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* rr ASYMPTOTIC THEORY OF TURBULENT WALL JETS

V J R.E. Melnik*
A. Rubel**

Research and Development Center
Grumman Aerospace Corporation

Bethpage, New York 11714

.4., %#*4,

Abstract cW0  Turbulent Model Constant (c,, = 0.09)
CJ Momentum Flux Constant Defined by Eq.

This paper presents a systematic analysis of (32)
two-dimensional and radial turbulent wall jets using C+  Constant in Law of the Wall, Eq. (103)

'S the method of matched asymptotic expansions. The d Constant Defined by Eq. (100)
J asymptotic solution is carried out in two stages. e Constant Defined by Eq. (101)
- \ The first is based on a two parameter expansion of E( J Similarity Function for Dissipation,

Q .j' the full Reynolds averaged equations with a k-u Transition Layer Eq. (84)
model of turbulence quantities. One of the small E s  Constant in Similarity Solution for Dissipa-
parameters, y, is related to the nondimensional tion, Transition Layer

_. Q*% friction velocity, UT, defined by the surface shear f Wall Damping Function Defined by Eq. (3)
-3 4 stress. It is basically a Reynolds number param- F(n) Streamfunction in Similarity Solution,

eter, y = 0(In Re) - I , that primarily controls the Outer Layer, Eq. (25) - (26)
shear stress effects induced by the wall. The g Normalized Reynolds Shear Stress Defined
ather small parameter, A, is related to the modeling by Eq. (10c)
constants arising in the chosen turbulence closure. G(n) Similarity Function for Turbulent Energy -
In the present k-E model analysis a is identified Outer Layer, Eq. (27)
with the constant, c. I appearing in the eddy vis- G Function Defining Turbulent Viscosity in
cosity formula for the Reynolds shear stress and is Transition Layer, Eq. (86)
a measure of the turbulence levels in the outer free G Function Defining Turbulent ViscosityA '"' jet part of the flow. The % expansion reduces the Eq. (2)
problem to a classical boundary layer formulation to Gijw G ,, Limit Values of Turbulent Viscosity
lowest order. The expansion for y-O leads to a Function Defined by Eqs. (43) and (47)
four layer description of the wall jet. The outer H(n) Similarity Function for Dissipation - Outer
layer is closely related to a free jet flow while the Layer, Eq. (29)
innermost layer is a classical law of the wall region. j Index Equal to 0 for Plane Jet, Equal to
Two additional intermediate layers are needed to 1 for Radial Jet
effect the matching of the outer and inner layers J Momentum Flux Defined by Eq. (24)
and to complete the solution. Leading order solu- k Normalized Turbulent Energy, Eq. (10d)

.3 tions for each layer are presented and the compos- K(n),K(3 Similarity Functions for Turbulent
ite flow field result is compared with an existing Energy - Outer Layer Eq. (28) and Transi-
numerical solution for the wall jet. tion Layer Eq. (83)

P Turbulent Production, vt( ; U/9 y) 2

Nomenclature r Nondimensional Coordinate along the Wall
(r = r */b*)

a Constant Defined by Eq. (45b) Rej Jet Reynolds Number (uI*b*/v*)
rj. A(x) Function Appearing in Inner Limit of u Velocity in the x. r Direction - Outer

Outer Solution Solution Eq. (17)
l As  Constant Appearing in Inner Limit of uw Velocity at the Wall (y = 0)- Outer Layer

Outer Similarity Solution Solution
b Constant Given by b = 1 - (3/2)a u, Friction Velocity/;Lw = Vf'cf/2
b* Reference Length in Initial Jet U Velocity Component in x, r Direction,
B(x) Function Appearing in Inner Limit of Eq. (10a)

Outer Solution Um  Maximum Velocity in Streamwise Velocity
B Function Appearing in Inner Limit of Profile

.gs s Outer Similarity Solution v Velocity in y Direction - Outer Solution.
ef Skin Friction Coefficient Based on Initial Eq. (18S)

Jet Conditions V Nondimensional Velocity Component in y
c F  Skin Friction Coefficient Based on Direction. Eq. (l0b)

uw(x) x Stretched Coordinate in r Direction, Eq. (11).,, % Nondimension Coordinate Normal to

.Cw(X) Function Defined by Eq. 40 P

(Cw = uw duw/dx) Ym Coordinate of Velocity Maximum

j(x) Function Appearing in Transition Layer X Small Parameter Equal to cpo
Solution. Defined by Eq. (80a) '(K) Function Appearing in Transition Layer

CI,Cc2 Turbulence Model Constants (c I = 1.44, Similarity Solution Eq. (80)

c = 1.92) - :w Value of 3 at the Wall, y = 0, Eq. (107)
,2 Small Parameter, y u , r/ J( l+j) /4

c Function of P/L and f Defining Turbulent m, Y Coordinate Value of Wall Jet Edge.
Viscosity 1/2 Maximum Velocity. and Half Velocity Point

_ _ _(x). .2(x) Functions Appearing Diffusion Layer
Solutions, E(is. (63) (64)

*Director for Fluid Mechanics Norninalized Turb ulent )issipation liefined
* 4 **glead. Theoretical Aerodynamics Laboratory by '(1 . (10el)
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-p Similarity Coordinate - Outer Layer, Eq. (30) conditions that need to be satisfied for similar so-, . '.'~~ ~ ~~ 3uin poeiti ubl~t flow are discussed by.-'(x) Function Appearing in Solution for Skin lutions to exist in turbule
Friction Eq. (l15a) Townsend 2 , Rotta 3 , Rodi and many others. Exam-

.4s  Constant Appearing in Solution for Skin ples of similarity solutions in free turbulent flows

Friction Eq. (115b) are well known (e.g. jets, mixing layers) and are
K vn K n = given in standard fluid mechanics texts (e.g. Ref.

v S Von Karmen Constant (K K0.43) -1/4 5). Wall bounded turbulent flows generally do notK1 ~~Scaled Von Karmen Constant (c 1 -
0.80) satisfy the conditions for exact similarity except in ...

A Constant, A = (dcl) c2, Eq. (45b) very special circumstances that are much more re-
A Local Skin Friction Parameter, strictive than in laminar flow.

j4
'.-, . /Kuw Wall bounded flows, however, do exhibit a more

' t  Turbulent Viscosity, Eq. (1) general form of similarity referred to as asymptotic
v Laminar Viscosity similarity. In this case, if the external conditions
-) Density permit it, the boundary layer approaches a similar

Turbulent Model Constants (r k = 1, a state far downstream. The similar solution is then0 1k 0  be 1.3) the leading term in an asymptotic, coordinate type .-

Tw Skin Friction expansion, valid for r -. In this case, the leading
*" Tw,r Reference Value of Skin Friction order similarity solution is generally not an exact

,W Normalized Skin Friction !w=Tw/Iw,r solution of the original governing equations but is
only an approximation that becomes more exact as

Superscripts distance increases. Nonsimilar effects arise from
higher order terms of the underlying asymptotic ex-

.- Denotes Diffusion Layer Quantities pansions. As is well known, turbulent wall layers
- Denotes Transition Layer Quantities develop in a multi-layer structure consisting of two

Prime - Denotes Derivative with Respect or more layers. The solution in each layer can be
torimilarit s Variae wdeveloped in a far field similarity form, but the formto Similarity Variables, n, C of the similarity solution and the velocity and length-' ". ." * Denotes Dimensional Variable

Dimensinal Variable scales differ in each of the layers. Thus, the overall
' (0) Perturbation Index solution never achieves a completely self-preserving

asymptotic state because the solution in each region

Subscripts develops at a different rate. Nevertheless the solu-
tion in each region correctly matches its neighbors,

D Diffusion Layer Solution in the sense of the method of matched asymptotic ex-
e- W Spansions, and the overall solution is a rational asymp-WallSet dge aluetotic solution valid far downstream.
m Denotes Value at the Maximum of the t-

Streamwise Velocity Glauert 6 developed an approximate analytic
w Value at Wall (y, ", y = 0) solution for both planar and radial wall jets in still
o Perturbation Index tar. He was able to construct a solution in near-
cp "Common Part" similarity form by assuming the flow to be divided

into two regions: an outer free jet type flow, and
an inner conventional turbulent boundary layer.

. 1. Introduction The two solutions were matched at the position of

* ?In hispapr w exmin th thoreica stuc- the velocity maximum where the turbulent ReynoldsIn this paper we examine the theoretical struc stresses were also assumed to vanish. The solution
ture of radial and planar wall jets spreading out on in the outer layer was obtained with a constant eddy
a flat surface in stagnant surroundings. Although viscosity model appropriate to free jet flows while
geometrically simple, these flows raise many theo- the solution in the inner layer was assumed to be the
retical questions relating to turbulence modeling same as in turbulent pipe flow. Townsendl also de-
and to wall jet similarity and asymptotic structure. veloped a near-similar two layer solution for the wall
Wall jets are of interest in turbulence modeling be- jet but he employed a standard logarithmic wall layercause they combine in a single flow field important for the inner solution instead of the power law pro-aspects of both free and wall bounded turbulence, file used by Glauert Comparison of Glauert's theory

They are also simple examples of a flow with a ve- with experiment shows that it can accurately predict
p-" locity maximum that is not coincident with a van- the velocity profiles and most other features of the

ishing turbulent shear stress; a feature that can- flow. The theory indicates that the inner and outer
not be described by turbulence models employing layers grow at slightly different rates and that the
an eddy viscosity hypothesis. exponents in the velocity and length scales slightly4, differ from the similarity values of free jets These

As discussed, for example, by Townsend1  effects are due to the approximate nature of the
turbulent wall jets developing in stagnant surround- similarity of wall jets.
ings belong to a general class of flows referred to
as self -preserving. Such a flow is similar (or self- Two controversial aspects of the theoretical

. preserving) if the form of the solution, when non- solution are the values of the exponents in the veloci-
dimensionalized with respect to certafin velocity ty and length scales and the question of the existence
and length scales, is independent of r, the coordi- of a logarithmic behavior in the velocity profile near

%nate parallel to the shear layer. These velocity the wall. For a radial free jet, the similarity solu-
and length scales are usually simple power law tions indicate that the length scale, ' 1/2, increases
functions of the streamwise coordinate. The simi- linearly with radial distance, r, while the velocity
larity transformation reduces the original partial scale, urn decays as r-I. The experimental results
differential equations to ordinary differential equa- of Bakke' and Porch, Tsuei and Cermak 8 for radial
tions. If the similarity is exact, the solutions of wall jets are consistent with Glauert's prediction for
the ordinary differential equations are also exact
solutions of the original governing equations. The the velocity scale, both showing a 10-15% decrease

2 6
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in the exponent from the similarity value. However, the wall jet flow is that the Reynolds stresses in tie
*-- '. the same data also indicates a 5 to 10% decrease in outer layer are an order of magnitude larger than the

.. ,, j" the exponent of the length scale for which the levels near the wall. The analysis to follow will show
Glauert theory predicts a 2% increase above the simi that this feature dominates the theoretical develop-
larity value. For the planar free jet the similarity ment and leads to a characteristic multi-layer struc-
exponent for the velocity scale is -1/2 while that for ture that is typical for flows with relatively large
the length scale is I which is the same as the value Reynolds stress levels in the outer region. We be-
in a radial jet. The data for the velocity scale in lieve that the theoretical approach developed here is-''- planar wall jets was sunmmarized by tlainmond19 . 

Tile general and may prove useful for analyzing other

experimental results indicated a decrease of exponent flows with the k- or other turbulence models.
in the velocity scale by about 5- 1from te similar-

-. , " ity value which, as in the radial case, is consistent Our approach to the wall jet problem is based
* with Glauert's theory. The results for the length on a rational asymptotic analysis of the k- model

scale in the planar case are somewhat equivocal. e(luations using tie method of matched asymptotic
The experimental results of Schwarz and Cosart I 0  expansions. It is an outgrowth of the asymptotic
and Meyers, Schauer and Eustis 11 indicate that the methods develo)ed for boundary layers and for vari
exponent for the length scale is equal to the similar ous turbulent viscid inviscid interaction )roblems
ity value. 1. while the Bradshaw and Geel 2 (Iota (see Refs 16, 17 for a review of this latter work).
indicate a value 10% lower. In all of these works the solution was developed as

%, -. an asymptotic expanlsion iln terms of the ReynoldsThere is considerable uncertainty as to whether number, or equivalently in terms of a reference

a conventional logarithmic law of the wall region de- value of the friction velocity. In these problems
velops in the velocity profile of a wall jet. The same the asymptotic approach leads to a multi- layer struc-

. theoretical arguments that support a log law in ture with the velocity in the outer part of the bound-
boundary layers and pipe flows suggests that it ary layer developing a small defect form. The pres-
should also arise in wall jets. However, the experi- ent work represents a significant departure from
mental results of Bradshaw and Geel 2 , Poreh, Tsuei these studies in that the velocity profile in the outer
and Cermak 8 , Schwarz and CosartlO and others, as region of a wall jet is not in a small defect form Be-
well as the analysis of Hammond 9 all indicate that wall cause of this, the wall jet develops a multi-layer
jets do not exhibit a well defined log law region. structure that is considerably more complex than that
These results indicate that, if a log law profile exists which arises in a boundary layer.
at all, it must extend only over a very narrow region.

, '. and with constants that differ significantly from the In the present paper we are primarily inter-
standard values appropriate to boundary layers and ested in the solution in the far field, similarity

< pipe flows. Nevertheless, a conventional log law region. The asymptotic solution is carried out in
behavior was assumed in setting the boundary con- two stages. The first is based on a two parameter
ditions in recent calculations by Ljuboja and Rodil 3  expansion of the full Reynolds averaged equations
using the k-, model for a wall jet on flat surface and with a k- model of turbulence quantities. One of

i by Gibson and Younis 1 4 in calculations with a Rey the small parameters. y, is related to the nondimen-
nolds stress model on curved surfaces. siolial friction velocity, u,, defined by the surface

shear stress. It is basically a Reynolds number
* Wall jets are known to spread less rapidly than parameter. f = 0(ln Re)- 1 . that primarily controls

* fee ets Ljboj an Roi 1 noe tat the reduced th har stress effects induced by the wall. Thle
spread rate of wall jets could not be accounted for aforementioned asymptotic theories for boundary
with the standard k .model employing the same con layers and flow in' pipes are basically expansions in
stants that successfully predict free jet flows. The this parameter. The other small parameter appear
standard k- model overpredicts the wall jet spread ing in our analysis. . is a measure of the turbu
rate by 30 percent. They suggest that this failure lence levels in the outer free jet part of the flow.
is due mainly to the inadequacies of the turbulence For Reynolds numbers atpproaching infinity, the wall
model with regard to the "damping" effect of the wall jet flow approaches a limiting inviscid (Reynolds

,.'. on the normal velocity fluctuations rather than due number independent) turbulent state that is closely
to the direct action of the wall shear stress. Their related to classicol free jet flows. Since for Re -
results, obtained with a modified k- model that ac- there ore no other nondimensional parameters appear-
counted for the wall damping effect, showed much ing in the underlying deterministic governing equa
improved predictions of the spread rate. tions. , must be a basically statistical pIrameter in

troduced by the coarse graininog or averair v of' the
In order to address the foregoing issues we turbulent flow. Our, ania.sis li ralidts tha tile

thought it desirable to develop a more rigorous ana- .-0 limit leads to a standard boundary layer le-
lytical solution of the wall jet problem. In the present scription with , filling thi, rule, of the ,odlea l
paper we will not tie concerned with turl)tence sioMl viscosityV coLeflicient (i.e. RV I). The vol ue
modeling per se. The turbulence modeling aspects of , is r.l-ated to tit, rilmthrll , .rtt_ ,tm arisi in
of the wall jet problem have recently received much tile chosell liurielice ch.i orv. 11 the j !recmt
attention and the available data and turbulence analysis, ill which we em1ploy the k . mnodl, is
models have been evaluated at the 1980 81 AIOSR identified with the constant, c . a pptariol ii lhe

SC, Stanford conference on complex turbulent flows eddy viscosity formUa for tht, Ilevnohis homir stress.
- Instead. in tile present paper we are concerned with The coistrit c. is isually given by tc. 0. 09

the overall theoretical structure of wall jet flows alnd which is not impresivvly sm:all for ;in asymptotic
with the developmnt of a general theoretiAl ;,il analysis. N overtheless. the use of' a mall c.. as

preach to this class of flows. In or(ler to keep the ymptotic approach is plaiusifl. siice its main effect
P1 analysis as simple as possible and to prouce definite is to reduce the Revyolds avir,etil oquationis toi

results that can be compared with available humeri boundary lover form. This is kown to he a
cal solution- we've bascd the present study, on tie generally useful aipproximation for both free and wall

%' standard k - model including the wall dampling modi bounded turbulent flows, although not nearly as
fications proposed by Ijuboja and Rodi 13 "' Ic )res- good as for laminar flows.
ent theoretical study indicates that a key feature of

3



Thus, in the first stage of tile analysis we ex- We compare certain features of our far field solu
pand the k-, version of the full Reynolds averaged tion with numerical solutions of the partial differen -
equations for y, 0. The a expansion reduces the tial equations for the wall jet problem recently pub-
problem to a classical boundary layer formulation to lished by I,juboja and Rodi

13 
usin, the same form of

lowest order. The expansion for y+0 leads to a four k- L turbulence model. We also compare our solutions
layer description of the wall jet. The outer layer is for the velocity and length scales with the experi-
closely related to a free jet flow while the innermost mental correlations for planar wall jets presented by
layer is a classical law of the wall region. Two addi Narasimha, Yenga Narayan and Parthasarathy18. "'.
tional intermediate layers are needed to effect the It is of interest to note that tie present theory leads
matching of the outer and inner layers and to coa- to the same similarity variables tproposed by those
plete the solution. The analysis leads to a set of authors on the basis of a dimensional analysis of the
either partial or differential equations governing data and on the recognization that the initial momen
the solution in eacn region. The resulting descrip- tum flux is the only relevant initial condition affect-
tion applies to the complete development of the wall ing the far field solution.
jet flow, both in the near and far field, except for
the immediate vicinity of an impingement region, The solutions developed to date deal only with
where the boundary layer approximation of constant the leading order far field similarity solution and
pressure across the shear layer is not vaid. hence predict velocity and length scales that vary

in accordance with the similarity values for the cx-
In the second stage of our analysis we expand ponents. In order to address the nonsimilar effects '

the solution in each layer in terms of distance along associated with the shifts in velocity and length
the wall to obtain a far field solution in each region, scale exponents observed in the data we would need
The leading order far field solution in each layer is to determine the next terms in the far field similarity
expressible in a similarity form which turns out to be expansions. Current efforts are directed at the
an exact solution of the equations governing the computation of these terms.
solution in each layer.

II. Governing Equations. Asymptotic Formulation
One of the interesting consequences of our ap- and Structure

proach concerns the character of the far field solu-
tion in the outermost layer of the wall jet. Because We assume the wall jet is formed, either by im-
turbulent shear stress levels in the outer region are pinging a jet onto a flat surface or by blowing
large, 0 (a) , compared to the 0 (u

2
) levels in the through a narrow slot located near the origin as

inner wall layers, the turbulent shear stress in the shown in Fig. 1. The initial conditions of the jet are
outer solution must satisfy a zero boundary condi- characterized by velocity and length scales u and
tion at the wall. This, together with the fact that b*, where these are dimensional quantities. All
the normal component of velocity is also zero at the other quantities referred to in the paper are made
wall leads to an outer solution that is similar in many dimensionless using these scales and the value of
respects to a symmetrical tree jet flow. Because the density in the initial jet. The quantities um and 5m
turbulent shear stress vanishes at the wall, the are the value and position of the maximum velocity
momentum flux is conserved in the outer layer of the while , 1/2 denotes the position of the half velocity
wall jet. to lowest order. Consequently the outer point. Our analysis is based on the Reynolds aver-
solution has the same similarity form in the far field aged equations using the version of the k - model
as a free jet and the exponents in the velocity and employed by Ljuboja and Rodi 1 3 

in their numerical - -

length scales are equal to the free jet similarity study of the planar wall jet. Their version includes
values. However, the outer layer solution differs modifications to account for: the wall "damping"
from the free jet solution because the presence of the effect, and the effect of the ratio of production to
wall directly influences the outer solution through dissipation. P/U, on the turbulent viscosity coeffi-
the wall boundary conditions on the turbulent energy, cient, , t . We closely follow the Ljuboja and Rodil3
k. and dissipation, -, leading to a zero turbulent formulation and notation except for a minor change
viscosity at the wall. Because of these boundary in the continuity equation to allow for the radial wall
conditions the wal jet profiles in the outer region jet. In their formulation the turbulent viscosity co-
differ considerably from those of a free jet solution, efficient is written in the form
particularly near the symmetry plane. It is also of' - ck* 2

/*
interest to note that the difference in the wall (1)
boundary conditions for k and _ considerably de- where the function c, is given by
crease the spreading rate of the wall jet compared c
to a free jet, as is observed in practice. u =U 0G(p/( , D (2)"-

The solution in the innermost region is repre
sented by the conventional law of the wall formula.
The overlap with its neighboring layer yields a con-
ventional log law behavior with standard values as- b
sumed for the associated constants. lowever, be
cause of the rapid variation of the solution in the I N-"

other layers near tile wall the extent of the log low

overlap is much reduced colm)ared to that in standard
turbulent boundary layers and this tends to support
lie expe rinmntal findin o~s reported treviously8.1 0,12. ."--

In the present work we've develolped (i comp)lete SO A"LWINU

formulation, including tile matching, f"or the leading -' U .r

order solution in each of the four lpyers. We've re - 7 a 7
duced the goerning e, tuations in (,cll lavr to fa',
field similarity form and have ,lt tinCd so hitions
for nll the resulting ordinrary differential elit tiions. Fig. I Wall Jet in Still Air
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And c4o is one of the turbulence model constants G. G (01jp(o f(0) , ft(01
(taken to be equal to c1 o = 0.09), G -- G 1 G 2 is - (l~g)

- *- defined in Ljuboja and Rodi and f is their wall "damp- where K 1 is a "reduced" von Karmen constant
ing" function, defined by, - K. -I/4 and, x, y are stretched

k *3
/

2 
c

3
/

4  coordinates dekined by
' MIN y1 * (3) r*!b* r x oA1 / 2 , y*/b* y (11)

in here K is the von Karmen constant. where * denote dimensional quantities. We call
attention to the appearance of the scaling param-

The asymptotic analysis is carried out in terms eter, a, in the definitions of the dependent vari-

of two basic small parameters, -x and y. The ables. The j dependence follows from a considera-
"boundary layer" parameter a is defined to equal tion of the balance of the overall momentum flux.
Cli~o ,  We also note that the boundary layer scaling appears

in the r coordinate direction with the thickness of
.: 0a - c 0.09 (4) the wall jet equal to the order of magnitude of the

slot width or other characteristic dimension of the
while the "friction parameter" y is defined in terms impinging jet. This scaling implies that the solution
of a reference value of the nondimensional friction holds in a region that is far downstream compared
velocity. u - , by to the characteristic dimension of the initiating jet.

The substitution of Eqs. (10) into the full Reynolds
Y 0U-,r/a() 1) (5) averaged equations, using the above stretchings,

and taking the limit a -* 0 leads to the standard
where the friction velocity is defined by boundary laye-r form of the equations of mass, mo-

__ &mentum, turbulent energy and dissipation, written
u= xf, 2 (6) in the form, (with the perturbation superscripts

deleted for simplicity)

From turbulent wall layer flows we know that the

friction velocity depends logarithmically on the aU + -V + U = 0
Reynolds number Rej, ax ay x (12)

ax ay
.'., . .-. u, =Olin Re 1 ) ) aU U : ag+Rc 2 U

whereU ax aVy ay + e-- (13)
'* Q" ' where

ak a k _ a L t aU)-b + f ()t - -c (14)
Re$- u b(8 ax ay ay (i (T y/\ay/

In our approach. we seek solutions of the full
Reynolds averaged equations in the double limit, aE ac + _ Ct (au 2

+ax V ay ay 0 4 CE k a (15)
a-0, -0 (9)

The Reynolds stress, g, is computed from the mean
Typical numerical values for these parameters for velocity via an eddy viscosity formula,
practical wall jet flows are (A, . 0.1. Since these au
values are not impressively small we expect the g t ay Gk 2i/ (16)
higher order terms to be important in most situa-
tions. Nevertheless, we assume they are small with the eddy viscosity given by Eq. (1). We use
enough for an asymptotic approach to be useful, standard values of the model constants given by;

Cuo = 0.09, Ok = 1, cc = 1.3C cl = 1.44 and c2=
The parameter, ,. enters the formulation in 1.92. The u expansion provides the formal basis for

virtually the same manner as the laminar viscosity using boundary layer theory for free turbulent flows
coefficient, and therefore expansion of the solution as well as for the wall jet flow considered in this
in powers of t leads to the boundary layer equa- paper. The second term in the a expansion, Eq.

., lions just as in laminar flow. The t expansion takes (10), arises from small pressure gradients generated
, . the form in the outer entrainment flow field above the wall

jet. The disturbances in this region are induced by
.'-, U*/u* a | 14 U U()(x, y; _) + 0( 11/ 2) + 0 (a) (lOa) the entrainment of external fluid into the wall jet.

, The 0 ( ) terms are due to higher order terms
' (2. "-'4'(i.e. normal pressure gradient, streamwise diffusion

_____ "' V */uc /  V 4V'(x, y; )+ 0(1/2) +Ot) etc.) in the Reynolds averaged equations that areJY + /o+ not included in the boundary layer equations.

."The , dependence in the solution indicated in
-. -<u*v*)/u *,0b

2
/-2 - -g9 () (x, y; -' ) + 0((112) + 0(o) (1Oc) Eq. (10) arises from the laminar shear stress term in

Eq. (13), which is important only in the wall layer
k( + /+ ( near the surface. The exp ansion for -y 0 leads to a

k*/t*u; 2 j / 2 - k = kt°(x, y; -y) +0(o~2) +(o) (10d) solution with the complex four layer structure
sketched in Fig. 2. consisting of: an outer free jet

*b/p *u 
3 

%2.3
)
1/

4 
- K (0) (x, y; T) + 0 1/2) 

+  (iIle) type flow. a conventional equilibrium wall layer, and
J two additional layers that are needed to effect a

matching between the outer aind inner layers. The
6 -WJ k 00"/ 2G(0,1 /4 solution in the outer layer satisfies the exact bound-

LM 0 
+ .f . , .. . (l Of) ary layer equations. The Reynolds number term

K I tol appearing in the momentum equation is negligible to

~~I 5



all orders in the outer expansion so that the outer in which the velocity has a maximum and the turbu-
layer is a fully turbulent flow that is not directly lent shear stress has a zero. We call it a diffusion
influenced by the laminar viscosity coefficient. Of layer because of the dominant influence of turbulent
course, there are Reynolds number effects in the diffusion in this layer. Detailed analysis indicates
outer solution, but they enter only through the in- that the dissipation is balanced entirely by turbulent
ner matching conditions. The length scale for the diffusion in this region. The dominant terms in the
outer region, Ay = 0(1), indicated in Fig. 2, follows turbulent energy and diffusion equations in each
from boundary layer type scaling considerations, layer are indicated in Fig. 2 by the symbols:
Since the spread rate of the wall jet is 0(,1/2), the A (advection), P (production), DF (diffusion), and
thickness of the outer layer, up to a distance .r = Dc (dissipation).
0(_- 1/2) must be the same order as the characteris-
tic dimension of the initial jet. Since the turbulent The solution of the diffusion layer equations
shear stress and ener y are an order of magnitude also exhibits an algebraic behavior at the wall which
larger than the 0(,-62a + j) /2 = 0(u ) levels at the wall, does not match the logarithmic behavior of the wall
the outer solution for g and k must vanish at the layer solution. This requires the introduction of
wall. From the momentum equation it also follows the transition layer indicated in Fig. 2. The length

4*that the outer solution for g must have a linear be- scale, A y = y2/a for this layer is determined by "'

havior near the wall. Detailed analysis, summarized the requirement that it matches to both the diffution
in the following section, indicates that the outer so- and wall layer solutions. The constant "a" is a
lutions for the turbulent energy and dissipation function of the turbulence modeling constants.
have a non-analytic, algebraic behavior near the wall. which for the standard values listed previously is

given by, a -_0.27.
The solution in the innermost layer is described

by a conventional equilibrium wall layer that is com- IIl. Outer Region
pletely determined by the small, 0(y2a(1+j) / 2 value of
the wall shear strcss. The solution in the wall layer The solution in the outer region is determined
has a standard logarithmic law of the wall behavior by expanding the boundary layer equations, Eqs
at its upper limit, y+ a yu,/v =. Because of the 12-16, in terms of the friction parameter, Y. Since
algebraic behavior of the outer solution for y-O. the the viscous term appearing in the momentum equa-
outer and wall layer solutions do not match and ad- tion is exponentially small in Y it can be neglected
ditional intermediate layers are required. Two ad- to all orders. Thus, the leading order term in the
ditional layers are needed: a diffusion layer, and a outer solution satisfies the exact boundary layer
transition layer. The thickness of the diffusion lay- equations with the laminar shear stress term set to . -

er is determined by the condition that the linearly zero. We assume that the solution in the outer re-
varying part of the solution for the shear stress is gion can be expanded in the form,
of the same order of magnitude as the value of the
wall shear stress. This leads to a thickness .. y =
0(-, 2 ) as indicated in the figure. This is the region U(x, y; ) u0 (x, y; 0) + (17)

ENTRAINMENT REGION

+ ' ' I SHARP CUTOFF

0 OUTER LAYER

A OF + P - De

Oi) OUTER LAYER
• %

II a- 1/2

DIFFUSION LAYER DIFFUSION LAYER720

=OF - De =0 TRANSITION LAYER

TRANSITION LAYER

v / u r  O F  + P - OD 
=  
V0 C U E M S . . .

." WALL LYER ".-ER

%* U

u~ ~/J ~' ,= (1a + j)/4 WALL LAYER. ur w a=C ° .1=u o-(ll/ a i0.27

Fig. 2 Wall Jet Flow Field Structure
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V (x, y; )) - v0 (x, y; U) . (18) constant to lowest order in y, and consequently, the
outer solution behaves very much like a turbulent

% g x, y; ',) - g0 (x, y; 0) . ... (19) free jet. In particular, the outer solution for the
I' Iwall jet admits a similarity structure that is of the

k(x, y; o) k0 (x, y; 0) . (20) same form as that for a free jet. Thu- the lowest
order outer solution for the streamwise and normal

(x, y; ) t0 (x, v; ) ... (21) components of velocity, turbulent energy and dissi-
lpation can be represented in the form,

and, for simplicity, we drop the perturbation sub
scripts in the subsequent developments. u u Wx) F' P) ("() - 1) (25)

v u. (x) In F'(Ti) - 2 - F 00)(6"*~ **. -. For a stagnant outer stream the k - model (26)
leads to a shear flow with a definite outer edge,

Y = Ye. (e.g. see Ref. 19) where the solution sat- g u.-xGVn) (27)

isfies homogeneous boundary conditions k u2x) K(7) (28)

*' -Y- k= ( AT y= (22) i (r) (29)

The boundary conditions on the inner edge of the
outer solution are determined by matching to the where the primes denote derivatives with respect to

inner layers. Since g and k are 0 (,y 2) at the wall the similarity variable, Tv, defined by

(and are also small in the other inner layers) the
outer solution for these quantities must satisfy zero ?7 3'/x (30)

" >. boundary conditions at the wall. The boundary con-"'-,and, as defined, Uw(X) is tile value of u at the wall.
,', . dition on the dissipaton, , is more difficult to fix a a

In all that follows the subscript "w" denotes the wall
since it cannot be determined from simple scaling of the associated variable. The fune-
arguments if it should be equal to zero, infinite or talu (x = F( o i the steam iono the

q'. 2  a finite value at the wall. tioll Uw .(X) xJ
+ 1 H(-) is the streamfunction of the

aitvua Vt wl leading order outer solution. The wall velocity,

A detailed analysis of the limiting behavior of uw(x), can be determined from the momentum flux

the outer solution for y 0 indicates that matching constant, J, by rearranging Eq. (24) into the

is possible only if the dissipaton in the outer solu- similarity form

tion is unbounded at the wall. The final inner (31)
V *o .: boundary condition is fixed by the requirement that J " (31)

% % the normal component of velocity be zero at the wall, where Cj is a constant defined by,
'hu: the inner boundary conditions are

v g k = 0 AT Y 3a) Ca 1 ;t (32a)
(27)'

c -" AT Y 0 (23b) 12 F2 (n)d (32b)

The boundary conditions given in Eqs. (22) and Jf

(23) are sufficient to completely determine the so-
lution. As in the free jet problem, an additional The similarity equations for momentum, turbulent
wall boundary condition on u is not required be- energy and dissipation are
cause the wall value of u is determined from an over-
all momentum balance. Since the wall shear and nor- 21() F r
mal component of velocity are zero at the wall the -B F"F=F')(33)
momentum flux integral, J. is constant to lowest

., order 2 + _s- " 2 H (34)Nb J u2(x, y; 0) dy + O( 2
) (24) K2kH F H /

_ where the 0 (-2) term arises from the nonzero value t(5 + 3j) F'H + 2-tFH + H I)
of the wall shear stress. The value of the momentum UH _/

" flux is set by the initial conditions in the impinge- + c(KG, F" 2 ) - 0 (35)r.'- CI(K~uir ) =0 (35

ment region. I -

"% The continuity equation is automatically satisfied.% %I The above boundary conditions completely define the through the introduction of the "streamfunction",

outer solution, independent of the solution in the F (Y). The momentum equation, Eq. (33) can be
inner regions. Iowever, the partial differential
equations governing the outer solution must be inte- integrated once, yielding
rrated numerically as an initial value problem for 2.K- GF ',,

each prescribed value of thle momentum flux, J1, and 2'' FI (36)
set of initial profiles. The solution in the region, /

r 0 (b' 1 under consideration depends on where the wall boundary conditions require the con-
the details of the initial profile shapes, which can stant of integration to vanish. The eddy viscosity

%I'' only he determined from consideratio" of the detailed formula for the shear stress takes the form,
solution in the impingement region. /u

-1 W~u G : G,(KW2IA) F" (37)

Far Field Similarity
Results from the numerical solutions of the similarity

, Because tile lcadin , order solution for the shear Oquations will he presented later in the paper. Al-
stress vonishe,; at the wall. the rmoment un flux is though the similarity solution is an exact solution of

7

.C-



- ,: ~~~~~~~~. . .. .. ... > ..... .. ........... • . ....... ,..• ...V Wil -7 77 -S- -

the full nonlinear boundary layer equations, it is not The functions A(x) md B(x) depend on the model
an exact similarity as defined in the introduction, constants. For the st'mndard values given previ-
because the wall matching conditions re(uire the ously, as well as other sensible choices we find that
introduction of additional higher order terms in the A(x) is strictly positive but that
.juter expansion. Thus the similarity solution des-
cribed above represents only the leading term of a B <0
far field expansion valid for x- -, which is an ex-
ample of what we have called an asymptotic similarity which demonstrates that solutions of this type, with
in the introduction. equal to zero at the wall. are not possible.

S.-
limiting Behavior We next considered the possibility that the dis-

sipation was either unbounded or equal to a non zero %
The asymptotic flow field structure is strongly constant at the wall. We assumed that the velocity

influenced by the limit behavior of the outer solution and turbulent shear stress had the same form as in
for v- 0. A conventional equilibrium wall layer is Eq (39) but that the turbulent energy and dissipa-
present near the wall so that the outer solutions, tion had a more general power law variation for
however many layers there ma, be, must eventually y-0. Thus we assumed the outer solution had the
match to a conventional log law for y0. The match- following behavior
ing will lead to a logarithmic skin friction law of the u u g x) y k -- A(x) ya,
same type as arises in boundary layers and pipe (44)
flows. Since the turbulent shear stress and energy t -Bx)y
are small in the wall layer then the outer solutions where a > 0 in order to satisfy the boundary condi-
for g and k must vanish at the wall as required by tion on k (k+0) and b > 0 in order to avoid the con-
the boundary condition, Eq. (23). sequences of :-0 discussed above. A solution of

this type proved possible with the dominant turbu-
The determination of the correct boundary con- lence terms involving a balance of diffusion and'

dition to impose on the dissipation, -. proved con- dissipation. Turbulent production )roved negligible
siderably more difficult because it was not possible compared to both these terms in this type solution.
to deduce the proper condition thru a simple scaling The balance of the diffusion and dissipation terms
analysis. The lof.arithmic law of the wall requires resulted in the following expressions for the ex-
the dissipation to behave like. portents, a and b.

E QiY):. y (38) b 1 - M"2)a (45a)-7 -U -24X.)1/'
Thus. the magnitude of near the wall depends on a 6 -- , i ( r) C(- (451))
the length scale of the inner layers and could be:
small, order one. or unbounded for y-0. depending where the positive root in Eq. (45b) was chosen to
on the thickness and structural form of the inner satisfy the wall boundary condition on k. For the -
lavers. However. the structure of the flow near Values of model constants used here a - 0.270 and
the wall. in turn. depends critically on the boundary b = 0.595. Since b is positive the outer solution for
condition imposed on - and cannot be determined the dissipation is unbounded at the wall. A solution
without a knowledge of this condition. Thus the with a bounded wall value of - proved to be impos-
correct wall boundary conditon on , and the structure sible. The functions A (x) , B (x) are to be extract •
of the solution near the wall can only be determined ed from the numerical solution of the outer equ:"
thru a detailed analysis of the limiting" behavior of tions for y- 0. The analysis for y-O shows that they
the outer solution for v-0 for all possible boundary are related by. o
conditions on £. We first examined the consequences
of setting - to zero at the wall. By trial and error A3 / B - a-1 (2

uk 3Gf I 46)
we found that the only solution satisfvin-" this
condition has the form. The next term in the expansion for u near the wall

is determined from all integration of the eddy vis-
u - ux), g - cw(x)y, k - :\(x), - 13-(x)%y - 

(39) cosity equnation to yiell.
where cl(x) is 2Bc.

c, u . (40) ( - uw(x) ) .\ ;,)2 - a) " Y47a)

and A(x) an B(x) are functions determined from ;I where g o is the limiting value of the viscosity
balance of terms in the turlulent energ, and dissi- function at the wall defined by.
patton equations To lowest order, the dominantterms aie provided by a balance of turbulent diffu - Gu, cGd{lP l 0, 1 1471))

sion , production and dissipation which leads to. "

/ -_3,rcI /' fhe boundary conditions Eqs. (22) and ( 23)
AIx cG' (41) completely fix the outer soluti.,n, independent of the\ -~ 3 c,% / oution in the inner layers. The general clar;icter

of the outer solution for the stremiwise velocity i."

B-I(x) \ ' [- /3I is ,s sketched in Fig. 2. The velocity ineCe;N.s",
Lc(T . c I j (42) nunutunica ldv from zero at the upper edae of the jet

we te a naxtt\im . uiw at the wall. At the upper edgewhere ( stelmti. au fte ubh'tvs
wth sl(t' ) e6;is ;ill Age't0)aiC sin;1'ul'rity of the O 1V ;s l,eosity function at the wall. Since tie wall dmlpin, form as ill a) fre ietl!. At Ih, wall the solutiou 1:, - -

function . f. wtproaches one and tile lroILdu tionl - tillt, he l ; vior illnlic'Ited ill l'J.'. ( 1l) ;11
dissipation ra tio, P _. approaches a definite limit for (17). ll tle miter oultition clearlv e;'nmot l:ch
y 0. G w is ,,vvii by the huar'ithmmie hah:,vior of the well 1aver, ;.n1 a1 s ;, ;I

(;uw (3d'i P lv.., l] I13) ('((ISoll ql llcc. tie ',i'm tri tio :im ol hoe heterlill."
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IV. Diffusion Layer for and 7. 'rhe only solutions that satisfy these
* equations and match the outer solution are given by,

The analysis of tile previous section indicated
that the outer solution exhibits ain algebraic behav-
ior at the wall, in which the turbulent shear stress k A(x) 3,a (54)
and energy vanished while the dissipation becomes
unbounded and the velocity approaches a definite E B(x) " (55)

limit, Uw(x). Because of the algebraic behavior for

e., y 0 it is not possible to match the outer solution to which are precisely tie limiting forms of the outer
the logarithmic law of the wall. This implies that solution with the functions A(x), B(x) determined
additional layers will be required to achieve a match- from the outer solution and the constants a,b given

-. , * ing to the wall layer solution. The limiting behavior by Eqs (45). The solution for the streamwise velo-
of the outer solution indicates that production and city is found by substituting the above expressions
advection of turbulent energy are small for y--0 re- for g. k and - into the eddy viscosity formula which
suiting in a balance of diffusion and dissi)ation at yields,
the wall. This suggests that we attempt to develop au 13
a solution in a thin inner region in which the tur ay A (56)
bulence characteristics are dominanted by a balance
of diffusion and dissipation. Because of the impor-
tance of turbulent diffusion in this region we call where G/o is the zero production limit of the tur-
it the diffusion layer. bulent viscosity function defined in Eq (47b)

The structure of the solution in the diffusion '[ihe integration of Eq (56) to obtain Ci introduces an
layer is completely determined by the behavior of arbitrary function of x into the solution that can be
the turbulent shear stress near the wall. In the out- evaluated by matching to the outer solution. The
er solution the shear stress is negative with a linear matching requires this function to vanish so that
decay to zero at the wall. However the turbulent the solution for d can be written in the form,
shear stress fs a positive constant in the wall laver
equal to the small, 0 (¥ 2 ,(1+j)/2) value of the skin [( a 'al2+a 1
friction, Tw. The outer solution breaks down where u/uR - 2 ) + 2 i -a/ [1 -al

the linearly varying shear stress becomes the same
order as the wall shear stress. An analysis, not pre- (57)

sented here, shows that the breakdown manifests
itself through the appearance of a sin;,ular contribu- where the functions Um and ym are,

tion in the second-order outer solution for the " ( 4Bc-a/2 (58a)
streamwise velocity. The condition that the linearly uY m
varying outer solution for the shear stress is the a(2 - a /
same order as the wall shear estabishes the thick- 5
ness scale of the diffusion layer to be . y = 0 (Y2). Y, / (581)
Thus, the solution in the diffusion layer is express-
ed in terms of the stretched variable, d. defined by since B and Tw are positive, cw is negative and

a - 0.27, the function um is negative and Ym is
A -y = 'y (48) postive. It follows that the corresponding two term

expansion for the streamwise velocity has a maximum
Appropriate scalings for all dependent variables located in the diffusion layer at y= 2 Ym where
follow from the substitution of the stretched variable the maximum value, Um , is
defined in Eq. (48) into the inner limit of the outer 2
solution given by Lqs. (44) - (47). Thus we are U

led to solutions of the form
The second term in Eq. (57) can be shown to match

U = u + y
2
-au-(x, y) (49) the outer solution given in Eq. (47). The overall

behavior of the solution for the velocity profile in

9 *. .. the diffusion layer is as sketched in Fig. 2.
g y2 (c,, + T,,) + .... Tr,cwY + 7,,J + .. (5,)

_Far Field Similarity

. / k Y 2a[k(x,y) +" (51) The diffusion layer solution can be placed in

similarity form by taking note of the similarity forms
2 (52 of the function A(x), B(x), um(x), cw(x) that

.* - = (/-
2 [ (x, ) + ... (52) follow from the definition of cw in Eq. (40) and sim-

whee iilarity solutions given in Eqs (25) - (31). Thus we
where Cw(X) is the function of uw defined in Eq. find

(40) and 7w is equal to the ratio of wall shear to

its reference value, A(x) A u 2(x) x-a AsC, x(a (69a)

. w/,,r (53)

Equation (50) follows from an integration of the mo- 13(x) 3, u3(x) 
(
X ,(- /2X-(3/2a)1.J.a) (60b)

mentum equation, written in stretched variables.
With the scalings given above the turbulent energy
and dissipation equations reduce, to lowest order, CWIX) -(1 2)(1 .j) ul' Wx

"

- to at balance of' turbulent diffusion and dissipation; - ~ *~(*)(60c~)

a balance that is consistent with the limiting be -
* havior of the outer solution. These equations re- where As. 1j, arec cnst;nits determined from the

duc-2 to second-order ordinary differential equations outer similaritv solution and U ( ) is the similarity

%9
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form given in Eq. (31). If we define the similarity Because of tile algebraic singularity in E(s (68)
variable for the diffusion layer by the diffusion layer obviously cannot match tile wall

"-" -layer solution. Thus an additional layer will be re-
n = Y/Y. (61) quired to effect a tran.sition between the algebraic

behavior of the diffusion layer solution and the
the solution for the velocity can be written in the logarithmic behavior o" the wall layer solution.
similar form,
S- V. Transition Layer and Skin Friction

".A;-" U/Urn =/1 71- a/ 2  [I - al-I (62)
2 R a2 Tile thickness of the transition layer is deter-

where, now, mined from a consideration of the behavior tie tur-
bulent energy near the wall. The solution for tile

Ym/x , A(x) = 2(j 4 I)_' (f./Uo) (63a) turbulent energy in the diffusion layer indicates
that it approaches zero Like k-Aya for y-.
Since k is 0 (y 2 ) in the wall layer, the diffusion

"2(1x+ j))a/2B3 1 I-a/2 and wall layer solutions for the turbulent energy
SWm/u a(2 - a)A3_GL, (63b) will be of the same oruer of magnitude in a layer

u with a thickness, Ay = 0(y 2 1a). Since a -0.27,

e. and where the term in square brackets is a constant, the transition layer is considerably thinner than
4 The x dependence of the functions A 1 (x) and the diffusion layer and is thicker than the expo-

A2 (x) appearing in Eqs (63) depends on the solu- nentially thin (in terms of y€) wall layer. The so-
tion for the wall shear stress which will be obtained lution in the transition layer is expressed in tile

in the next section. The far field solution for the stretched variable, *, defined by

* .!imaximum velocity is given in terms of A2 (x) by, y =7/y (69)
Urn = u.(x) [I + y2"aa 2Wx] (64)

. [+ x(6 The appropriate scalings for tile dependent vai-

The solutions for the turbulent energy and dissipa- ables in the transition layer follow from the substi-
tion can be arranged into the following similarity tution of tile stretched variable defined in Eq. (69)
form, into tile inner limit of tile diffusion layer solution.

. Thus we seek solutions in the transition layer in the
'"AA(x) (65) form.

4ym/u= BsA1 (x)l-b-- b (66) g = '2 [7.(x) + O(y(2/a)-
2

)] (70)

Limiting Behavior k = 2 [k(x, y) + ..-] (71) A

The diffusion layer solution for k and is C
= ",2b/a[(x,Y) +

."" (72)
given entirely by the terms appearing in the limit- U = uW + (x, Y) + (73)
ing behavior of the outer solution for y-*O, so that u + x(
the matching of these quantities is obvious. To

r I establish a match between the outer and diffusion Substitution of these expansions into the turbulent
-layer solutions for the 'elocity we rewrite the dif- energy, dissipation and eddy viscosity equations_' fusion layer solution, UD, in outer variables to yields the following system of ordinary differential

obtain, equations,

(G..~y2 2B~ =.-O Ej' K,(k
-:Vi:T y 67) (67) - 2 F0_- a

where the subscripts "D" and "cp" denote the dif- a G, L12 /F<3)
fusion layer solution and the "common part", the ay , 2 (75)

latter being given by the inner limit of the outer
solution, Eq (47). The first term in Eq. (67) CT_
matches a corresponding term in the outer solution - (76)
while the second term represents an unbalanced con- ,.'-,

tribution that requires the introduction of an 0 (y 2) Equation (70) indicates that the turbulent shear
perturbation to the outer solution, stress is constant across the transition layer to low-

est order. Then, by matching to the wall layer so-
The diffusion layer exhibits an algebraic be- lution it is established that the lowest order term for

* havior at the wall that is of the same form as the g is equal to the skin friction, "Tw, as normalized in
limiting behavior of the outer solution, except for Eq. (53). The wall damping function, f, is also
the velocity which has the general form equal to one across the transition region, as in the

diffusion layer, but here the production-dissipation
- a,.2B 0 ~ (68a) ratio, P/ , is variable to lowest order. Thus, the:"::D U- W 2/ 2B? y-/FO -0'.-._ -a/ FO y x - 6a viscosity function. G. is determined from the ira --.-
"aA plicit relation,

or, for x- o , the similarity form given by G= G,{P/, 1 (77)

p/C 7 (78) -I='( .1( 2. . y -a/U

" -(x 7 Equations (74) (78) are to be solved subject
Unu (x))l-Y u \AG 0  . ) to boundary conditions determined by matching the

solution to tile diffusion layer for --. , and to the

4:% FOR " 0 (681)) law of the wall for V-0. That the transition laver
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equations admit a log law behavior for y--0 follows
from the fact that all three turbulence source terms: G, G,.G(P/E, 1) (86a)
production, dissipation, and diffusion appear in the
lowest order description. It is the balance of these P/c = (K2 G) "  (86b)
terms in the k - model that leads to the standard
log law at the wdll. In order to the match to the where G1jw is the value of G11 at the wall, so that
diffusion layer the solution must also satisfy the 6 is equal to one for y = 0. In terms of this trans-
following asymptotic conditions. formation the turbulent energy and dissipation

equations are,
..k A FOR y - (79a)%''~ 6 % K K ' (87)

E-BY FOR y-- (79b) E (K)E = 0 (88a)

2B7. - where ? (K) is defined by

(aA A F(K) 0()/7k)(c) GK - c, tK
1

) (88b)

In order to complete the solution and to deter- transformation for Y () is obtained from an
mine the skin friction the transition layer must

• match to the logarithmic law of the wall ot integration of Eq. (76),
In the present notation this leads to the following Y= ( GK (89)
matching conditions, =  C

"-* . E -- (7~K,/) (Inyc(x)) FOR Y - 0 (80a) where we have imposed the boundary condition,

k k C"t/2 Y 00 (u -u ) for Y - 0
TW (80b)

S/K/, y (80c) in order to match the law of the wall.

The transformation removes all parametersfriction, wx) is oca functionf thbe normalized skin from the problem definition, aside from turbulencenuricasotion ftetion laer tn model constants, so that K (;) and E (5) are univer-
al sluti n ofthe rans t a e r o u t he

numericl ins sal functions that need be computed just once for' K a 1 is a constant related to the standard von each set of chosen model constants. More impor-
Karmen const, tantly, the transformation completely decouples the

(81) nonlinear equation for the turbulent energy, K (n),
t -( from the second order linear equation governing

which for = 0.09 results in a value r
1 

= 0.79 E (n). Thus the solution can be obtained sequen-
tially by first solving Eq (87) for K (r) next Eq
(88) for E (-) and finally Eq (89) for Y (C). The'"The six conditions given in Eqs. (79) and (80) are boundary conditions on K (5) are determined by

J .. sufficient to completely solve the fifth order system matching totdiffson lae sltin 0' ,.,matching to the diffusion layer solution for z + 0
., 2 of ordinary differential equations given by Eqs. ( ) and to the wall layer solution for Y +

(74) - (76) and to determine the solution for the (y 0). Detailed analysis indicates that the far
skin friction. However the system of equations is field matching condition can be satisfied by,
highly nonlinear and must be solved by numerical
methods.

K( ) ... FOR g-0 (y--. (90)

Similarity. Because of the chosen scaling on k, the boundary
" • condition at the wall is given by

, .V Equations (74) - (76) can be considerably
simplified by first switching independent variables
from T to U and then placing the resulting equa- K (0 FOR (y - 0) (91)

tions in similarity form through the following scale The boundary conditions Eqs. (90) and (91) enablet r a n s f o r m a t io n . T l o n a y c n i i n q . ( 0 n 9 ) e a l
Eq. (87) to be integrated once the viscosity func-

- -tion G is specified. Because 6(K) is a fairly com-
82) plex function that is defined by an implicit relation

K (83) (Eq. 86) the turbulent energy equation, Eq. (86),
". k kwK( (83) must in general be integrated numerically. A simple

exact analytic solution satisfying the boundary
E=eE(0 ( conditions can be found for the special case that

G (K) is a constant equal to its value at the wall. In
this case, 6](K) =1 and K (:) is found by

N - Y(0 integration.
e (7 (85)

KfV- 3[Izc j 2 (92)
wnere kw is the value of k at the wall, as given by

% ', the law of wall matching condition. Eq. (80b) and e This turns out to a good approximation even when
is an arbitrary constant, to be determined by G is variable, as given by the expression in
matching to the diffusion layer solution for 7 . Ijuboja and Rodi and serves as a good initial es-

, In the follpwin~r. -, will be taken as tile independent timate for the iterative solution for K ( ) in the
variable which ts strictly positive and ranges from eneral case.

% (oat the wall (y = 0) and to r = 0 in the far field
(y cc ). The turbulent viscosity function is ex- 'Te solution for K (.,) d(termines the function

. pressed in the form, I (K) . appearing in the differential equation for

Z 11
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E (W. This equation is a second-order linear Equations (96) - (98) can be inverted to give explic-
ordinary differential equation which can be solved as it expressions for the far field behavior of the tran
initial value problem using far field boundary con- sition solution in terms of the physical coordinate. .

ditions determined from the matching conditions to The resulting expressions match the limiting forms
the diffusion layer solution for -. 0 (y-.w) given of the diffusion layer solution, given in Eqs. (79).
by Eq. (79b). Equation (88a) has two power law if the arbitrary function, e, scaling the dissipation
type solutions for -P0, one decaying and the is given the value. '4
other unbounded. In order to match to the dif-
fusion layer the unbounded component must be ex- e - dTFb/a B

2
/3a(x) (101)

eluded by imposing the far boundary condition,
where B (x) is the known function that arises in

E( W - 0 FOR 0 (y - - ) (93) the inner limit of the outer solution (Eq. 42).

- The solution can be completely determined by pre- The matching to the diffusion layer solution
scribing the coefficient of the decaying component. and the boundary condition k--'kw completely deter-
Because of the arbitrary cc-efficient. e, introduced mines the solution in the transition layer in terms

in the definition of E by Eq (84) we may, without of the unknown value of the skin friction, Tw. This -.

loss in generality, set this coefficient to unity. is determined, and the solution completed by match-
Thus the second boundary condition on E(4 ) is ing the transition layer solution to the logarithmic

• taken as, law of the wall.
lirn (E ta) = 1
C.0 (94) In the present notation the law of the wall so-

lution in the inner layer is expressed in the form,
where the exponent, a1 , is determined from the
differential equation, U*,'u u, F (y.), y R y j (102)

a, 2b/a - 4.40 (95) For y+-.P. c this reduces to the standard log law,

where a, b are the parameters appearing in the U*/u*- U,(x) [K"
1 ln(yu,(x)Rej) + C*] FOR y. - (103)

outer solution as defined by Eq. (45). These con- C +

ditions enable us to compute E([) as a simple ini- where C is the standard constant (C+ -5) in the
tial value problem by marching the solution from logarithmic law of the wall. For --- o (y*0) the
, = 0 to 4* c. However, we found it more conve- limiting solution for the turbulent energy approaches
nient to solve the E equation as a two point bound- its value at the wall, exponentially in ¢, -.
ary value problem using the same computer code
used to compute K (c). The velocity profile o(e'r)] FOR C -- (104)
u(y) is determined implicitly via Eq. (82) and the [1 eF0
transformation function, Y (4), is evaluated by while the dissipation and coordinate transforma-
a numerical integration of Eq. (89). The scale tion, (;), approach the limits -

* . function, e, for the dissipation is evaluated by
matching the transition layer solution for _ to the -

0 
- e E awe FOR - (105)

far field limit given in Eq. (79b). This completes EF

the determination of the solution in the transition
layer in terms of the local value of the skin friction.
The skin friction is then evaluated by carrying out Y- ak e-aw FOR C - - (106)
the matching of transition and wall layer solutions. e E, uk3.

where bw is a constant equal to the limiting value of -
Limiting Behavior and Evaluation of the Skin t (K) at the wall and is given by the following ex-
Friction pression involving only the turbulence model

The parameter, e, scaling the dissipation is constants,

determined by matching the transition solution P, = ((1,7ak)(c2 - eel )
to the diffusion layer. For , --o0, (y .) the solu-
tion behaves as, The parameter E. is a constant to be determined

from the numerical solution for E(,,) for -

/k - (6kJ/G,)r' FOR t - 0 (y - (96) Inverting these expressions we obtain,

C -e 2
b/a FOR 0 (Y- (97) -3/2 Y (108)

-(,e -d'3a/2b) "2/ a FOR t - 0 (y- - ) (98) ,e3/2)

u -!-)[ln eE ,K ,/ (109)

where G_ is the limiting value of Gin the far field K

and is given by where K1 must satisfy the relation

G, Gu 0/Gaw (99a)

~~This is just one of the standard relations. written in •.where GawG(P,/4F,, 1) (99b)

and d is the constant, Go = G,(0, 1) (99c) the present notation, used to fix the model constants

in the k - model to assure that it satisfy the stan-

dard log law at the wall (eg see Ref. 20). Equations
[1laG141-2b/3a (104), (108) - (110) demonstrates that the transi

d (100) tion layer solution matches to the wall layer solution.
Using Eq. (109) the transition solution for the ye-

12



LA
locity profile near the wall can be written in the form, solved by the method of Paullay et al.19 Application

of an independent variable transformation, • =(n)
.. U = ti(x) + In l l)/2a.;1/a] (i[1) such that

comparing this expression to the outer limit of the dt I- (118)

wall layer solution given by Eq. (103) yields the
following implicit relation for the skin friction acts to decouple the kinetic energy and dissipation

S(equations as well as to reduce much of the non-
A"'( 2a "I ) In A =(1 + 2a " ) Inu.(x) -In OW) linearity of the system. In the new coordinate the

:' I - bounds - + - replace n =0, n, and, the
4 [In('*J)/4Rei # KC ]  (112) location of the finite edge is found a posteriori

*: -'.. by quadrature, viz.
where the skin friction Tw is given in terms of A and bv

uw by ue ti! d (119)

T,/U.(X) ='
1 2 K'A.x) (113) The numerical solution is obtained by central differ-

a xih no f bencing the transformed equations and using the edge
and 6 (x) is the function defined by, and wall asymptotic behavior as two-point boundaryix d values. Repeated application of tridiagonal solvers% OW r/ = d E.K 1a B'/3a) (114) to the system of equations allows for their conver-

Ilagence to levels of local residuals no greater than
In the far field limit, x- a (x) approaches the 10-11.
following limit

Results for the outer solution in the planar
. (x) 6 Ocy/ax " l)/a (115a) case with G, = 1 (Fig. 3) are con1pared with the

corresponding free jet solutions. 1 9 For reasons
where discussed previously, the radial and planar wall jet

solutions have the identical similarity form as the free
0, = d EB / (l15b) jet flow. It is apparent that the effect of the wall

is to reduce the velocity half-width by about 30%.
and B s is the constant appearing in the similarity The behavior of the mean and turbulent variables
expression for B(x) given in Eq. (60a). Using this are essentially the same in the edge region of the
relation and the similarity form for uw(x) given in layer but differ significantly near n--O where wall
Eq. (31) we can write the far field asymptotic solu- jet dissipation becomes unbounded and the turbulent
tion for A(x) in the form, energy and eddy viscosity go to zero. The results

for radial jets are qualitatively the same as for the

A-' - (1 4 2a
" ) In A = planar case.

[ln(O")l"Re, Ct/2 0;1 x
(
O

) / 2 ) 
K C ]  (116) The mean velocity deficit, a/

5
m, profile in the

ej xI 16 diffusion layer (Fig. 4) is given analytically by

-. Eq (57) and it exhibits the local maximum that
where Cj is the normalized momentum flux defined in characterizes wall jets.

Eq. (32). Equation (116) expresses the solution for

the skin friction in the far field similarity region in Solutions to the transition layer must, in gen-
terms of the momentum flux constant, Cj, the jet eral, be obtained numerically and again central dif-
Reynolds number. Rej. turbulence model constants ferences are employed to represent Eqs (87,88)
and two constants B. and E. which are determined subject to boundary conditions Eq (90,91) and initial
by numerical solution for the outer (free jet) region conditions Eq (93,94), respectively. In practice K-I

- and transition layer equations. It is interesting to is used as the dependent variable in Eq (87) and the
, *. note that the local skin friction coefficient, CF - twl difference equations are solved from = 0 (3- ) to

. (1/2) Uw
2 , 

is exactly constant for a radial wall jet some finite cutoff, C = &c , chosen large enough for
(j = 1) and varies logarithmically in x for the planar a two term large expansion to prevail. Since the
jet (j = 0). The above formula for the skin friction dissipation equation, Eq (88), is homogeneous, it
admits an interesting similarity that will be dis- may be solved as a two-point boundary value problem
cussed in the next section. with E set to zero at 0, Eq (93) and to an arbi-

trarily prescribed value at the edge r = 5c. The re-
Results suiting numerical solution is then resealed to comply

'' The similarity form for the radial and planar with Eq (94). This procedure enabled us to solve
outer layer and the transition layer have been solved for K and E simultaneously on the same mesh to the
numerically for Ga = 1 as well as for the algebraic same level of precision. The numerical results are
stress model of Ljuboja and Rodi

1 3
, here denoted by indistinguishable from the analytical solution for

# 1. Product composites of the form K (;). Eq (92), that is available for G. = 1. The
more general algebraic stress model1 3 

(i.e. G u # 1)
.e%, [UUDTER = 1)AN -turbuleTnceB

%, °%. U UOUT~ a  CouT /DIV F obtained with the standard (i.e. G.=1 uruec
CPOU F (117) model. It should be recalled that the Y( ,) curve is

, * where CP denotes the common part of the subscript- actually a stretched velocity profile (Eqs 82,89).
ed layers, are used to compare the present asymp- The numerical solutions for the outer layer and

S t'1 totic solutions with respect to the numerical solutions the transition layer provide the constants (Table 1)
of Ljuboja and Rodi. 13 These results are also com- the
pared with "universal" correlations of experimental required for asymptotic matching with the diffusion.% , : data proposed by Narasimba et al. for plane wall layer. It has been cstalblished that all numerical
dt pos jets. " solutions exhibit the correct asymptotic behaviors for
jet-s r e , 0 and , 0. - with the exponents pre-

The equations governing the outer layer "ire dicted to within I% of their analytical values.
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LA TABLE 1 Computed Constants in the Similarity Solutions 1.0

-*%; TURBULENCE GEMETRY AE
%.GOER ,MODEL 8 ~ E 2

STANDARD WITH PLANAR .0635 5.30x10
"3 18.96 .1899 TRANSITION LAYER

CI -0.09 RADIAL .1106 1.218510
"2 18.96 .1308__ _ __ _ _ _ _ _ __- -COMPOSITE SOLUTION

MODIFIED WITH PLANAR .0337 1.370x10
3 12.45 .0932

c/ -C (Pie. f) RADIAL .0575 3.0510"3 12.45 .0591
__ _ _ _ - 0.5

urn

In order to us* these results to generate the OUTER LAYER

" solution profiles for specific wall set flows the skin
friction must first be evaluated from Eq (116). It is
convenient to rewrite this equation in the form

A-' - (1 +2a-') In A = j In ,+ { In(al 2 92) + KC*} (120)

where '1- J*r*lj J (a-1/2x)I-J 12
.. h is = ((2"))p 1

2  R (12 1 ) 0.3 0.6

This formulation demonstrates that for the radial

wall jet the skin friction coefficient, A, is a con-

-,, stant that depends only on the jet Reynolds number
W% ° and turbulence model constants; for a plane wall jet A Fig. 7 Structure of Composite Solution - Plane Wall Jet
-. is variable that depends on the logarithm of'the (Gm 0 1, A = 0.100)

streamwise coordinate, x. The solution to Eq (120)
is presented (Fig. 6) for radial and plane wall jets
and for G = 1, G W 1. As expected, A decays
slowly with J. For the data to be examined here J solution. The velocity profile merges with the law of
is in the 109 < J < 1012 range where A = 0. 1. the wall behavior at about y + = 20 (Fig. 8) which is

close to the patching location used by Ljuboja and
A solution corresponding to Ljuboja and Rodi's 1 3  Rodi. Since the law of the wall region extends out to

%.' numerical result at r*/b* = 200 (x = 60) (Rej = 1.8 x about y + f20 these results indicate that typical solu-
104, J = 6.48 x 1010) is developed using their alge- tions exhibit a logarithmic law of the wall behavior
braic Reynolds stress model (Gw* 1). The composite only over a very limited interval. This marginal log
solution for velocity is presented in Fig. 7, along law region is consistent with the experimental ob-
with the outer and transition layer calculations in servationsS,10,12 discussed previously. The mean
order to indicate the overall nature of the matching. velocity, turbulent shear stress and energy profiles
The large gap between the outer and composite obtained1 3 by a parabolic marching integration of the
solutions apparent in this result is an indication of partial differential equations are in reasonable agree-

P .1 the importance of higher order terms in the outer ment with composite for field solution calculated here
* .- (Fig. 9).
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2 order terms in the outer layer. The model constants .
---- LJUBOJA& ROD1

13  
used in the algebraic stress model of Ref. 13 are not

U -PRESENT CALCULATIONS consistent with the law of wall compatability condition
Um G' 0 "% =0.1Wgiven by Eq ( 110). In order to have the outer layer

turbulence model conform to that of Ljuboja and
Rodi, Eq (110) is used throughout to locally deter-

TURBULENTENERGY mine cE2 as a function of G,,. Numerical experi-
ments carried out here and by Rodi 2 l indicate neg-
ligible effects due to this slight inconsistency in
their model.

0.2 um A dimensional analysis performed by Narasimha
et al. 18 suggests that plane wall jets are described

/, . VELOCITY -.. by their initial momentum and the kinematic viscosity.
0 1 Together these quantities provide unique length and

velocity scales [L*1 = [y* 2 /j*], [U*] = [J*/y*].
UV>< UV >U For the radial wall jet this is not the case since J*/".?.'' __TURBULENT SHEAR STRESS__SASE2 y* 2 

is itself dimensionless. The results obtained
20.16 Um here conform to the analysis of Narasimha et al. The

* •*'* plane wall jet shear stress is determined only by the -"

-1 value of I (Eq 120, Fig 6). The streamwise behavior
of the scaled mean and turbulence quantities are

0 1 2 3 universal functions of "1 which serves as a scaled

y/y1/2 streamwise coordinate in the planar case. (Fig.
lOa-d). Comparison of the present panar results

Fig. 9 p n swith the proposed universal curves 1 show goodFig. 9 Comparison of Asymptotic Composite Solution with agreement for velocity maximum decay (Fig. 10a).
Parabolic Matching Result for Plane Wall Jet The present results for the maximum velocity were

computed from the composite solution given in Eq
Agreement is good in the region near the wall (117) rather than from the analytic expression given

and deteriorates toward the edge of the wall jet, which
is another indication of the need for including higher

-' PRESENT CALCULATIONS

xxxxx LJUBOJA& RODI CALCULATIONS 13

NARASIMHA ET AL 18  
Y/J* . "
UM.P2 V FREE JET
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us

S... by the diffusion layer solution, Eq (64). The velo- in each layer have been obtained for plane radial
.'4/, city half-widths are underpredicted by 30% (Fig. jets with both tihe siondard k-L turbulence model

. -. " 10b). The calculation of Ljuboja and Rodi agree (constant cu) and for the Ljuboja and Rodi 13

4. with Narasimha giving further cause to surmise that algebraic reynolds stress model. The present
,/ higher order term terms in the outer layer are solutions for the plane wall jet where compared with

.mportant. The velocity half-width is expected to be Ljuboja and Rodi's numerical solution of the bound
quite sensitive to such terms. The height above the ary layer mid k- , model equations and with

" wall, y*, of the velocity maximum is considerably Narasimha, Yenga Narayan and Parthasarathy's 18
underpredicted by the composite solution (Fig. 10c) experimental correlations.
and this is partly explained by the use of an eddy
viscosity model which forces this point to be collo- The main conclusions of the present work are:

cated with the zero shear stress point. Since the
vanishing shear stress location is observed to fall 0 The wall jet develops a four layer structure
between the wall and the velocity maximum, some for Rej- -. The multi- layer structure is a
underprediction is expected. Still, the computations consequence of the turbulent shear stress
of Ljuboja and Rodi are considerably closer to the in the outer layer being largc compared to
universal curve of Narasimha et al. The behavior of the shear stress levels in the inner wall
the wall shear stress (Fig. 10d) is of particular note. layer. We believe this structure is a gen
Narasimha et al give no such result but Hammond

9  
eral feature of other turbulent shear flows

' correlates wall shear stress with a scaling based upon that have relatively high turbulent shear
slot height. Here the Hammond result for skin friction stress levels in the outer region.
is rescaled and compared with our analytic solution,
Eq (120). the calculations of Ljuboja and Rodi and * The outer region of a wall jet is similar to
the observations of Bradshaw and Gee

2 2
. The a free jet. The present theory shows that

- agreement of the latter with the proposed curve of the overall momentum flux in a wall jet is
Hammond is a direct result of our rescaling. The constant to lowest order, as it is in a free

' , Bradshaw and Gee
1 2 

result did not correlate well with jet and that the similarity form of the outer
the original scaling due to Hammond

9
. The present region of the wail jet is similar to a free

solution shows the correct variation of the wall shear jet with the same velocity and length scales
do with distance but overpredicts its level by about 40% to lowest order. The present theory pro

again suggesting a sensitivity of Eq (120) to higher vides a theoretical explanation of why the
order terms in the outer layer. Nevertheless, the observed variaticn of the velocity and
results presented here confirm (at least to lowest length scales of wall jets are Lo close to

order) that the scaling of Narasimha et al. 18 does those of free jets. Nevertheless, the pres-
indeed provide a universal correlation for the far field ence of the solid surface is felt in the
of a plane wall jet. Interestingly, radial wall jets have outer flow through the boundary conditions

already been shown to possess far field composite on the turbulent energy and dissipation.
profiles (i.e. across the entire wall jet) that depend Thus the outer solution in the prcsent the-

only upon their initial momentum (i.e. idependent of ory is not a free jet as in (;lauert's theory.
streamwise distance). Although plane jet far field The behavior or the outer solution near a

I- profiles vary slowly with streamwise distance, their wall is dominated by the vanishing of the
streamwise decay is described by a universal function turbulent viscosity at the wall and conse

of a single variable dependent on initial momentum quently the profiles in the outer solution
and distance while those of radial wall jets are not. differ significantly from the symmetrical
The lack of such universality for radial wall jets as profiles of a free jet.
well as the spareseness of far field observations pre-

eludes their comparison with the composite solution 0 The structural form of the wall jet solution
at the present time. is sensitive to the turbulence model. It is

SVI. Conclusions and Discussion the use of the dissipation equation that
leads to the requirement for a four layer
structure. The length scale in the "extra"

The present paper describes a new analytical transition region is sensitive to the model
approach for analyzing turbulent plane and radial constants in the k- t model through their

wall jets. The method is based on a systematic two influence on the parameter . The four layer
parameter asymptotic expansion using a k-L turbu- structure for this type of flow (i.e. large
lence model. One of the parameters, Y, is related turbulent shear stress levels in outer part
to the friction velocity and controls the Reynolds of shear layer) may be a general property

4 number effects induced by the solid wall; the other of the dissipation equation. Although not
parameter, t, is equal to the model constant appear- demonstrated here, it can be shown that
ing in the eddy viscosity formula and controls the for a prescribed algebraic length scale the

turbulent shear stress levels in the outer free jet extra transition region is not required and
part of the wall jet. The a expansion leads to the a three layer structure evolves. The con-

j.*- usual boundary layer approximation while the y sequences of this observation for turbu-
S, expansion leads to a four layer structure of the lence modeling remains to be established.

- -J wall jet for y-0. The theory is valid in a region
downstream from initial zone where the wall jet is * The present theory indicates dominance of
formed. We have determined the equations and turbulent diffusion near the wall. The
matching conditions governing the leading term diffusion layer is a productionless zone
of the expansion in each layer. The theory leads to that is dominated by a balance of diffusion
explicit expressions for the magnitude and position of and dissipation to lowest order. Again,
the maximum velocity in the wall jet and for the shear this may be a general feature of flows with

:. '.." stress at the wall. Similarity solutions have been relatively large turbulent shear stress Iev-
%/ developed for each layer to describe the limiting els in the outer region.

behavior of the wall jet far downstream. Complete

solutions of the leading order similarity equations

17
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; ( e The velocity maximum occurs in the diffu- * Comparisons of' the present solutions for
*., sion layer. Solution profiles in the diffu- plane wadl jet profiles shows relatively .. -

sion layer are described by simple analytic good agreement with Ljuboja and Rodi's -"

expressions that follow from the linear numerical solutions of the boundary layer

shear stress variation across the layer and equations. The solution for the decay of
from the balance of diffusion and dissipa- the maximum velocity also shows good
tion. Simple expressions are found for the agreemcnt with Ljuboja and Rodi's compu
magnitude and position of the maximum tations and with tile experimental correla-
velocity in the wall jet. The expression tiuns of Ref. 18.

S-. for the maximum velocity is exactly similar
J" for a radial wall jet but is not for a plane The present paper was limited to the develop

wall jet where there is an additional weak ment of the overall asymptotic approach and to the
logarithimic dependence on the streamwise computation of the leading order terms. Initial
distance. comparisons of the present theory with "exact"

numerical calculations 13 and with experimental
.. £he wall jet has an asymptotic similarity correlations 18 for plane wall jets shows that it

::.'. form ~tescibes theflow a on correctly predicts many features of' these flows.

stream. The leading order terms are ex- However, these comparisons also indicate, (Figs.
actly similar for x-. Deviations from 10b, c), that the present first order theory signif-

exact similarity arise from higher order icantly underpredicts the spread rates 6 1/2 and
terms in the asymptotic expansions. The 

0 
m of both the half velocity and maximum velocity

present theory accounts only for leading and maximum velocity points, respectively. Al
order similar terms, though the overall variation with downstream dis-

tance is correctly predicted, due mainly to sin-
" The present theory is consistent with a ilarity considerations, the absolute magnitudes are --

' conventional law of the wall in the inner- not. The same is true, to a lesser degree, for the
. most layer. Because of the rapid changes skin friction predictions (Fig 10d). These discrep-

across the diffusion and transition layers ancies are indicative of the importance of the ne-

the extent of the overlap region, in which glected second-order terms in tile expansions. The
the velocity profile is well represented by relatively large gap between tile outer and composite
a conventional logarithmic law of the wall, solutions for the velocity apparent in the results of
is small, which is generally consistent with Fig. 7 is indicative of tile magnitude of neglected

V ~experimental observations. The present second-order effects.
theory shows that this diminished overlap
region is due to the large gradients of The present theory is based on the k- turbu

shear stress normal to the wall. The pres- lence model, which employs an eddy viscosity model
ent theory indicates that this reduces the for the turbulent shear stress. Although the k- E
extent of the log law region but does not model cannot adequately describe the details of the
eliminate it. flow near the points of maximum velocity and zero

shear stress, Ljuboja and Rodi show that their
The theory leads to a solution for tile skin k-t; formulation can predict most other features of
friction in the form of a standard log law, wall jet flows on flat surfaces, where these two
A general explicit expression for the skin points are close together. As indicated by Gibson
friction is deduced for the intermediate and Younis

1 4
, the points of maximum velocity and

streamwise zone (i.e. x 
= 

0(t)) of the wall zero shear stress become more widely separated on
jet where the outer solution is described curved surfaces; these flows cannot be well pre-
by partial differential equations. The so- dicted with an eddy viscosity formulation. low-
lution involves one unknown function B(x) ever, Gibson and Younis show that a significantly
that must be determined from the numerical improved description of the flow near a velocity
solution of the outer layer partial differen- maximum can be achieved with a Reynolds stress
tial equations. A completely determined model (RSM) of turbulence that incorporates a wall
solution for the skin friction is deduced for damping term of the type used by Ljuboja and Rodi.

the asymptotic far field similarity region Tie asymptotic approach described in the present
(x -+ ). The locmd skin friction coefficient, paper can be directly applied to the Gibson and
defined in terms of local vaues of Uw (x) Younis RSM equations. Since the RSM employs the

or U m (x), is shown to be constant for same dissipation equation used in the present study
radial jets and to depend on log x for plane the theory will lead to the same four layer structure

1% jets. as in present work. The use of a RSM can be ex-
.' pected to give a significantly improved description

" The present theory provides the basis for of the solution in the diffusion layer. It would be
the scaling analysis that Narasimha, Yenga useful to determine whether the four layer struc-
Narayan, and Parthasarathy k18O. used to ture is a general feature of flows with an outer
successfully correlate plane wall et data. region of large Reynolds shear stress or if it is

* 4. ___,______________________________ __ The pl
The present theory leads to the same Sim- simply a consequence of tie particular form chosen
ilarity variables deduced by these authors for the dissipation equation.

Ion the basis of dimensional analysis and

shows that the plane wall jet solution de- We have carried out only limited comparisons

pends only on a suitably defined non- of the theory with experimental data. It is certain-
dimensional momentum flux. The theory ly desirable to continue these studies and to t)er-
explains why a similar type dimensional form more extensive comparisons. llowver, before
analysis does not work for radial wall proceeding with futher applications, it would appear
jets. best to compute the second-order terms to determine

if they improve the predictions of spread rate and
skin friction levels.
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