemma 4.1 shows that A is

itself an eigenvalue. Hence A, = Agis real when A.1-A. 4 hold.

Theorem 4.2 and A.2 suggest the following condition.

B.2 There is a constant Cp for which, for every n, there is an eigenvalue A,

that satisfles

nl=pp and |~ s Cp. (4.10)

o

In fact, this condition can replace both A.1 and A.2.

THEOREM 4.4. Suppose B.2, A.3, and A.4 hold. Then the method is convergent

. and

p = 1= Ach3™ + o (hS™).
Proof. Let A, = a, + ib,. Then (4.10) implies

(1 -ap)®+d2shdm(e (4.11)




o = %-LE_A;' (4.12)

Then 22, is an eigenvalue of (4.5), and using (4.10) we have Iﬁ,. | < 2C¢ for h,

sufficiently small. Hence by Lemma 4.1 there is an eigenvalue A, of (4.1) and a

subsequence {n'] such that Z,. + A, asn’ + =, Let
Al =¢ +1id.
Convergence of the subsequence and (4.12) together imply that

1= M = A ™ + 0 (R3™).

An = Qn: + ibp: = 1 = A h™ + 0 (RE™)
=1 = (apc = byd)hi™ —i(ayd + bpc)hg™ + o (A3™).
From (4.14) and the fact that
ap = 1 + O(h™), b, = O(hZ™)
we deduce that
On: = 1 = G Cha™ + 0 (hg™), |Ap:|® = 1 = 2ch™ + o (hy™).

Therefore

P = |Ap:| = 1 = cht™ + o (A™).
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By definition of Ac, 0 < Ag<c = Re A;, and therefore Theorem 4.2 implies that

¢ = Ag. This proves the theorem.
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G. A convergence theorem.

In earlier work [12], [13]. and [15] for finite difference equations, an analo-
gue of Theorem 4.3 established the asymptotic behavior of p. In this section we
use Theorem 4.4 to obtain a new convergence theorem for flnite element
methods and splittings (2.15) that satisfy reasonable conditions. A remarkable
feature of this proof is that we require no positivity, positive definiteness, or
self-adjointness of the matricés involved. Therefore the theorem is particularly
useful for nonself-adjoint problems and finite element discretizations. Moreover,

the theorem can be recast to provide new results for finite difference approxi-

mations.

THEOREM 5.1. Consider the splitting (2.15) and the iterative scheme (2.186).

Suppose A.3 holds and

len(uu)| < K[ lluilollTully + A3 V2!E], (5.1)

1m (On2m N D) | = |O7aem =) By < gpjiulif + leatwu)]). (5:2)

We also assume that certain "inverse inequalities” are satisfled: there are con-

stants ¢; such that
cshijuljs|ule (G=0.1,2 -, m), (5.3)

where |u |; is the seminorm of u defined by (1.10). Finally, we assume there is

an eigenpair (A\,u) for which
A =p, llullm =1, Kc(C°'NDY=0. - (5.4)

'hen the iterative scheme (2.18) is convergent and
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p =1 =Agh?™ + 0(h%™), (5.5)

Remarks. If the inverse inequalities (5.3) hold, then Landau's inequality

implies that there is a constant &, such that
h™ ||u|lm < oll%]lo. (5.6)

This inverse inequality is valid for many of the usual finite element spaces Sp:
see [6]. Condition (5.4) holds when the splitting (2.15) is a block Jacobi splitting
that satisfies block property A. This is so because block property A implies that
-\ is an eigenvalue of the iterative method whenever A is: see [23, chapter 5].
The estimate {5.1) is a special form of the basic estimate of A.3. As we will see in
section 7, precisely this estimate is satisfied in our model problem. Further, the
derivation of this estimate and the arguments of [ 15, section 9] suggest that this
is just the form to be expected. The estimate (5.2) arises because the antisym-
metric part of N is usually related to the lower order terms of the elliptic opera-

tor L.
For the proof we need three lemmas.

Lewa 5.2. Let ¥ > 0 be a fixed (small) constant. Then there is a constant

Cs, depending on ¥, and m, and a constant h{m), such that for every

u € A™(Q) and h < h(m ) we have

hE|Vullf < Sollul§ + A°™ Copl u | 2. (5.7a)

h2(|V|lf < Soll wlif + A*™ Collulida. (5.7b)
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Proof. We first derive a special form of Landau’'s inequality: for every ¥ > 0
there are constants Dg(k) and A, depending only on ¥ and k, such that for every

uecH* andh <h

3
luls 712,,—|lu”3 + Dy(k )R uw |E,,. (5.8)
The proof of (5.8) follows by induction. The usual form of Landau's inequality
(see [10]) is: there are constants ¢ and ap depending only on Q, so that for

every positive « less than aq

lulfusclalulfie+ =luid. (5.9)
Hence (5.8) is true for k = 1. Assume (5.8) holdsfork =1,2,3, ---,j. Let
a; :=cmax {2, 2Dg(k) : 1<k <j] {5.10a)
and set
a = ah2 (5.10b)

For some positive A it is true that a < &g whenever h < A;. Then (5.9) yields

1
a;h.z

fulfnsclah?lulfe+ fulf).
Using the inductive assumption we have

1 s .
fwlfe s c(ah?{ulf + -;F[Tg';-ﬂullg + Dy()R% u | f)).

That is,

[ P
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2 2 2 cd 2 CDd(j) 2
|wlfriscoh®lu|fe + Wllullo + —al—|u|j+l'

But cDy(j)/a; s 1/2andc/a, < 1/2 by (5.10a), and so

1, 1l
|u | s Reeh?|u |22 + Wliun&
Hence we have established (5.8) with D,;{j+1) = 2c¢e,;. For m = 1 the inequality
(6.7) is trivially true. For m = 2, the inequality (5.7) follows from (5.8) with
k = 1. We proceed by induction. Suppose {(5.7) is true for m =1,2, - - - k.

Then for small positive ¥ and for A < I?,- (9) we have

h?|u|fs CghP* w2 + 8lulf. (5.11)
Let
5.2 3 - % _ 3
9= = By : 3050 o (5.12)

then (5.11) and (5.8) with 4 = 4, together yield

o 1’ 1 02 = [l
R w |f < Ca(k)h* (Dgh®| w|far + 5 iluid) + Bluif

04 | 3 "
= Cak)Dg h3E 0w 12, + —=llulif + S-lluilf.

Setting Cy(k +1) := Cy(k) Dy, (k) completes the proof of the lemma.

CoRoLLARY. Assume that (5.1), (5.2). and (5.3) hold. Then there is a constant

K, so that tor small h and any u© € S, we have

_ — —aen
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|Im (D°RE™ND)| = Khllul (5.13)
H : Furthermore, for any nonzero v € S, set

|eq(u.u)!

ag = aplu) = , . (5.14a)
0= @olw) = g
= —9_ 9, := min {3, 92]. (5.14b)
8Ka
Assume that g¢p # 0 and set
2Cs
= 3 L
k(ag) := 2o (1+ 3 ). (5.14c¢)
Then for small enough A (5.3) implies that
cmh®™ u (2 < ||ujld = k(2c)R®™ {luill. (5.15)
Thus if uz, € S, satisfies
ll2a I8
lunlln =1 and S5 =+ = (5.16)
then
ao(uy) »0 asn » w. (5.17)

Proof. Estimate (5.13) follows from (5.1), (5.2), (5.3), and (5.7a). The lower

bound of (5.15) is a restatement of (5.3). From {5.1) and (5.14a) we have

i
3
1
Ao
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' 1
aollwlif = Ke[Slluilf + (1 + 5)n%|ulf]
Using Lemma 5.2 we now deduce that

, 3
aoliwllf < Kol(3 + 8o+ <L)l + Ca(1 + < IRPm[uliE]

Our choice of 9 and ¥ implies that
3
Ko(B + 99 + —1—;’-) say/2.

Thus [lu|l§ < k{co)h®™|ju!lg, whence (5.15) and (5.17) follow.
For the rest of this section we assume that {3.1), (5.2), and (5.3) hold.

Lemua 5.3. Let (A\u) be the eigenpair of (5.4). Then there is a constant Kj

such that

|0°ND| = K, (5.18)

Proof. From AM U = NDit tollows that

(5.19)

>
1
oo

‘N
M
Evidently |D°ND| # G, because p # 0. Furthermore, the denominator is not
zero because

Re (U°AD) = Re B(u.u) 2 Kyl|ulld = Ko > 0

and u has been chosen so that Re ("N D) = 0. From (5.19) it follows that




L
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1
p=IAl= = 7 .
1+ LA
UNU
Now (5.18) must hold, for otherwise
iA_a_ - oo
UND '

which would violate Theorem 4.2.
Let (A,u) be the eigenpair of (5.4). We write
DrImND =g « t, + ity (5.20a)
where
g:=fqlul|dz (5.20b)

and ¢, and £g are real.

Lewmia 5.4. There are constants kg, 7;, and 72 > 0 so that for 0 < h <hp we

have
g =7 +t,=Re (RN D) 2 7,7 = 71q0lluli$. (5.21)

Proof. Using (5.1) we obtain

3
Jea(ua)] < Kol 21l + A% w ]
This inequality and (5.3). (5.4), and (5.7) together imply that there is a constant

k' for which
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451 % leatue)| < Kol - llull + 2 Cllull] = kllulg ( =0,1). (5.22)

This establishes the upper bound of (5.21) with, say, y2 := 1+k'/ go.

We now turn to the lower bound. If the lemma fails, then there is a subse-

quence {n'} for which (A, up) satisfles (5.4) and

h'n-'h(qn' + tl.n'). -
A"

0. (5.23)

It follows from (5.8) that Z2h~2™||w || = ||u]|2 = 1. Hence h?™F =g,/ &%, and
so the numerator of (5.23), which is equal to Re (U, N,.U,), converges to 0.
Lemma 5.3 then shows that 2;2™ | to| = | Im (DgNa Ua')| = K3/ 2. This last ine-

quality reads
K,
_25 2™ < | ol (5.24)

We consider two cases. In the first, A;?™||u, || + =. But then (5.17) implies

that

Ltunl _ _ltinl
2
T ollunil

-+ 0,

which contradicts (5.23). In the second, there is some constant C so that

llunlif = CA,2™. But now (5.24) and (5.13) yield
Ks 2 2m +1
‘z—h-n"" < [tg| s K ry™ ',

which is impossible.
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Let us now compute
i 0°AD
+ IS e 5.25
Let
0’40 = a(1 +i0), a=K,, (5.26a)

where |o| is bounded because B{u,v) is angle bounded.

Then

z = h®™g g+t +ota

@rt)ietl (5:260)
= p2m 0(9"‘“1)“0
y = h*™a IS (5.26¢)
Proof of the Theorem. Using (5.2) and (5.22), we deduce that
| tol = hKY.
Hence
zapmg 3 - lolRfT (5.27)

(F+e)2+t¢

Convergence follows from these inequalities and the fact that

l+z +8y
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Moreover, Theorem 4.2 implies that

1

Az — ——
1= Al (1+2z2)2+y?

=1 - Agh®™ + o (h?™).

Therefore there is a constant C so that

121+2z + 22+ y%2 - 2™,

! Because z is positive and 2z + z% + y% < Ch?™, we get
i 0<z <Ch?™/2. (5.28)

; From (5.21), (5.26b), and (5.27) we see that (5.28) implies that there is a con-
stant C for which § + £, = C. Then (5.26c) shows that |y | < Ch®™. Thus there

is a constant Cy so that

Jl—kjiz 1 z2 + y?
| him A*™ (1 +z) +y?

< (o

But this means that B.2 holds; now Theorem 4.4 implies (5.5).
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8. The model problem: description.

The basic ideas are clearest in this simple, but relatively rich, setting. Let

Q) be the open unit square
D:=f(zy)eR:0<z.y <1}
Consider the Dirichlet problem

Lu=f forall(z,y)e (6.1)

u =0 forall{z.y)eol. (6.2)

Here L is the second order uniformly elliptic operator with smooth coeflicients

given by

Lu = =[(aug); + (bug)y + (buy): + (o )y] + diu; +dayy, +dou  (6.3)

where

a(zy)=ag>0 (8.4a)
b3z y)-a(z.y)e(z.y)<s-up<O (6.4b)
do(z.y) = 0. (8.4c)

The inequalities (6.4) assert that L is a uniformly elliptic operator.

Set
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b(uv) = aus¥y + (b ¥y + duyT;) + cwy Ty + (d,u; + dauy + dou)¥.(6.5a)

and
B(uw):= _/'fn b(u,v)dz dy. (8.5b)

As in section 2, we assume in addition to (6.4) that there is a constant Kp > 0

such that for all » € A (Q) we have
Re B(u.u) = Kolivllf. (8.8)

Under these circumstances, the boundary value problem (6.1), (6.2) is

equivalent to the weak form that seeks u € A{ (Q) for which

Buwv) = ffnf(z,y)‘u(z,y)dzdy =: F(v) forallv € HJ (D). (8.7)

! We now take up the finite element solution of this problem. Let F, = 2 and
\

I

I

|

P, = 2 be integers, and set

= 1 - 1 = By
Az = P.+1,Ay, Pv+1.r. A (8.8)

’ For any function G(z.y) defined on () we write
] Gy := G(ihz.jby). (6.9)
|
|

The finite element space S, is the space of tensor products of Hermite cubic

splines based on this grid. Let

o =idz (1=0, 1.2 -, Pp+l), (8.10a)
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y;:=jby (7 =0.1,2 - -, P,+1) (8.10b)
For each pair (i,j). 0si< P;, 0sj < P, define
e; =HzY) ZiSTSZ Y SYSYjal (6.11)

Hence the corners of the rectangle e;; are the pcints (z.y;) — the lower left

corner — (Zi.1.y; ). (Tier¥j+1). and (Z.y, ). asin Figure

(:i~yj+l) '_——-‘1 (d"-'-.'n'yju)

(z:.y5) (Zs41.Y5)
Figure 1. The element e; ;.
The restriction of any function v € §, to e;; is a polynomial of degree three in

each variable z and y, given by

v(zy) = icV,_,,,z"y"’ for all (z.y) € ey . (6.12)
o.u=

Thus v is determined in e; ; by the 16 parameters

fengeod U2 Dierjends YW ierjepd ¥z dinnjep! (6.13)

with I and p running over the set {C, 1{.

Because we have been discussing the restriction of v to e;; it mirnt seem
that we should somehow indicate that we are talking about v, v;, v, vy com-
puted from within e;;. However, the basic constraint on our space S, is pre-

cisely that these values at the four noda! points are continuous. Therefore,
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these four values can be associated with the geometric point {z;,y;).

It is convenient to describe S, in terms of a local basis for the restriction to

e;;. Onthe interval 0 < z < 1 define the functions

Vo(z) := (1 = z)2(1 + 2z), To(z):=z(1 -z2)3

(6.14)
Vi(z) .= 233 -2z), T)(z):=(z —-1)z%
These cubic polynomials satisfy
Vo(0) = 1. V(1) = V'5(0) = V'o(1) = 0,
T'9(0) = 1, Tc(1) = To(0) = T'p(1) = 0.
(6.15)
(1) = 1. "(0) = " (0) = (1) =0,
T'y(1) =1, Ty (0)=T"(0) = Ty(1)=0.
Then the restriction of v to ; ; may be written as
- ) T - X [ Y —Y;
vizy) = z.pgo.lu“"”p%[ Az Vpl by ]
T - Y-y
t o (”‘)“*""“T‘[ = V"[ &y L]
(6.16)
T - I /]
+
t.p;o.nAy Wydeesseoth -8z TP[ by ]
T =% Y -y
+
ugo.lAsz(uav)ul.jopTl[ Az ]Tp[ Ay ]
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Once we have this representation for the restriction of v to e; ; we can com-
| pute the "local mass matrix Q(i,7)" and the "local problem matrix A(i.j).” How-
ever, while we will compute some of these coeflicients later, for our present pur-

poses it suffices to observe the following form of these matrices. Let

Vo := (vg, Az (vs)eyg. By (vy)es. B2 8y (v )i ) (6.17)

be the 4-vector of interpolation conditions at the point {z;,y;), and let
Vig := (WY, Vihags Viager. Via ) (6.18)

be the 18-vector of all the interpolation conditions for v(z.y) restricted to e;;. f i

Then, for u and v € S,, with v represented by V,-J and u by '[‘J.;'j on e; ;, we have
f'l;‘.l uvde dy = Azldy V{.on'ﬁi_j. (6.19)
where @ is a constant 16x18 matrix independent-of Az, Ay, or (i.7). Similarly,

_/'_/'_‘J b(uv)dz dy = (AzAy)V;[(Az) Paz + (Az) e, + a]Ti;.  (6.20)

where ag, 2,, and a; are 16x18 matrices that depend on (i,5) and '
ag is independent of (Az ,Ay) (6.21)

while

a, and a; depend only on 7 := —2-15’— (8.22)

The matrix ap corresponds to the portion of b(u,v) given by
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au, T, + b(u.7y + 1w, 0;) + cy (8.23a)

and is a positive definite real symmetric matrix. The matrix a, corresponds to

the portion of b (u,v) given by
(dug + dowy)7, (6.23b)
while the matrix ag corresponds to the portion of b(u ,v) given by
dou? (8.23¢c)

and is a real symmetric positive semi-definite matrix.

From these local matrices one can easily construct the mass matrix ¢ and

the problem matrix 4; see for instance [19].

Let V; denote the vector of all unknowns associated with the I'th horizontal

line y = y;: using (6.17),
Vi = (Vi Vi, - V}r,)‘. (6.24)
Now let ¥ denote the vector of all unknowns ordered by lines, i.e.,
P=(vi Vi V) (6.25)
Then for any © and v € S, we have
[ [ uodz dy = Azby 7'QU, (8.26)

where @Q is a (4P, P, )%(4F, F;) constant matrix that is independent of Az and Ay.
Further, the finite element approximation (2.10c) corresponding to (2.7) with

this choice of S, and these interpolation conditions becomes

R




A = AzAy[(Az) %4, + (Az)"'A, + Ag) (6.28)

and Ap. A;. and A; have the same qualitative features as ap. a;, and a; For
example, A; corresponds to the portion of & (x,v) given by (6.23a) and is a real
symmetric positive definite matrix that depends on Az and Ay only through the
ratior = Ay/ Az.

The matrices @ and A may be regarded as (P, P,)x(P; P,) block matrices,
where each block is itself a 4x4 matrix. This is the "geometric point" represen-
tation of @ and 4. In this representation both @ and A correspond to nine-point

schemes. That is, the (i,5) biock equations are

(AD)j = Agay Us+ X . AijiivtjrpUivtjep = Feyg, (6.29)
Lp=-1,0.1 :
(@Ds = @yug Uiy +z > . QijietjeoUictjep (8.30)
#=-10,1

We also consider the k-line representation of this problem. Let k = 1 be a

fixed integer. We assume that k divides P, , i.e.,
PV = ka (631)

where P, is of course an integer. Let u € S, and let D be the associated vector
of interpolation conditions. Let U, (k) be the Qtor associated with the s'th set

of k horizontal lines:
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U:(k) = (Ub‘(s—l)n- Uh‘(a—l)*Z- . Uk‘c)‘ (5-32)

In this representation, the problemn matrix A and the mass matrix @ become

block tridiagonal matrices. That is, the equation (2.18) takes the form

Aga-1(E)Us (k) + Aga(k) U (k) + Ayasi(k) Upsr(k)
(8.33)
= F,(k) (1 €<s < Pk).

The matrices 4, ,,,(k) are (4kP;)x(4kF;) matrices.

Let us consider the block Jacobi iterative scheme based on this k-line

representation of A. Given a first guess (% we have the iterative scheme

Agy (YUY (k) + 4 s (R)UM(K) + 44 411 (E)ULTY = Fy(k).  (8.34)

Thus, in the notation of section 2, we have (2.15) with

M :=diagAe s (k)] N :=[~Aea-1(k). 0. =45 1(k)]. (6.35)

where the notation in (6.35) means that N is a block tridiagonal matrix with the

three principal diagonals as written.
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7. The model problem: estimates.

In this section and the next we turn to an analysis of block iterative
methods for this model problem - with a complete analysis of k-line block

methods. Our first goal is to simplify the study of the bilinear form
AzAy VN D.

In particular, the estimates that follow enable us to ignore many of the elements

of N when determining a function g (z.y) that meets the conditions of A.3.

Leuma 7.1. Let () be the unit square and let m be the 16-dimensional space of
polynomials in (z,y) € ) that are cubic in each variable separately. Hence, if

g €m then

glzy) = i‘ Iraz"Y’. (7.1)

rs=0

There is a constant Cy > 0 such that

+— T 19(om)® < Callg i, (7.22)
(o.4)
llg =glow)i§ = CollVg i = Colg | 2. (7.2b)
Y lglow) —glo.w)?= Collvglid. (7.2¢c)
(o.u).(0".0)
2 T (D% )o.u)i? s Coll Vg, (7.2d)

lai=1 (o.4)
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where {(o.u) and (¢'.u') are any of the four corner points (0,0), (1.0). (1.1), (0.1).

Proof. Because m is a flnite-dimensional space, any seminorm |- | is dom-
inated by any norm ||-||: there is a constant C so that |g| < C|lg]| tor every
g € m. This establishes (7.2a). Fix a corner point (o.4). Consider the norm

defined on 7 by

Mg fw := 19 (o) 12 + lIVgii§. (7.9) I

Because 7 is a finite-dimensional space, there is a constant C > 0 such that

gl < Cligiifu forallg em (7.4) :
!
Set
}
glz.y):=g(z.y) —glow. (7.5)
Then (7.2b) follows from (7.4) with C in place of Cg. i

Let (o'.u') be another corner point, and set

Sew(9) = g(eu)l.
Then S, ) is a seminorm and, as before,
St (@) s Cilliglllg, torallg e (7.6)
Let g be given by (7.5). Then (7.8) yields
[g (o) - g (o.u) !' < C\lvg Ii§.

Summing this inequality over all pairs {o.u). (¢'.u"), we obtain (7.2¢) with Co




replaced by 18C,.

Let S be the seminorm defined by »

SAg)= 5 P (D)o )2

|a|=1 o' s'=0

The argument given above now yields (7.2d). Let Co be the largest of the con-

stants and the lemma is proven.

For convenience, we collect some definitions here. Throughout this section

and the next, we set

h = VAz By. ‘

For each e¢; and for every u and v in S, let ,

(wv .k 1.5) 1= h (e, 19 low, + 12 o I T2l ) + A2V e, 199 e, -
Finally, for every u and v in S,, we set

7 (w,v.k) = h(llwllol Vo llo + llvllol V2 llo) + A2 Vaelol| P2 o.

Note that

Y n(uwv.hij)sn(uw.h)
.‘J

Lewua 7.2. Fix (i,j) and let v € S,. Let P and P' denote one of the corner
points (z(.¥5). (Z¢s1.¥5). (Zea1.Y541). (Zi.Ys41) of €y 5. Then there is a constant C,

depending on r and 1/ 7 such that

h'); lv(P)I® s Cillvlid,,. (7.72)
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; v = v (P)le,, < REC| V0 e, = R2C1 1w | 2s,,. (7.7b)
h® i EAzza‘Ayga'HDa" WP)|%= C,h2||v'u||§;.u, (7.8)
|a]=l P
hepg‘i v(P) = u(P) |2 = Ca%| Wi, - (7.9)
Proof. Set

z — Z, Y
e:: L] n::—y_—L.

Let v be any functionin S, and set
g€n) = v(z+éAz y;+nby) (0séns1)

The function g(¢£.m) is an element of 7. Moreover, a direct computation shows

that

JS,, vtz ay = S [ [ (gl*aedn =r [ [ 1g¢l*aean,

S, 1vitdzdy = %j‘fn |gnl2ddn = = [ [ 1g,1%2edn.

Let

. =max(r, /1)

Then

L e g S
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[V "&'U < 7||Vg ”E = ‘quv'u “g:ou- (7.10)
Another computation shows that
JJ, \vEy)Pdzdy =12 [ [ 1g(6m)|®dedn. (7.11)

Therefore the inequality (7.2b) of Lemma 7.1 yields
llv = (P)Be,, < Carh?| Vol .

which proves (7.7b). Inequality (7.7a) follows from a similar change of variables

and (7.2a).

If we deflne

(7.12a)

then we see that
az" 18y Dfv(z y) = DEg(£m). (7.12b)

Thus (7.2d) of Lemma 7.1 yields (7.8) with C, = Cof. Finally, (7.2c) of Lemma 7.1
yields (7.9).

CoroLLARY 7.3. There is a constant Cp independent of (i,5) such that
h® o 2 2 2 2
T(vu + vfg + vlaga + Yga) = |vliee, + fi(v.Az) (7.13)

where

|fi(v.Az)| € Cen(v.v.h.ij). (7.14)
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Proaf. For each index (i+!,j+p) we apply (7.7b) to obtain
v - ”tﬂ,ji-puo;q_, < hVTili W HO;u‘J-
Hence the triangle inequality yields

[(lv Ho;cu -h| Vitl,j+p N shVTil|V “0:0‘4

and
RV iepl S M1 lloseg, + RVTI T llo - (7.15a)
Therefore
R%| Vg4l = ”””t?;cu + E(v.h),
where

|Bw.h)| s Cn(v.u .k ij).

We add the four equations for all (i +1,5+p) and divide by 4 to obtain (7.13).

THEOREM 7.4. Let u and v € S,,. Let p € C}({l). Then there is a constant

K > 0 such that

P, P,
O B DWILEY () (7.16a)
=] §=)
ffn putde dy = h®Y g juy ;0,5 + 6(u,v,p), (7.18b)

where
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16(u.v.9)| < K(1 + || Vollo)n (u+v,u—-v,h). (7.16c)

Furthermore,

Wy 12? |z Ay (D), |2 < KRE|Vae [,
o al|=l

(7.17)

RTY ¥ |Az™ Pyt pey), (DPu) | < Kn(u v k).
£ la|+|glat

Proof. To get (7.16a), sum (7.7a) over all elements e;;. The estimates
(7.16b) and (7.16¢) follow from (7.13) and (7.14) of Corollary 7.3 applied to

(u + v), together with simple estimates on

ff.ugauﬂd':dy-goufj;“uﬁdzdy.

The first estimate of (7.17) comes from (7.8) of Lemma 7.2.

In order to complete the proof of (7.17) we need only consider the case

a=0, |8] =1 Wehave

J = REY | ug g (Do), g |6z Pay”
i.4

< (h=z<m)=)"=<h=|z |(DPv), ;02" ay e 2) V2,
F JE3Y

A direct computation from (7.7a) and (7.17a) gives
J < K| ulloll Vv fo.

whence (7.17b) follows.
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We are now ready to apply these estimates to the study of
AzAyN = h®N
and the determination of the function g (z,y).

THEOREM 7.5. For every vector V = (Vis). let 7° be the vector with

.

'U"_j
0 0
V = (V‘?j), Vi?] = 0 . (718)
0
Suppose N%is a matrix such that for every « and v € S, we have
hBVCNODO = h2PO°N DO + 9(u v .Az), (7.192)
where
[9(u,v.Az)| < Cn(u.u.h). (7.19b)

Then if N° satisfles A.3 so does N.

Proof. From the estimate (7.17b) we see that
RBPC°NDO = h2P°ND + O(7 (u v .h)).

Hence when veritying A.3 it suffices to consider V° [° and matrices N° that

satisty (7.19).

This theorem shows that, to apply Theorem 5.1, we need consider only the
vectors V% and 0° and matrices N° satisfying (7.19). In particular, we may

ignore components that come from derivative terms.
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Suppose that the splitting (2.15) is a “natural” block splitting of the kind

described in Section 3. That is, a nonzero element of —N is exactly equal to the

same (same indices (i.j)) nonzero element of A. Then it follows from Theorem

7.5 that for the purpose of determining q and verifying A.3, it suffices to can-

sider the same splitting of the matriz A°, which is a block matrix consisting of

4x4 blocks 4%, ,. where

Qijop 0 0

AS = Az A 00
jep =8Z3Y 9 00

0 00

and

O OO0

(2 , Sy ] 312

175

- - [ Cij _54 %y _156
VIARLE T Ay 175 paz® 175
| o .
- 9] 27 aQ; Cy,j
Qi jitrjer =~ l 26z by + 175\ Az? + Aya )|
= [ i _54% C¢j 156
Qe gtie1 = I az2 175 T az? 175 |
o - _[ 27 Bus. Sed_yl 4 bey
tJt-1J+1 l 175 Azz Ayz ZMAy '

(7.20)

(7.21a)

(7.21b)

(7.21c)

(7.21d)

(7.22a)




-51 -

Qi ji-1] = Qi1 (7.22b)

Cijii-14-1= Qi jaelj+ls (7.22¢c)

O jig—1 = Qg jer (7.22d)

R Offitlg-1 = O Jie1 41 (7.22e)

REMARKs. As (7.21) and (7.22) show, on each element e;; we have approxi-
mated the variable coefficients @, b, and ¢ by constant coeflicients a; 4, by ;. ¢y ;.
respectively. One could "center” the coefficients a; ;, b; ;. and ¢;; in these equa-
tions. However, for the purpose of determining ¢ this increased accuracy is
irrelevant. Only the coeflicients a{z.y), b(z.y). and c{z.y) enter into the for-
mulae. This follows from the discussion in Section 8 describing ap, a,, and ag, or

equivalently 42, 4,, and Aq -- see {5.20)-{6.23) and (6.28).
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8. The function g(z.y): two iterative schemes.

In this section we use the results of Section 7, together with arguments
already developed for finite difference equations (see [15]). to determine the
function ¢ that satisfies the conditions of A.3. We consider both the k-line
Jacobi iterative scheme described in Section 8 and the point Gauss-Seidel

method.

The finite element spaces S, described by (6.11)-(6.13) satisty the inverse
inequalities (5.3). Moreover, because the k-line Jacobi scheme satisfies block
property A, condition (5.4) holds. Hence to apply Theorem 5.1 we need only to
confirm (5.2) and to show that A.3 holds with an estimate of the form (5.1). Now
(5.2) follows from observing that the nonzero coefficients in (N~N°) come from

coeflicients in the problem matrix A that originate in the term
AyA,

of (8.28); but this term is of size O(k). To finish the study of the k-line Jacobi
method, we determine g in the following theorem. Of course, we will use the
matrix N° that comes from A° detined by (7.20)-(7.22). N° acts only on the vec-

tors 79 and U°. We define the norm

IN®||s := sup E(E(N°5°)f4)"” : gl U&1% = 14.

TheoreM 8.1. Consider the k-line block Jacobi method described by equa-

tions (6.34). There is a functiow g that satisfles A.3 and

glzy)= -lg&-é-c(z.y). (B.1a)

Therefore

NSe. Yy SR T LT .
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p =1 - Ah® + a(h?), (8.1b)

where /Aq is the minimal eigenvalue of (4.1). Hence from (1.6) and {1.7)

pslk) =1 = SETeh? + 0 (h9), pos(k) = 1 - SE-Th? 4 0 (A2),
(B.1¢)
Py =1 - 2(—56£-I',,)v=n + o(h).

Proof. Following the development in Section 6 we see that it suffices to con-

sider the matrix

N = = (401 (k). 0, Al (k) (8.2)

where A, ,.;(k) are (4kP;)x(4kP;) matrices of the form

o -1)+1(a-1) (1
0 0
Alerr (k) := [Ag.hﬂ (1) ] - (B.3b)

The matrices Ay, +1a (1) and Ay 4e+1(1) are the (4P;)x(4P;) matrices that arise
in the case k¥ = 1. These matrices are themselves block tridiagonal matrices of

the form

APy (1) = [A% o1 ge1s Aljigar s Alsxargen] (8.3¢)

where the matrices A%, are the 4x4 matrices given by (7.20)-(7.22c).

A direct computation now yields

et ahierre. foirag hareurnr i L.
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- - - 1 I
Ve N o = - El[VhAno-.un(l)Uuu] - Zl[vksﬂAbcu-lh(l) Urs ]
= F & 1§

We rewrite (8.4) as

P,
poenopo = ~ f, Vie(AS ke +1 + AS ks-1) Uns

s=]
Py Py
- Y VeAS kee1 (Ueser = Uss) = 2 Vi (ASe1xs = AS ke 1) Uk
=] g =1

P,
+ ﬁ(V; - V;ﬂ)Abcu-l.hUk:-

=)

It follows that
-~ -~ P‘ . -
VONODO = = 3 Vi (AS mes1 + AS aa—1)Uis + E(P°.09),

s=1

where

[E(P0.0%| < [IN%p (T vy 1DVY2(E | ugger — w132
+ INOA (S ug g IB)VR(E | weg e = vy 1B)V2R

+ R(ITB [l + FlV2ll + =1Ve (T v 1DV HE uy DV

Using the defining equations (7.20)-(7.22c) we see that

(8.4)

(8.5)

(8.6a)

(8.6b)




S0 1
ve’ Zf i 175 = (Taa + —Ci.h)ﬂuc(ui —1ks + Uis1ks)

s=1 i{=]
(8.7)
$LlBie, 108 .. oo o
+.z.:| ¢§1( r 175 ° 175 7O ko )i tine + E(VO,UO).

Because

Uyrme ¥ Yorns = 2% + (Wioihe = Yie) + (Werns — Uins)

we see that

°’°°-P.P'.l?_L 0 fyo ¢ fyo
pornede= 3 3 5 rct.n)ﬂc.huin"'E(V.a)*-El(V,U). (8.8)

s=] i=}
where

|B\(P0.0%)] 5 22lira + Ecll(E |veg 1973 | wier s = wey 1DV

The estimates of Theorem 7.4 now show that
RYAE(VO,D% + E,(V9,09) = 0(n(u.v.h)),

whence from (8.8)

P, P,
50 12 1 ~
hEPO NODO = A2} 2‘,(—5- T Cias it s + O(7(uw.v.h)).

s=] im]

To complete the proof of Theorem 8.1 we employ an argument of [15, sec-

tion 5). Letj =1,2 -, k. Then

Yiness = Vine + Games(P9). Uress = tan + Gaass (09 (8.9)
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)

where for any vector #° we define

Guuj( Wo) = i (wt.ku»p = Wy kg pu-1)- -
=1
Observe that f
| Guasss(WO) | < Gy (W) := kV/3( ill‘wuam -2 e [B)V2 (8.10)
s

Therefore

TiksojUinari = UikaUika + Bigei(V0.09), (8.11)

where

[Biass(P0.0% | < | v ug | B (D0) + | i | Gi a(V0) + G o (DG, (7).

ConssTinasjUinats = CormTiiatipg + D pysi (U0 79), (8.12)
where
[ D pa+5(D0.99) | < llella| Biae+5 (78,0 + Ayl Vel | O ks Wins |

Sum equation (B.12) forj = 1,2, - - -, k and divide by k. We obtain

1 -~ -
Tzci.hﬁﬂi.hﬁuth#j = ClaaTimatine + H(VOU%) (8.13a)
J

where
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|H(P2.0%c)| < [lellal| vise | Ea (D) + | uine |80 (V)

(8.13b)
+ |lclleGia( D0 8a(PO) + Byl Ve lla] vigs | | s |-
Returning to (8.8), we have
=0 F 5 P' 12 1 50 7y
pzby PO NCD0 = azay St L2 Loc g u + e(7O.09,  (8.14)
j=14m1 5 kr
where the definitions of £(¥9,09%), E,(V9,U%. and H(V° 0%¢) yield
|e(V°,0%| < K(r)n(w.v.h), (8.15)

and the constant X(r) depends on (r + 1/ 7), all the coeflicients, and all their
gradient magnitudes ||Va|le, ||Vd|le. and ||Vc|le. The theorem now follows from

the estimates of Section 7.

We now turn to the case of the point Gauss-Seidel iterative method. First,
let us clarify our terminology. In some sense there are two such methods. In
one case we think of the geometric point (z;.y;) and associate with each such
point a 4-vector ¥;;. In the course of this point Gauss-Seidel scheme we must
invert a 4x4 matrix at each point. Alternatively, one may also consider the
usual Gauss-Seidel method, in which one inverts the main diagonal; hence at

each step we invert a scalar.

However, the estimates of Section 7 and the argument of Theorem 7.5 show
that for finding ¢ these methods are the same, in the sense that they both yield

the same function q.

Unfortunately, for the point Gauss-Seidel method we cannot verify (5.4).

Hence, although we can determine g in general, presently we can assert only

M e o e T T
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that the point Gauss-Seidel method converges for self-adjoint problems. Conver-
gence in this instance follows from application of classical principles; see for
example [20]. Even in this case we cannot prove that (5.4) holds, so we cannot
establish the upper bound on p. But in general we do have the lower bound of

Theorem 4.2. The next theorem summarizes these results.

ThRoREM B8.2. Let the unknowns be -ordered lexicographically and consider

the corresponding Gauss-Seidel iterative scheme

Ay ;U = = (AU g + A jimr -1 UM =1)

= (A1 Uy + Ay U8 5-0) (8.16)

= (A jiarrs UTD + Aijaorjni UL + Ajiagei U + Agerin U&ia) + Ry

There is a function g that satisfles condition A.3 and

9(z.y) = S22-[ra(z.y) + Sc(zy)] (8.17)
moreover,
p=1-Ah®+ o(h3), (8.18)

where A is the minimal eigenvalue of (4.1). Of course, when L is self-adjoint the

point Gauss-Seidel method is convergent.

Proof. Theorem 4.3 implies (8.18). Using A°® rather than A we see that

. - 27 1 bi
pocnope = ‘%( 176 ["1.: + 7‘%4] - '?L)f’u“f-un

)
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b. .
2 175 [ aij + _c‘.j] + —;l-)ﬁi,jtqfl.j*"l

156 1 _

"’2(" 175 MR Tci.j)vi.j'u-t.ju
156 94 1 _

+ 2( 175 | - 175 Tci.j)”i,juh-l.j'

The proof now follows from an argument similar to -- but much simpler than --

the argument in Theorem B.1.
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9. Comments.

As we have mentioned in the introduction, the basic theorems of section 4
are closely related to earlier finite difference results. While Theorems 4.4 and
5.1 are far-reaching extensions of our earlier work that are important for higher
order and nonself-adjoint problems, even in the self-adjoint case the finite ele-
ment equations present difficulties. One of the difficulties arises from having to

deal with the many interpolation parameters, e.g., the 36 terms

. iuiﬂ,jw;- i(u‘s)ii-l.ji‘p;u i(u'y)ﬂ-l.j-rp;- z(uzy)iﬂ.ju;-

with I and p running over the set {—1, 0, 1}, of the finite element equations at a
point (z;.y;). It would be difficult to find ¢ and verify A.3 if one had to deal with
all these terms. However, Theorem 7.4 allows one to restrict attention to the

nine function values {u;4; j4,].

This observation leads one to ask, are the estimates of Theorem 7.4 specific
only to these cases, or can the estimates be obtained for a general class of finite
element spaces? Looking at section 7, we see that there are two points essential

to the development of Theorem 7.4.

(1) The interpolation parameters consist of function values and derivatives at

certain vertices of the element e, ;.

(2) There are a fixed and finite number of finite dimensional sSpaces
. Mg, - -, p (in our case, R = 1), and for every S, it is true that to each
element &, there corresponds a fixed n; and a smooth mapping for which
the restrictions of the functions of S, to e; ; are the images of m; under the
mapping. See Lemma 7.2. Furthermore, in m; one obtains estimates like

those of Lemma 7.1.

Therefore it is quite clear that this approach to the simplification of (9'N 0

g e e e o= -




-81-

will apply to many flnite element spaces S,.. In particular, it applies to all the
nodal finite element spaces (see [18], [18]), provided that there is some regular-
ity of the elements e whose union is  — say, provided that the diameters of
neighboring elements vary slowly. Now we ask, given that such estimates hold
and the analysis of (7°ND) is reduced to a study of (V°°N°D°), which
corresponds to a related generalized finite difference equation, should one
expect to find a g for general domains and general elliptic equations? The
answer appears to be yes! For the finite difference case, this point is discussed
in [15, section 9]. Of course, if one really wants to determine g and hence the

asymptotic form of p, one must work out the details in any particular case.

Even when g is known, the eigenvalue /g is not readily available. Hence one
might question the practical value of this theory. However, there are at least

four important ways in which the theory is useful.

(1) There are cases - model problems -- in which one can compute the eigen-
values. For these model problems it is then possible to compare different

methods.

(2) In second order elliptic problems with nice boundary conditions, and in gen-
eral self-adjoint elliptic problems, the smallest eigenvalue is monotone
decreasing in ¢: that is, if g,(z) < ga(z) for all € Q, then Ag{g,) = Ao(gz).
In these instances qualitative comparisons of different methods are possi-

ble.

(3) Consider the k-line methods. Here the basic blocks are monotone in k.
This fact is reflected in (8.1), where ¢ is inversely proportional to k, so that
Ag = CkT, is directly proportional to k. Thus (B.1a) and (1.5) hold. Hence
we can compare k-line methods for different values of k even when we do
not know the exact value of I'y. It is sasy to imagine a situation where one

has such cases of monotone blocks. We should then be able to compare

R TRV
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me¢ ' 'ods without knowing the basic I'g.

(4) Consider the relationship between the k-line Gauss-Seidel method and the
point Gauss-Seidel method(s), which is revealed by comparing Theorems 8.1
and 8.2. By computing the work per sweep, one easily sees that -- in the
best of circumstances, where p is as small as possible and equality holds in
(8.18) -- the k-line Gauss-Seidel methods are to be preferred to the point
Gauss-Seidel methods. For instance, in the simplest case where r = 1 and
a =¢c =1, we see that

pesk) m 1 = %-kﬂ"hz, pes(point) ~ 1 — —1%::2);2.
We now turn to another aspect of these results. For second order problems

{(m = 1). the basic Jacobi and Gauss-Seidel methods -~ but not the SOR method —~

have spectral radii p ¥ 1 — Kkh% The exponent 2 arises from the fact that the

elliptic equation is of second order; it has nothing to do with the dimension of
or the order of accuracy of the discretization method, which in the case of Her-
mite cubic splines is 4. Thus for reasonably desired error tolerances, the finite

element A is large compared to the usual finite difference h, and the finite ele-

ment p is correspondingly smaller.

Block splittings based on geometrically natural blocks have a property that
is important for exploiting new computer architectures: the corresponding
problems (2.18) are easy to set up on vector and multiprocessor machines,
because M decomposes into independent submatrices. The coupling between
subregions of {) is isolated in N. Hence overhead associated with data transmis-
sion between processors is small. Moreover, decomposition of (1.1) into (2.16) is
easily managed by hand. This is a telling factor where operating systems, com-

pilers, and other supporting software are unlikely to make available to users all

POREXS ki
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the resources of multiprocessor machines in a simple way. Leaving aside this |
practical point, we note simply that the independent subproblems of (2.16) can
be attacked simultaneously by independent processors. Hence block decompo-
sitions permit parallel computation even as they provide improved convergence

rates.

P ottt R kit
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Appendix: the eigenvalue problem.

The major purpose of this section is to prove Lemma 4.1. Let us clarity the

notation and restate the basic hypothesis.

With every function
u(z) = Llp (=) € Sy
, we associate the vector of coefficients of u
U= (U, Uy -, Ut
There are three basic matrices 4, €, and N, which satisfy

9°40=B(u,v) forallu andv € S,

7°QU= fuvdz forallu andv € Sy,

Here g € CY(0). g(z)=2go>00on,

len(wv)] S n(n)[(L+ull)(L+vih) + flelf + [vilf].

and

n(n)-+0 asn ==,

Note that A.3 implies (a.3¢).

V(RN D = quﬁdz +e,(uv) forallu andv € S,.

(a.1a)

(a.1b)

(a.2a)

(a.2b)

(a.3b)

(a.3c)

(a.3d)




-65 -

We arz concerned with the sigenvalue problem
AD=ur®ND, T=xo (a.4a)
and its relationship to the eigenvalue problem
B(uw)=Afquidz forallv € ™. (a.4b)
This latter problem is completely equivalent to the problem

lu =Aqu inQ, b;u=0 ondQ (0=sj=m-1). (a.5)

Lewa A.1 {Lemma 4.1a). Let {u,] be a bounded sequence of eigenvalues of

(a.4a), so that there is a constant C > O for which
lun| = C. (a.6)
Then the limit
Mo 1= liMpee (a.7)

of every convergent subsequence {u,.| is an eigenvalue of (a.4).

Proof. Let f](‘n.) be the eigenvector corresponding to u,. normalized so

that

Hu(n)llo = 1. (a.Ba)

D°(n)a, O(n) = pp D°(n)(RE™N,) D(n). (a.Bb)
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Using (a.3b) and (a.3c), we get
D' (n)a, O(n) = up fq|w(3dz + ep(u.u) (a.9)
and
len(u. )| <n(n)(@ + 4llu(@)f).
Therefore from (2.5) we have
Kollu(n)lI3 = Re (U°(n)4, O(n)) < Cligll + n(n)(2 + 4llulf).
Hence for n large enough

lu(m)lh s 2= gl (a.108)

Now choose a convergent subsequence {u,} and let its limit be u.. By (a.10a)

there is a subsequence {n"} of {n'] and a function ¢ € H™ so that
u(n'") » ¢ weakly in H™(Q). (a.10)
Ifv € #™ and v(n) is its H™(Q) projection onto S, then from (a.4a) we have
P*(n)4n O(n) = pn 7°(n)(RE™N) D(n).
Passage to the limit along {n "] yields
B(w.u)=u.chpﬁdz. (a.11)

Hence either ¢ = 0, or ¢ is an eigenfunction of (a.4) with corresponding eigen-

.
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value uw. But the normalization (a.Ba) implies that ||¢llo = 1. and the lemma is

proven.

In preparation for the proof of Lemma 4.1b we develop some additional

resuits. Consider the inhomogeneous problem
B(u)= fqfvdz forallv e ™. (a.12a)

For any f € L*(Q), the solution u of (a.12a) is in #™. Let T:L? - B™ denote the

solution operator
TS =u (a.12b)
Similarly, let 7,,:S, -+ S, defined by
T.f =u (a.13a)
denote the solution operator for the discrete inhomogeneous problem
AD=h*"NF. (a.13b)

Observe that while'(a.ISb) is stated in terms of the vectors I and F, the opera-
tor T, maps the function f to the function u.

Our goal is a discussion of the relationship of the spectra of these opera-
tors. If A is an eigenvalue of (a.4b) then 1/ A is an eigenvaiue of T; similarly, if u

is an eigenvalue of (a.4a) then 1/ u is an eigenvalue of T, .

Lema A.2. Let ¥ be a bounded subset of the resolvent set of T with

Ol (a.14)
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Letz € L and let f € S,. Consider the inhomogeneous problem
AD - %hz"'Nf}: QF (a.15)

There is an integer ng and a constant K depending on I, but not on n or f, such

that for n = n, (a.15) has a unique solution v € S, and
llullo =< X1 £ llo. (a.16)

(Note once more that we pose the problem in terms of U and F but consider the

solution as a functionu € S, .)

Proof. Because (a.15) is a linear problem and S, is a finite-dimensional
space, the lemma follows once we have established (a.16). Suppose (a.18) is
false. Then there is a subsequence {n'} for which the complex number z, € C

and the functions f (r) and «(n) € S, that are related by (a.15) satisfy
2n 2. €L, |lu(r)lo=1 [If(n)ib~o0. (a.17)

However, from (a.15) we have
D' (n)an D) = = 0" )(admNn) Din) = 07 (n)QF(n).
We rewrite this to get
Blu(m)u(n) - = feluln)|®as = [radz + “—ea(un).  (a18)

Arguing as in the proof of Lemma A.1, we find for n' large enough that

+ 2l (n)llo.

e
flu(®)l3 = AT

S

Pnvormp i IR N Y
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Therefore there is a subsequence {n"} of {n'} and a function ¢ € A™ so that
u(n") + p weakly in H™(Q). liplo = 1.

Moreover, (a.17) and (a.18) imply that for every v € A™ the function p satisfies
1
Blpw) = —— [qyvdz.

Hence 1/ z,, is an eigenvalue of problem (a.4) and z. is an eigenvalue of T. But

this is impossible.

Lemia A.3. Fix g € A™(Q) and let g(n) € S, be the L? projection of g onto

Sn- Let ¥ be as above. For every z € L, let u(z.z) and u(z:z,n) be the solu-

tions of
B{u v) - %fquﬁdz = fg'Ud.': for allv € A™,
(a.19)
Al(z.n) - -i—hz”"N U(z.n) = QG(n).
Then
lu(:z.n)llo < Kollg o,
(a.20)

fu(:z) —u(;zn)o+0 asn -+ o,
Proof. For each n we have

rab- % O (hem NYD = D°QB(n).
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This equation may be rewritten as

1
B(uu) - %-fq |ui2dz = fgﬁd.': + -;-s,,(u..u).
Because ||ullp is uniformly bounded, the usual argument shows that
u(:z.n) » u(-;z) weakly in /™ (Q2); but then u(-;z.n) » u(-;z) strongly in L3(Q).
THEOREM A.4. Let 0 = 1/ Abe an eigenvalue of T. Let § > 0 be chosen so small
that o is the only eigenvalue of T inside the circle about o of radius 246, and this

circle lies entirely in the right half plane Re z > 0. Then there is an n, so that

for each n = n,; there is an eigenvalue o, of T, satisfying

lo —on| < 8. (a.21a)
Consequently u, = 1/ 0, satisfles
2
A-p | < -1—":1%\—‘5- (a.21b)

Proof. We consider the two projection operators
. | — y-t - L - -1
E:= o oz - T)'dz, E,:= et (2 - Ty) ez, (a.22)

where is thecircle'= {2z € C: |2 — g| = §]. In order to prove the theorem we

need only show there is ann, such that for alln 2 n,
E, #0. (a.23)
Let ¢ be the eigenfunction associated with 0. Then

cLlp=g¢ InQ bp=0 ond (0£j<sm-1). (a.24)
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Equivalently,
gB(pv) = fqga'D dz forallv € A™. (a.25)
Moreover,
Eg=y¢ (a.28)
The function
u(z):=(z - T) ' (a.27a)
satisfles
Lu - —1-qu. = LLqp = -1—qrp inQ, bu=0 ondQ (a.27b)
z z 20

In other words, for every v € B™ we have

B(uv) - —i—fq (z)u(z;z)th)-dz = 10 fqvﬁ dz. (a.28)

-4
Let g(-:n) € S, be the L? projection of g¢ onto S,. Let w(-;n) be the solution of

B(ww) = %fq;aﬁdz forallv € Sy,. (a.29)
Then W satisfles

Al = %—QE-’ (a.30)

Now set
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g(n) := Eqw(in). (a.31)

Our goal is to show that there is an n; such that ¢(:;n) # 0 whenevern 2n,. We

have
o(m) = = (2 = T Mwlin) de. (n.32)
Let
v(izn):=(z - ) 'w(n). (a.33)

( A straightforward calculation shows that ¥ satisdes

! AV (¥ N)P = Al = ——QG. (a.34)

Comparing (2.28) and (a.34), we see by Lemma A.3 that

lu(izm)los & ‘a.358) k
{
. for some constan: K, and E‘
1
! flv(izn) ~u(2z)lp =+ 0. (a.35b)
By (a.22), (a.28), and (a.27a),
=1 .. .
¢ =5 P u(iz)dz; (a.36a)

moreover, by (a.31) and (a.32)

g(n) = #ﬁ,v(-;z.n)dz- (a.36b)
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The dominated convergence theorem and (a.31) now imply that

llp(in) —@( Mg+ 0 asn =+ o,
But p # 0; hence p(-:n) # 0 for large n, and the theorem is proven.

Reusrk. *Following the argument in [14], one can give a complete discussion
of the relationship of the eigenvalue problem (a.<2) to the eigenvalue problem
(a.4b). All that remains for completeness is to establish that the multiplicity of
eigenvalues is preserved. However, because it is not relevant to our present

purposes we omit it.

I8
I
7




-74 -

References \

[1] R.J. Agus, L. D. Gates, anp B. ZoNDEX, 4 method of black iteration, J. Soc. Ind. i

Appl. Math., 4 (1856), pp. 220-229. 1;,

[2] K. Azz axp 1. BaBUSKA, eds., The Hathematical Foundations of the Finite Ele-
ment Method with Applications to Partial Differential Equations, Academic ‘1

Press, New York, 1973.

(3] D. L. BoLEY aND S. V. PaRTER, Block relazation technigues for finite element

elliptic equations: an ezample, LASL report LA-7870-MS (1979).

[4] C. peBoor, ed., Mathematical Aspects of Finite Elements in Partial

Differential Fquations, Academic Press, New York, 1974. &

[5] J. H. BRaubLE AND A. H. SciaTz, Rayleigh-fitz-Galerkin methods for Dirichlet's

problem using subspacas without boundary conditions, Comm. Pure Appl.
Math., 23 (1970), pp. 853-675.

[8] P. G. Curier, The Finite Element Method for Elliptic Problems, North-

Holland, Amsterdam, The Netherlands, 1978/

[7] G. J. Fx axp K. LARSEN, On the convergence of SOR iterations for finite ele-
ment approzimations to elliptic boundary velue problems, SIAM J. Numer.
Anal., 8 (1971), pp. 536-547.

[B] S. P. FrankEL, Convergence rates of iterative (reatmenlts of partial
differential equations, Math. Tables Aids Comp., 4 (1950), pp. 85-78.

[9] A. Georce, Nested dissection of a Tegular finite element mesh, SIAM J.
Numer. Anal., 10 (1973), pp. 345-363.

[10] R. R. KaLLMAN AND G.-C. RoTA, On the inequality || 'i2 < 4|l £ |Ill7 "Il in /fnequal-

ities /I, O. SHisHA, ed., Academic Press, New York, 1970, pp. 187-191.




[11]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

-75-

J. E. OsBory, Spectral approzimation for compact operators, Math. Comp.,
29 (1975), pp. 712-725.
S. V. ParTER, Multi-line iterative methods for elliptic difference equations

and fundamental frequencies, Numer. Math., 3 (1961), pp. 305-319.

. On estimating the 'rates of convergence" of ilerative methods for
elliptic difference equations, Trans. Amer. Math. Soc., 114 (1965), pp. 320-
354.

—. On the eigenvalues of second order elliptic difference operators,

SIAM J. Numer. Anal., 19 (1982), pp. 518-530.

S. V. PARTER AND M. STEUERWALT, Block iterative methods for elliptic and para-
bolic difference equations, SIAM J. Numer. Aneal., 19 (1982), pp. 1173-1195.
J. Rice, On the effectiveness of iteraticn for the Galerkin method equations,
in Advances in Computer Methods for Partial Differential Equations IV, R.
VICENEVETSKY AND R. S. STEPLEMAN, eds., IMACS, New Brunswick, NJ, 1981, pp.
68-73.

D. J. Rosz avp R. A Wiioucksy, eds., Sparse Hairices and Their Applications,
Plenum Press, New York, 1972.

G. StraNe, Approzimation in the finite-element method, Numer. Math.. 19
(1972). pp. B1-98.

G. STRANG AND G. J. FIX, An Analysis of the Finite Element Method, Prentice-
Hall, Englewood Cliffs, NJ, 1973.

R. S. VArGA, Matriz [terative Analysis, Prentice-Hall, Englewood Cliffs, NJ,
1962.

. Eztensions of the successive overrelazction theory with applica-

tions to finite element approzimatiané, in Topics in Numerical Analysis, J.

J. H. MILLER, ed., Academic Press, New York, 1973, pp. 329-343.




E
H

-76 -

[22] D. M. Younc, lterative methods for solving partial difference equations of
elliptic type, Trans. Amer. Math. Soc., 78 (1954), pp. 92-111.

(23] , Iterative Solution of Large Linear Systems, Academic Press, New

York, 1971.

[24] O. C. ZEvxEwicz, The finite element method: from intuition to generality,

Appl. Mech. Rev,, 23 (1970), pp. 248-256.

P e T A



