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20. (continued)

The theoretical formulation pertains to a bubble in a fluid which
is infinite in extent and contains no barriers or interfaces apart from
the bubble surface. An external flow can be imposed, imparting a stress
history. In addition, a spherical bubble profile, obtained from present
experiments or theories, dictates a volume change and drives the non-
sphericities.

Surface tension and inertial forces are very important in these
bubbles and are incorporated in the model. Because the effects of fluid
rheology are of primary interest, the changes in bubble behavior which
occur between a Newtonian and non-Newtonian environment are discussed in
detail. An integral constitutive expression generates the stress field
in the fluid.

One concludes from the theory that viscosity and elasticity have
negligible influence on growth and collapse of spherical bubbles under
conditions likely to be encountered in practice. However, the behavior of
nonspherical bubbles in an otherwise quiescent fluid is significantly
altered by the addition of an elastic component to the constitutive rela-
tion, and such changes are even larger when an external flow is imposed.

Reproducible cavities were generated by optical cavitation techniques
in both water and dilute aqueous polymer solutions. Spherical or non-
spherical buhbles were produced, either near or far from a solid wall.

Experimental results show good agreement with the theory for non-
spherical bubbles in an infinite quiescent fluid. Other trials, near a
" solid wall, suggest the existence of a competition between nonspherical
modes. The jet which is induced by a solid wall near an initially spheri-
cal bubble did not appear when the bubble is initiated asymmetrically.

Finally, we have shown that from a combination of external flow
theory and experimental observations one can predict that changes in rheo-
logical properties can macroscopically alter cavitation behavior by chang-
ing the influence of the flow on the bubble. This is the first work to
put forth a plausible explanation for such an interaction.
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I. INTRODUCTION

Bubble dynamics is commonly regarded as a harmless diversion.
It elicits images of soap bubbles floating on air currents and per-
haps of bubble baths or the gaseous volumes which arise in carbonated
beverages. However, bubbles have a myriad of beneficial practical
applications as well as potentially catastrophic consequences in many
processes involving liquid flow. Of particular relevance here is the
flow cavitation which can occur in pumping or aquatic propulsion de-
vices. Uncontrolled formation of voids under these circumstances can
result in large drops in efficiency and can eventually cause struc-
tural damage to the apparatus. Research activity has been carried out
in this area for most of this century. Great strides have been made
in reducing cavitation damage, e.g. the design and use of super-cavitat-
ing propellers which induce void formation in a controlled and predict-
able manner, but understanding of these phenomena is far from complete.

A new complication was introduced by the relatively recent avail-
ability of synthetic high molecular weight polymer molecules and the
subsequent investigation of their properties. The presence of "drag
reducing" polymers as solutes at very low concentrations (* 500 ppm
levels) in aqueous liquids dramatically changes the initiation and
subsequent behavior of cavitation in "water" tunnel flows past blumt
bodies. Attempts to extract the essential features which determine
“"cavitation inhibition" to allow some predictive capability for bubble

dynamics and to provide more fundamental knowledge about the behavior




of polymer solutions in nonviscometric flows have achieved only limited
success. A new model and experimental program is offered here which
includes elements present in actual flow cavitation, but have not re-
ceived much previous attention. For the first time, dilute polymer
solution non~Newtonian effects cause non~negligible changes in bubble
dynamics which can, in turn, alter the gross behavior of the void.

The features considered explicitly in this study are presented
in Table 1. Surface tension at the gas-liquid interface is retained,
but heat and mass transfer effects are not explicitly included. Al~
though incorporation of the influence of each of these factors is not
original with this work, the analysis of the interaction between them
is unique. The simplest case of interest involves the behavior of a
nonspherical bubble in a fluid of infinite extent upon which no exter-
nal flow is imposed. The results show that the oscillations in shape,
which occur because of the presence of surface tension, are strongly
coupled to the overall volume change of the bubble. A change in shape
due to fluid rheology is predicted which is larger than any alteration
of the overall bubble size due to the same differences in fluid proper-
ties. The addition of an externally imposed flow around the body, which
is the only source of asymmetries in the system, couples with fluid
rheology to create differences between model bubbles which are much
larger than those changes without flow. The experimental investigation
of the behavior of an initially nonspherical bubble near a solid wall
suggests that the well-established solid wall effect —— the induction of
a liquid jet during the collapse of an initially spherical bubble -~ is

reduced by the initial asymmetry.
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These results, in conjunction with one another, suggest a mech-
anism by which dilute solution rheology may strongly influence flow
cavitation behavior. The shape and subsequent action upon collapse of
a bubble subject to the v;locity gradients encouncefcd during flow
cavitation are significantly changed by fluid rheology. This shape is
also important to the interactions between the bubble and the solid
boundaries which are present. Thus, flow and rheology can change gross
bubble dynamics. This working hypothesis is consistent with all of the
present work and also with the puzzling lack of data showing rheologi-
cal effects in previous single bubble experiments and theories since
they usually treated the factors individually.

In order to demonstrate the importance of flow, asymmetries, and
rheology in bubble dynamics, the groundwork laid by past researchers
18 very useful. From that basis, the preseng model can be developed
with special consideration of initiation, rheological models and the
methods employed to solve the resulting equations. Then, the means
by which experimental tests were conducted are described. Results are
subsequently presented. Initially, they appear with some comment as
to their individual meaning, then they are discussed from a broader
perspective. The conclusions so drawn are complete in the context of
the present work, but also provoke speculation and suggest future work.
Appendices have been included to clarify theoretical, numerical and

experimental details. As a result, little development of equations is

presented in the primary text.
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I1. BACKGROUND

The addition of small quantities of macromolecules to water (e.g.
500 ppm polyacrylamide) affects relatively large changes in the forma-
tion and subsequent behavior of flow-induced cavitation bubbles. This
phenomenon has been quantified through measurement of the cavitation

inception parameter, O» vhich represents the conditions at which cavi-

tation initially occurs as

o, --,;s—p-—vgl (1)
wvhere P8 is the static flud pressure, Pv is the vapor pressure, p is
the density and v° is the free stream velocity. Figure 1 shows typical
"cavitation inhibition" data for water tunnel flow past a blunt body.
The cavitation parameter has been reduced by as much as 70X for poly-
mers such as guar gum (Ellis and Hoyt, 1968, Ellis and Ting, 1974,
Oba, et. al., 1978, Hoyt, 1976). Thus, higher velocities or "more
severe" conditions are necessary to form voids. Other experiments
show that differences persist even after inception.

In water, the appearance of the cavitation bubbles
is very violent and chaotic, consisting of many
very small bubdles... However, as the polymer is
added, the cavity looks more transparent, and shows

a regular, smooth, wavy pattern at the vapor-liquid
interface. (Ting, 1978)

Gross differences appear in both the nucleation and sudbsequent dbehav-
ior of cavitation bubbles. In this work, attention is focussed on the

latter stage, where continuum descriptions are applied.
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Many excellent sources of general information on bubbles are avail-

able including volumes by Hammit and his co-workers (1980, Kmapp, ¢t. al.,
1970), as well as review articles by Plesset and Prosperetti (1977),
Acosta and Parkin (1975), Plesset alone (1977), and Prosperetti alone
(1981). All theoretical work is seen to begin with Lord Rayleigh in 1917.
He began by assuming a spherical void to be present in an infinite medium
and neglecting all fluid properties except a constant density. A large
amount of the bubble literature since that time has been devoted to the
analysis of more detailed descriptions of fluid behavior, including vis-
cosity and surface tension and other physical processes, e.g. heat and
mass transfer, compressibility and the transport of contaminants. A

form of these results is employed in the present work (Equation III.2)
and like most treatments neglects processes within the bubble. By re-
taining an assumption of spherical symmetry,only one spatial coordinate,
the radius r in spherical coordinates, has bearing on these analyses,
greatly simplifying the equations of motion.

Results for spherical bubbles are divided into categories. For
pure vater, surface tension ¢ and viscosity u are weak functions of
other physical parameters such as temperature. This has allowed suc-
cessful modelling under the assumption of constant values for those two
coefficients. However, the composition and behavior of the pressure in
the interior of the bubble with the evolution of the bubdble is not so
simple. Plesset (1977) has delineated two categories of budbdble dynamics
vhich he has labelled gas bubbles and vapor dubbles. Gas bubdles are
those cavities for which the medium in the interior is largely or com-

pletely a permanent, noncondensable gas. For vapor bubbles the gaseous
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phase consists almost entirely of the vapor of the surrounding fluid.

Gas bubbles have been extensively investigated, particularly in
the areas of surface oscillations and mass diffusion effects. However,
for the field of cavitation they are not relevant.

The category of vapor bubbles is subdivided into two other topics
based upon the extent to which thermal effects alter the internal pres-
sure, P, and thus, bubble behavior. The strong pressure dependences
of equilibrium bubble pressure and vapor density act to significantly
reduce Py for a growing bubble as evaporation at the bubble surface
cools the interior. Using an energy balance, and assuming that heat is
supplied by a2 1iquid layer which has thickness comparable to the diffu-

sion length (Dt)k. the "thin thermal boundary layer" assumption, this

temperature difference can be estimated as

Rog (T)L

AT & ——p— 2)
3(bt)* pec

vhere L is the latent heat of vaporizationm, p:(T) is the equilibrium

vapor density at temperature T, D is the thermal diffusivity, c is the
heat capacity and t is the time required to grow to radius R. For

water at 15°C, with R = 0.1 cm and t = 10™® sec, AT = 0.2°C, while at
100°C, AT = 13°C. For the former case, in which the thermal effect is

not expected to be important, the proper term is cavitation bubble. In
the latter, and all cases where thermal effects dominate inertial effects,

the result is boiling or vapor bubbles.
The cavitation bubble is more relevant to this work and fortunately,

is the simpler case. For constant Py and neglecting viscous effects
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where p§ ~ Py is the vapor pressure, p_ is ambient pressure and initial
values are denoted by the subscript zero. For ib = 0 and neglecting the
surface tension term, the Rayleigh result for time to complete collapse

is

5
[+ T (_;_) Z(Pv - p“)J [«
%)

- 0.915(;—&-—)” R

Qdintitative experimental confirmation of this value was given by
Lauterborn (1972). He was able to generate "empty" cavities by focus-~
sing a pulse from a Q-switched ruby laser on a point on the interior of
8 liquid mass. Agreement between experimeni and equation (4) was ex-
cellent, despite the compressibility of the real liquid. Note that this
compressibility is expected to become significant in the final stages of
collapse, when the Mach number of the bubble becomes large.

The large magnitude of the thermal effect on boiling bubbles is
illustrated in Figure 2. Here the theoretically predicted radius vs.
time profiles for the Plesset analysis is shown along with the Rayleigh
result for water at 103°C. BExcellent experimental agreement with the
Plesset prediction was found by Dergarebedian (1953). He observed
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~j‘ spontaneous nucleation in superheated water.
§‘ ' Zwick and Plesset (1955) have also analyzed the collapse of a
bubble. The distinction between cavitation and boiling bubbles is
! unimportant h@re. Despite the heating which occurs with vapor conden-
sation Figure 3 shows little deviation from the Rayleigh result.
Flynn (1975, 1976) has developed a wore complicated model includ-
ing compressibility and motions within the cavity as well as heat con- ¢

duction and viscosity. His results cannot be summarized easily, but

i v arogte

result in predictions of numerous regimes of bubble dynamics which have
yet to be experimentally verified.
The results most relevant to the present study suggest that the

growth and collapse of a spherical cavity in water are usually domi-

nated by inertia and/or surface tension, not by viscosity. The small
amount of viscoelasticity expected for dilute polymer solutions falls
in the same category as viscosity. Both viscosity and viscoelasticity
. bec wme more important for small radial oscillations (Tanasawa and Yang,
1970, Zana and Leal, 1975, Yang and Yeh, 1983), but are still minor.
Experimental testing of these results has been conducted almost
exclusively on aqueous systems. Spark gap and laser techniques have
been used to concentrate the energy necessary for cavitation inception.
In general, good agreement with theory has been found (see Figure 2).
More detail can be found in the section entitled "Experimental Program".
These analyses have all been carried out under the assumption that
spherical symmetry of the bubble is maintained. Plesset (1954) pexr-

formed a linear stability analysis on the nearly spherical interface

between two immiscible, incompressible, inviscid fluids. He assumed a




drop shape given by

Tpurface (0rt) = R(t) + 'Z‘ 8, (£)Y_(8) | (5)

where Y 1s a spherical harmonic of degree n (MacRobert, 1948;Hobson,1955),
and a is initially small confnred to the equivalent radius R(t). The analy-
sis proceeded conventionally in order to determine the conditions for which
an(t) will grow, suggesting the shape is unstable, and those for which

it will not, implying stability. The stability condition which results

can be expressed in terms of the function an(t).defined by

R, 3/2
a (t) = (i_) a (t) (6)

which was shown to be governed by
eR - G(t)an =0 (74)

where

02 (]
G(t) -% (-:-‘) +% [%4-

n(n~1)pa2~(nt+l) (n+2)p 1]
npy + (ntl)py

(78)

_ (n-1)n(n+l) (nt+2)0
[np2 + (n42)pa]R

and o is the surface tension, and p; and p2 are the fluid densities of
the interior and exterior fluids, respectively. The details of the
smplitude profile depend on the particular initiation, but a general

statement can be made

s Mt
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G(t) <0 promotes stability

G(t) >0 allows instability

this means that surface tension always has a stabilizing effect, and
from Equation (6), increasing R or bubble growth is seen to have a
stabilizing effect, while bubble collapse promotes instability.

Plesset and Mitchell (1956) then performed a more involved analy-
sis for a vapor cavity, neglecting the density of the vapor and the
vigcosity of the vapor and the liquid. Their results showed that an
expanding vapor cavity is stable, i.e. if |an(0)|/Ro << 1, then
Ian(t)llk(t) << 1. For a collapsing cavity, distortion amplitudes re-
mained small as long as 1.0 > R/R > 0.2, but as R + 0, a (t) increased
in magnitude as R-k. Thus, the spherical shape is unstable for the
later stages of bubble collapse. These trends are valid even when a
small viscous effect is included in the treatment (Prosperetti &
Seminara, 1978). Viscosity does tend to damp the growth in amplitude
of the higher order harmonics.

To determine the linear stability of the bubble shape only the
long time behavior of the distortion is necessary. The bubdbles were
assumed to exist in an infinite fluid, quiescent apart from the effects
of the dynamics of the cavity; this is a spherically symmetric geometry
giving an equilibrium shape of similar character. Of course, this is
not the only environment in which a bubble may arise. There may be

conditions imposed on the fluid away from the bubble, such as an

elongational flow or a solid boundary, or the bubble may be initial-

ized as nonspherical and a detailed description of its evolution de-

sired. Bubbles have provoked some study in this regard, but sore
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often liquid drops and solid bodies have been examined, giving rise to
general techniques for nonspherical shapes.

With bubbles and any other initially spherical bodies in an im-
posed flow, the primary method of study has been expansion of the
velocity profile in terms of spherical harmonics (Cox, 1969, Shima &
Nakajima, 1977). Use of this technique is usually predicated upon an
assumption of creeping flow, at least in the immediate vicinity of the
bubble. Under this restriction, Happel and Brenner (1965, section 3.2)
offer a practical presentation of the use of sphericai harmonicé in
Lamb's general solution (Lamb, 1945).

The presence of any interface in the vicinity of a bubble alters

the flow induced by the cavity dynamics from a spherically symmetric

velocity field. For a solid wall the collapse process results in a jet
impinging on the wall which may be one of the major causes of the de-
structive action of cavitation. Experimentally the jet has been ob-
served in laser-induced bubbles (Lauterborn & Bolle, 1975) in qualita-
tive agreement with nmumerical simulations (Plesset & Chapman, 1971).
(See Figure 4.) This type of behavior can be predicted using either
integral methods, employing the Bernoulli equation while neglecting
viscous stresses (Voinov & Voinov, 1975, 1976), or marker-and-cell
simulations (Mitchell & Hammitt, 1973), which can include viscosity.
The viscous effects for water are negligible, dominated by ourtace
tension and inertia. (See Table 2 for representative values.) The
most important parameter appears to be the distance of the bubble from

the wall.
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TABLE 2

Order of Haggitude of Terms in Radius Equation

Inertial, Surface Tension and Viscous

R ~ 3x107' cm

'g p ~ 1 gm/em?

\ u &~ 10°% gm/(cm-sec)
o ~ 60 gm/sec?

At~ 10”° sec

> R~ R/At & 3 x 10? cm/sec

Inertial: p R? ~ 10%

s

Surface Tension: -:l ~ 400

Viscous: u % ~ 10

TR N
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When the interface is not a solid wall, but is deformable like a
free surface, an "entirely new form" (Gibson & Blake, 1981) of collapse
can be observed experimentally. Depending on the physical properties
of the boundary — 'inertia' and 'stiffness' -- the bubble may migrate
to or from the interface as the bubble collapses or pulsates. A jet
forms and moves in the same direction as the overall migration.

An initial nonsphericity is important even in the absence of an
imposed flow or solid boundary. The requisite mathematics has been put
forth by Hsieh (1965, 1974), who includes equations for heat and mass
transfer effects, compressibility and also variational methods. Sim~-
plified numerical results by other authors (Chapman & Plesset, 1971)
show that an initially prolate spheroid (Figure 5A) may form “wo jets
upon collapse, while an oblate spheroid (Figure 5B) leads to a dumbbell
form. The most relevant feature of these nonlinear results is that the
linear theory of Plesset and Mitchell (1956) agrees well until the final
stages of collapse.

Very little has been offered here so far about non~Newtonian or
viscoelastic effects, either generally or in relation to bubbles. In
the general view it is best to refer to the numerous treatises on the
subject (Bird, Armstrong & Hassager, 1977, Schowalter, 1978). The most
important general consideration is that fluids which exhibit viscoelastic
effects may behave in a manner which runs counter to an observer's
"Newtonian” intuition (Schowalter, 1978), e.g. the Weissenberg rod-

climbing effect. Furthermore, the history or pre-treatment of such a

saterial can be vitally important to its performance. In modelling

there are innumerable complications which almost invariably force a
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compromise between rigorously formulated constitutive equations of fluid
behavior and simpler forms which result in tractable mathematics. The
applicable models and quantitative results are also highly dependent
on the particular flow present, although qualitative trends are usually
similar. These difficulties must be considered in the quasi-linear
model employed in the present work; careful attention is given to pos-
sible nonlinear effects. (See Appendix B) 5
Dilute solution non-Newtonian effects on bubbles brings attention |
back to cavitation inhibition. Spherical bubbles show little effect
(Ting, 1975, 1977, Ting & Ellis, 1974), experimentally or theoretically.

Experiments involving nonspherical bubbles, by Chahine (1981) and others

(Chahine & Fruman, 1977, Gibson & Blake, 1981) with collapsing bubbles
near interfaces, show a "significant' delay in the creation of the
microjet when 250 ppm of polyox are added to the solution and the inter-
face 1s solid. Observations near a free surface also show an effect
from dilute additives. However, these results are not definitive and
the relationship between them and cavitation effects is still a matter
of speculation. Observations by different workers may even appear con-
tradictory. Chahine suggests that the level of nonsphericity in bubbles
is reduced upon addition of polymer solute, while Oba (1978) reports the

opposite effect in his flow experiments.




I1T. THE EQUATIONS OF MOTION
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1. Spherical Dynamics

For the cavitation model developed here the nonspherical shape
will be coupled with the overall growth or collapse of the bubble.
This volume change is treated through an analysis of the equivalent

spherical bubble. Continuity requires that the velocity field in an

S A,

incompressible fluid in this symmetrical situation have the form

1 2 °
| [Yspherical (r’t)]r - = tt!R . )

in spherical coordinates with origin at the bubble center. R(t) and
R(t) are the instantaneous radius and its time derivative, respectively.
The fluid is assumed to be quiescent at infinity so the angular velocity

components are identically zero.

e e

The r~component equation of motion integrated from the surface

T = R to infinity then gives

-
.. -3— .2 - - .
o[RR + 3 R*]) Pz Pa + fx(g ;)rdr (2)
vhere p, the liquid density, I, the extra stress tensor, Pl' the liquid

pressure at r = R, and P.. the ambient pressure,must now be specified.

By neglecting the viscosity and density of the internal gas the bubble

is assumed to have a uniform internal pressure. This should be asccu-

rate as long as the ratio between internal and liquid viscosities is

i
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small and the internal Mach number

a R/(3 x 10" cm/sec) << 1 3)

uainternal

since the speed of sound in air is approximately equal to this denomi-

nator. Surface tension can be included so that Equation (2) can be

expressed as a normal force balance across the surface

p[RR +-% R?] = Pg(t) + P (t) - Pa(t)
(%)

“ 1
20 Trr
R +3I -—r—dr
R
where P_ 18 the internal pressure of non-condensable gas, Pv is the

vapor pressure of the liquid at the surface temperature and o is sur-

face tension. This form of the equation is sufficiently general to be

capable of including:
A) The nature of the non-condensable gas
R
- - 0 -337
e.g. Pg(t) Pg(k) RS ¢ R? (5A)
for a polytropic gas
B) Thermal effects
P, (t) = P (T), oft) = o(T)
(5B)
and u(t) = u(T)
C) Different constitutive stress expressions
(5C)
strain invariants I

The simplest, useful, non-zaro, stress expression is that for a purely
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For this velocity field

Newtonian fluid with constant viscosity u.

the radial deformation rate is

2 o«
e (r,0) = BLLRO) ®)

8o that
[ ]
‘rr 2 R(t
I < I VRG )

Non-Newtonian expressions may be complicated by higher time deriv-

atives or integration over past times combined with material objectivity

constraints. When the time integration is performed in a Lagrangian

frame, following each fluid element, objectivity is satisfied for this

simple, symmetrical flow situation. The Lagrangian coordinates can

easily be related to the Eulerian, laboratory-fixed, coordinates by
(r')® = x® + R(¢") - R¥(2) (8)

vhere r' denotes the position, at the past time t', of a particle which,

at present time t, resides at radius r. Time integration must be per-

formed at constant r',
A mathematically simple model which inciudes stress accumulation

with fading memory was employed by Fogler and Goddard (1970, 1971), who

specified a relaxation modulus (memory function) N(t) such that
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t
trr(t) = I N(t-t')err(t')dt'
- )

N(t) = u §(t) + G, exp (-t/))

when 6(t) is the Dirac delta function. The elastic contribution is
characterized by two parameters: )\, a relaxation time, and Go’ an
elastic modulus. In the limit of zero elasticity a Newtonian fluid

with viscosity u is described. In the Lagrangian frame, the stress

term becomes

Trr
I K (10)
R 1 ]
t i(t')Rz(t')lnégégyl)dt'

= =4 [ N(t-t')

-0

R%(t") - R3(¢)

A similar result obtains for an QOldroyd three-constant model.

Ting (1977) shows that the equivalent elastic modulus is expected to
be directly proportional to polymer concentration. To generate a rad-
ius profile initial conditions need to be specified. Ting chose to
impose equilibrium before time t = 0, then postulated a2 step change in
ambient pressure of magnitude P* at time t = 0 to initiate motion. By
his convention, when P* < 0 the bubble grows. The nmmerical solution
predicts changes in R(t) values of less than 2% between pure water and
a slightly viscoelastic medium.

Fogler and Goddard present large elastic effects, i.e. changes

in the R(t) profiles, but for parameter values which minimize surface
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tension and correspond to Go much beyond the small values expected by
Ting. Since the present work was motivated by dilute solution phe-

nomena, values closer to Ting's were investigated. .Thil meant little
alteration of the steady shear viscosity was allowed. One manner by

which to impose this requirement was to restrict the relative values

of Go and A by

Gol -y
where (11)

¥ 0 (10-° Pa-s)

which gives an elastic contribution to the steady shear stress equal to

the viscous component. In calculations the initial physical parameter

values were chosen to correspond to superheated water at 103°C, since
experimental data on spherical bubble dynamics were available

(Dergarabedian, 1953).

TABLE 3

Parameter Values for Initial Calculations

Pv = 845 mm Hg
P, = 760 m Hg
0 = 58.9 dyne cm
p = 0.961 gn/cm’

-10° dyne/ca® < p* < 10° dyne/cm?

107° sec < A < 1.0 sec
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For all P* and A values the radius profiles changed by about 1% or less
between a purely viscous and viscoelastic fluid subject to condition (11).
As the magnitude of P* increased, inertia became more important since
velocities and accelerations became larger. For more detailed results,

see Section VI.

2. Viscous Nonsphericities

The relaxation of the assumption of spherical symmetry greatly
complicates the analysis, even for the purely viscous case, since © and
¢ components and dependencies now exist. A general analysis might begin
with the full equations of motion in spherical coordinates. However,
the Navier~Stokes equations include nonlinearities from the convected
inertial terms. These introduce computational difficulties which
are compounded for viscoelastic fluids by nonlinear co-deformational or
co-rotational constitutive models.

Prosperetti (1977, 1980) neglected the non-linearities in the
purely viscous case by imposing the condition that all departures from
spherical symmetry be small. The shape of the bubble surface ) (r,0 ¢,t)

can then be expanded in spherical harmonics.

2 (r,6,4,t): (12)
r-R() -c]a (07 (0,6) =0
n

for some small parameter ¢ which must be determined to allow the desired

mathematical, and physical, simplifications. Here, ‘n(t) is the
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'{ ' magnitude of the spherical harmonic !:(e,¢). The spherical harmonice

s . determine a particular angular dependence and are defined as the solu-

tions to

: 1 3 ) 1 3
[n(o+l) + o7og 39 5100 39 * 5in%e 3'6”“: 0

or, equivalently

e i

y: ©,4) = ei“““ rl‘“l (cos8) (13)

s oo i

for the Legendre polynomials lel(x).
of course, the full velocity field y(r,6,4,t) must satisfy:

DY _av P!
P = 3c + (v Y)Y -‘; éiv. g Q4)

where the stress tensor ¢ for a Newtonian fluid in Cartesian coordinates

] is
o4 % P&yt “(‘a‘x; T, as)

The surface shape ], above, is consistent with a perturbation expansion

of ¥V and the pressure field P as

V(r,0,6,t) =V _+eY +c¥ 0(c?) Q16)
~o 1 4 v

P(r,0,0,t) = B, + € Py + € Py + 0(c?) an

when ¥V ° and P obtain for the unperturbed spherically symmetric case
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previously presented.

. 2208
p, = b, (t) + ol (&% + 20E%)/r - 1 B2y a8)

The first order asymmetries can be divided into two parts; the

first arises in an inviscid potential ana.ysis. Plesset (1954) shows

v, = v ¢p Q19)
a+2 .
where ¢ = - 27 5T 1) + 2000 B2 (0,4)
and
o, | = ;%T (R(t)&(t) + 3R(t)a(t) + 2ii(t)a(t)]Y:(e.¢) (20)
=R

The second type of O(c) term is necessitated by the introduction
of viscous dissipation and/or elastic energy storage. Since potential
functions such as the inviscid velocity profile have zero curl, this
second Velocity can be treated through the vorticity w

€w ¥xy=e Uxy, (21)

vhich is governed by the usual vorticity equation for the purely viscous

case. At first order in ¢

1 Z

dw
Y @xy)e-vIx(lxy

for kinematic viscosity v.
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¥ The usefulness of this analysis in terms of vorticity is not only
the elimination of the need to explicitly determine the pressure field,
but also a decouposition of y is possible since it is solenoidal
(V - w = 0). The vorticity can be expressed as the sum of two other
vector fields, one poloidal and the other toroidal, which can, by defi-

nition, be expressed through two series of 8calar functions.

f w=5+T 23)
|
| 5(r,0,0,£) = § ] ¥xux(s_(r,)¥2(6,0)e ] (24)
nm
T(r,0,0,t) = ] ] Ux[T, (r,t)Y (8,0)e ] (25)
nm

Since these two vector fields are orthogonal, the linearized

;\ equation can now be written as two series of independent scalar equationms.

i
; For each index n:
;
3S , < R, 93S 3%s S
5t T RQ) 37 = viggz - nlntl) 5] (26)
3T L3 raBy2ry - o2 . T
st + 37 [ROT) = vigzy - nlndl) 3,) (27)

The properties of poloidal and toroidal fields (Chandrasekhar,

App. 1II) can next be employed to show that:
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w " 2 {Tn(r,t)Y:Qr +-yx[sn(r.t)Y:gt] - von } (28)

n,m

Continuity considerations require the presence of the final term which

must satisfy

2 = L ]
Vo =V . T Ye (294)
Integrating this equation
o = Y {[{a (t) + =222 i s 07 (s,t)ds]r®
n n n 2n+1 o’
R
r
_n_ o2n+l n n+l -(n+l)
+ [n+1 R an(t) + Todl [ S Tn(S.t)dS]r } (29B)

R

where the "constant” of integration an(t) is determined by the ambient

flow conditions. When the flow decays at infinity,

o (t) = - %j s T_(5,t)ds . (30)
R
These defining equations for § and T and their relationship to
the perturbation velocity Y, allows an a posteriori evaluation of €.
The simplification of these equations is only valid when the nonlinear
terms, corresponding to convective terms in the substantial time
derivative, which are 6(c2), are much smaller than the 8(c) terms.

These restrictions are considered in Appendix B.

SRS YOI




Boundary conditions on § and T are now required to specify the
solution (Cox, 1969, Scriven, 1960). For an inviscid and massless
internal gas the velocity profile must satisfy the zero tangential

stress condition and the balance of normal stresses at the interface.

The former condition becomes:

? rrseen (1)
2QntD)E 2 [-ua(0)] + L fur(r, )]
(32)

= 2(n+2)u -:~ = (n-1)ua %z

where the amplitude a(t) and its first derivative enter the equation

through considerations of surface curvature. The viscous contribution

to pressure in the external fluid at r = R 1is

T(R t) R.3 R
pv'r-x = an: { R + ( ) IR[(E) 'll(g)nT(s.t)ds} 33)

4
3
4

and it can be used to express the normal stress boundary condition at

r = R,

+ 21 k- 2 @2) @-Dvlace)

+ (- ;—i R + 2(n-1)(n+2)v , + (n-1)(n+2) -Li’—l-(t)

29




+ n(mr2)y TR | n @) I - (§)’](§R)“'r(s.:)ds (34)

K
R

Since the bubble shape determined by the an(t) is of primary interest
this last equation may be viewed as the principal expression of interest.
It is an equation of motion for bubble shape, while the other two are
boundary and consistency conditions.

Prosperetti solved only for the case of constant bubble radius.
Since the coefficients of a(t) and its derivatives are then constants
and only the inhomogeneous, forcing function is time-dependent, solution
of the system is considerably simplified. Laplace transform techniques
can be applied to determine the asymptotic behavior of an(t) analyti-
cally. However, to generate a complete an(t) profile numerical tech-
niques are necessary to invert the solution in the Laplace domain. Of
course, initial conditions such as the initial amplitude an(O) and non-
spherical velocity én(O) are also necessary.

Results for this particular case, where there is no motion pre-
vious to time t = 0, show nonspherical amplitudes undergoing damped
oscillations. Initially, the frequency is determined by surface ten-
sion and damping factor by viscosity, but no such simple statements
can be made about the behavior at long times.

These Laplace techniques are not applicable when the equivalent
radius R is not constant, but the results for this case will probably

be more interesting in view of the stability analyses summarized in

Section 11 and
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“"Indeed, it is expected that in a flow with so
strongly converging (or diverging) streamlines

as the spherical one the accompanying concentra-
tion (or dilatation) of vorticity would play an
important role in the process of energy dissipa-
tion and hence in the equation of motion for a(t)".
(Prosperetti, 1977, pp. 345,346)

Prosperetti (1980) has also approximated the solution of some
cases of variable R by making a series of approximations. He concludes
that small viscosity will not substantially inhibit the instability of
the spherical shape for moderate n. However, it may change the mode
of breakup if the bubble collapses into many fragments.

Before proceeding, the neglect of the poloidal field § should be
justified. All equations governing this function (Equations 26 & 31)
are homogeneous, so it is never present unless initiation requires its
existence. Physically, a zero poloidal field corresponds to an absence
of circulation or bulk rotation (Batchelor, 1970 p. 93) in the fluid.
Mathematically, poloidal fields are necessary when the wvelocity con-

tains components with angular dependences given by

v x [Y; (6.4 ¢l

3. Viscoelastic Nonsphericities

Extension of this perturbation technique to include viscoelas-
ticity is straightforward in principle, however the level of complexity

of the resulting equations is much higher and there are additional

k) §

ramifications of the linearization. An integral model (Equations 9 & 11)

of fluid behavior has been chosen in part because explicit expressions




for ti:e stresses are then available. This introduces an integro-
differentisl form to the system. Material objectivity requirements,
e.g. co~deformational or co-rotational integrations, will, in general,
introduce nonlinearities which must be evaluated (See Appendix B.2).
The extra stress expressions in the purely viscous, Newtonian,
case have the relatively simple form of the terms in equations (27),
(32) and (34) which include a viscosity constant u or v. Any further
complications are removed by the instantaneous nature of the process
of viscous dissipation and its characterization here by a single, time-
and position-independent physical constant. Any spatial variation in
the viscosity would disallow the amplifications which result from the

manipulation
v i) + (0T = 2uv2y (35)

and others like it. To include viscoelasticity, all these extra stress

terms must be altered with careful consideration of the order of opera-

32

tion and reference frame or coordinate system in which they are performed.

The fundamental difference when viscoelastic stresses are calcu-
lated is the need to operate not merely on the instantaneous strain
rate, but also on its appropriate time derivative in a differential
model or on the pertinent past values for an integral equation. Follow~
ing Fogler and Goddard,a Maxwell-type integral model is employed here
since it is tenable with superposition of simple viscous and fading
elastic effects and is the small-deformation limit of many other, more

general expressions. Beginning with velocity field (28) and boundary
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conditions (32) and (34), terms of the form 1
vy (Rir,t) (36)

and replaced in the linear theory by

t
J N(t-t') 1 (R';r',t')dt’ (37

This is not a simple Bulerian integral over past times. Rigorous mater-
ial objectivity constraints would require a Lagrangian frame with co-
rotational or co-deformational contributions to take convective and
orientational changes in inter-fluid element spatial configurations
into account.

Radial convection is incorporated to O0(e®) just as it was in the
spherical case. A new radial position coordinate H is defined here
vhich 1s equivalent to the Langrangian coordinate (8) for symmetric

dynamics. The variable transformations are defined by

r? - r?
T=t
80 that
T(H,1) = T(r,t) (39)

Since the T-equation results directly from the momentum or vor-

ticity equations the right hand side (RHS) of this equation must be
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derived from
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(Mx)V - f N(t-t')i(ﬂ,t')dt'

-

for the strain rate tensor i. The new T equation becomes:

T 33T
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T
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where

1, = 2a(a-1) (n-z)xn(n.r)x,(“‘”

- 2(n+1) (n42) (ma)zn(n.r)f(“*”

T (H,71)
+ n(n+l) a i

'rn(n.r)
I, = ~2(n24nt4) —_

- (20-5) (n-1) (n-z)xn(u.z)x,‘“'”

+ (n+z)(n+3)(zn+7)zn(u.1)1.‘(""°)
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9T _ 9p2{ - 3T , 1} - T
2R“R v vL{2 BH+L W n(ntl) f;}

(40)
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T (H,1)
3" 2(n24n+8) ‘E'ff—

+ 2(a-1) (n-2)(n-5)xn(ll.t)1.(n_8)

- 2(n42) (a+3) (ot6)Z_ (B, 1)L )
17T 4
L3?2 1" ?H
L) = (31 + RH13
and
L
xn(n,r) = an(t) - Ah(T) + i%%% I S-nTn(H.r)dS
R

Zn(H.t) - ;21 Rzml[un('r) - An(t)]

L

nt+l n+l
+ Tl j s 'l‘n(ll.'t)ds
R

and the function A(t) is zero for an externally quiescent fluid and
is introduced in the far-field conditions (Section IV). See Appendix
A for a derivation of this expression.
There are also nev complications in the formulation of the boundary
conditions at the bubble surface. A distinction emerges betwesn terms

which arise from the stress expression and those in the unit normal
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i
A vector. In the viscoelastic case, terms obtain such as
: T .
1y 8(t") R(t' '
J N(t=-1"') TR dt 42)
. -l
and
T L]
a(r) vy R(T' '
ﬁ:tTIN(r-‘r)RT ) dt (43)

which are equal in the viscous limit, but must be distinguished in this
application. The normal stress boundary condition is altered both in
this regard and by changes in the T-equation. The O(e) v-pressure is
calculated by the spatial integration of the equation of motion (see

Appendix A)

n P (H=0,1) &)
] .
‘1 = R® I N(t=-t")

-3 32432, 2D @2) + (@42) (@43) (D)

R(®5) (q-a) 1ar

T
N(t=t'){- 3(%)

-

+

—

+ 20(-1) (@-2) + (x42) (243) P 1R @-0)} av’

h  s20m) pd g, .
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The new normal stress boundary condition becomes (see Appendix A)

et s ot

T

R; 3 > Y a []
| —n—:i'+mna'2(ﬂ"l)(nf2) JN idr
- . x . ;
+ (- %;—i-)iia - 4(n-1) (n+2) I N' %‘}- dt'
T o
teRyae
+ 6n(n+l) -% I N ('i)dT
I R 5
- 12 aR? I N'(%)dr' + (n-1) (n+2) %ﬁ a i
E
T
+ a(a+1) ] N (%)d'r‘ + ?_(E=0,1) = 0 (45)

where ¢ is the surface tension constant and K' = R(t=t'), vhich is

vieved as an equation of motion for a(t). This must be solved




consistent with the T-equation and the tangential stress boundary con-
dition. (See Appendix A.)

T
I N' {2 (n+2)

-l

5Te -
.

+

- @) T4 2(2n+1)n(n°2)(c-A)} dr*

T

- 6(n+l) % I N' < di' =0 46)

| xe

It 1is useful to note that these equations do reduce to their viscous
counterparts when the elastic contribution is zero. In particular, the
spatial integrals of the T field are seen to cancel identically in the
instantaneous dissipation limit. (See Appendix A.3.)

Viscoelastic calculations for the considersbly simpler special
case when R = R , have been performed by Inge and Bark (1981) using
Laplace transform techniques while including a linearized 3-constant
Oldroyd model. Their results supply s useful check on techniques which
allovw time-dependent R(t) values.

The system of oqﬁnttm governing the asymmetric dynamics de-
veloped here is linear in sll of the O(c) quantities, 1i.e. ln(t).
rn(u.r). An('t) and their integrals and derivatives. This linearity
emerges from the assumption that terms which are second order in ¢,
representing convected momentum fluxes and also convected and co-

rotational and/or co-deformational contriudtions to the non-Newtonian
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stress, are small enough to be neglected. However, the constitutive
model employed does not neglect all nonlinear contributions to the
stress, the Lagrangian coordinate transformation incorporates convec-~
tion by terms of zero order 1# €. Thus, this is not merely a linear
viscoelastic model. Furthermore, at this first order in ¢, the
integral model of Equation (III1.9) is equivalent to many others in
integral form including the linear Jeffreys model (Bird, Armstrong &
Hassager, p. 279), the co-rotational Jeffreys model (p. 328) and the
Oldroyd 8-constant model (p. 371).

The neglect of terms of second order in g, restricts the condi-
tions for which the equations are valid to motions exhibiting small
deformations from the purely radial, O(eo) motion. The prescription
for "small" values, which determines ¢, can also be viewed in terms of
the harmonic expansion which is the basis for the separation of angular
and radius-temporal dependences in equation (25). By treating each set
of equations (41), (44), (45) and (46) for each value of the index n,
independent of other n values, the linear independence of the modes
(spherical harmonic angular dependences) is invoked. This implicitly
weans than any asymmetric field, nonsphericity, velocity, pressure or
stress with specific angular dependence Y:(6.¢) will "excite" and de
"excited” by only quantities with that same angular dependence. In
reality this can be violated by inertial terms or by convected elastic
contributions from angular or radial strains and the resulting stresses.

In the viscoelastic stress term the possible contributions can be

evaluated mathematically and this is done in Appendix B.2.

H
i
i
3
H
1




IV. INITIATION AND FAR-FIELD CONDITIONS

In order to solve for a, and thus, the shape of the cavity, the
viscous equations (111.27), (111.32) and (I11.34) or the viscoelastic
system (IIX.41), (111.44), (111.45) and II1.46) must be solved simul-
taneously subject to an 8(e®) R(t) profile such as one generated
through equation (II1.4). Specification can also be made of ambient
flow conditions in conjunction with (I11I.29) and (III.30). The New-
tonian system is mathematically simpler than the equations containing
the Maxwell~type model and complete problem specification can be
achieved by two physical parameters u/p and o/p and two shape values
per mode, an(O) and an(O) at 0(c). For a bubble in a fluid with no
externally imposed flow the system is well-posed.

Viscoelastic flulds add a non-instantaneous component, caused by
fluid memory and represented here by time integrals, which give elastic
stress accumulation. Behavior prior to some initial time, e.g. t = 1
= 0, is relevant to the determination of subsequent dynamics. It is
no longer sufficient to specify an(O) and in(O) only; the memory inte-
grals must also be initialized.

Time zero is chosen to be that instant at which 6(e®) spherical
dynamics are initiated i.e.

R(t) = R(t) =« 0
} t <0 Q)

R(t) = R
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so from equation (1II.3)

R-rp-® |
nb "JL'TET—_-_— (2)

This also initiates the value of the elastic contribution up to time
zero as zero at 0(e®). For this vapor cavity (P: = Pg(t) = 0), motion

is begun by a step change in ambient pressure

[

P (t) = » - P* H(t) 3)

where H(t) i8 the Heaviside step function. The sign of P* determines

the type of spherical dynamics

P* <0 R<0O Collapse

i . .

! P =0 R=0 Static 4)
P* > 0 R>0 Growth

For a particular value of P*. and the physical pa:ameters of Table 3

(in Section II), R(t) vs. t profiles can be generated from equations

(I11.3) and (I1I1.9) with (111.11) and one final comndition
s  +
R(O) =0 )

The initial conditions on the nonspherical terms which are analo-

gous to those on the symmetric values given in equation (1) are
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)
ot t <0 6)

a(t) = a(t) =0

The resulting equation and boundary conditions cannot be satisfied for

arbitrary a(t) = a since the surface tengion term acts as an inhowmo-

geneity for non-zero a, and finite Rb‘ and it cannot be balanced by a

toroidal field satisfying all three constraints. Thus, to conform to

(6) the degenerate case is required
T(xr,t) = 0

}t<0 7)

a(r,t) =0

However, without some additional disturbance only the trivial
case of zero nonsphericities is invoked. The necessary inhomogeneity '7
may be introduced by simply specifying an(O) and Qn(O). Physically,
this seems troublesome since a discontinuity in shape and/or nonspherical

velocity is necessary. In the viscous case this objection is not rele-

vant since both mathematically and physically the manner by which these
initial values arise doe not influence subsequent behavior. Thus, even
if a discontinuity in in(t) at t is specified which requires a physi-
cally unreasonable singularity in the acceleration :n(to). the problem
is well-posed after t o These same argussents cannot be forwarded for

8 viscoelastic medium, although conditions (6) do allow values to be

assigned to the elastic integrals. For the viscoelastic fluid the

manner by which the condition at time t = 0 arise is relevant to




& subsequent (t > 0) behavior.

Results of simulations which incorporate the pre-zero static
conditions (7) show only a small difference between a viscous fluid
and one exhibiting viscoelasticity modelled by equation (II11.9)
with A > 1075 seconds. (See Results, Section VI.) This is consist-
ent with the expectation that viscoelasticity, modelled in this man-
ner, will be cumulative and the observaticn that in the present case

? the duration of the nonspherical bubble dynamics is insufficient to
| allow stress accumulation.

The difference between viscous and viscoelastic responses in

this analysis results from a difference in stresses symbolized by

A(stresses) =

viscoelastic stresses - viscous stresses (8)

T ee(ﬂ' pT') e (H't)
f(R,H) f NG-1") gy 9" - VERBFRgy

.
[

-¢

y
4
1
Al

where

strain rate in viscoelastic medium

e
e

e, - strain rate in viscous fluid
Thus, the difference in stresses can be viewed as resulting from three
highly inter-related and interdependent components: the difference

between the corresponding instantaneous strain rates e, and e, & con-

tribution caused by the 0(c®) convection represented by f£(R,H) which
might be called "geometric" and finally, the existence of a fundamental

constitutive distinction between the "memory functions" N(r) and v &§(1).




44

Initially neglecting the first two contributions so that

-1 - <
ee eV ez eux

and T
ee(ﬂ'.t')
f(R,H) J N(t=t*) TERE drt! )

T
g s I N(t-1') ee(H'.r')d ',

-0

a8 first estimate of the overall stress difference can be derived

T
A(stress) = I (%)exp(lgll)e(t')dt'

<V ey, N-exp) (10)

n

({) ve, for small (1/2)

In evaluating the integral no contribution for all time previous to
7= 0 is allowed since the set of initial conditions, Equations (6) &

(7), specify no stress field for that period of time, which means

T
[ Pexp

T )e(r')dr’

T
- ] Pexp 3
[+]

T )e(z')dr" a1)
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This approximation is useful for preliminary attempts to evaluate
paramgter sensitivity. One circumstance in which this result would be
inaccyrate is that of a large temporal varistion in the geometric fac-
tor £(R,B), rendering equation (9) invalid. Bowever, while the result-
ing stress difference may be large, the variation in £(R,R) obtains for
large changes {n R(t) vhich also corresponds to an increase in inertial
effects likely to decreass the net effect of stress on the amplitudes
L (1). Another situation which must be investigated since it would
incresse viscoelastic effects is any set of conditions which would make
Equation (11) inaccurate. The time period before t = 0 represents the
history of the fluid which can be important for fluids with memory, and
a self-consistent scheme to describe this domain should be found.

A first attempt to initiate the stress integral might be to spec-
ify a non-zero constant smplitude s, in addition to the conditions
stated in (6). Bowever, a static inhomogeneous solution to the system
does not exist. Apparently the transient problem must be treated to
introduce nonsphericities and an asymmetric stress field prior to the
initiation of spherical dynamics. The anslysis will pow divide the
problem solution into tvo time intervals. Oune of these intervals, the
second, corresponds to the full prodlem; after time t = v = 0, the system
is solved for lu(i). wvhile the spherical radius, R(t), is allowed to vary
in time. Before time sero, in the first time some, R(t) = R , a constant,
and a transient acheme to introduce and descride asymmetries in the system
sust be devised. This proposed theoretical scheme should be mathematically
tractable and also allow a reasomable physical imterpretation. If possi-
ble, this physical significance should be directly translatable to exper-
dmsntally achievadle conditions.




i . et e

Toceamsied
.

46

Since R(t) = R and R(t) = R(t) = O for all time t = T < O the
complications introduced by a Lagrangian framework are not present and

their (r,t) coordinate system can be chosen. The toroidal field equation

then becoses
t

o1
=B I N(t-t' )[a -f-,-)- T_)dt’ a2)

Tt

-g
If a separable solution is assumed to exist

T (r,t) = R {} Xn,y On,§(E) Pp,q(®) 3)

vhere en.j(:) are functions only of time, pn,j only of r and xn.j are

constants, then

n (n+1
0.y (——-Iri Pa.q) (4

t
do
.15 | - yde!
and Kn.j T N(t-t') en.j(t )t Qs)
-t
wvhere ‘n 3 is a particular constant of separation. A steady state con-
»

tribution to the solution is

Oo(t) =1

_ R
2@ = SHE™ + 55 &° as)
» °

since this part of the velocity field is bounded as T + @ x:“ = 0. From

equation (111.30)

.- an

VMl L gl g -
T e e




—_—— e o &wLx oo L

= *::J'S.m‘n:d.u kst g

The temporal equation has solutions of the form

1
ej(t) = exp [(r‘:l s iwj)t] Q18)
which means that the separation constant is complex
G
v+&%ﬂ%+L+1w]
xj - 2 R ] 19)
— + 1w
gy b

for the relaxation function N(t). By requiring the solution to be

bounded as t + -, the decay time I 6 is restricted to nonnegative values.

]

The spatial equation (14) can be transformed into a version of

Bessel's equation. For n = 2, the two independent modified spherical

Bessel functions relevant to the solution are

3 3 1, x
Fl&) = Gr-3r+ e

(20)

3

Fz(x) = (%!- +oT+ -,l-‘-)e_x

for the transformations

A

p(r) = r F(r)

?l(x) is not bounded as r + =, go only lzcx) contributes to the solu-

tion. The spatial integral cz(t) consist of terms of the form

47




N

48
az’j(t) - ej(t) Xz.j (. '5)
(21)
® K, 3%,
3s d
[ K ep(- Eyp g+ ) 88
Rb b
orY
3 -1
a,(t) = § (- x, 6,(t) (D} + Dexp ) (22)
2 M I i) D,

The time dependent portion of this toroidal function is an exponen-~
tially growing oscillation of frequency ”j which occurs between t = -w

and t = 0. The time constant and frequency of © (t) can be specified

J
independent of any variables or parameters of the physical system as cur-
rently described. This will fix the separation constant Kj which, in turn,
determines the spatial function °j(t)' When an individual transient mode
is excited, it is the form of the time dependence of all the dynamics.
Thus, if a physical mechanism or apparatus could be visualized to drive
some event with form ej(c). all asymmetries would be similarly driven. Ian
0(c®) dynamics, initiation was accomplished by changing the far-field con-
ditions through the smbient pressure. An initiation of O(el) dynanics
through far-field conditions would be idesl.

The oscillatory time-dependence is reminiscent of rheological
testing which employs oscillatory motions. In this analysis, far field

flow conditions are governed by an(;) in On(r.e.b.t) (see equations I1II.29

and I11.30). The value of a‘(t) in equation (III.30) results when the




49
velocity field v, is required to decay as r increases. A way to alter
that requirement is to add a time dependent term to the old o (t) expres-
sion
flow - _ - -
a7 () = a (t) § Ay 0,(t) = a (t) g A (t) (23)
which is formed with the "appropriate" time dependence © 5 (t). The
velocity field as r + = is
vi=] VA 0" Y (6,4)] (24)
LRSI
For the particular case n = 2
2
(V1) — 2A 8,(O)r Y7
vy
(}'1)e - Aj ej(t)r 30 (25)
_r_;
(Fa)g = Ay 95 55 5 ﬁ

When m = 0, this respresents a three~dimensional elongational flow with
extension along the Z- or 6 = 0 - axis, and time-dependent elongation rate

Aj ej(t) (see Figure 6a). Them = 1 and m = 2 cases, with n = 2, are

two-dimensional elongational flows with rates Aj ej (t)/6 in the y-z and

x-y planes, respectively. (See Figures 6b and 6c.) These latter two

flows are particularly convenient since they can very nearly be achieved

experimentally in the Taylor four-roller apparatus.
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The shapes of the bubbles created by these flows are given by
(111.12), i.e. the deviation from the sphere is given by Y: (8,¢) with
amplitude a (t). Representative shapes are shown in Figures 7(a) and
7(b), 8 and 9. Figure 10 shows the streamlines of the actual external
flow around a spherical bdody.

The new far field condition must be applied to the boundary condi-
tions. All un(t) must be replaced by a:1°"(t). The flow term will also
appear in the pressure term Pv(t.t). Equation (III.44) since it arises
from the equation of motion which employs the velocity, not vorticity
and the velocity field includes the influence of the flow. The tangen- L

tial stress condition for time t < 0 requires the value of toroidal

function to be

Ta(R,t) = x; 6,(£)RD, (30, 30, + Dexp(- %j) (26)

and with a nev intermediate function wj(t)

- -1 2
¥y () 8,(e)[10 Ay + 3 xy exp( Dj)nj(sn:‘ + 5D, + 1), 27)
that
R ¥, (t)
a(t) =a_+32 ] +1— (28)
j =+ 1@1
3

Again the constant displacement a__ must be zero as in Bquation (7). The

norsal stress balance then completely determines the solution for all

tines t < 0. The final result is expresued through a cascade of new
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Figure 8. Representative Bubble Shape :
and External Flow for Yz(e $)

Stream surfaces are shown along with
bubble shape.
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a. 10 b. 0.5

c. 00

d. -05 e -10

Figure 9. Shapes for r = R + eang(e.ﬂ

Labels give values of -—‘—%’-
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complex variables

g -% » for fluid relaxation time A

1
Yy, == * iupj
14 Cj ./
yg = v+ a_‘:yp
4
R
8 ho
V. = Dy, - Gy, + o (29)
C 377¢ Ro B Roy;
R K
v, = exp(- =) (=)
D '/q Ro

y
4
yBT = (B + yc) '—Go 79"‘\)— '(B'_Py"c)

64

with the final result

4OR y_ A
X = (= 110 + (=) ’c] e (30)

Evaluation of the velocity and stress fields, as well as the bubble
shape is now possible.

Notice that )(j is8 complex and varies linearly with the complex
strain rate Aj. Large stresses and nonsphericities can be generated dy

specifying a large lAj" but are sudbject to restraints on the validity

of the viscoelastic model, as discussed earlier, snd by experimental

practicability.




The behavior of the extermal flow after spherical dynamics are
initiated at time t = 0 is a new consideration. If ;j is not large
compared to the positive time period of interest, then the elonga-
tional rate will grow to large values. Therefore, at time t = 0, a
new damping factor might be assigned to the flow and since the full
equations will be solved numerically, without the separation of varia-
bles in equation (13), this is mathematically allowable.

The introduction of the external flow terms allows the problem
to be physically and mathematically well-posed at time t = v = 0. All
quantities now have physically meaningful, unambiguous values. Look-
ing toward the expected behavior for subsequent times (t > Q), the
same intuitive arguments presented as expressions (8), (9) and (10)
suggest the kind of parameter sensitivity to be expected; any combina-

tion of parameters which correspond to small instantaneous strain

rates, but allow accumulation over long times, e.g small wj and ;J > 2,

would show the largest elastic changes.
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V. EXPERIMENTAL PROGRAM

1. Introduction

58

In conjunction with the theoretical analysis of nonspherical

bubbles in viscous and viscoelastic fluids, an experimental program

was begun to test the model and attempt to isclate the most important

factors in real cavitation inhibition.
solutions was natural in view of the initial motivation for this work,
yet added complications due to the lack of rheological measurements

available on such fluids.

would dominate spherical bubble dynamics and also demonstrated the

viability of our technique in creating nonspherical cavities.

The criteria for the experimental system were very straight-

forward; it must have the capability to

1)
2)
3)
4)

Of course all of this muet be possible in various fluids with some

create spherical bubbles which remain spherical
create nonspherical bubbles reproducibly
allow introduction of various flows

record these bubble sizes and shapes.

flexibility with regard to bubble size.

The use of dilute polymer

Results confirm the prediction that inertia

Previous workers had used numerous techniques to study single

bubble dynamics.

The simplest is probably the introduction of a

cavity by inflation using a device such as a syringe, then withdraw-

ing the instrument and utilizing surface tension to seal the bubdbble.

A variation on the same method depends upon buoyancy to pull the gas




i

ey S e - - M—“—ﬁ
4 ' — 7 -
‘ ;
i

5 59

volume off the "inflating needle".
The technique has been employed with success by Pearson and . (

Middleman (1974, 1977, 1978) to generate elongational flows as a tool

in fluid characterization. However, their elongation rates of order ;

1 »ec4:md"1 are much smaller than those relevant to cavitation bubble %

collapse, where the time scales are much smaller and dissipative

wechanisms much less important to spherically symmetric motion. As

a consequence of the Reynolds number regime into which Pearson and

I

Middleman's work can be classified, useful results can be extracted
without regard for any nonspherical shape using only a pressure param-
eter. Thus, the presence of a physical apparatus, which introduces
? asymmetries into the bubble environment was not an impediment to that
work, but would be when small nonsphericities are important.

One way to remove the apparatus from the immediate vicinity of

the bubble has been to allow the cavity to move away from any bubble

S v ol o

forming device through buoyancy driven motion. Hassager (1977, 1979),
Coutenceau and Hajjam (1981) and others have studied both viscous and
viscoelastic effects in this manner. However their bubbles are usually
large, have constant volume, and the first order effects are not inertial.
Once again, nonsphericities srise, but it is the steady shape of the
bubble which is of primary interest.

Experimental events with dynasmics more closely resembling cavi-

tation bubbles can be generated by the rapid discharge of electrical

potentials of the kilovolt range across electrodes in the working

fluid. Gibson and Blake as well as Chahine and his co-workers have

; had considerable success with this technique in studying the inter-
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action of the bubble with various controlled asymmetrical enviromments
such as solid walls or free surfaces. Their configurations confer a
planar symmetry on their experiments which appears to be unimportant

for the study of the highly deformed shapes which arise due to the
presence of a planar boundary. None of these experiments includes the
velocity fields which are present in flow cavitation. The flow pat-
terns might well be altered by the presence of velocities in the regions

of high shear where cavities should be formed, if these devices were

used with flow.

2. Apparatus

A technique which requires no apparatus in the fluid in the
region where bubble forms, has been pioneered by Lauterborn (1981) and
his co-workers. A laser can be used to focus electromagnetic energy
sufficiently to generate cavities. The non-invasive character of this
method makes it the most promising and flexible to study the variety
of conditions necessary for the testing of the model system analysis.

The apparatus used for the present experiments is represented
schematically in Figure 11 and with a photo, Figure 12. The major
component, a ruby/glass laser, generates maximum output of 1.5 J in
15-30 nsec. The effective width of this besm as detected by spot

burning tests was about 1 cm, which sized the focussing lens system.

The final design for the cavitation chamber without flow was a

parallelepiped constructed from PMMA with a useful interior which

approximates a cube 11.5 cm per side. The wall through which the
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Figure 11. Major Components of Optical

Cavitation Apparatus




Figure 12.
Arrangement of Apparatus Showing:

(A) control unit, (B) Aigital time delay,
(C) ruby laser, (D) flash lamp and diffuser,
(E) test cell, and (F) Rasselblad camera
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4.

U

laser bean enters the tank contained a plano-aspheric lens, mounted flush

[ A

with the interior surface and properly sized to focus the besm to a erit-

ical volume.

By changing the single lens or employing a series of two lenses,

= m———

the focal length of the optics could be altered. This was useful to
evaluate the effect of the proximity of the lens surface which acts as a
solid planar wall and also allowed the geometry of the bc- focus to be
changed. This becomes particularly important since it allows generation
; of nonspherical bubbles without far-field asymmetries.

f The bubbles are recorded photographically with a single frame

camera. Since the time scale of the phenomens is tens of microseconds

conventional mechanical shutters are not adequate for the resolution

necessary. Instead, photo exposure was accomplished with a digital time

delay of rated accuracy % 0.1 usec triggering a flash to backlight the
image which is transferred through an open camera shutter. High speed
instant Polaroid black and white film captured images magnified four

times (4X) by the lens and bellows system.

The apparatus listed in Table 4 allows three major adjustments in

operating conditions.

1) Laser power infringing upon lens system. Gross adjustment is
made by attenuating the beam using the schot glass filters. Finer ad-
justments are made by adjusting the charging voltage across the capaci-
tor bank. To insure lasing of the rod a charge at least 70X of the

maximum voltage was necessary. This translates to (.7)% (1.5 J) & .755 J.

since energy is proportional to the square of the voltage.
2) Tocal length Lt' and
3) Beam convergsnce angle Og.
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TABLE 4. Equipment Specifications

Alignment Laser
Hughes Model 4020
120 ma He-Ne

Power laser
Apollo Laser, Inc. Model 5H
Buby/Glass Q-switch
Power 1.5 J/S
Pulse Width 15-30 nsec

Digital Delay Generator
BNC Model 7010
used in range 0-99999 & 1 usec

Camera
Hagsselblad Model 500C
w/Zeiss Planar 1:2.8, £ = 80 mm lens and 12'1extension

Film
Polaroid 667 high speed (ASA 600)
black and white instant development film

Flash
EG&G Electro Optics Model 85302
with Fresnel diffuser

Laser Focussing Lens

focal length dismeter Melles Griot #
(in air)

Small 12 m 17 mm 01 LAG 002
Medium 18 24 01 LAG 005
Large 25 32.5 01 LAG 117
Diverging Lens =40 21 01 LPK 013
*Neutral Density Filters (Schot Glass) Approximate

Thickness Designation Absorbance
Low l1m NG5 52
Mediua 2m : NG4 10-20%
Bigh Iim NG4 50X

fSupplied by Mr. Edwin Tolnass, Princeton University PFPL
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g
1 These are two geometric parameters defining the geometric charac~ !
‘ i teristics of the focussed beam. As shown in Figure 13, the "focal
: length" is defined as the distance from the planar surface of the flush-
‘ mounted lens to the point of highest energy concentration which is also
: 1 ‘ the location of cavity-inception. As a first approximation this is

simply the focal length in air of the optical system divided by the

index of refraction of the medium (1.33 for water). The convergence is
defined as that angle at which the beam is funneled. For a simple

single law system, these two parameters are not independent since the
diameter of the incident beam if fixed (nominally considered Dbeam = ] cm).

f Linear optics gives the simple relationship

/2) cos @ Q)

L £

£~ (Dbeam
If a second, diverging, lens is placed in series with the plano-~

convex converging lens it will increase the beam diameter impinging

upon the primary lens so that although equation (1) is still valid,

D

beam
tion of the focal length of both lenses, approximated by

can be varied independently. Of course, Lf is now a simple func-

1 1 1
Bl H'E @

Ly s stated previously, can be varied to assess "wall effects”.
Adjustment in 6 £ should affect bubble shape, Intuitively there should be
some critical energy density which incites cavity formation, large

values of ef will localize this density sufficiently to create spherical

SR . Eoaris e s
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bubbles. Small values of ef should create a more extended volume with

this critical concentration and thus elongated bubbles (see Figure 13(b))

3. Types of Trials

Four major types of experimental trials were performed:

1A) Spherical Buybbles in H,0

These trials were performed to evaluate system reproducibility and
determine the distances over which wall effects are present.

1B) Spherical Bubbles in Dilute Solutions

Although previous experiments using this optical cavitation tech-
nique have been performed in H,0, similar trials in dilute aqueous poly- . ;
mer solution had not been reported. The first goal of these experiments
was to guarantee the method's reliability in such solutions since scat-
tering and differing inception characteristics might be expected. Once
the technique was established the radial dynamics in polymer solutions

could be compared to the results in pure water.

2) Initially Spherical Bubbles near Planar Surfaces in A) H,0

and B) polymer solutions.

The apparatus affords an excellent opportunity to investigate the
effect of the proximity of a solid wall on the shape of a growing and
collapsing bubble. Although presently, no theoretical analysis has

been developed to treat the case for a viscoelastic fluid, qualitative

comparison can be made in experiments very similar to those conducted

by Chahine (1981) and others. ]
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3) Nonspherical Bubbles in an "Infinite Medium”
A) H20 and B) Polymer Solution

The mechanism by which nonsphericities arise is the lengthening
of the “critical volume" described previously. Sequences of bubble
photos allow a detailed comparison of the evolution of experimental
shape as coupled with the growth and collapse of the cavity and theo-
retical predictions. This can be carried out both for the pure H;0
and various polymer solutions.

4) Initially Nonspherical Bubbles near Planar Surfaces

One possible cause for differences between experimentally produced
bubbles near solid walls and real cavitation bubbles is a "competition"
between jet formation and any other nonspherical modes which would
reduce the energy available to the re-entering jets (see Discussion).
A first attempt can be made to evaluate.thil possibility by producing
nonspherical bubbles near solid walls with different orientations for

that wall.

4. Fluids

Distilled water filtered through 3.0 uym Hictopore(k) filters was
employed in most trials. The effect of boiling to degas the water was
also tested. Preliminary trials showed that the distilled, filtered
water was sufficiently clean to eliminate stray nucleation and allow
reproducible trials.

The polymer solutions were prepared from polyacrylamide at
MW~ 1.2 x 10° obtained from the Americsn Cyansmid Corporation. The

;
|
!
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;; polymer samples were approximately 202 hydrolyzed. Solutions by the slow
3 addition of a weighed amount of polymer-to a measured volume of distilled,
deionized H20, then tumbled on rollers to insure homogeneity for at least

twelve (12) hours. Initial trials were performed for solutions with

- aceventan
.

concentrations of approximately 500 ppm since these definitely exhibit

cavitation inhibition in water tunnel tests.

5. Photo Analysis

A}

No sophisticated procedures were available for data analysis.
Spherical bubble radius was measured directly from the photographs with
an accuracy better than t 0.05 cm/4. Tye sphericity was evaluated by
: overlaying circles and checking for visible deviation from that shape. . 7

Nonspherical measurement was less straightforward and multiple
techniques were evaluated. Each involved projection of the photograph
onto a circular polar coordinate grid and the assumption of axial symmetry ﬂ

about the center line of the laser radiation. These analyses also re-

quire an assumption of the surface harmonics Legendre polynomials
which contribute to the shape.

Appendix D contains sample data and more detail on procedures chosen.
The final results showed differences in magnitude, but not in trends be-
tween the different numerical fits attempted so the simplest — estimating

R and a by measuring the major and minor axes of an image — was employed.
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o VI, RESULTS

1. Theoretical Spherical Profiles

In order to generate nonspherical-results. appropriate radius
profiles to drive the asymmetries are necessary. Previous workers
have concluded that dilute polymer solution rheology will not cause
? experimentally detectable changes in the overall size of a growing
i or collapsing bubble. Stil, an 0(e°) model similar to those of

Fogler and Goddard (1970, 1971), Ting (1975), Yoo and Han (1982) and

others, which incorporates viscoelasticity, but employs the parameter
! : values of the present study (see Table 3), is useful to compare visco-
elastic change in this geometry to changes in nomspherical behavior.

As presented in Section III, equation (4), an equation similar
to Rayleigh's original result can be used to generate bubble profiles.

The pressure initiated dynamics are completely specified by the dimen-

L .

sionless parameters of Table 5

TABLE 5. Dimensionless Parameters 3

Re = ——

‘ El-T -]
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for the present pressures and surface tension. Also, the Reynolds

where R = n 107% cm. 18 the initial equilibrium bubble size
Number as defined here employs a ratio of the length and time scales
to define the velocity scale gince no other velocity scale emerges.
The time scale, T,» must still be defined. An 6(e®) time scale might
involve P* since it determines the dynamics, however, from the bubble
growth, collapse and constant radius cases, no single meaningful time
scale emerges. A time scale independent of the particular dynamics is
the surface tension time scale

/Rap
T -V (1)

o g

which relates to the period of an undamped oscillation in both the
8(e°) spherical or 8(e') asymmetric modes.

Results for R(t) vs. t for varying v are shown in Figures 14 and
15. For positive values of m, the bubble grows rapidly until the
velocity R(t) approaches a constant. Then is no change for any value
of X visible on the scale of the graph and numerical values show
changes of less than 0.12. As « decreases and becomes negative,
collapse is described. Once again, in Figure 15, their is no visible
change due to variation in i, but (t) does not approach a constant.

The acceleration R(t) appears to continually increase in magnitude,

this is due to the surface tension term in the R equation.
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Figure 14. Spherical Radius vs. Time - Theoretical
Growth
3

R = 1.03 x 10"~ cm.
(Bee Table 3)




73

S
-

1.0 - -
; R/R,
3

L -
0.5
]
i -8.8x10°"
°8.0X10.2 -3
-8.8x10
]
To, .
K
0 5 0 .
TIME (x10° sec.)
Figure 15. Spherical Radius vs. Time - Theoretical Collapse
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2. Model Nonspherical Dynamics without External Flow

The initiation scheme of Section IV, with quiescent ambient condi-
tions, requires only a choice of a particular harmonic, n, and nn(O)
\ and in(O) beyond the parameters of spherical flow. The problem which
allows the mathematically consistent use of an initial T(r,0) function
which is identically gero is an(O) -a and in(O) = 0 from equation

(111.32).

For « = 0, a bubble of constant radius, Rb. the nonlinear nature

vt s e g

of the governing equations is removed and Laplace transform techniques

; have been used by other workers to generate a;it) vs t profiles. The

integro-differential character of the system is also removed for a

purely viscous fluid and physically, the viscosity is expected to
damp any oscillations. This expectation is confirmed in Figure 16
wvhere & 30-fold increase in viscosity is shown to damp the asymmetries
§ greatly.
| Since viscoelasticity restores the time-integration terms to the
model, the possibility of somevhat different behavior exists even for
v = 0. However, as discussed previously, the absence of bubble his-
tory to initiate these time-integrals at some non-zero value, in con-
junction with the short times over which the non-sphericities persist
' (10~% geconds),serves to allow little “elastic accumulation” and re-
sults in viscoslastic behavior which differ little from those which
would occur with a slight change in viscosity. This fs shown in Pigure

'i ; 17. However, the fine details of the difference cannot be reproduced by
3 - . a simple change in viscosity. When an elastic element is iatroduced,

 3 5 ] the damping of the resulting amplitude wave decreases, which would occur

1f viscosity decreased, but the period of the ocscillation iacreases

IE
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Figure 16.

Nongpherical Amplitude vs. Time -
Viscosity

No external flow
8, = 0
(see Table 3)




76

ayqel @29s) 0 = °¢
(€ ﬁna%ﬂh [eUII}X ON

: axnayd
£3JOTISBIO00STA - awfl °‘SA apn3frdwy TeotJaydsuopN LI ¢

.
s . . el e —_— R DTN e, f.ﬁunﬁ.rﬂ“ o
M\. R R A SRR ——— ey . - . e 9 ]
) v S




§o
j
3
i
4
i

vt

1
?

77

which would result for a more vigscous fluid. These results agree with
those of Inge and Bark (1981) who generated results using techniques
suitable only to i(t) = 0.

Cases of more interest involve non-zero dimensionless pressure
change, v, values. Stability analyses predict that bubble growth will
restrict the viscous nonsphericities causing the bubble to remain nearly
spherical. Typical results presented in Figure 18 show this to be true
for the viscous fluid which has nonsphericities which become overdamped.
However, the viscoelastic fluid in Figure 18 exhibits somewhat different
behavior. here, as R(t) becomes almost constant, the shape of the bub-
ble, as measured by az(t)/R(t) also appears to approach a constant.

Earlier stability analyses suggest that conditions which include
bubble collapse may result in nonsphericities which grow without bound.
Figures 19 and 20 show typical profiles which confirm this prediction.
Good numerical convergence was achieved even for such large amplitude
values. If the linearized system remains valid such bubbles would
exhibit breakup or toroidal ring formation and this mechanism for the
dissipation of inertial and surface energy requires consideration.
Experimental trials are necessary to determine if these predictions are

even qualitatively correct.

3. Experiments with No External Flow

The initial trials with the experimental apparatus were to guaran-
tee the ability of the system to generate bubbles, first in water and
then in polymer solution, and of the photographic system to capture
images of those cavities. The first successful trials resulted in
photos, typical sam: les of which are shown in Figure 21. Note that
these bubbles sre quite large, with a radius greater than 0.50 cm at

3
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Figure 19. Nonspherical Amplitude vs. Time-
Collapse 1

No external flow

8, = 0

Collapse shown

(see Table 3) 4
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Figure 20. Nonspherical Amplitude vs. Time -
Collapse Il

No external flow
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_ Collapse profile shown
(see Table 8) ,
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1,050 usec. They are created with center in approximately 1.50.cm

from the closest asymsetry. The solid "wall” of the planar face of

the plexiglas lens influences the bubble in all dynamic cycles other
than initisl growth. The reproducibility of these bubbles is excel-
lent v:lfh a superimposition of the images usually possible even includ-
ing some of the fine structure of the bubble. There are occasional
"gliches", bubbles which do not reproduce trials for fdentical condi-
tions, these appear to have a number of possible causes:

A) Lack of laser reproducibility. A qualitscive indicator of
the laser pulse characteristics can be obtained by looking at the
bright flash at the original bubble center which is the overexposure of
the photo plate caused by the laser luminescence. Although these trials
have been selected for their reproducibility, some of the variation
possible is indicated by a comparison of the spot in the frame at
525 usec and that at 1570 usec. The latter event shows a secondary
brightness separated from the main. Such differences usually corre-
lated well with unexpected differences in the cavities.

B) Overly Rapid Repetition of Trials. Early in testing it be-
came spparent that reproducibility suffered wvhen an experiment wvas
repeated as quickly as possible, limited only by -the charging cycle of
the laser capacitors vhich requires 5-10 seconds. The lack of repro-
ducibility was particularly evident with conditions and at times which
showed nonspherical bubbles. At such times waves were also sometimes
noted on the free surface of the fluid indicating that the fluid
motions induced by the first bubble were not completely damped. It was
found that an interval of 60 seconds betwsen trisls was more than suf-

ficient to eliminste this effect.
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A pussling feature of the photographic sequences is the recording
of no bubble mage for time delays of 500 ysec or less. Initial hypothe-
ses of a bubdble induction time proved to be unfounded. The delsy is
caused by a lag between digitsl delay triggering and the laser firing
signal in the circuitry of the laster power supply.

A. Spherical Bubbles

Spherical sequences were generated with a criterion for vepro-
'ducibility based on the measured radius between two trials varying by
52 or less. The viability of the technique is demonstrated in Figure
22 which shous data for spherical radius vs. time in distilled H;0 and
476 ppm polyacrylamide solutions. Conditions used were

sedivm lens + fa = 1.5 em.
sediun neutral density filter
802 laser charge
Each of the polyacrylamide data bars represent the mean of at
lesst three trials bounded by the resulting standard deviation. Re-
producibility is excellent, especially considering the high growth and

" collapse values produced. The slightly higher collapse rate for water

say result from difference in laser interactions with the two fluids.
The order of magnitude analysis of Table 2 suggests that & small part
of the difference may be rheological, since they occur in the region
of low velocity where fnertis is smallest. This would be eliminated

dn smaller bubbles where surface temsion becomss even more importent,
however the size bers is the minimm for the single shot techaique
where £ 10 ysec emerges a0 2 limit on reproducidbilicy.
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B. Spherical Bubbles near Solid Walls

1 Although no theory has been developed here to include the influence

j of s0lid walls or free surfaces on the evaluation of bubble shape, quali-

§ tative results were of interest to confirm the findings of previous workers
‘ j and also to allow comparison with futuie trials which would include ini-

| tially nonspherical bubbles near the planar surface. The present photos
confirm earlier finding§ that a solid wall induces bulk motion of the
bubble toward the wall and subsequent jet formation as collapse proceeds,
no visible difference appeard in the jets in the different fluids (see

Figure 23).

C. Nonspherical Bubbles

The scheme by which nonspherical bubbles can be produced in an other-

wise quiescent fluid was described earlier. This possibility has been

N

mentioned by Lauterborn and Ebeling (1977), but no quantitative results
exist or any assurances of reproducibility. The problem of laser "spot"
reproducibility mentioned earlier with regard to spherical bubbles is
even more crucial here since the distribution of laser emergy along a line
segment is needed to create a disturbance of small bubbles which grow and
merge into one nonspherical cavity.

Initial trials were encouraging since nonspherical bubbles were
seen to be feasible but they suffered from an extreme degree of random-
ness in the particular distribution of initial nucleatic sites and
their strength. The line of cylinder which bounded the nucleation
region was well defined but the distribution of bubble formation within

: the region was sporadic which caused reproducibility to suffer. More
’ POVer was necessary to create reproducible bubbles due to the increased
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3
f
|
|



‘wd g :uorjsivdes sudy
233111 Ou ‘4.6 :398V¥]
‘m Tou X 02°¢ = %% - £i1oayy a93ua POTITISIP ~ Jvewrsadxyg

1 S9AIn) peIsIauan AY[eI73I0I09Y] 03
sopniyIdey [voTIoydsuo) peutwialaq A{Iviudwriadxg Jo uoSiIvdwo) °pg oandd

%o dwy
- v
er / ‘OVE ‘WIS O ¢0-

(wo ,_oi) pN S .\m.
smpoy 2 1




F2Y S ;‘A‘
i gt

— —

il o O

87

length of the optical path in the fluid (4-6 cm) which served to absord
and scatter some light energy and to the intentionally lengthened
region in which sufficient energy concentration was desired.

This power requirement resulted in narrow range of power in
which nonspherical bubbles could be generated. The lower bound was
deter-incd by the factor just cited and corresponded to the low den-
sity filter and 85% charge. The energy of this pulse is nominally
1.0 J. The maximm is restricted by the laser, 1.5 J. Thisg range is
considerably narrower than the corresponding one for spherical bubbles
which could be produced by .50 J and less. The resulting variability
in nonspherical bubble size was small with maximum equivalent radius
between .3 and .6 cm., but those which could be generated were clear
and reproducible.

Complete sequences were generated and analyzed for distilled
wvater at two power settings and two polyacrylamide solutions near
500 ppm. The bubble shape and size were analyzed (see Appendix D)
and the results are shown in Figures 24-27. As discussed in Appendix
D.1, no best fitting procedure could be established, all gave compar-
able results, so that the simplest, measuring major and minor axes
and assuming a shape conforming to the second harmonic was used.
Thus, the error bars in the experimental data result from three
sources:

1) reproducibility of bubbles

2) photo image measurement

3) uncertainty in fic.

The relative importance of these factors varied from image to image
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| Figure 23: Initially Spherical
Bubble Collapsing near a
; Solid Wall - Impinging
Jet Formation
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Figure 268. Comparison of Experimentally Determined Non-
spherical Amplitudes to Theoretically Generated

Values Il .

Experiment - Laser: 87.5%, low filter
" Lens separation: 4.5 om.

Theory -~ 8¢ = 1.27 x 10°! em.
do = -4.0 x 10 om./sec.
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within a sequence, although factor 2) was usually least important. De-
spite these uncertainties a smooth progression of shaps was the result.

The R(t) vs. t profile was smoothed by a best f£it to & Fourier
series vhen initial time, period and the contribution and eigenvalue
of up to five eigenfunctions were varied. These fits are shown as
the "center-line" dotted curve in Figures 24-27. This fit was then
differentisted twice for use as the forcing function in the solution of
the nonspherical amplitude equations. The changes in sign of the radial
acceleration R(t) in the fit profile, corresponding to inflections in the
curves, occur because of the fitting procedure and the varying mumber of
data points taken at different times. Despite the resulting physically
unrealistic values, the nonspherical uplitugle profiles driven by the fit
are well~behaved. The curves are smooth becsuse the inflections occur
vhile the bubdble is growing, s period during which nonsphericities are
stable and relatively insensitive to the details of the radius profile.

The initiation of the model required an initial time t ° at vhich
the amplitude a(to) had been measured. This time, t s vas chosen,
before any data-specific modelling was done, by tl_king it as the time
of the first data point. The first data point corresponds to the
first bubdble photo in a time sequence which appears as one, relatively
swooth, cavity and usually occurred by S50 usec or S0 usec after any
budbble is visible. Since there was no external flow and motion vas
present for less tham 50 usec previous to t,» bubble~induced fluid
history was ignored; the stress integrals begin with zero value.
Variation of a(t °) and fluid parameters was then performed to optimize

the agreement with experimental data.

Setting 3(t°) to various values snd varying fluid parsmeters
showed that viscoslastic effects wers smsll as would be expected
from previous model runs for sitwstions without exterasl flow amd with
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sero stress integrals. Thus there are two important degrees of freedom,

the initial velocity a(t ) and the viscosity u. The absence of visco-
elastic effects also reduces the sensitivity of the agresment to the
initial time ¢t o° Changing t, will not alter the model predictions for
a given u and corresponding initial conditions, it can only change the
number of data points to be fit and here that number is slready maxi-
mized.

The viscosity (or Reynolds Number) values which gave the good
agreement shown by the solid lines were lower (or higher) than expected
for water. They were batween 0.1 and 0.3 cp. Setting the viscosity to
1.0 ¢p without altering the initial velocity resulted in predictions of
overdamped oscillations during bubble growth; the amplitude a;(t) did
not cross the a2 = 0 axis while radial velocities were positive. In-
creasing the magnitude of the initial velocity i(to) and the viscosity
did serve to drive the amplitude past spherical equilibrium, but the
shape was altered, see Figure 24, and fit was less good.

The most encouraging aspect of the model results may be the accu-
rate predictions of trends even when deformations become large so that
the linearized analysis should break down. In both water and solution,
the final frames of a sequence, as the bubble volume became very samall,
could show one of two distinctly different "asymptotic" behaviors. Onme
type is suggested by the upper left-hand illustration in Figure 9; the
nonspherical amplitude is positive and becomes large as R decreases so
that the cavity is extended in a line along the axis of symmetry. The
other extreme occurs for negative amplitudes and gives the forms shown
in the lower right of Figure 9. 1In experimental photos this appears
as an image like Figure 28(a) and decomes a vertical 1lime as R+ 0.
Such shapes are too distorted from the sphere to be represented by an
equivalent redius R and amplituds az, and predicted by this theory.
8till, the model successfully predicts these finsl treands which is




Figure 28: Nonspherical Sequence in Water
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extremely useful for the study of bubble breakup.

D. Nonspherical Bubbles Near Solid Walls

The premise upon which this work is based is that the role of
velocity fields in cavitation dynamics extends beyond the creation of
the dynamic pressure difference necessary for nucleation, that it alters
the shape and the size, i.e. the total behavior, of the subsequent cav~
ity. Another factor of practical importance in this behavior has been
shown, both here and elsewhere, to be the proximity of a solid wall,
but this effect has only been investigated for initially spherical bub-
bles. Trials were conducted to investigate any interplay between non-
spherical bubbles and solid walls. They are complicated considerably
by the introduction of a direction vector for the bubble, which can
simply be chosen as along the initial axis of symmetry for these bub~-
bles, and it can vary in orientation with respect to the solid wall
which can be represented by a normal vector. Quantitative comparison
to results for spherical bubbles without detailed theory is ambiguous.
The distance of the initial center of the bubble from the solid wall
scaled on a maximum bubble radius gives a good variable with which to
correlate results (Chahine, 1981) for a spherical bubble. However for
asymmetrical bubbles, the smplitude of any initial nonsphericity along
with the orientation of the direction vectors will introduce much more
variability into the system even for identical fluids.

As a result of these complications, only qualitative results

were sought in these exploratory experiments. Comparisons between

B20 and polymer solutions were also made.




96

Photographic evidence from these trials lead to two tentative

conclusions:

! 1) A strong competition does exist between thp jet-forming effect
of a solid wall and nonsphericities which are separate from that effect
and it varies with orientation.

2) No large differences between fluids occur.

This first conclusion is suppérted by the photo sequences of Fig-
’ ures 30 and 31 which show no images of a well-formed jet like the one
1 in Figure 23. Figure 23 differs from Figure 30 and 31 in that the
initia’ optical cavity in the former was spherical while intentionally
nonspherical bubbles were initiated in the latter. Figures 30 and 31

are representative of images taken over a raange of bubble sizes and 1

wall proximities. All showed bubble migration toward the wall upon col-
lapse, but none showed an impinging jet. Figure 30 shows the results
when B and N are perpendicular (see Figure 28(a)).

When B and N form a 45° angle more experimental problems develop
since a bubble which is too highly nonspherical initially, and close to
the wall will contact it. Thus the location of bubble center is wore
limited than for the previous cases. Here, again the solid wall causes
bubble migration toward it with distortiom but no jet is apparent (see
Figure 31).

Trials with other orientation angles, wall-bubble distances and
500 ppm polyacrylamide solutions yielded similar results. Of course,

such trials are not comprehensive, especially since the nonspherical

A A W g P £ PO e I A S .

bubbles are very limited in their size and shape profiles. However
the contrast in the case of jet formation for spherical bubbles and the
absence thereof for asymmetrical bodies is striking.
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Figure 29: Bubble - Wall Orientation
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4. Model with External Flow

Recall the model which generates a completely self-consistent fluid
history by postulating an external flow. The details are developed in
Section IV and summarized here and in Figure 32. In the semi-infinite
time domain with upper bound time t = 1 = O, the equations governing
asymmetric dynamics can be driven by a mathematical forcing function
which corresponds to an externally imposed flow in the physical realm.

Mathematically, any such forcing function can be linearly decomposed into

terms with time dependencies of the form

o ,(t) = 6,(t) = exp[ G~ ¢ 1u)t], t <0 (1v.18)
r,] ] Ej b -
Since this forcing function is bounded throughout the interval [-=, 0],

the time constant £, is positive (and real). When specific values of ¢ 3

J
and the frequency w 5 are chosen, they completely determine the forced
response of the fluid for a given angular mode n and fluid model. The
stresses in the fluid and shape of the bubble are also determined. The

terms remaining in the resulting flow field as r + «» are

Vi = Re Z } TR O){ta o D)
(1v.24)

= Re E § TN} /e S CHN)

vhere An.j = A, 1is a complex constant and An.J(t) - An(t) is a complex
function of time. For n = 2, as shown in Equation (IV.25) and Figures
6, 8 and 10, this spatisl variation corresponds to two and three-
dimensional extensional flows with time-dependent elongation rates

e cus i anati i '.
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Figure 32, Comparison of Flow and No Flow Condition.

3 Expressions shown for n = 2, but corresponding
a3 conditions exist for all m > 2.




f

4
S HA -

101

directly proportional to An(t).

At time zero the external flow has generated nonsphericities in
the bubble of radius Ro and the added complication of a time dependent
equivalent radius, R(t), can be introduced. (Bee Figure 32.) The
particular solution obtained by the separation technique of Section IV
no longer applies when R changes 80 that the full, numerical, procedure
of Appendix C must be utilized. Within this procedure the external
flow 18 no longer constrained to the time dependence of expression (IV.18).
To investigate the influence of a further alteration of the flow, the
amplitude of the oscillation is allowed to decrease with time, but the
frequency w was retained. This amplitude variation is characterized by

a time constant, T d Various mathematical forms of the decay function

ecay’
were tried, e.g. a ramp or a sigmoid, but the results were insensitive to
the particular choice so the most common form of decay was chosen, an

exponential, s.t.

A (1) = A_ exp(~ = ) sin(w,T) (¢))
o n Tdecay 3

for t > 0

Physically, this damping was introduced to simulate a change in flow
environment for the cavity and surrounding fluid, e.g. migration of the
bubble from a region of high extension to one experiencing lower rates.
The time dependence of the external flow is characterized by four
parameters: the complex amplitude conmstant A the frequency w and two
time scales § and T

decay
respectively. Dimensionless groups which incorporate these values are

which apply in the intervals [~=,0) and [0,%],

shown in Table 6. The scaling of the amplitude 8, on the magnitude
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|A,| results from equations (IV.28) and (IV. 30) which show that these
K
two quantities are directly proportionsl at time t = v = 0.
TABLE 6. Dimensionless Groups for External Flow
)
IAzl't ono (n=2)
T -l
flow wt
o
T = T - _§_
flow transient f.t. T
Td a
1 = 2ecay
decay T
]
Sensitivity of the final results to T¢low transient W28 easlily
anticipated. As the value of T £.¢ decreased, viscoelastic changes vere

also reduced. This is consistent with the importance assigned to fluid
history in distinguishing viscous and viscoelastic dynamics. Since this

work is concerned with viscoelastic changes, this effect was minimized
by allowing

Tee. ®

Sensitivities to Telow and t decay are discussed in conjunction with the
upcoming results.

The simplest flow case obtains for ¥ = 0, a bubble of constant

volume, just as it does for the quiescent fluid analysis. Results for

A A T
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two different flow frequencies or Telow values are shown in Figure 33,
The only difference between (a) and (b) is Terou® Figure 33(a) shows

that < = 2.5 x 10° represents low frequency or slow flow since small

flow
instantaneous strain rates whose effects can be multiplied by visco-
elastic stress integration result. Thus, a rather large difference is
seen between the viscous and viscoelastic fluid responses and it increases
with increasing Deborah number. However, as Teiow decreases, the effect
of viscoelastic properties decreases (see Figure 33(b)). The curves do
not oscillate about the a = 0 axis because for these flow frequencies

and phase, the flow is unidirectional over this time span, constantly
"pulling” the bubble in one direction.

Conditions which combine flow and growth show no qualitatively new
flow effects. The growth damps the oscillations and does not allow any
initial viscoelastic differences to be magnified.

In Figures 34 and 35 results are presented for different collapse

profiles with ¢ = 0.25. The damping of the external flow served

decay
to magnify differences between fluid, which were present at t = 0.
This 18 entirely consistent with the notion that the viscoelastic fluid

will "remember" the past occurrence of the external flow while the vis-

cous fluid responds only to its instantaneous presence.
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VII. CONCLUSIONS AND DISCUSSION

The results of the previous section were presented 1ndivi¢ually.
but it is only when they are taken collectively that more exciting con-
clusions can be drawn about real flow cavitation and their contribution
to the understanding of cavitation inhibition can be assessed. In
Table 1, the scope of the present work was resolved into three cate-
gories. The results obtained here suggest that:

1) Without any external flow, fluid rheology, and slight visco-
elasticity in particular do not strongly influence cavitation bubble
dynamics for A) spherical or B) nonspherical bubbles. The latter cavi-
ties do display non-negligible effects.

2) An external flow which is the sole source of system asym-
metries will influence bubble dynamics and do so through fluid rheology.

3) The characteristics of bubble collapse near a solid wall are
altered by nonsphericities which are present due to influences other than
the "solid wall effect", e.g. external flow.

0f course, these conclusions all hold only for the particular
theoretical and experimental systems tested. The fluid have viscosities
on the order of 1. cp. and the elastic number, E{, has a value near
unity. These values may underestimate the influence of viscoelasticity
on real dilute solution since oscillatory viscometric measurements for
similar solutions give zero shear viscosities approaching 1 poise
(Chang, 1975) but the values employed do mwodel the experimental results
very vwell vhich may be due to the shear-thinning behavior of the fluid.
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There is a fundamental rheological difference between the non-
sphericities in conclusion 1) and conclusion 2). In the former case,
theology is involved only in the evolution of the asymmetries, not
their genesis or initiation. The fluid properties aétually serve to
generate the shape and stress field in the latter case, through the
external flow. Since rheology is important in both generation and
evolution, (pre-zero and post-zero dynamics), it is more important for
this case.

Combined with conclusion 2), 3) can be seen as an example of a
situation where viscoelasticity can be very important in cavitation
near solid walls. Any flow past the wall will serve to create a stress
field surrounding the cavity which will vary according to fluid rheology.
This will create a nonspherical bubble, and these flow induced asym-
metries will effect the jet induced by the solid wall upon bubble
collapse.

This work also makes it clear why many previous model systems,
which were constructed in an attempt to display large viscoelastic
effects comparable to the cavitation inhibition of Figure 1, failed.
These were designed to simulate cavitation in a quiescent fluid, and

thus ignore the importance of stress history and flow.
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VIII. THE NEXT STEPS

1. Theory

_ i Experiments have shown the expansion technique employed here to
| be valid for surprisingly large departures from spherical shape. How-
ever this first order procedure is probably as far as a linearized
model can be extended. The next step along similar lines in theory
would incorporate a fully nonlinear constitutive model. Some of the
relative simplicity of the present work might appear teta_inable through \
i the introduction of a second expansion parasmeter, this one characteriz-
| ' ing the flow field and not the bubble shape. Then,a second order expan-
sion in this new parameter would be formulated so that nonlinear rheo-
L " ’ logical effects, especially normal stresses are generated. Unfortunately,
' there are at least two definite problems with this approach. The second

e : order terms will eliminate the use of the linear independence of the

]
spherical harmonics. The angular dependencies will no longer be separate H
from the (r-t) formulation (see Appendix B). Even 1f this were resolved, H

the size of the bubble, governed by the zeroth order equations, is not

coupled with the asymmetries and there is an interaction for the large
: deformations that the second order expansion would attempt to predict.

The next useful step in any modelling effort is treatment of the
full problem. This is an extremely difficult undertaking since it is

highly nonlinear, transient, contains an undetermined free surface and

requires an infinite domain. Since the development would aim toward

incorporating a general flow field and a solid wall, no symmetry sim-
plifications emerge and the full three-dimensional problem appears
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necessary. Marker and cell techniques which have been used to model
bubbles near solid walls without external flow might be applicable for
the Newtonian liquid or even a shear thimning, but inelastic, fluid.
However, incorporation of non-Newtonisn, elastic, effects probably re-
quires a finite element treatment, techniques for which are still

under development.

2. Experiments

Many of the experiments proposed here are in various stages of
development at Princeton University.

The early successes of techniques to generate nonspherical bub-

bles with or »ithout solid walls present suggests that similar experi-
ments be attempted on other liyuids and on the same fluids duscribed
here, but under different conditions. The aim of such changes in ex-
perimental conditions would be to broaden the range of bubble sizes
and profiles for which reproducible trials can be conducted. Alternative
fluids include a glycerine/B,0 solvent system which allows variation in
viscosity through the composition ratio, and could be investigated with
and without polyacrylamide solutes. More flexibility in useful trials
for the aqueous system might be achieved by locally or non-locally dying
or tinting the fluid to change energy absorption by the fluid. Such a
procedure would need careful testing for such complications as asymmetric
thermal effects which would alter reproducibility.

All trials should be viewed with particular regard as to how and
vhen jets form. These variations might be measured using a pressure

transducer on the solid wall to record the impact of anv jet which forms.
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A ' More sophisticated photographic techniques may also allow measurement of
: : jet velocities.
Flow experiments also need to be performed. The best flows would
be the two-dimensional extension approximated by a four-mill or four-
roller apparatus or two impinging sheet-shaped jets. However any well-~

characterized flow which imparts stress history to the fluid would give

useful results.
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APPENDIX A: 0(e) BEquations

A.l. Toroidal Field Equation

The full velocity field, to 0(c), is given by

Vemy, +ey, +ey, (111.16)

vhere the (e°) field, in spherical coordinates, is

(¥y)g = (%) =
(I11.1)
o2
W), =

The potential contribution derived by Plesset is

=79 o, (111.19)
n

L R .
%o = " BH o+ la, +

R
2a_ 3] Y, (6,0)

Rheological contributions are contained in vy term which obtains from

Equation (111.28) as

rwwfnﬂwﬂﬁﬁé AR

P s
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where Bn(r.t) i{s defined as the function containing the radial and tem-
poral dependence of the integral ° defined by equation (IIXI1.29) with

the external flow contribution of equation
o (r.0,4,t) = B_(r,t)Y (6,4 (A.2)

Bn(r,t) = [an(t) - An (t)

L 4

o+l -n n
+ 04T [ s Tn(S-t)dS]t

R
+ =5 il [a (t) - A (t)]

r (A.3)
+ e I st T (s,t)ds} r
R .

= (o+1)

= xn(r.t)rn + zn(r.t)r-(“+l)

This equation also serves to define Xn and Zn. with an(t) given by

equation (III.30).

The goal of this first derivation is an analogue to the vorticity

equation

2
4V - wc VW= Vx(stress) (111.22)

since the simultaneous evaluation of the pressure field and toroidal

function T is not necessary nor is the potential flow field. This
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must be accomplished with special attention to the Lagrangian and non-
{nstantaneous nature of the stress expression. The left-hand side (LHS)
of the equation, containing the terms wvhich represent inertial effects

is not altered by the particular constitutive relation employed, but does
need to be expressed in the proper coordinate system.

The couponents of the vorticity vector in Eulerian coordinates are

first order in ¢.

w=Vx (gP +v)=Vxvy, (111.21)
1
W)
n

T
n, oY
Wy =~ ¢ 55

The (LHS)r. the radial-component equation of the left-hand side of
the vorticity equation, has terms which are all identically zero. At

first order in ¢, the 6 and ¢ equations vary only in their angular de-

pendencies
(Lns)e .. (LHS)’
oYy "7
siné ¢ E1:]
(A.5)
T

1 n
-t {3 al,lu()"rn

This term can be expressed in Lagrangian (H,T) coordinates, defined by
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equation (1I11.38) as

LT ED T (D)

L i b e (A.6)
where

L= &+ 3m)/3 (A7)

The right-hand side (RHS) of the vorticity equation consists of
stress-generated expressions, so it must be analyzed more carefully
than the left, with particular attention paid to the order and reference
frame in which time integrations and spatial differentiations are per-

formed. This 1is crucial for proper derivation of terms of the form

V o
L x Vo 1mnle

T
=y . xyg - I N(r—t')i(ﬂ,t')dr' (A.8)
T

#{ gy e

vhere 1 and i are stress tensor and strain rate tensor, respectively,
and the subscripts r and H are convenient shorthands to specify the
particular reference frame in which the del-operator (V) is defined.

Begin with expressions for the rate-of-strain tensor i(t)(t.t)
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i
K ' 3T 7B
2(V) o (B - B
Y 262 -5 T (A.9)

Y g _1_3: B Ll - P
; Yoo TZ 30 T 3 | 'm
B 2y 3B
Yoo = 207 751070 397 +2 T =5 L
| |
| _ By cose iY_q}
TZ sin6 36
|
B Py Y
N WY 2 IS Y YN e Qs § R
| Yro Yor T3 3 Ty = ¢ BT
_(v)..(v).-nnsineg_ 1 ar“‘;)
Yop " Yo T2 36 'ein-0 a¢
i
] TR
§ rlsin 2363¢
5
3B B oY

s(v) _v)_ 1 % L2 Byt
Yrg = Yor * sind T3 " T or =20 rry

The stress tensor can be written in terms of integrals of the strain

rate components as

xg) -2t Yo (A.10)
v) 2%y
oo = 2lf2 597 * fa )
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£,
M . z[—“in S -g-¢7+ £, + £, cot 91

ot

1 (V) ( ) k2 4
= Tos £,[s1nb ae(sfn!e %)
1 3%y
*oIne 2036 J
w._ ) 1 or
re = Tor ~ U3+ £) 555 3¢
1
i
f where R .
fi £ a@0 = [ ne-HIEE - I a.11)
! i

R(r=1")[ (- 3p) )t

&-——%

fZ.n(n.T) =

£, (B0 = | M=t - e

lh—-s

fa.n(n"') = | N(r-t' )lr z (- ;z)]nd'f

&‘-—-ﬁ

despite some cumbersome symbolism, these time-integrals are evaluated

for constant H, while with in the stress expressions they are operated

R i e e e I TR
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upon in the (r,t) system. Algebraic manipulations result in the com—
Y
: ponents of the right-hand side of the vorticity equation
. yx (-1 (A.12)
(vx (¥ - D)
| v =, - Pl . v, x @, - D),
—p_ 3 a
sind 24 P 30
: - T e + 2ER) @epepoe

1) 2 29
+5or 3 Yioar T2ty
wz (F3 + £
T
4 1 2 _ 22
'F[“(’L"*ax.*v 3L _f’l dv’
-

T
n:ﬂ I we I - %+zan)|d.

-go

K (- Frp)dr’

-gd

+ 2

. ! .
ﬁ'{ . 2n bl I
L

A=)

——

Y e e TR e e vt e e e A R T T I T S RN - : ‘




|
|

T

23 |y T _ J 28
"iax.[”‘ A T A S (U A Y 2.2

-=gd

2
_4r et _SB_ 7 3B _3%B| ..,
|

32 r T . 2B 3B
- | VG + 5y -2 o
L oL’ |,

where the final expression comes simply from direct substitution of the

definitions of fl’ fz. f3 and fé' From the definitions of Bn’ xn and

Zn. it 1is possible to simplify these expressions, using

3B

_n_ _ n-l - -(n+2)
o nr xn (n+l)rx Zn + '1‘n (A.13)

3%B 3T
5;7& - n(n-l)r:n_2 xn + (n+l) (n42)r (n+3)zn +'3;E (A.14)

and combining like terms and integrals, the stress-related expression

becomes (A.15)

T
I ¥ {[2n(n-2) (n~1)]X L' (n-2)

quw

- 2(n+l) (n42) (ms)znx."““*”

T

+ n(n+l) VAl } dx'




e
N34

T

oH

T
+ ZL -a—— I N' {[_(2n_5)(n_l)]an| (n-Z)

- (20#7)(n+2)Z L' -(n+3)

T
+3 f¥'} dt'

T
“ 32 ' -  (n-2)
+1 airf N'{+ 2(n-1)X L

T
B 2(n+2)an.-(n+3) +'i¥ Mz .

The differentiation in H can be performed inside the time inte-
grals and the operations applied in deriving (A.13) and (A.14) can be
re-applied until the RHS is derived in the form which was employed in

the final T-equation (A.16)

12

-0

T
1 [ N(T'T'){zn(n'2)(n-l)Xn(H.r')L'(“'2)

- 2(n+1)(n+2)(n+3)zn(a'1')v"(n+3)

T (H,1')
+ n(ntl) % —Jdr’

+2L rn(t-t'){-(Zn-S)(n-l)(a-z)x @, 1"y @)
n »

-0

+ (@42) (n43) 2ea7)Z_ (B,1")L'~ )

i

TR & O >° o i £
R ! ..Jm }ﬁu} Sy




T (n.‘l")
- 2(n%4n+4) —‘-‘—I‘-.——

+
+ L'O * N(t-1"' - ' v (n-8)
") {2(m-1)(n~2)(n S)Xh(B.T )L

-00

- 2(n+2) (n+3) (tri-ﬁ)zn(n..r ' )Lt'(ﬂ+9)

. T (') , 9T, az'rn
+20%t8) v — - rgg tooaE ) 94T

Thus, the dimensional vorticity equation, expressed in terms of the

toroidal field function Tn(B,t) can be written as

oT T 2
n _ 25 0 _ oT s 9°T _ I
v 2R“R i3 vL[2 38 +L SHE n(n+l) L,]
G T
ol '-1 'y qo?
+ 5 {L f exp(’ 0y ) Il(H,t Ydt
-—e0
v 1'=7
+ 12 I exp(—3) I,(H,1")dr’
-t

T )
+ 18 J exp &

;T) Ia(K.T')dT'}

- where the integrands Ij were given previously in (III.41).

A0
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A.2 Amplitude Equations

In order to derive the boundary conditions at the bubble surface,
the asymmetric pressure field must be evaluated ar r = R, (B=0) as must

the normal and tangential extra stresses.

The contribution to the pressure from the v-velocity is evaluated
by integrating the equation of motion. In Lagrangian coordinates, for

the 6-component

v s 2
_© ,  RR” 3 2R2 O
p {a,r +5- 3. (Lve) + RR® = (ve)}
P,
1l *v

where Vg ™ (yv)e . Calculations performed in the development of the

T-equation give:

2f

(@ - Dy =0 { > [-alml) + 1] (A.18)
1 3 l1 38 oY
+ s 3p (L°fy) + s 357 £} 55

The angular dependence of each term in this é-equation except the pres-
sure term has been determined to be a!:/ae. Thus the pressure tera

also has this dependence and can be written to define 2' as

Py (H,0,4,1) = B (H,7) Y2(0,9)
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Thus, angular dependencies can be factored from equation (A.17) and an

expression for PV(H.r) results. Fortunately, only the value at the

bubble surface, H=0, neceds to be explicitly considered.

development of this expression, the shorthand notation

; . (YV)B .- Bn(uir)
3] Y L
1]

is adapted, then

T
3 T ) = = (n-3) ~(nth) _ 'm
au(LVe) xn nlL + Zn(n+1)L iz
We 13 .-, Yoo
W "Lw W "1
- - % (@-DLD 4 (ne2)z 17O %
n n L3
and
av oT
2 arD [ gm_n,
d ot
H=0 R
_R 2n+l _(n-1) 23A
R Tn(B=0,7) + ST R 3t

If, in the

(A.1)

(A.19)

(A.20) 7
(A.21)

The stress terms are also considerably simpler when evaluated at the
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surface (A.22)

25, Sf, 3f
[(1-n(n+1)] R2+ R3+ R‘

T T (H=0,7')
j N'{-3 [

-g0

=)=

4 2[(o-1) (@-2) + (+2) (3 2RO [0 (11 )-ACr) 1 Dar’

and

3_ - RZ 2
= (fy + £,) = RE g(E, + £))

1
J T N l.arn(o.x )
R oH
'l‘n(O.t')
+3 —

- 2[(a-1)(0-2) + (#2) (o+5) BPR ™ [ (11)-AG I e

Combining these results (I11.44)

7, (80,7) /o
T T T
1
= &? I N(z=t') {- 5 ‘_3'%4' 3 i%g
-

2l-1)(a-2) + (2) (@) IR O [a (1014, (x)1)er!
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e e dia o

T Tn
+ I N(r-1') {- 3 d

-0

+ 201 (1-2) + (@42) (#3) 2P IR O [a_(11)-4 (") 1ax!
n(2o+1) .n R
+=37 R @ (- Ah)

+R Ti(ﬂ-O.t)

n * -n ,9T
R I S (aT)dS

R

n ,2n+l 24
-G

The potential flow contributes to the total pressure field through pp

which was derived by Plesset to be

P,(r = Ri0,4,t) = £ ® a+3RkRa+2R Y (A.24)
at H= 0,

Since this has the same angular dependence as P,» an analogue to Pv is

found to be
P (nﬂlt) o o i
_z_?_..n_l.f(n.n+3n.n+zn.n) (A.24




A-15

The unit normal to the surface, p, also enters into the 0(c) boundary

conditions
a a
R n oY n Y
BT e T €T 0% " T aind o¢ %9 (4.25)

vhere e ., e, and e, are the unit vectors. The dynamic boundary condi-

~r ¢
tions are
px([g-nl=0 (A.26) 1
per(gen)=09V-n (A.27)

~

vhere the former condition is for zero tangential stress and the latter

expresses the balance which must hold between any discontinuity in

normal stress and surface tension forces. The total stress tensor ¢,

includes the isotropic pressure just calculated in pp and Py and the

3 extra stress 1. The three components of the tangential stress condition
- are )
t‘ r:0=0

N

! 6:n n_+n_o n =0

r %r Pt TP %0 %6 T % Crr W

T oy

¢:n_ o, n +n_o =0

r “6r 'r r %06 P0 ~ "¢ %rr

o~

The potential flow contributes to the extra stress in the fluid through

the rate~of-strain tensor for that flow field i(p). (A.28)
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(P nt2, R n+2
Y, @t) =2 ENOW c (o7
.(®) 1, R 12 1, 2%y
Yoo D) =2 HO™ ¢ (- T+ )
.p)
Tep @0 =2 @™ c @
2%y cotd Y
{- (n+1) sin F+Y o+l 'a_e}
P @)y g 2(n+2) 2Y
Yrg ~ Yer T (r) cn(t) (n+l) 26
) ()
Yeo " Yor = C (t) Z sine ao
L@ ,(p
Yoo =Yoo " ~GDOO™ c®
[ —2 2%y . 2 cot 3Y ,
8in® 23¢36 gind ¢
where the time dependent function Cn(t) is defined as
. R(t
6,(0) = a () +2 a () B (A.29)
The angular terms in curly brackets { } can be simplified using the
identity for spherical harmonics
1 d 3t
~5 3% (-me s Y + “n 535 Ta (41)Y, (111.13)

BNt 2 T
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Thus, for the ¢¢-term
~ly 1 3%y |  m _ cote 3Y
‘n+1’ gin26 3¢° n nt+l 36
- @) P Ly r.13)
n " o+l 962 'n *

and, for the 6¢-term

2 3%Y _ 2cot® 3
sind 23634 8in6 3¢ mn

The only contributions to the tangential stress condition at first

1
h order in € will come from °¢r or oer at 0(c") and orr’ o¢¢ or 096 at

0(e)

Oor er
iY_ = 1 -31 (Ao 30)
90 sind 3¢

r=R r=R

H=0 H=0

T c (")
-o [ 2D B

‘

1 a'n ? Bn
+ (T -5 ~r 3 D) lar*

r=R

L.
( T C T
1o «p J w ) (8 | n, 2(2e) 4072y 4gq

¢




d.’ LY nQGrtnr
: _]_ 1 (A.31)
) gind 9¢

B,%e% ~ e%rr’r
F3d
36

= 0 [f N' 31.‘;!__.4, + P, (r.t)](--

T 23
-(- %)[- J N' %-rk- ar* + p (r,t)]

-0l

PP

| a (1) R('r ,
- - Ry I R O |

These combine via (A.26) to yield the tangential stress condition,

Equation (I11.46).

|
g I‘ a (x") zancx')icr'>
' N(‘t-t'){Z(n+2)[ CH ) UICAb)

'rn(u-o »1')
- () @D

+ 2QuDR® D (1) [a_(x") - A (x)])eT’

a(r) LRt

- 6(n+l) —TT N(t-t G dt' = 0
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The normal force condition at first order in ¢ reduces to only

one stress component balancing the O(c) surface tension force, but

each must be evaluated at the deformed surface

i n, o .[n (A.32)

r = R + ¢ga¥Y

Y

(siné =7)

~oi rzlsine ae

1 2a
+ 8inZ6 3 —7] Ym}

r = R + ga¥

=0 -f_.r (n-l)(n+2)Y:

r = R + ca¥
The stress component is given by

t'1:1" -orr! +ea YmaL T

L =R+ ea¥ H=20 H=0

(A.33)

The terms needed at the undeformed surface are those that are first

order in ¢. (A.34)

(v) (p)

ST
(A oy '
Orr - I N [Yrr +Yrr Jdx +p,+p

H=0
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| T T, a’nn
= l ——— -
P I WG TaT!")I
- He0

- EHO™ G 2, Pl e
H=0

1 - [ X rYl
+ (P (8=0,T) + —7(Ra_+ 3Ra_+ 3Ha )) Y';

A1 e e

T
- p J 2N' (-~ n(eri-l)R(n-z)(an-An)

2, - R '
R )(an + Zan R)} Yz dt

1 A e o
+ {P (B=0,7) + =1 (Ra_ + 3Ra_+ 2Ran)}Y:

The first term can be replaced by an expression derived from the tan-

gential condition (I1I.46).

SRS R P YL I

The contribution to the stress resulting from the surface deforma-

tion is

2
é:R)dr' + po} (A.35)

at H = 0, wvhere P is the pressure field from the spherical flow given

by

P (H,t) = P (T) +
° ° (A.36)

o[ (R}R + 2RR?)/L - % 2R /LY)
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Contribution (A.35) is expressed in terms of a., R and derivatives as

an(r){12 pL? I N' (R ( ))dt'

-

- oR(D)} T (8.9) (A.35")

Combining (A.32), (A.34) and (A.35) the equation of motion for ln(t)

results (II11.45)

R('r)a (1) + 33 R(‘t)a ()

T (‘t
- 2(n-1) (n+2) [ N' [W] dt’

+ (- ) R(T)B () -

T8 (t")R(1")
- 4(n-1) (n+2) J N' [——_R-!_(‘-IIT] dt’

a (v) 2 0
+ én(otl) s | W ::  av’

-

T LR
- 12 a_(1)R*(1) I N [pegehy) 4t

olp
+ (n-1) (42) greey 8, (1)




. T Tn(n.ost')

| + n(n+l) I N =gy ) e
+7, (B=0,7) = 0

|

1
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A.3 Viscous Limit }

A necessary, though not sufficient, condition for the validity

of these results, (II11.41), (III.45) and (II1.46) is their reduction to

the expressions for a purely viscous fluid derived by Prosperetti
(I11.27), (11I1.32) and (I1I1.34). This Newtonian limit should obtain

for the special choice of memory function

N(t) = us(t) Newtonian (A.36)

where §(t) is the Dirac delta function. This relaxation modulus will
serve to reduce the time integrals to the value -of the integrand at the

time when the argument of the delta function is zero.

T
! uS(t~t")(t')dr' = uf(x) (A.37)

-® :

~ Thus, the distinction between Eulerian and Lagrangian time integrals
vanishes since the variation of geometric parameters such as R(t) over
past times is no longer relevant.

The simplifications that the Newtonian stress relation allow in
the model system are substantial. For the T-equation in the form of

(I11.41), the elastic integrals, those multipled by Go. are identically

zero. The cancellation of terms in the integrands Il' Iz. and I3 which

occurs to leave only the term multiplied by v in (II1.41) is best seen

in expression (A.16). The distinction between terms like

144
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Lz

-0

T
i I N(t-t')xn(u.r')L'(°'2)dt'

and

T
L I N(T-T')Xn(ﬂ.t')L'(n-s)df'

-0

disappears for the purely viscous case since both are now equal to

P

ux_c, L)

Terms containing xn and zn cancel completely, and only the terms in-

volving Tn remain. It is then straightforward to transform the Lagrangian

purely viscous T-equation to the Eulerian result (I1I.27).

I

AT L2 racRy2p - 22T T

™
3

The tangential stress condition (II11.46) is even more easily re-

duced to the dasired viscous limit. The distinction between terms such

as
T '
%I N! %rd‘t'
-0
and
T "Bt
I N' £§¥! dt' .
.

vanishes in this case and (I11.32) obtains directly.
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The purely viscous normal stress balance is more difficult to
produce from the non-Newtonian expression. First, Pv (I11.44) must be
obtained for the Newtonian modulus in Eulerian coordinates, then the

result can be employed in the amplitude equation (IiI.IoS). In equation

(I11.44) most of the terms in the two time integrals will cancel in the

viscous limit. When there is no externally imposed flow, the result

: is
f viscous
P (B=0,7)/p = P _(v=R,t)/p (A.38) ;
L _y, 8T _ n(2ntl) n R |
v a:* n+l R (R)“r . 1
@«
: 0 s 2T 4 3@z 2T
+RTn(R.t) R Js [at+n(s) as]ds
R

Using the viscous T-equation (I1I.27)

X T

3 .o R 32 T
3t - " 3T [REPT] + vizzz - n(oHl) 5}

and spatially integrating by parts

Pv(r-R.t)/p

) [ (" - 11" 10,0285

b oy TG0

which is equivalent to (III.35). With this result the viscous equation

(111.34) emerges from (I1I1.46).




APPENDIX B : 0(c?) Terms
B.l1 Introduction

The validity of the present analysis, which is restricted to
“gmall e'Lobviously depends upon that small parameter. Ome way to
evaluate the radius of convergence of the analysis is through experi-
mental trials and these seem to indicate good agreement for deforma-
tions which are substantial fractions of the overall bubble radius
(see Figures 24-27). Previously published comparisons of the non-
linear analysis of Chapman and Plesset (1971) with linearized results,
these for inviscid fluids, are encouraging sinc; they show good agree-
ment until the final stages of collapse. Analysis can also give some
estimate of the range of validity of a linearization without the need
for solution of the full, nonlinear, problem through the generation of
the neglected terms and determining the conditions under which they are
small compared to the terms which are retained.

The nonlinear terms which are dropped in the derivation of the
T-equation (I11I.41) from the exact vorticity equation (22) are terms
of second order in ¢. Such second order terms are also quadratic in
the spherical harmonics, which removes the separability of the equa-
tion into an (r,t)-dependent function and an angularly-dependent one.
This, in turn, prevents the manipulation which totally removed the
angular dependence from the final expression (see equations A.5 & A.13)
and the resulting independence of this equation from those for any
other value of the index n. Thus, the explicit evaluation of the

next term in the expansions for velocity or pressure (equations III.16,

B-1
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'3 17) 1s considerably more complicated than that for the 0(el) term.
'ﬁ Since both the full nonlinear problem and the O(e?) problem are so dif-
ficult, the error introduced by the nonlinear terms is estimated by

evaluating them for the values obtained from the linear snalysis.

B.2 Convection and Inertia

1 The nonlinear terms in the LHS of the vorticity equation which

were neglected are

! (v

Vot V) c T mw e VY, 4 V) - D
|
i and represent convected, inertial phenomena. They also bring the poten- g

tial velocity field Yp into the analysis for vorticity. The expressions
for each component of the velocity and vorticity are given in Section
3 II1 and again in Appendix A (III.19, III.28, A.l, III.21, A.4). A

double summation over the lower index on the spherical harmonics is

now necessary. A new symbolism is adopted to insure the explicit reten-
tion of both values. Let "k" be one subscript and "&" the second and

let y be the total O(c) velocity.

TeYl, Y,  (B.2)

Then, this means

. 2
e~ M @ +a D - -,-:!m:«.» (.3)




For convenience, the potential contribution is represented through

6t = & @ +a B W)
This symbolism can be used to express the 0(c?) terms in the Eulerian
frame as .
lv, « Yw,)_= (8.5)
B .1 T,
T+ G4 Tine
[aYk ayz ) aYk 3Y£]
20 ¢ 9¢ 06
[, * %¥,], = (8.6)
T 9B B
rass) €Ty - 570 +3+c,)

'atk 3Yl OY!' QY"

3¢ ¢ ~ 9% TR,

B . R
-t TR Lo LA
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[v,* Vw,], = (B.9)

9B, s Ty 937y
(T -3 + QIR (- 57 &) 357

B 1 T,
Tt Y &)
9Y, 5%y o, %y Y

[ k L 1

2 2
36 397 ' sinfe 3¢ ‘(aea¢ ~ °°t® 33 )]

lyy * Ty, = (B.10)
T 1 N B G 4, 3
=M sime 39 (& + w1 30 sin6 33 )
oY B c 3%y oY

k. L. 2 ) ]

+t35 [+ 77 Gaz + coté 357)
3,

I TR LA

A tractable expression, and one which is still meaningful, re-
sults if axisymmetry is assumed and only one mode is present, e.g.
k=1=2. The r- and 6-components of the cross terms are identically

gero and the é¢-term is (B.9, 10)
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From the sample calculation of Appendix C.2 values for each of
these functions can be assigned and the relative magnitude of the convec-
tion terms evaluated, e.g. at r = R (B.11)

Step #10:  time = 2.50 x 10" ° sec
R=2.42x10 cm
R = 1.47 x 10 cm/sec
a=9.5%x10"2 cm

a8 = -1.863 x 10® ca/sec




-——ie . fhes

a, = -8.70 x 10%

——

§§(n) - -4 x 107 sec™?!

‘ T(R) = -1.14 x 10° cm/sec

Step #11: time = 2.75 x 10”5 sec

R=2.46 x 10" em

= 1.41 x 10% cm/sec

e

= 9.1 x 1072 cm

a=-1.943 x 10? cm/sec

a, = -8.805 x 108

-

E®) = -1 x 10* sec?

.k

T(R) = =1.20 x 10® cm/sec

S L i

Also at T = R

3B
2
- =0
- c -i+2ai~lo' cm/sec
,a 2 R
e B 2n41 .n-1
«Z=_ R " a, ™4 x10°

R ot 2

B-7




Thus the factors in the second order expression are

(T, = 52 + c2)| ~ 10° cufsec

r=R

-

T aT
@ -Rl - %gr—z) ~ 2 x 10° ca~lsec™?

=R

(B.12)

c

B
-?-+-§-2-)| A 4 x 10° cm/sec

(R
r=R

| T2 N -1,..=1
(-iy)l A2 x 10% seclcem

r=R

fyy * Twply - (@, * Tyy),

Y

11 _2
v {2 x 1000 (Y, 52 (B.13)

a’yz Y, 9,
+ 8 x 107(-3?!— - coté 3-6—) T Jsec™?

These second terms are to be compared with the inertial terms at

first order in ¢ which are
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°Y
13T .13 r32.Ry2 2
{r at + T or (R (r) 12]} 90
(8.14)
Y
1 9T 1 ,:9T .:T 2
=lg3t W+3 Ry - 2R 55

Numerical data gives this expression (B.14) a value of about |3 x 10%!|

3Y2/ae at r = R. For these terms, at first order in ¢, to dominate the

nonlinear, second order terms of (B.13)

e("B.14") > ¢2("B.13") _ (B.15)

or numerically

12
e < _b_"_li_‘ (B.16)

|2 x 1011'

To arrive at this result, the common factor avzlae has been cancelled

and the other angular terms in (B.13) neglected since they are 0(10°)

or less; they consist of combinations of sine and cosine functionms.

For large R values, as in this case, these inertial terms are dominated ;

by the contributions of c2 and 3T/3r. When this occurs the requirement

on £ becomes

262 Ry1aT 201
c(a, + 22, P gy < GRFP

c657 +'5) <1
2a R
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B.3 Non-Newtonian Nonlinearities

A second instance for which the importance of second order terms
must be evaluated does not arise from a straightforward expansion of
existing terms in the vorticity equation, but from a particular choice
of constitutive model for the stress. Cross terms can arise from the
nonlinearities of convection, co-deformational or co-rotational terms.

One method by which to approximate these contributions while
maintaining the form of the previous results is to employ quasi-linear

expressions, in the sense of Bird, Armstrong and Hassager (Chapter 7).

A Taylor series expansion in convected, co-rotational or co-deformational

coordinates can be employed to approximate the difference in stress
each formalism would predict. In the integral constitutive model the

strain rate at time t', i(r), or its equivalent can be replaced by

L)

Z convected(T

SERTORIIE DR HE

. (8.18)
=@ + (1) G4 ey - W)
™7

in the convected case. The present O(cl) model already incorporates

an evaluation scheme which is better than the first two terms in the

second exprossion of (B.18) since the actual value of strain rate at

past times is evaluated and included in the analysis. If this evalua-
oy '

tion is termed Zprcocnt(t ) then another approximation to the con-

vected strain rate at past times is

B-10




xconVected(T') - Iprelent(T')

(B.19)

+ e(t=-t")V - vi

Similar expressions arise when co-rotational contributions are included

Yeoopor @) = Y(O) + e(r-1") gz 3 ()

= Iconvected(T') (B.20)

e FLe P -G 0

for the vorticity tensor w. And also when co-deformational contribu-

tions are considered

lco—def(T')
(B.21)

: '
= |-Y¢:omrect:e¢1('t )

+e(-t)HENDT + y+ 1 @)

These expensions are linear in time and can only be accurate as long
as the time derivatives do not change sign.

All of these instantaneous strain rates will be integrated over
time in the same stress expression. Thus, if the instantaneous dif-

ference between the present strain expression and those including
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convected, co-rotational and co~deformational contributions is small,
the resulting stress differences will also be small. This contrasts
sharply with any comparison between purely viscous and viscoelastic
stresses because they cannot be validly approximated by taking only
taneous strain rates into account.

By reverting to the Taylor series expansion for the strain rate

as presently employed, three terms emerge which must be less than the

present strain rate

Azconvected’ Azco-rotational’

and AIco-deformat:lonal (B.22)

<
!present

- i(t) + (1-1") -:; ()

where

L] - ‘ . .
AIconvected = e(r=1 )Y VI

Aico-rot - %-e(t-t')[(g ) i)- (i ’ g)]
BYcomder = ECT-TIIENT = Y + 7+ (W)

The convected difference terms can be represented by the (rr)

component
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(B.23)

Combining this expression with those for the full veloecity vector
and rate of strain tensor of Appendix A, the derivatives are all on the

order of the particular strain component divided by the local radius,

e.g.
) o 9B
r (Itt) [arz(T ar)

(B.24)

+ 2(k+ig(k+3 R k+2 ck] Y

emerges from (A.9) and (A.28). It can also be shown from the definition

of Bn (A.2) and (A.13) and (A.14) that

3r2 (T - ) = k1) e-2)% <73

+ (et) (k42) (Ged)z, 0~ ) (8.25)

Tk K (k243K+1)
r 21+l

2 ;{!3-.’4‘“,
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which means that

%? (irr) i ZEF (B.26)

In the evaluation of the present strain rate the (rr) component

is
. 3T _ 3%B, 4@
Yer © 2 (bt - arz) n (a.9)

1 - 2[n(a-1)r""2%_+ (a+1) (@r2)r” ™Dz )

from (A.14). The sample calculation assigns nuherical values to the

4 terms in (B.22), (B.23), (B.26) and (A.9), at r = R (see B.1ll)

Y] = 1.75 x 10° sec™?

lﬂ:,o

& 8.4 x 10° sec™?

(%

T
(B.27)

R&2.4x10"! cm

[v] & 10° sec/sec

For this case, the convected contribution to the strain rate is small

e,
LR S

when

T ik o

I e T e
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nash FG

A i e(t-
convected
Y " <1 (B.28)
o x \ S T=T? . x ‘r-’
Ypresent 1.75 ¥ 10° + (1-7')(8.4 * 10" )
which is true for all t' < T when
(B.28%)

£ <1.15

A similar analysis can be carried out for the co-rotational terms.

For the axisymmetric case the necessary calculations show that

0 N 0
w=2|-w, 0 0
L o 0 0
(3.29)
p*rr ;re o ]
i - ;re §86 0
L 0 {y”J
(8.30)

Eeglly-y1-G gD

has only four non-zero terms, which are given by
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ﬂ Err =2 u¢ Yr‘ - -!oo
| (8.31)
; Ere - Eer = m’( Yoo~ yrt)
The expressions for the vorticity temsor (A.4) show that
T
w¢ ~ T (B.28)
And thus the ¢ condition for co-rotation becomes
et 13 11l
— <1 (B.29)
i + (1-1') 3{
ot
which numerically implies, for this case
£ < 0.96 (8.29%)

Finally, for the co-deformational formalism the only complication

is the relevance of both the potential and v-velocity fields. The

velocity gradient consists of components of the form [

weo @ +5H | (2.30)

and the c¢-condition emerges as




B~17 g

e(t-‘t')(l'gz' + |'§' D1+l
[ ] <

Y + (r=1') -g-}

1 (3.31)

€ < 0.8 (B.31%)

B.4 Amplitude Equations

' The inaccuracy of the linear approximation applies to the non-

! . Newtonian expressions in the boundary conditions just as it did for

the vorticity equation. The results are the same as for T, since the
same stress expressions are used to evaluate these quantities at the
surface. However there is one place where these 0(e?) terms :ould become
important for the boundary conditions in addition to those for the

T~equatioa. The unit normal to the surface used to formulate these

conditions is

a
e e, tes €9 ~ € “sin6 2¢ %¢

The correction to this expression at second order in ¢ is

e *n.a. 07 1 Y
-7 (r—)’l(-a'g) + Cime -a—.-)’l

BT, IR
2, SRRy "ﬂg ﬁ




Thus the correction will be small if

or

for these numerical values.

B~18

(B.33)

(B.33%)




c-1

APPENDIX C

C.1 Method of Solution

The system of equations governing the toroidal field Tn(n.'r)
and the nonspherical amplitude a can be solved through a series of
] relatively straightforward finite difference calculations combined

with linear algebraic techniques. The basic procedure, which allows

simultaneous solution without iteration begins with the calculstion of

a "particular" and a "homogeneous" solution to the vorticity equation
? for 'rn. The coftrect linear combination of these solutions is deter-
mined using both the amplitude equations and finite difference approx-
imations to the nonspherical velocity and acceleration. A linear sys-
tem of three equations is solved which determine amplitude, velocity
and the proper linear combination simultaneously. Internal consistency,
i.e. convergence, of the solution was checked by systematic variation

of numerical parameters and algorithms within each program segment.

-7 B gt
R 2

The symbolisn employed reflects the restrictions of computer
output and also the discretiszation of continuous functions performed
in spplying finite difference approximations. Spatial variation is
signified by the index "I" and temporal dependence by a second index

"J". The spatial grid was generated by specifying the Lagrangisn

coordinate H(I) as a geometric series. An initial H value was speci-

ik m——t—

fied to be H]l and a ratio Py vas also chosen s.t.

B + 1) - BQ
16 -n:-'(T}"’n ©.n




where H(1) = H1

and Ro =0

The ratio p, was less than two (2.0), since this was found to be neces-
sary for good approximations of spatial derivatives, and greater than
unity. This lower bound served to concentrate the spatial points in
the vicinity of the bubble surface while still allowing relatively few
steps to span a large spatial range. This large range is desirable for

the approximation of the integral term e, (see Equation III.30)

a = I s T(S,t)ds
R
(c.2)

r
max

- I s ® 1(S,t)ds
R

Trial and error calculations demonstrated that, while the value of
Toax DECESSAry for convergence is not large, it would require hundreds
of equally spaced steps of Hl to reach that value when El is small
enough to insure good approximation of derivatives near H=0. Thus,
this geometric series was used. Convergence could usually be achieved

for values such as

R =10~ c»
Hl = 107! cm!
Ls (C.3)
PH = Il
Ng = 25

wvhere Nn is the total number of spatial steps. For these parameter
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values r___ & 10~% cm.

The zero-order problem of determining the radius profile R(t)
vas solved in a straightforward manner, employing standard predictor-
corrector methods. The evaluation of the elastic comtributiom to
stress was simplified by the recursive property of an exponential
memory function explained below. A Simpson's rule approximation of

the stress integral results in (C.4)

t + At
t'
exp (

= (e 880y § (")ar!

4

. At.* )
L Yt 4 8t) +exp(= TV, (1)
& At 5

t
+ exp(- é—:-) I Ve (t") exp(-—-——t)"t)dt'

The R profiles so-generated were then available, along with Rand R -
values, as inputs to the O(c) solution. Alternatively, the profile
generated by the data fit explained in Appendix D was also available.
As in the mmerical solution of many P.D.E. when time is among
the independent variables, the procedure was to evaluate or specify
all quantitites, e.g. x'rn(x.a) - rn(n.r). for I =1, 2, ...y Ny, at
some time step "J", then use those values to generate the corresponding
numbers for the next time, "J + 1". The finite difference approxima-
tion to the T-equation employs a central difference in the time deriva-
tive and a mixed implicit-explicit weighting of the remainder of the

equstion, ’T’ at Jand J + 1. The function t‘! Tesults when the




vorticity equation is expressed in the form (C.5) '(

XT(X,J+1) - XT(1,J
.34

3.
S k13
- ; (C.5)

. 2
6. mk,1, 22T, 11,12,19)

The weighting was characterized by a relaxation parameter BT'
0 < 8.1. < 1, vhere B.r = 1 corresponds to a completely explicit algorithm.
This relaxation parameter was among the numerical parameters varied in

f early calculations to insure, and then optimize, convergence. Spatial

derivatives were approximated by a two-point central first derivative

and three-point second derivative. These were chosen, despite the

. resulting requirement of small spatial steps, because the resulting
matrix form of the XT-equation allows a non-iterative solution by
Thomas' method.

The algorithm generated from these choices was applied twice.
A "particular" solution, TZ(I) at (J + 1), results when XT(I,J) is re-
tained. A second "homogeneous" solution, DTF(I) at (J + 1), is pro-
duced when the previous XT values are neglected. The linearity of
the equation, allows the general solution at (J + 1) to be expressed

as
TT(I, XRAT) = TZ(I) + XRAT * DTF(I) (c.6)

vhere the factor XRAT must be determined by boundary conditions. The
E "homogeneous” and "particular" functions are also sufficient to
determine the integral e snd pressure term Pv within this sase unknown

‘.'ﬁ'ﬂ'w [
e N c
- A

P f\Z’.(" £33

=
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factor XRAT. The nomenclature employed is defined by

(-“'”)aﬁaun-mlz-rm'r*nn 1

o+l !
and p v
P,(H=0,7) = PRZ + XRAT * DPR
|
where UIlZ and PRZ obtain for the particular solution TZ and

DIl and DPR from DTF.

The tangential stress equation (1I11.46) can be recast as

y,(3 + 1) = £,(a_, Tz, DIF, UIlZ, DIl; XRAT; R,R;
' .7)
past values, physical parameters)

where all the independent variables preceding the first semi-colon are

for time (J + 1) and
G+ =a @+ (c.8)
The normal force condition is somewhat more complicated, yielding

;n(a +D=d @+ (C.9)

- f’(’nl ‘n’ m. m.

PRZ, DPR; XBAT; R, R, R}

past values, physical parameters)
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Various closed integration algorithms are available to give finite
difference approximations to these equations. BHere, four different
algorithms were employed -—— explicit; simple two-point mixed implicit
explicit (B,,8.); mixed two and three-point (B, 8., fiys fiyy) and &
modification of a Hamming predictor-corrector employing four points.
These were all tried, and choices made, once again to insure and

optimize convergence. All algorithms lead to linear equations in

yn(J +1), an(J 4+ 1) and XRAT

Y, * WACL) + a_ * WB(L) + XRAT * WC(L) = wD(L)  (C.10)

for L = 1, 2 and 3, and where the coefficients, WA, WB, WC and WD, de-
pend only on past values, physical parameters and R, R, R, TZ, DTF,
UIlZ, DI1l, PRZ and DPR, i.e. they are effectively constants with respect
to Yn’ a and XRAT. This is a well-posed, determinate system which is
then solved for a (J + 1), Yn(J + 1) and XRAT.

With these values, all quantities can be updated and the process

repeated for succeeding times.

C.2 Sample Calculation

This method of solution is best illustrated by a ssmple calcula-

tion. For a purely Newtonian fluid of viscosity 0.10 cp, and the values:




time step = 2.50 X 10-% sec

Hl = 10~-* cm?

pH = 1,50

Ny = 30

initial radius, R = 1.98 x 107 em

initial amplitude, a_ = 1.27 X 107! cm

| . The values at time step #10 were found to be

g . time = 2.50 x 10~ ° sec

iy R e 2,42 x 107 cm

3 R = 1.47 x 10° cu/sec
R = ~2.21 x 107 cm/sec?

XT(Be0) = -1.140 x 10°

- 1 2
H . -1.140 ~1.141

1 10 L]
-1.201 -1.712

3
-1.142

20

initial nonspherical velocity, io = -4.0 x 10? cm/sec.

4 3
=-1.144 ~1.147
25
-2.105

R ARl SR} DAhE . |

o am s b e b s

i
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a = -8.702 x 10°%
a=9.553 x 10~2
a = -1.863 x 10°

To calculate these values at time steo #11, first these values are

generated.
t = 2.75 x 10~° sec
R = 2.46 x 107! o
R = 1.41 x 10° cm/sec
R = -2.19 x 107 cm/sec?
and TRZ = -5.315 DTRF = 0.996
UIlz = -8.804 x 10° DIl = 6.422 x 10~"

UI2Z = -2.933 x 10° DI2 = 2.804 x 102

so that

WA WB WC WD
L1 3.39 x 10°2 -6.42 x 10} -1.27 x 10~ -5.71 x 10}

1.016 x 10° 8.35 x 10? 1.62 x 102

9.37 x 10~7  -1.00 x 10° -9.26 x 10~
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which can be used to determine

a=-1.948 x 10°
a=9.073 x 1072
XRAT = -1.17 x 103

and XT (H=0) = -1.170 x 10°

e b ittt

‘ I = 1 2 3 4 5
-1.171  -1.172  -1.173  -1.175  -1.177
i
' XT(1)
ov
10 15 20 25

-

Variation of time step, spatial step and number of spatial steps

&

was performed with convergence to these amplitude values.

A A

T
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APPENDIX D
Data Analysis

D.1 Shape and Size Fit

As stated in Section V, from each photograph the equivalent
radius R, and some measure of the nonsphericity of the bubble is de-
sired. The shape of these axisymmetric bubbles is assumed to be well

fit by a series containing up to three nonspherical modes
T(8,0,t) = R(t) + a,(t) ¥5(0,¢)

(p.1)

+ 8,(t) Y3(0,4) + 2, (t) Y,(5,6)

where

Y3(6,4) = P,(cose) = %-(3 cos? 8-1)
Yg(0.¢) = P,(cosb)
- 1 (5 cos’e - 36cos )
2
7:(9.0) = P, (cosd)
- % (35 cos"6 - 30 cos28 + 3)

In order to fit this function to the actual bubble image it is also

necessary to determine the best location for the origin, and cemter-
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line axis from which r and 8 can be measured.

B e st

:? The basic strategy by which a fit can be made does not vary with
a8 particular procedure. This strategy involves digitally encoding the

location of points on the surface of the bubble in the chosen coordinate

o system, then performing a least square analysis to optimize the param-
eter values.

1) The simplest procedure employs just two measurements of bub-
ble image, the major axis, which is assumed to be the largest horizontal
dimension and the minor axis, the vertical dimension. These occur at
6 =0and " and 6 = %-and %—, respectively when the contribution of the

! third and fourth modes is assumed to be neglibible. If the lengths of

| the two axes are labelled zo and 21/2, then values can be determined for

R(t) and az(t) through

zo = 2R + 2a2 P2(1)

(D.2)

= 2R + 82

IR ST IR ST

/2 = 2R + 232 PZ(O)
=R ~ a2/2

which means that

L+ 2 x/2
R-—g—-—.a__—-

®.2°)

4_...
RIS AT A vy 1 g o

8, =3 -R

vhere a, =a, = 0 has been assumed. .
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This first procedure can be accomplished directly from the photo-
graph or more accurately by magnifying the image. Magnification was
accomplished by opaque projection. The succeeding three procedures
require the additional accuracy afforded by the projection technique.

2) By guessing the centerpoint of the image and the axis of
symmetry a polar coordinate digitization becomes possible. The (r,6)
coordinate pairs obtained can then be fit by a linear least squares fit
to the function (D.1l).

Unfortunately, the lack of fore-aft symmetry (right-left) in
photos such as Figure 28(b) and 28(f) makes the a priori estimation of
the origin difficult. The location of that point also needs to be fit.

Figure 28 also contains frames which display another feature of
the images which makes analysis difficult. The bubble appears to have
flattened ends in frames (e), (f), (g) and (h). The ends are not
really flat, but are the result of the indentations illustrated in
Figure 9(d) and 9(e) which do not appear in the photos since the interior
of the bubbles is not visible. Thus, editing of the digitized data may
be necessary for some frames. Unlike most fitting procedures wherein
greater confidence can be placed in results for larger numbers of points,
here judgement of "flat spots" is required.

The two methods expected to be most accurate include a fit to the
origin. They are:

3) The centerline corresponding to the axis of symmetry is fixed
a priori, then digitized data is fit to gensrate the best value of R,
a, and the centerpoint on the axis.

4) Same as method 3), with the addition of & fit to a, and a,.

J P T S
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Both procedures, 3) and 4), employed the same data. Careful )
estimation of the centerline was made on enlarged images, which was
made possible by the excellent angular (up-down) symmetry of the out-
lines. A first guess of the centerpoint was also made. From this
center lines were drawn radially at 15° to 20° intervals. At the
intersection of these line segments with the surface image, rectangu-
lar coordinates were measured. Rectangular coordinates were employed
because this geometry allows simple transformations when the center-
point is translated along the axis to improve the data fit. The best
values of the desired amplitudes were then determined bj an iterative
nonlinear least sqﬁares algorithm which minimized the sum of the square

residues. Trials were run with all the data, and also with editing

o for "flat spots".

Results for methods 1), 3) and &) are shown in Table Dl. Here

results are shown, not only for different fit procedures, but also for

different times, different photos at the same time, and for data with

and without editing. Looking first at R values, the varistion which
occurs between methods 3) and 4) is seen to be minimal for different
, analyses of the same photo. The reproducibility between different
" photos is not as good, with a total variation of sbout 10X for the
3 five photographs analyzed at 750 usec for methods 3) and 4). Method 1)
does not agree quite as well with the other two methods employed; the
R values from method 1) are consistently 5~10X smaller than the others,
3 but do show proper trends.
' The s, values show more variation then the R valvas due to fitting

procedure and to photograph to photograph reproducidility. There is no .
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‘ 1 ‘ TANLE D3. m of Htt‘t' Yethods
' TIME PEOT0O METMOD # POINTS
Y arde aole ot |
(usec) Q0~lem) (1073cs) ©(107°em) (10~3cm) i
€50 a 1 2 3.00 0.8?
3 T 3.36 1.08
4 3.17 0.98 0.63 «0.40
s 16 3.17 1.24
4 3.16 0.88 0.8 -0.26
200 s 1 2 3.28 1.10
3 1 3.% 1.21
4 3.36 0.95 =0.79 0.30
b 1 2 3.20 1.20
3 1 3.33 1.19
4 3.32 1.07 0.04 0.29
e 1 2 3.% 0.7
18 3.51 0.74
& 3.5 0.65 0.37 0.1?
750 . i 2 3.36 0.33 5
3 1 3.58 0.38
- 4 3.58 0.36 «0.19 0.01
3 17 1.58 0.38
4 3.58 0.37 =0.22 0.04
3 18" 3.58 0.42
4 3.58 0.38 «0.22 0.06
» 1 2 3.% 0.86
3 18 3.5% 0.99
4 3.54 0.86 0.52 0.20
¢ 1 2 $.47 0.33
3 18 .47 0.5
A 3.68 0.52 «0.13 «0.14
4 ] 2 3.4 0.76
3 1. 3.70 0.84
4 3.70 0.85 -0.30 «0.07
[ 1 2 3-15 0.54
s 1 3.4 0.63
4 3.4 0.99 -0.21 0.06
000 a 1 2 3.47 0.4
3 18 3.7 0.7
4 E% 0.23 «0.28 0.25
» 3 2 3.53 0.87
s n N 1.12
4 3. 0.9 0.5 0.23
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pattern apparent in the differences between methods; compare 650 (a)
where method 1) and method 4) agree well, to 750 (c) where 3) and 4)
closely approach one another and 800 (a) where 1) and 3) almost coin-
cide.

Thus, no criteria for the best fitting procedure emerges from
the R and a, values. The additional amplitudes a, and a, are of
little assistance, varying from -0.30 to +0.52 at 750 usec. As a re-~
sult the fitting procedure was chosen on a strictly practical basis.
Method 1) was the simplest to employ and vas used in the remaining data

analysis.

D.2 Radius Profile

In order to generate i(t) and R(t) values, as well as interpolate
the discrete R(t) data measured by the procedures of the preceding sec-

tion a smooth fit was made to all the experimental data simultaneously.

D=6

The shape suggested by the radius data in Figures 22 and 24-27 is that of

a sine vave, 80 a Fourier series was fit to the numbers. Parameters which

were optimized through a nonlinear least squares analysis were:

to = the initial time at vhich R(t) = 0

tp = the period of the primary wave

cj - the amplitudes of the various waves
for J =1, 2, ¢ocy 5.

The functional form of the wave was

»




D-7

] t-to
xﬁt(:) -1-2-1 cj sin (—-t;— " xj) (.3)

where Rj are integers. The xj were also varied, and the best fit

usually occurred for

Kl-l

K2-2

K,=3 (D.4)

K =1
and the contribution of these last two waves was small. Here, best fit

means those values for which the sum of the square residues, p?, is

at a minioum
2 t, 2
o = 1 IR(E) = Ry (£))] ®.5)

vhere n is the number of data points and t, is the time at vhich these
data exist.
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APPENDIX E: Additional Data for Photo Sequences

The camera, tank and laser are oriented so that the lanér enters
the fluid from the right side in each photograph. The beam is focussed
by the lens to a "spot"”, manifest as the bright streak in each photo.

This streak is useful as a reference point since it appears at the
center of the original bubble.

Figure 21.

s i g

Medium lens ¢ 1.5 cm from center
Laser: 80.0%, no filter

5 Figure 22.

| . Medium lens:
Laser: 80.02, medium filter

Figure 23.
; Medium lens
2 Center to solid wall ~ 0.7 £ 0.05 cm
Laser: 97.02, medium filter

) Figure 30.

Distilled water

Lens separation: 8 cm

Lager: 97.0Z, no filter

Center to solid wall ~ 0.7 £ 0.05 em

Figure 31.

Distilled water

Lens separation: S5 cm

Laser: 97.0Z, no filter

Center to solid wall ~ 0.5 £ 0.1 cm

p-gov







