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V' Abstract Cuo Turbulent Model Constant (¢, , = 0.09)
g - Cy Momentum Flux Constant Defined by Eq.
o t"h This paper presents a systematic analysis of . (32) ) . '
~ AN two-dimensional and radial turbulent wall jets using C Constant in Law of the Wall, Eq. (103) |
T the method of matched asymptotic expansions. The d Constant Defined by Eq. (100) [
ey “ asymptotic solution is carried out in two stages. e Constant Defined by Eq. (101)
PN The first is based on a two parameter expansion of E(2) Similarity Function for Dissipation,
AR the full Reynolds averaged equations with a k-¢ Transition Layer Eq. (84)
model of turbulence quantities. One of the small E Constant in Similarity Solution for Dissipa-
: ) parameters, v, is related to the nondimensional tion, Transition Layer
NN friction velocity, u,, defined by the surface shear f Wall Damping Function Defined by Eq. (3)
SN stress. It is basically a Reynolds number param- F(n) Streamfunction in Similarity Solution,
"') h eter, y = 0(In Re)" !, that primarily controls the Outer Layer, Eq. (25) - (26) ]
AN shear stress effects induced by the wall. The g Normalized Reynolds Shear Stress Defined
. O other small parameter, «, is related to the modeling by Eq. (10c)
B ﬁ constants arising in the chosen turbulence closure, G(n)  Cimilarity Function for Turbulent Energy -
e In the present k-c model analysis « is identified _ Outer Layer, Eq. (27)
Mg with the constant, ¢ , appearing in the eddy vis- G Function Defining Turbulent Viscosity in
(: et cosity formula for the Reynolds shear stress and is Transition Layer, Eq. (86) ] ]
el W a measure of the turbulence levels in the outer free G, Function Defining Turbulent Viscosity
«.j :-.':- jet part of the flow. The  expansion reduces the Eq. (2) ) )
~ T problem to a classical boundary layer formulation to Guw,CGy, Limit Values of Turbulent Viscosity
I lowest order. The expansion for y+0 leads to a Functjon Defined by Eqs. (43) and (47)
= four layer description of the wall jet. The outer H(n)  Similarity Function for Dissipation - Outer
m layer is closely related to a free jet flow while the Layer, Eq. (29)
o, innermost layer is a classical law of the wall region. i Index Equal to 0 for Plane Jet, Equal to
M Two additional intermediate layers are needed to 1 for Radial Jet
» i effect the matching of the outer and inner layers J Momentum Flux Defined by Eq. (24)
- ! and to complete the solution. Leading order solu- k _ Normalized Turbulent Energy. Eq. (10d)
R tions for each layer are presented and the compos- K(n),K(:) Similarity Functions for Turbulent
Ny ite flow field result is compared with an existing Energy - Outer Layer Eq. (28) and Transi-
Wt numerical solution for the wall jet. tion Layer Eq. (83)
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a Constant Defined by Eq. (45b) Rej Jet ngnolds Number (uj*b*/\’*)
] A(x) Function Appearing in Inner Limit of u Velocity in the x. r Direction - Outer
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Outer Similarity Solution Solution . —
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K ey h* Reference Length in Initial Jet U Velocity Component in x, r Direction,
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e e Outer Solution U Maximum Velocity in Streamwise Velocity
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IR cf Skin Friction Coefficient Based on Initial Eq. (18) . .
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» .- Uy(x) X Stretched Coordinate in r Direction, Eq. (11)
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o cw(x) Function Defined by Eq. 40 Plate, Eq. (11)
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n Similarity Coordinate - Outer Layer, Eq. (30)

H(X) Function Appearing in Solution for Skin
Friction Eq. (115a)

% Constant Appearing i Solution for Skin
Friction Eq. (115b)

K von Karmen Constant (<« = 0.43) 174

K1 Scaled Von Karmen Constant (xq = «u =
0.80)

A Constant, A = (o./5k) ¢.2. Eq. (45b)

A Local Skin Friction Parameter,
L= ]/4ﬁ/<uw

vt Turbulent Viscosity, Eq. (1)
Laminar Viscosity

M Density

ok»9. Turbulent Model Constants (o = 1, og =
1.3)

Tw Skin Friction

w,r Reference Value of Skin Friction

Tw Normalized Skin Friction %=ty /tw,r

Superscripts

Denotes Diffusion Layer Quantities

- Denotes Transition Layer Quantities

! Prime - Denotes Derivative with Respect
to Similarity Variables, n, ¢

* Denotes Dimensional Variable

+ Wall Layer Variable

(q1)] Perturbation Index

Subscripts

D Diffusion Layer Solution

e Wall Set Edge Value

m Denotes Value at the Maximum of the
Streamwise Velocity _

w Value at Wall (y, ¥, y= 0)

0 Perturbation Index

cp "Common Part"

1._Introduction

In this paper we examine the theoretical struc-
ture of radial and planar wall jets spreading out on
a flat surface in stagnant surroundings. Although
geometrically simple, these flows raise many theo-
retical questions relating to turbulence modeling
and to wall jet similarity and asymptotic structure.
Wall jets are of interest in turbulence modeling be-
cause they combine in a single flow field important
aspects of both free and wall bounded turbulence.
They are also simple examples of a flow with a ve-
locity maximum that is not coincident with a van-
ishing turbulent shear stress; a feature that can-
not be described by turbulence models employing
an eddy viscosity hypothesis.

As discussed, for example, by Townsend!
turbulent wall jets developing in stagnant surround-
ings belong to a general class of flows referred to
as self-preserving. Such a flow is similar (or self-
preserving) if the form of the solution, when non-
dimensionalized with respect to certain velocity
and length scales, is independent of r, the coordi-
nate parallel to the shear layer. These velocity
and length scales are usually simple power law
functions of the streamwise coordinate. The simi-
larity transformation reduces the original partial
differential equations to ordinary differential equa-
tions. If the similarity is exact, the solutions of
the ordinary differential equations are also exact
solutions of the original governing equations. The

conditions that need to be satisfied for similar so-
lutions to exist in turbulent flow are discussed by
Townsend*, Rotta3, Rodi® and many others. Exum-
ples of similarity solutions in free turbulent flows
are well known (e.g. jets, mixing layers) and are
given in standard fluid mechanics texts (e.g. Ref.
5). Wall bounded turbulent flows generally do not
satisfy the conditions for exact similarity except in
very special circumstances that are much more re-
strictive than in laminar flow.

Wall bounded flows, however, do exhibit a more
general form of similurity referred to as asymptotic
similarity. In this case, if the external conditions
permit it, the boundary layer approaches a similar
state far downstream. The similar solution is then
the leading term in an asymptotic, coordinate type
expansion, valid for r»+. In this case, the leading
order similarity solution is generally not an exact
solution of the original governing cquations but is
only an approximation that becomes more exact as
distance increases. Nonsimilar effects arise from
higher order terms of the underlying asymptotic ex-
pansions. As is well known, turbulent wall layers
develop in a multi-layer structure consisting of two
or more layers. The solution in each layer can be
developed in a far field similarity form, but the form
of the similarity solution and the velocity and length
scales differ in each of the layers. Thus, the overall
solution never achieves a completely self-preserving
asymptotic state because the solution in each region
develops at a different rate. Nevertheless the solu-
tion in each region correctly matches its neighbors,
in the sense of the method of matched asymptotic ex-
pansions, and the overall solution is a rational asymp-
totic solution valid far downstream.

Glauert5 developed an approximate analytic
solution for both planar and radial wall jets in stil
air. He was able to construct a solution in near-
similarity form by assuming the flow to be divided
into two regions: an outer free jet type flow, and
an inner conventional turbulent boundary layer.
The two solutions were matched at the position of
the velocity maximum where the turbulent Reynolds
stresses were also assumed to vanish. The solution
in the outer layer was obtained with a constant eddy
viscosity model appropriate to free jet flows while
the solution in the inner layer was assumed to be the
same as in turbulent pipe flow. Townsend! also de-
veloped a near-similar two layer solution for the wall
jet but he employed a standard logarithmic wall layer
for the inner solution instead of the power law pro-
file used by Glauert Comparison of Glauert's theory
with experiment shows that it can accurately predict
the velocity profiles and most other features of the
flow. The theory indicates that the inner and outer
layers grow at slightly different rates and that the
exponents in the velocity and length scales slightly
differ from the similarity values of free jets These
effects are due to the approximate nature of the
similarity of wall jets.

Two controversial aspects of the theoretical
solution are the values of the exponents in the veloci-
ty and length scales and the question of the existence
of a logarithmic behavior in the velocity profile near
the wall. For a radial free jet, the similarity solu-
tions indicate that the length scale, $1/2. increases
linearly with radial distance, r, while the velocity
scale, up decays as r-1, The experimental results
of Bakke? and Poreh, Tsuei and Cermak8 for radial
wall jets are consistent with Glauert's prediction for
the velocity scale, both showing a 10-15% decreasc
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in the exponent from the similarity value. However,
the same data also indicates a 5 to 10% decrease in
the exponent of the length scale for which the
Glauert theory predicts a 2% increase above the simi-
larity value. For the planar free jet the similarity
exponent for the velocity scale is -1/2 while that for
the length scale is 1 which is the same as the value
in a radial jet. The data for the velocity scale in
planar wall jets was summarized by Hammond9. The
experimental results indicated a decrease of exponent
in the velocity scale by about 5-10% from the similar-
ity value which, as in the radial case, is consistent
with Glauert's theory. The results for the length
scale in the planar case are somewhat equivocal.

The experimental results of Schwarz and Cosartl
and Meyers, Schauer and Eustis!! indicate that the
exponent for the length scale is equal to the similar-
ity value, 1. while the Bradshaw and Geel2 data
indicate a value 10% lower.

There is considerable uncertainty as to whether
a conventional logarithmic law of the wall region de-
velops in the velocity profile of a wall jet. The same
theoretical arguments that support a log law in
boundary layers and pipe flows suggests that it
should also arise in wall jets. However, the experi-
mental results of Bradshaw and Geel2, Poreh, Tsuei
and Cermak8, Schwarz and Cosartl0 and others, as
well as the analysis of Hammond9 all indicate that wall
jets do not exhibit a well defined log law region.
These results indicate that, if a log law profile exists

at all, it must extend only over a very narrow region.

and with constants that differ significantly from the
standard values appropriate to boundary layers and
pipe flows. Nevertheless, a conventional log law
behavior was assumed in setting the boundary con-
ditions in recent calculations by Ljuboja and Rodil3
using the k- model for a wall jet on flat surface and
by Gibson and Younisi4 in calculations with a Rey
nolds stress model on curved surfaces.

Wall jets are known to spread less rapidly than
free jets. Ljuboja and Rodil3 note that the reduced
spread rate of wall jets could not be accounted for
with the standard k- . model employing the same con
stants that successfully predict free jet flows. The
standard k- . model overpredicts the wall jet spread
rate by 30 percent. They suggest that this failurc
is due mainly to the inadequacies of the turbulence
model with regard to the "damping" effect of the wall
on the normal velocity fluctuations rather than due
to the direct action of the wall shear stress. Their
results, obtained with a modified k-< model that ac-
counted for the wall damping effect, showed much
improved predictions of the spread rate.

In order to address the foregoing issues we
thought it desirable to develop a more rigorous ana-
lytical solution of the wall jet problem. In the present
paper we will not be concerned with turbulence
modeling per se. The turbulence modeling aspects
of the wall jet problem have recently received much
attention and the available data and turbulence
models have been evaluated at the 1980 81 AFOSR
Stanford conferernce on complex turbulent flows 19,
Instead, in the present paper we are concerned with
the overall theoretical structure of wall jet flows and
with the development of a general theorotical ap
proach to this class of flows. In order to keep the
analysis as simple as possible and to produce definite
results that can be compared with available numenr
cal solutions we've bascd the present study on the
standard k- . model including the wall damping modi
fications proposed by Ljuboja and Rodil3, e pres-
ent theoretical study indicates that a key feature of

the wall jet flow is that the Reynolds stresses in the
outer layer are an order of magnitude larger than the
levels near the wall. The analysis to follow will show
that this feature dominates the theoretical develop-
ment and leads to a characteristic multi-layer struc-
ture that is typical for flows with relatively large
Reynolds stress levels in the outer region. We be-
lieve that the theoretical approach developed here is
general and may prove useful for analyzing other
flows with the k-c or other turbulence models.

Our approach to the wall jet problem is based
on a rational asymptotic analysis of the k- < model
equations using the method of matched asymptotic
expansions. [t is an outgrowth of the asymptotic
methods developed for boundary layers and for vari
ous turbulent viseid inviseid interaction problems
(sce Refs 16, 17 for a review of this latter work).

In all of these works the solution was developed as
an asymptotic expansion in terms of the Reynolds
number, or equivalently in terms of a reference
vialue of the friction velocity. In these problems

the asymptotic approach leads to a multi- layer struc-
ture with the velocity in the outer part of the bound-
ary layer developing a small defect form. The pres-
ent work represents a significant departure from
these studies in that the velocity profile in the outer
region of a wall jet is not in a small defect form Be-
cause of this, the wall jet develops a multi-layer
structure that is considerably more complex than that
which arises in a boundary layer.

In the present paper we are primarily inter-
ested in the solution in the far field, similarity
region. The asymptotic solution is carried out in
two stages. The first is based on a two parameter
expansion of the full Reynolds averaged equations
with a k- model of turbulence quantities. One of
the small parameters. vy, is related to the nondimen-
sional friction velocity, u,, defined by the surface
shear stress. It is basically a Reynolds number
parameter, vy = 0(1n Re)~ L, that primarily controls
the shear stress effects induced by the wall. The
aforementioned asymptotic theories for boundary
layers and flow in pipes are basically expansions in
this parameter. The other small parameter appear
ing in our analysis., . is a measure of the turbu
lence levels in the outer free jet part of the flow.
For Reynolds numbers approaching infinity . the wall
jet flow approaches a limiting inviscid (Reynolds
number independent) turbulent state that is closely
related to classicul free jet flows. Since for Re »
there are no other nondimensional parameters appear-
ing in the underlying deterministic governing equa
tions. « must be a basically statistical parameter in
troduced by the coarse graining or averaging of the
turbulent flow. Our analvsis idicates that the
« =0 limit leads to a standuard boundary layer de-
seription with - filling the role of the nondimen
sional viscosity coeflicient ti.e. Re b, The value
of is related to tae modeling corstaits arising in
the chosen turbulence closure.  n the present
analysis, in which we employ the kK + model, L is
identified with the constant, ¢ | appearing in the
eddy viscosity formula for the Revnolds shear stress.
The constant ¢ i~ usually given by o 0.09
which is not impressively small for an asyvmptotic
analysis. Nevertheless. the use of a small ¢ as
yvmptotic approach is plausible since its main effect
is to reduce the Revnolds averaged equations to
boundary laver form. This is known to be a
grenerally usetul approximation for both free and wall
bounded turbulent flows, although not nearly as
rood as for lnminar flows.
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Thus, in the first stage of the analysis we ex-
pand the k-. version of the full Reynolds averaged
equations for vy, «>0. The a expansion reduces the
problem to a classical boundary layer formulation to
lowest order. The expansion for y»0 leads to a four
layer description of the wall jet. The outer layer is
closely related to a free jet flow while the innermost
layer is a classical law of the wall region. Two addi
tional intermediate layers are neecded to effect the
matching of the outer and inner layers and to com-
plete the solution. The analysis leads to a set of
either partial or differential equations governing
the solution in eact: region. The resulting descrip-
tion applies to the complete development of the wall
jet flow, both in the near and far field, except for
the immediate vicinity of an impingement region,
where the boundary layer approximation of constant
pressure across the shear layer is not valid.

In the second stage of our analysis we expand
the solution in each layer in terms of distance along
the wall to obtain a far field solution in each region.
The leading order far field solution in each layer is
expressible in a similarity form which turns out to be
an exact solution of the equations governing the
solution in each layer.

One of the interesting consequences of our ap-
proach concerns the character of the far field solu-
tion in the outermost layer of the wall jet. Because
turbulent shear stress levels in the outer region are
large, 0 (1), compared to the 0 (u%) levels in the
inner wall layers, the turbulent shear stress in the
outer solution must satisfy a zero boundary condi-
tion at the wall. This, together with the fact that
the normal component of velocity is also zero at the
wall leads to an outer solution that is similar in many
respects to a symmetrical free jet flow. Because the
turbulent shear stress vanishes at the wall, the
momentum flux is conserved in the outer layer of the
wall jet. to lowest order. Consequently the outer
solution has the same similarity form in the far field
as a free jet and the exponents in the velocity and
length scales are equal to the free jet similarity
values. However, the outer layer solution differs
from the free jet solution because the presence of the
wall directly influences the outer solution through
the wall boundary conditions on the turbulent energy,
k. and dissipation, ., leading to a zero turbulent
viscosity at the wall. Because of these boundary
conditions the wal™ jet profiles in the outer region
differ considerably from those of a free jet solution,
particularly near the symmetry plane. It is also of
interest tu note that the difference in the wall
boundary conditions for k and . considerably de-
crease the spreading rate of the wall jet compared
to a free jet, as is observed in practice.

The solution in the innermost region is repre
sented by the conventional law of the wall formula.
The overlap with its neighboring layer yields a con-
ventional log law behavior with standard values as-
sumed for the associated constants. However, be
cause of the rapid variation ol the solution in the
other layers near the wall the extent of the log law
overlap is much reduced compared to that in standard
turbulent boundary layers and this tends to support
the experimental findings reported previously8.10,12,

In the present work we've developed a complete
formulation, including the matching, for the leading
order solution in cach of the four layers. We've re
duced the governing equations in each layer to far
field similarity form and have obtained solutions
for all the resulting ordinary differential equations,

We compare certain features of our far field solu-
tion with numerical solutions of the partial differen-
tial equations for the wall jet problem recently pub-
lished by Ljuboja and Rodil3 using the same form of
k- turbulence model. We also compare our solutions
for the velocity and length scales with the experi-
mental correlations for plunar wall jets presented by
Narasimha, Yenga Narayan and Parthasarathy!8,

It is of interest to note that the present theory leads
to the same similarity variables proposed by those
authors on the basis of a dimensional analysis of the
data and on the recognization that the initial momen
tum flux is the only relevant initial condition affect-
ing the far field solution.

The solutions developed to date deit] only with
the leading order far field similarity solution and
hence predict velocity and length scales that vary
in accordance with the similarity values for the cx-
ponents. In order to address the nonsimilar effects
associated with the shifts in velocity and length
scale exponents observed in the data we would need
to determine the next terms in the far ficld similarity
expansions. Current efforts are directed at the
computation of these terms.

[I. Governing Equations. Asymptotic Formulation
and Structure

We assume the wall jet is formed, either by im-
pinging a jet onto a flat surface or by blowing
through a narrow slot located near the origin as
shown in Fig. 1. The initial conditions of the jet are
characterized by velocity and length scales uJ* and
b*, where these are dimensional quantities. Al
other quantities referred to in the paper are made
dimensionless using these scales and the value of
density in the initial jet. The quantities up and 5y
are the value and position of the maximum velocity
while 41,9 denotes the position of the half velocity
point. Our analysis is based on the Reynolds aver-
aged equations using the version of the k - . model
employed by Ljuboja and Rodil3 in their numerical
study of the planar wall jet. Their version includes
modifications to account for: the wall "damping"
effect, and the effect of the ratio of production to
dissipation. P/., on the turbulent viscosity coeffi-
cient, vy. We closely follow the Ljuboja and Rodil3
formulation and notation except for a minor change
in the continuity equation to allow for the radial wall
jet. In their formulation the turbulent viscosity co-

efficient is written in the form

V{’Cuk*'z/k*w* D
where the function ¢, is given by
¢, =c, GuP/e, D) (2)
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And ¢, is one of the turbulence model constants
(taken to be equal to ¢, = 0.09), Gu £ Gy Ggis
defined in Ljuboja and Rodi and f is their wall "damp-
ing" function,

K*3/2 o374 }

_V.E *

f= MINC1
I\%’ &)

in here « is the von Karmen constant.

The asymptotic analysis is carried out in terms
of two basic small parameters, » and y. The
"boundary layer" parameter o is defined to equal
Cuo,

a zc“o:0.0S) (4)

while the "friction parameter” v is defined in terms
of a reference value of the nondimensional friction
velocity ., U, by

¥ zu.hr/a“*i)/»i (5)
where the friction velocity is defined by

u, = \/-‘Fw— = \/—(_372 (6)
From turbulent wall layer flows we know that the
friction velocity depends logarithmically on the
Reynolds number Re]-,

u, = O(In Rey)™ (N
where

Re, = u;b'/z'* (8)
In our approach, we seek solutions of the full
Reynolds averaged equations in the double limit,

a—0, y—0 (9

Typical numerical values for these parameters for
practical wall jet flows are «. v = 0.1, Since these
values are not impressively small we expect the
higher order terms to be important in most situa-
tions. Nevertheless, we assume they are small
enough for an asymptotic approach to be useful.

The parameter, . enters the formulation in
virtually the same manner as the laminar viscosity
coefficient, and therefore expansion of the solution
in powers of «leads to the boundary layer equa-
tions just as in laminar flow. The « expansion takes
the form

Uruf o4 =0 UP%, y; 1) + 00! + O (@) (10a)

V*/uja®H/ =y vy O v ) 060! ?) £ 0l0) o)

— v/ u et — g o Oy ) 401 Y) + Oa) (10e)

K*/p"uy2a¥? =k - kM(x, y; ¥) + 0D + 0OW)  (10d)

€~bu/puu;30\’2*33)/4 - € - ((())(xl vi v) + 0(“1/2) +0O() (10e)

J03/2 100374
f:f‘0)+...—,k G hoees (10f)

Ky ye'0

G, - G,‘P'{P(O’/(“”, f(O):_+“_ (10g)
where «{ is a "reduced"” von Karmen constant
defined by, « o4 . and, x, y are stretched

coordinates ddfined by

r*/b* . 1. x“-l/'.”

y'/b* y (1
where * denote dimensional quantities. We call
attention to the appearance of the scaling param-
eter, o, in the definitions of the dependent vari-
ables. The j dependence follows from a considera-
tion of the balance of the overall momentum flux.

We also note that the boundary layer scaling appears
in the r coordinate direction with the thickness of
the wall jet equal to the order of magnitude of the
slot width or other characteristic dimension of the
impinging jet. This scaling implies that the solution
holds in a region that is far downstream compared
to the characteristic dimension of the initiating jet.
The substitution of Egqs. (10) into the full Reynolds
averaged equations, using the above stretchings,
and taking the limit o« + 0 leads to the standard
boundary layer form of the equations of mass, mo-
mentum, turbulent energy and dissipation, written
in the form, (with the perturbation superscripts
deleted for simplicity)

_g% %Jxlzo (12)
U%+V%:%+I{c;l% (13)
U%”’%}%(ﬁ %)w(g—f)z—f (14)
Ug§+vg_;:‘a%<% g_;>+c“%<%>2_c‘z§(15)

The Reynolds stress, g, is computed from the mean
velocity via an eddy viscosity formula,
g =1t %yE . vy = GukPle (16)
with the eddy viscosity given by Eq. (1). We use
standard values of the model constants given by;
Cyo=10.09, ck =1, 0., =1.3¢c=1.44andec g =
1.92. The « expansion provides the formal basis for
using boundary layer theory for free turbulent flows
as well as for the wall jet flow considered in this
paper. The second term in the a expansion, Eq.
(10), arises from small pressure gradients generated
in the outer entrainment flow field above the wall
jet. The disturbances in this region are induced by
the entrainment of external fluid into the wall jet.
The 0 () terms are due to higher order terms
(i.e. normal pressure gradient, streamwise diffusion
etc.) in the Reynolds averaged equations that are
not included in the boundary layer equations.

The  dependence in the solution indicated in
Eq. (10) arises from the laminar shear stress term in
Eq. (13), which is important only in the wall layer
near the surface. The expansion for vy »0 leads to a
solution with the complex four layer structure
sketched in Fig. 2. consisting of: an outer free jet
type flow, a conventional equilibrium wall layer. and
two additional layers that are nceded to effect a
matching between the outer and inner layers. The
solution in the outer layer satisfies the exact bound-
ary layer equations. The Reynolds number term
appearing in the momentum equation is negligible to

Yy \:_x' *.} {.‘..‘.
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all orders in the outer expansion so that the outer
layer is a fully turbulent flow that is not directly
influenced by the laminar viscosity coefficient. Of
course. there are Reynolds number effects in the
outer solution, but they enter only through the in-
ner matching conditions. The length scale for the
outer region. Ay = 0(1), indicated in Fig. 2, follows
from boundary layer type scaling considerations.
Since the spread rate of the wall jet is 0(«1/2), the
thickness of the outer layer, up to a distance “r =
0Cs 1/2) must be the same order as the characteris-
tic dimension of the initial jet., Since the turbulent
shear stress and ener&y_are an order of magnitude
larger than the 0(y2a{1*1)/2 = 9(u?) levels at the wall,
the outer solution for g and k must vanish at the
wall. From the momentum equation it also follows
that the outer solution for g must have a linear be-
havior near the wall. Detailed analysis, summarized
in the following section, indicates that the outer so-
lutions for the turbulent energy and dissipation
have a non-analytic, algebraic behavior near the wall.

The solution in the innermost layer is described
by a conventional equilibrium wall layer that is com-
pletely determined by the small, 0(y2a(1*}/2 value of
the wall shear strcss. The solution in the wall layer
has a standard logarithmic law of the wall behavior
at its upper limit, y, = yu,/v>=. Because of the
algebraic behavior of the outer solution for y-0. the
outer and wall layer solutions do net match and ad-
ditional intermediate layers are required. Two ad-
ditional layers are needed: a diffusion layer, and a
transition layer. The thickness of the diffusion lay-
er is determined by the condition that the linearly
varying part of the solution for the shear stress is
of the same order of magnitude as the value of the
wall shear stress. This leads to a thickness ~y =
0(+v4) as indicated in the figure. This is the region

ENTRAINMENT REGION

t N B {

@ OUTER LAYER

A=Dg+P-D,
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a-1/2

@ DIFFUSION LAYER
2
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in which the velocity has a maximum and the turbu-
lent shear stress has a zero. We call it a diffusion
layer because of the dominant influence of turbulent
diffusion in this layer. Detailed analysis indicates
that the dissipation is balanced entirely by turbulent
diffusion in this region. The dominant terms in the
turbulent energy and diffusion equations in each
layer are indicated in Fig. 2 by the symbols:

A (advection), P (production), D (diffusion), and
D. (dissipation).

The solution of the diffusion layer equations
also exhibits an algebraic behavior at the wall which
does not match the logarithmic behavior of the wall
layer solution. This requires the introduction of
the transition layer indicated in Fig. 2. The length
scale, Ay = vy for this layer is determined by
the requirement that it matches to both the diffusion
and wall layer solutions. The constant "a" is a
function of the turbulence modeling constants.
which for the standard values listed previously is
given by, a &=0.27,

111. Outer Region

The solution in the outer region is determined
by expanding the boundary layer equations, Eqgs
12- 16, in terms of the friction parameter, Y. Since
the viscous term appearing in the momentum equa-
tion is exponentially small in ¥ it can be neglected
to all orders. Thus, the leading order term in the
outer solution satisfies the exact boundary layer
equations with the laminar shear stress term set to
zero. We assume that the solution in the outer re-
gion can be expanded in the form,

Ulx, ¥; 7) = uplx, y; 0) + o=+ (17)
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\‘:-L VIX, ¥; 1) = volx, y; 0) = ==+ (18) constant to lowest order in y. and consequently, the
- o~y outer solution behaves very much like a turbulent
T N (X, Ve - : } free jet. In particular, the outer solution for the
S ros X, ¥ Y) g, y; )+ e 19) J p cular, .
¢ ‘ i Bo yi ¢ wall jet admits a simitarity structure that is of the
‘ K v: 3) = KalX, ys 0) + eee 20 same form as that for u free jet. Thus the lowest
& y30) o%, y3 0) (20 order outer solution for the streamwise and normal
€lx, ¥i 1) - €olX, y; O) + eee (21) components of velocity, turbulent energy and dissi-

pation can be represented in the form,

4 and, for simplicity. we drop the perturbation sub- ,
:‘-.{ .o scripts in the subsequent developments. U - ) FN M) (170 1) (25)
SN
ale ) S uy () M FETm) = 2P Em) :
S - For a stagnant outer stream the k - - model v (26)
% < leads to a shear flow with a definite outer edge, e ul(x) Gn) 27
™ Yy = Ye. (e.g. see Ref. 19) where the solution sat- B G (20
! [ “d isfies homogeneous boundary conditions ko ux) Kn) (28)
k' . . ot - w12 2
..-:.: . u:og= k:=€=0 AT Vo= Ve (22) € ui(‘) X—IH(U) (29)

The boundary conditions on the inner edge of the

outer solution are determined by matching to the

o« inner layers. Since g and k are 0 (Y 2) at the wall
(and are also small in the other inner layers) the

\ outer solution for these quantities must satisfy zero 7

where the primes denote derivatives with respect to
the similarity variable, n, defined by

cy/x (30)

) o boundary conditions at the wall. The boundary con- ) o ) c e . s
‘n\,: _{: dition on the dissipaton, ., is more difficult to fix .Imd ,udshdefgned, \ut“},](x) 1; t_h? V‘f.luf“: %f by ilt l?f wallli
\Jf. L since it cannot be determined from simple scaling n all that follows the subscript "w" denotes the wa

The func-

& arguments if it should be equal to zero. infinite or

a finite value at the wall.

A detailed analysis of the limiting behavior of
the outer solution for y »0 indicates that matching

value (y = 0. of the associated variable.
tion uy(x) xi*1 F(-) is the streamfunction of the
leading order outer solution. The wall velocity,
uw(x), can be determined from the momentum flux
constant, J, by rearranging Eq. (24) into the
similarity form

is possible only if the dissipaton in the outer solu-

e, .~ tion is unbounded :it the wall. The final inner IS S
:-‘\c o boundary condition is fixed by the requirement that U(x) = Cy'"x 3D
\:\- ® the normal component of velocity be zero at the wall, L . fi L
A Thus the inner boundary conditions are where Cy is a constant defined by,
> -
. v.g:=k=0 AT v =10 o J R
. E g 3 (23a) c; - (%);12‘ (32a)
x':-.j € - AT v -0 (23b)
2R Te a2
NI " . o I = ® F(n)dn (32b)
",-"‘ ) ['he boundary conditions given in Eqs. (22) and 0
A RS (23) are sufficient to completely determine the so-
“a lution.  As in the free jet problem, an additional The similarity equations for momentum, turbulent
Lo wall boundary condition on u is not required be- energy and dissipation are
: cause the wall value of u is determined from an over- l
o all momentum balance. Since the wall shear and nor- KG '
AR O A . el g2 Sy Woptr _
SO mal component of velocity are zero at the wall the 25UFT P < H F 0 (33
-."r\ momentum flux integral, J, is constant to lowest
D% . order 2 . 2
R "f Ve 2K + 2"1F1<'+(———L" g K'\ +(___“_l\ G F"?>- H=0 (34)
poad Je/peustbt g (z.-x)’f ul(x, y; 0)dy + 0GY) (94, * / :
) - 0 \ -
- ’
- e where the 0 («(2) term arises from the nonzero value L5+ 3))F'H + 2itpy’ +<~%“— H’)
:_.'-1' of the wall shear stress. The value of the momentum e )
Y ot : e rar tat . [ . ~ H
_\'::_.1 S Kt;]l::tliesge;(tmby the initial conditions in the impinge . CEI(KGHFIIZ) _cq(?) =0 (35
' -.“ .
e . - The continuity equation is automatically satisfied
<ot . e - . . . P Sv A " A b
:.':" T Thtc ub<o;’0 ,b"d".d“]"y cog(llttlonfbt;o‘m:)llcttti‘} dpﬁ;;o the through the introduction of the "streamfunction”,
= t:_.‘. outer solution. independent o e solution in the F (n). The momentum equation, Eq. (33) can be
inner regions. However, the partial differential . | g
S . R X . integrated once, yiclding
equations governing the outer solution must be inte-
\}\3 grated numerically as an initial value problem for PR K G, [
ol T each prescribed value of the momentum flux, J, and ) (36)
2. o« set of initial profiles. The solution in the region, H :
,.-:.:1 cr* =0 (b* 1/%) under consideration depends on where the wall boundary conditions require the con- :
;-_4 the details of the initial profile shapes, which can stant of integration to vanish. The eddy viscosity !
..‘-: -:.' only be determined from consideratio of the detailed formula for the shear stress takes the form, I

solution in the impingement region.

rer .
-

g/ul G GKYH) F (37

A Far Field Similarity

:'.: . Results from the numerical solutions of the similarity
.:-‘\o o Because the leading order solution for the shear  equations will be presented later in the paper. Al-

AU stress vonishes at the wall. the momentum flux is though the similarity solution is an exact solution of

Ly
L

o :q 7 |
= !

e

.-::a

y -.'_-. ST Sy -. NN R S S, -. N ) \;_', by x: Y \5,\‘._-.‘) >



N
1]

RAAR

o,
o
2

the full nonlinear boundary layer equations, it is not
an exact similarity as defined in the introduction,
because the wall matching conditions require the
introduction of additional higher order terms in the
suter expansion. Thus the similarity solution des-
cribed above represents only the leading term of a
far field expansion valid for x-+ =, which is an ex-
ample of what we have called an asymptotic similarity
in the introduction.

Limiting Behavior

The asymptotic flow field structure is strongly
influenced by the limit behavior of the outer solution
for v~ 0. A conventional equilibrium wall laver is
present near the wall so that the outer solutions,
however many lavers there may be, must eventually
match to a conventional log law for y»0. The match-
ing will lead to a logarithmic skin friction law of the
same type as arises in boundary lavers and pipe
flows. Since the turbulent shear stress and energy
are small in the wall laver then the outer solutions
for g and k must vanish at the wall as required by
the boundary condition, Eq. (23).

The detormination of the correet boundary con-
dition to impcse on the dissipation, <., proved con-
siderably more difficult because it was not possible
to deduce the proper condition thru a simple scaling
analyvsis. The logarithmic law of the wall requires
the dissipation to behave like.

€ ~ 01/4,):', v (38)

Thus. the magnitude of . near the wall depends on
the length scale of the inner lavers and could be:
small. order one, or unbounded for y~0. depending
on the thickness and structural form of the inner
lavers. However. the structure of the flow near

the wall. in turn. depends critically on the boundary
condition imposed on - and cannot be determined
without a knowledge of this condition. Thus the
correct wall boundary conditon on : and the structure
of the solution near the wall can only be determined
thru a detailed analysis of the limiting behavior of
the outer solution for v+0 for all possible boundary
conditions on :. We first examined the consequences
of setting - to zero at the wall. By trial and error
we found that the only solution satisfvine this
condition has the form,

U = Uy (X), g ~Culxly, K — Ay, ¢« —=Blxy!/? (39)
where ¢yw(x) is

. duy

Co Uy (10)
and A(x) an B(x) are functions determined from a
balance of terms in the turbulent energy and dissi-
pation equations To lowest order. the dominant
terms are provided by a balance of turbulent ditfu-
sion, production and dissipation which leads to,

. {72
/i f T —30eC )
A G X eyl 4D
e — 3 Ce,

B (%) L;\%;w[l_—M.] TBYUN) 0 (49

T (Cey — (‘EI) 1 -
where G. . is the limiting value of the turbulent vis-
cosity function at the wall. Since the wall damping
function. f. @ proaches one and the production-
dissipation ratio, P/ .. approaches a definite limit for
y=0, G_w is given by

Guw G )y, 1 (13

The functions A(x) and B(x) depend on the model
constants. For the stindard values given previ-
ously, as well as other sensible choices we find that
A(x) is strictly positive but that

B-<0

which demonstrates that solutions of this type. with
. eaual to zero at the wall, are not possible.

We next considered the possibility that the dis-
sipation was either unbounded or equal to & nonzero
constant at the wall. We assumed that the velocity
and turbulent shear stress had the same form as in
Eq (39) but that the turbulent energy and dissipa-
tion had a more general power law variation for
y=+0. Thus we assumed the outer solution had the
following behavior

U —Uy, g —~Cy(X)y, kA
¢ ~BN)IYP FORY — 0

where a > 0 in order to satisfy the boundary condi-
tion on k (k+0) and b > 0 in order to avoid the con-
sequences of ¢+0 discussed above. A solution of
this tvpe proved possible with the dominant turbu-
lence terms involving a balunce of diffusior and
dissipation. Turbulent production proved negligible
compared to both these terms in this tvpe solution.
The balance of the diffusion and dissipation terms
resulted in the following expressions for the ex-
ponents, a and b.

(44

h-1-1(3"2)a (45a)

ar 6 = 2) J

Al "k)ce'_v (45L)
where the positive root in Eq. (45b) was chosen to
satisfy the wall boundary condition on k. For the
values of model constants used here a = 0.270 and
b = 0.595. Since b is positive the outer solution for
the dissipation is unbounded at the wall. A solution
with a bounded wall value of . proved to be impos-
sible. The functions A (x), B (x) are to be extract-
ed from the numerical solution of the outer equu
tions for y~0. The analysis for y-0 shows that they
are related by.

AT B a2, 3G, M0 (46)
The next term in the expansion for u near the wall
is determined from an integration of the eddy vis-
cosity equation to vield.

{ 2Be, pearo
U > Uy IN) - . - A N o
TG, )2 ) (470
where g ¢ is the limiting value of the viscosity
function at the wall defined by.
G, _TGLA'“P/G) =0, 1} (47b)
The boundary conditions Eqgs. (22) and (23)
completely fix the outer solution, independent of the
solution in the inner layers. The general character
of the outer solution for the streamwise veloeity. u.
is as sketched in Fig. 2, The velocity increases
monotonically from zero at the upper cdge of the jet
to @ maximum. uy at the wall. At the upper edge
the solution has an adgebraic singularity of the same
form as in a free jet!9, At the wall the solution has
the sincutar bhehavior indicated in Egs. (1D and
(17). Thus the outer solution ¢learly cannot neteh
the logarithmic behavior of the wall Taver, and as g
consequence, the skin friction cannot he determined,
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1V. Diffusion Layer

The analysis of the previous section indicated
that the outer solution exhibits an algebraic behav-
ior at the wall, in which the turbulent shear stress
and energy vanished while the dissipation becomes
unbounded and the velocity approaches a definite
limit, uw(x). Because of the algebraic behavior for
v--0 it is not possible to match the outer solution to
the logarithmic law of the wall. This implies that
additional layers will be required to achieve & match-
ing to the wall layer solution. The limiting behavior
of the outer solution indicates that production and
advection of turbulent energy are small for y-+0 re-
sulting in a balance of diffusion and dissipation at
the wall. This suggests that we attempt to develop
a solution in a thin inner region in which the tur-
bulence characteristics are dominanted by a balunce
of diffusion and dissipation. Because of the impor-
tance of turbulent diffusion in this region we call
it the diffusion laver.

The structure of the solution in the diffusion
layer is completely determined by the behavior of
the turbulent shear stress near the wall. In the out-
er solution the shear stress is negative with a linear
decay to zero at the wall. However the turbulent
shear stress is a positive constant in the wall layer
equal to the small, 0 (y24(1%1)/2) value of the skin
friction, w,. The outer solution breaks down where
the linearly varying shear stress becomes the same
order as the wall shear stress. An analysis. not pre-
sented here, shows that the breakdown manifests
itself through the appearance of a singular contribu-
tion in the second-order outer solution for the
streamwise velocity. The condition that the linearly
varying outer solution for the shear stress is the
same order as the wall shear estabishes the thick-
ness scale of the diffusion layer to be »y = 0 (v2).
Thus, the solution in the diffusion layer is express-
ed in terms of the stretched variable, §. defined by

y =7y (48)

Appropriate scalings for all dependent variables
follow from the substitution of the stretched variable
defined in Eq. (48) into the inner limit of the outer
solution given by Zqs. (44) - (47). Thus we are
led to solutions of the form

U= uy, + y22ulx, y) (49)

g = 72(cw§ FTY) + e = Tw.r[cw§ + ?w] RN (59)
k:..YZa[IZ(x’g)I+..°] (5])

€ =y O[E(x, §) o+ eeel (52)

where ¢y, (x) is the function of uy defined in Eq.
(40) and Ty is equal to the ratio of wall shear to
its reference value,

T = 7w/ Tar (53)

Equation (50) follows from an integration of the mo-
mentum ecuation, written in stretched variables.
With the scalings given above the turbulent energy
and dissipation equations reduce, to lowest order,
to a balance of turbulent diffusion and dissipation:
a balance that is consistent with the limiting be-
havior of the outer solution. These equations re-
ducz to sccond-order ordinary differential equations

for k and <.
equations and match the outer solution are given by,

The only solutions that satisfy these

k. A y? (54)
€: BL)y™® (55)

which are precisely the limiting forms of the outer
solution with the functions A(x), B(x) determined
from the outer solution and the constants a,b given
by Eqs (43). The solution for the streamwise velo-
city is found by substituting the above expressions
for g. k and ¢ into the eddy viscosity formula which
yields,
Ju B —

—_ = -(+a/2)
3 WGy I T (56)

where Gy o is the zero production limit of the tur-
bulent viscosity function defined in Eq (47b)

The integration of Eg (56) to obtain @ introduces an
arbitrary function of x into the solution that can be
evaluated by matching to the outer solution. The
matching requires this function to vanish so that
the solution for 4 can be written in the form,

4/G, - [(1 _ §>(§/;m)-a/z . ': (y/y'.m)l-a/:‘] (1 - a]?

(57)
where the functions u,, and yp, are,
U :(;4523_,__> Fl-arn (58a)
a2 - a) A°G,, "
}.{m = Ty/ey (58D)

since B and Ty are positive, cy is an’dtl‘lL‘ and
a=0,27, the function up is negative and yp, is
postive. It follows that the corresponding two term
expansion for the streamwise velocity has a maximum
located in the diffusion layer at y = Y2 §, where
the maximum value, Unp? is

A, (59)

Un = Uy + 7

The second term in Eq. (57) can be shown to match
the outer solution given in Eq. (47). The overall
behavior of the solution for the velocity profile in
the diffusion layer is as sketched in Fig. 2.

Far Field Similarity

The diffusion layer solution can be placed in
similarity form by taking note of the similarity forms
of the function A(x), B(X), um(x), cw(x) that

follow from the definition of cy in Eq. (40) and sim-
ilarity solutions given in Eqs (25) - (31). Thus we
find

‘\.-(laloab

AlX) AguL ()N ALCy (60a)

B(x) By ul (\) L l‘,s(‘:}/lx-(ﬁl'z)(h]oa) (60b)
cytx) =1 201 - ) gy s
— (L 2L Py XD (60c)

By are constants determined from the
(<) is the similarity

where Ay,

outer similarity solution and uy,
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form given in Eq. (31). If we define the similarity
variable for the diffusion layer by

n=Y/Ym (61)

the solution for the velocity can be written in the
similar form,

U/Up, = [(1 - %)5-3/2 _g ?71'3/2] f1-al? (62)

&

where, now,

Ym/X = A0 =20 + D (Fy /) (63)

- - _ 2(1 + j)2/2B 27 1-a/2
U/t ‘%‘X)“[a(z-a)AZGuo] [‘”"‘] (63b)

Uy

and where the term in square brackets is a constant.
The x dependence of the functions A1 (x) and

A9 (x) appearing in Eqs (63) depends on the solu-
tion for the wall shear stress which will be obtained
in the next section. The far field solution for the
maximum velocity is given in terms of A2 (x) by,

Up = Uy (x) [1 + 12724, (x)] (64)
The solutions for the turbulent energy and dissipa-
tion can be arranged into the following similarity
form,
k/ud = AA ) #? (65)
€ym/ W, = Bga, (x)10 7 (66)

Limiting Behavior

The diffusion layer solution for k and ¢ is
given entirely by the terms appearing in the limit-
ing behavior of the outer solution for y+0, so that
the matching of these quantities is obvious. To
establish a match between the outer and diffusion
layer solutions for the velocity we rewrite the dif-
fusion layer solution, UD, in outer variables to
obtain,

2BT wa/0 -~
Up = ug - y2<—,—aA (;“0) y¥IFORY ~0 (g7

where the subscripts "D" and "cp" denote the dif-
fusion layer solution and the "common part", the
latter being given by the inner limit of the outer
solution, Eq (47). The first term in Eq. (67)
matches a corresponding term in the outer solution
while the second term represents an unbalanced con-
tribution that requires the introduction of an 0 (y2)
perturbation to the outer solution.

The diffusion layer exhibits an algebraic be-
havior at the wall that is of the same form as the
limiting behavior of the outer solution. except for
the velocity which has the general form

2f 2BT _ -
UD = uW(X) - ')“‘<TA2—C',_‘) y al? FORy —0 (68a)
Bo

or, for x+ e , the similarity form given by

Up = u,,(x);l —y? %(Tj?{‘;?ﬂ) (% )-a/z}

FORy —0

(68h)

Because of the algebraic singularity in Eqs (68)
the diffusion layer obviously cannot match the wull
layer solution. Thus an additional layer will be re-
quired to effect a transition between the algebraic
behavior of the diffusion layer solution and the
logarithmic behavior o the wall layer solution,

V. Transition Layer and Skin Friction

The thickness of the transition layer is deter-
mined from a consideration of the behavior the tur-
bulent energy near the wall. The solution for the
turbulent energy in the diffusion layer indicates
that it approaches zero like k—>Ay# for )-'—»0.
Since k is 0 (y2) in the wall layer, the ditfusion
and wall layer solutions for the turbulent energy
will be of the same order of magnitude in a layer
with a thickness, 2y = 0(y2/a). Since a T 0.27,
the transition layer is considerably thinner than
the diffusion layer and is thicker than the expo-
nentially thin (in terms of y) wall layer. The so-
lution in the transition layer is expressed in the
stretched variable, ¥. defined by

y = .yZ/ag, (69)

The appropriate scalings for the dependent vari-
ables in the transition layer follow from the substi-
tution of the stretched variable defined in Eq. (69)
into the inner limit of the diffusion layer solution.
Thus we seek solutions in the transition layer in the
form.

g = Y [Ty x) + OG22 (70)

k = vik(x, y) +o--] (71)
€= YA, Y) + +oe | (72)
U = uyx) + yulx, y) + -+ (73)

Substitution of these expansions into the turbulent
energy . dissipation and eddy viscosity equations
yields the following system of ordinary differential
equations,

9 (G, K 8k\ - ~
TR AL I 2 _= -1 22
—ay o z ay)—- (k A‘Gu)(f/l\) (74)
9 (G, k® 3T\ _ = = ey (2278
5(9?‘?%')*‘% = Co TG /R (75)
ou_ €Ty
3y kG, (76)

Equation (70) indicates that the turbulent shear
stress is constant across the transition layer to low-
est order. Then, by matching to the wall layer so-
lution it is established that the lowest order term for
g is equal to the skin friction, Ty, as normalized in
Eq. (53). The wall damping function, f, is also
equal to one across the transition region, as in the
diffusion layer, but here the production-dissipation
ratio, P/¢, is variable to lowest order. Thus, the
viscosity function. Gu, is determined from the im-
plicit relation,

Gy = Gu{P/€, 1] D
P/e - F1/kY G (78)

Equutions (74) - (78) are to be solved subject
to boundary conditions determined by matching the
solution to the diffusion layer for y—» 0, and to the
law of the wall for ¥-— 0. That the transition layer
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‘J, . equations admit a log law behavior for y —0 follows _
,.% A from the fact that all three turbulence source terms: G, : G,,G(P/e, 1) (86a)
,-".' \_ production, dissipation, and diffusion appear in the —_—
.'::i bl lowest order description. It is the balance of these P/e = (K*G) (86b)
QY terms in the k - < model that leads to the standard
o log law at the wall. In order to the match to the where G, w is the value oi Gy at the wall, so that
wh U U u .
( : diffusion layer the solution must also satisfy the G is equal to one for y= 0. In terms of this trans-
A A following asymptotic conditions. formation the turbulent energy and dissipation
N equations are,
el Kk —~ay? FOR y —« (79a) .
AT K’ - GK’=-1 (87)
RS € -Byb 2 - (79b)
3 € ~-By FOR y — =< E” — Ss(KVE = 0 (888)
> where 2 (K) is defined by
ko (79e) BIK) = (0/03) feey GK = €K™ (88b)

In order to complete the solution and to deter- The transformation for Y () is obtained from an

AN mine the skin friction the transition layer must integration of Eq. (76)
AN match to the logarithmic law of the wall for y—=0. © 1 ’
In the present notation this leads to the following y = * (GK2/E) dC (89)
. matching conditions, - ¢ !
‘::': ‘\‘;-_‘ = (VF, /K) (In§E(x)) FOR§ — 0 (804) where we have imposed the boundary condition,
N S o | u-+ -
o k= kv = Ta G (80b) yreo (u>-@)for¥ -0
Cal) i
> - — in order to match the law of the wall.
- \:; € —~7YYu, ¥ (80c)
imi - . . . The transformation removes all parameters
>4 where Tty is the local value of the normalized skin from the problem definition, aside from turbulence
A, friction, C(x) is a function to be extracted trom the model constants, so that K (:) and E (z) are univer-
ST, numerical solution of the transition layer equations . > > s
o < ) Co R - i sal functions that need be computed just once for
Vot Cu and «q iIs a constant related to the standard von each set of chosen model constants. More impor-
o L Karmen constant, « = 0.43. by the relation N : 8 p
e tantly, the transformation completely decouples the
- = a4y (81) nonlinear equation for the turbulent energy, K (z),
) e K =0 from the second order linear equation governing
con _ e i o E (7). Thus the solution can be obtained sequen-
L\ - which for .= 0.09 resuits in a value v = 0.79 tially by first solving Eq (87) for K () , next Eq
F. v N .
\:“ . Thg six conditions given in Egs. (79) and (80) are éii)né‘ZiyE c(o“n)d?trilgng%?]ui I??) (:3; cfizlt‘e:"m(irilzl t’)l‘he
:b\ ;._-‘ sufficient to completely solve the fifth order system matching to the diffusion la\;er solution for ¢ >y0
e . e i Fatenmtis e Y \ G-
\',\ .\}.) 0;401‘(_1“]“"/ .dltteumml e(!udtlonb .guve.n by Eqgs. (y » ®) and to the wall layer solution for Y + o
i O o to determine the solution for the ¢y > 3. "Detaled analysis indicates that tne far
7y X n. ¢ : ; : cos : b
a highly nonlinear and must be solved by numerical field matching condition can be satisfied by,
meth . —
NOSRAY ods K@) —~o FOR;—0(F —«  (90)
"~‘ . - .
*-_.: Similarity. Because of the chosen scaling on k, the boundary
AR Equations (74) - (76) can be considerably condition at the wall is given by
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- simplified by first switching independent variables

from ¥ to U and then placing the resulting equa- K@ —1 FOR{ —~=(y — 0) (91)

| . A s . M

‘o — :lr(:;ss;:r;;n:;:;mty form through the following scale The boundary conditions Egs. (90) and (91) enable
SRR ’ Eq. (87) to be integrated once the viscosity func-
::.-) N 7= VK og ¢ (82) tilon Gis specifit.ed - Because G(}'() is a fairly com-
_-,{ plex function that is defined by an implicit relation
) . - koK) (83) (Eq. 86) the turbulent energy equation, Eq. (86),
ROV I T Bw must in general be integrated numerically. A simple
- e - exact analytic solution satisfying the boundary

o = €= eEE) (84) conditions cun be found for the special case that
S G (K) is a constant equal to its value at the wall. In
[ ::‘,. Sy = m ghis case, G(K) = 1 and K () is found by

M REN y o =X / % y() integration.

.‘;g w ¢ ”k (85) . R et

2% ‘ . K (&) - JT-_e-WE -2 (92)
~ . where Ky is the value of k at the wall, as given by
f-.‘ 0 the law of wall matching condition, E¢q. (80b) and e This turns out to a good approximation even when

t., is an arbitrary constant, to be determined by G is variable, as given by the expression in

= ) matching to the diffusion layer solution for y » e . Ljuboja and Rodil3 and serves as a good initial es-
o In the following . - will be taken as the independent timate for the iterative solution for K ( -) in the

~," 8. variable which s strictly positive and ranges from aeneral case.

:;sj o w at the wall (y= 0) and to 7 = 0 in the far field

o A (y » ®). The turbulent viscosity function is ex- The solution for K (:) dctermines the function
..;‘S pressed in the form, 8 (K), appearing in the differential equation for
ol s-a
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E (r). This equation is a second-order linear
ordinary differential equation which can be solved as
initial value problem using far field boundary con-
ditions determined from the matching conditions to
the diffusion layer solution for ;=0 (§-+ ) given
by Eq. (79b). Equation (88a) has two power law
type solutions for ; —0, one decaying and the
other unbounded. In order to match to the dif-
fusion layer the unbounded component must be ex-
cluded by imposing the far boundary condition,

EQ) =0 FOR{ —~ 0 —) (93)
The solution can be completely determined by pre-
scribing the coefficient of the decaying component.
Because of the arbitrary ccefficient. e, introduced
in the definition of E by Eq (84) we may, without
loss in generality, set this coefficient to unity.
Thus the second boundary condition on E(;) is
taken as,

lim(E£™) = 1
£-0 (94)

where the exponent, a,, is determined from the
differential equation,

a, - 2b/a~ 4,40 (95)

where a, b are the parameters appearing in the
outer solution as defined by Eq. (45). These con-
ditions enable us to compute E(7) as a simple ini-
tial value problem by marching the solution from
£=0to ¢+ =, However, we found it more conve-
nient to solve the E equation as a two point bound-
ary value problem using the same computer code
used to compute K (7). The velocity profile

U(y) is determined implicitly via Eq. (82) and the
transformation function, Y (¢), is evaluated by

a numerical integration of Eq. (89). The scale
function, e, for the dissipation is evaluated by
matching the transition layer solution for - to the
far field limit given in Eq. (79b). This completes
the determination of the solution in the transition
layer in terms of the local value of the skin friction,
The skin friction is then evaluated by carrying out
the matching of transition and wall layer solutions.

Limiting Behavior and Evaluation of the Skin
Friction

The parameter, e, scaling the dissipation is
determined by matching the transition solution
to the diffusion layer. For ¢ —0, (y+«=) the solu-
tion behaves as,

K — (6ky/Ge)t? FOR{ — 0 (y — = (96)
€ —et®/a FOR ¢ —~ 0 (y —=) 97
7 —~(7,e1d3/ M2 poR ¢ —0(y — =) (98)

where G_ is the limiting value of G in the far field
and is given by

Gu = Guy/Guw (99a)
where Guw * G, (Po/€q, D (99b)

and d is the constant, Gup = Gu(0,1) (99¢)

182 G3/4 -2b/3a
o [ o] o

12

Equations (96) - (98) can be inverted to give explic-
it expressions for the far field behavior of the tran-

sition solution in terms of the physical coordinate, ¥.

The resulting expressions match the limiting forms
of the diffusion layer solution, given in Eqs. (79),
if the arbitrary function, e, scaling the dissipation
is given the value.

e:d;;b/a BZ/Sa(x) (101)
where B (x) is the known function that arises in
the inner limit of the outer solution (Eq. 42).

The matching to the diffusion layer solution
and the boundary condition k—+ky completely deter-
mines the solution in the transition layer in terms
of the unknown value of the skin friction, Ty. This
is determined, and the solution completed by match-
ing the transition layer solution to the logarithmic
law of the wall.

In the present notation the law of the wall so-
lution in the inner layer is expressed in the form,

U*ut= w F*ly,), ¥ = yuRe (102)
For y*i» ® this reduces to the standard log law,
U*/u} — up(x) [«'In (yu,(x) Re,) + C}] FORy, — = (103)

where C" is the standard constant (C+~5) in the
logarithmic law of the wall. For .= (y>0) the
limiting solution for the turbulent energy approaches
its value at the wall, exponentially in ¢,

Ko — Ky [l + 0(e™%) FOR{— = (104)
while the dissipation . and coordinate transforma-
tion, ¥ (z), approach the limits

o —~ eEgewt FOR{—~ «  (105)

Tx | B gt
eEy | OxBw
where gy is a constant equal to the limiting value of
8 (K) at the wall and is given by the following ex-
pression involving only the turbulence model
constants,

y— FORt — =  (106)

By = (/e — Cgy) (107)

The parameter Eg is u constant to be determined
from the numerical solution for E(:) for (—»=.
Inverting these expressions we obtain,

=Ty (108)
- VT - -
T— —*[In(Fe By 742 « O] (109)

L8]

where «q must satisfy the relation

k}=GYZ% olce, — Cy) (110)

This is just one of the standard relations. written in
the present notation, used to fix the model constants
in the k - . model to assure that it satisfy the stan-
dard log law at the wall (eg sce Ref. 20). Equations
(104), (108) - (110) demonstrates that the transi:
tion layer solution matches to the wall layer solution.
Using Eq. (109) the transition solution for the ve-
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.. locity profile near the wall can be written in the form,
I i ]
A U = ug(x) +—"7-Ka’ 7 lﬂ[ydE,lea‘xla“"’/z‘T" /3) (111)
comparing this expression to the outer limit of the
u wall layer solution given by Eq. (103) yields the
> following implicit relation for the skin friction
At -1 2ah InA=(1+ 22 Inug(x) — In6(x)
RN v [lna9/4Re, v kCY (112)
\-‘.\
where the skin friction 1, is given in terms of A and
u, by
o T ua(x) = a?/ 2k pd(x) (113)
S
and 6 (x) is the function defined by,
a
oM 8(x) = d E {2/ B/ %(x) (114)
W
In the far field limit, x —=, § (x) approaches the
. following limit
\-':' 8(x) = 8, C'l,/‘x'“’“"/‘ (115a)
where
«~ N
>
-‘ 8y = dx2/2 g, B2/ ™ (115b)
and By is the constant appearing in the similarity
v axpression for B(x) given in Eq. (60a). Using this
e relation and the similarity form for uy(x) given in
Rk Eq. (31) we can write the far field asymptotic solu-

tion for A(x) in the form,

At -1 2ahinA=

[in(at*h/4Re, Ci/2g;x1=D/2) | kCY  (116)
po
e where Cj is the normalized momentum flux defined in
-d Eq. (32). Equation (116) expresses the solution for

the skin friction in the far field similarity region in
terms of the momentum flux constant, Cj, the jet
Reynolds number. Rej. turbulence model constants
and two constants Bg'and Eg which are determined
by numerical solution for the outer (free jet) region
and transition layer equations. It is interesting to

'.;3 note that the local skin friction coefficient, ¢p = 1y/
et . (1/2) uwz, is exactly constant for a radial wall jet
A (j = 1) and varies logarithmically in x for the planar
jet (j = 0). The above formula for the skin friction
g admits an interesting similarity that will be dis-
el cussed in the next section.
- Results
- The similarity form for the radial and planar
- outer layer and the transition layer have been solved
2_..' numerically for Gu = 1 as well as_for the algebraic
stress model of Ljuboja and Rodi 3, here denoted by
G, # 1. Product composites of the form
\"
-:.: U = Coyren (Uprpr * Uérpmus = CPprrp/TRANs!
OUTER/DIFF (117)
-~ where CP denotes the common part of the subscript-
a7 ed layers, are used to compare the present asymp-
te totic solutions with respect to the numerical solutions
of Ljuboja and Rodi.13 These results are also com-
pared with "universal” correlations of experimental
ﬁ'-'; data proposed by Narasimba et al. for plane wall
:-t:o jets.
The equations governing the outer layer are
-
K2
*~"=

13

AR AL T A AL LS S DA AN SN RS IE RN MR At s St et S NS AL g i

solved by the method of Paullay et al.19 Application
of an independent variable transformation, ¢ = £(n)
such that

d _, K

d¢ ~ 4 H (118)
acts to decouple the kinetic energy and dissipation
equations as well as to reduce much of the non-
linearity of the system. In the new coordinate the
bounds £+-«, + = replace n =0, ne and, the
location of the finite edge is found a posteriori
by quadrature, viz.

K?

na:J’n u”

The numerical solution is obtained by central differ-
encing the transformed equations and using the edge
and wall asymptotic behavior as two-point boundary
values. Repeated application of tridiagonal solvers
to the system of equations allows for their conver-
genfle to levels of local residuals no greater than
10-11,

G dg (119)

Results for the outer solution in the planar
case with G, = 1 (Fig. 3) are compared with the
corresponding free jet solutions. For reasons
discussed previously, the radial and planar wall jet
solutions have the identical similarity form as the free
jet flow. It is apparent that the effect of the wall
is to reduce the velocity half-width by about 30%.
The behavior of the mean and turbulent variables
are essentially the same in the edge region of the
layer but differ significantly near n-»~0 where wall
jet dissipation becomes unbounded and the turbulent
energy and eddy viscosity go to zero. The results
for radial jets are qualitatively the same as for the
planar case.

The mean velocity deficit, u/um, profile in the
diffusion layer (Fig. 4) is given analytically by
Eq (57) and it exhibits the local maximum that
characterizes wall jets.

Solutions to the transition layer must, in gen-
cral, be obtaincd numerically and again central dif-
ferences are cmployed to represent Eqs (87,83)
subject to boundary conditions Eq (90,91) and initial
conditions Eq (93,94), respectively. In practice K1
is used as the dependent variable in Eq (87) and the
difference equations are solved from ¢ = 0 (y+») to
some finite cutoff, ¢ = fo, chosen large enough for
a two term large ; expansion to prevail. Since the
dissipation equation, Eq (88), is homogeneous, it
may be solved as a two-point boundary value problem
with E set to zero at ¢ = 0, Eq (93) and to an arbi-
trarily prescribed value at the edge ¢ = 7. The re-
sulting numerical solution is then rescaled to comply
with Eq (94). This procedure enabled us to solve
for K and E simultaneously on the same mesh to the
same level of precision. The numerical results are
indistinguishable from the analytical solution for
K (). Eq (92). that is available for G, = 1. The
more general algebraic stress model13 (i.e. G, #1
gives results (Fig. 5) that are very close to those
obtained with the standard (i.e. G, = 1) turbulence
model. It should be recalled that the Y(:) curve is
actually a stretched velocity profile (Eqs 82,89).

The numerical solutions for the outer layer and
the transition layer provide the constants (Table 1)
required for asymptotic matching with the diffusion
layer. It has been established that all numerical
solutions exhibit the correct asymptotic behaviors for
©» rg. 0and 5 + 0, = with the exponents pre-
dicted to within 1% of their analytical values.
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TABLE 1 Computed Constants in the Similarity Solutions

TURBULENCE
MODEL GEOMETRY| A B, E Iy
STANDARD WITH |PLANAR | .0635 |6.30x103 | 18.96 | 1899
RADIAL | .1106 [1.218x102| 18.98 | .1308

Cu =0.09

1.370x10°3] 12.45 | .0032

MODIFIED WITH |PLANAR | .0337
3.05x107 | 12.45 | 0591

C“ = C‘l (P/e,f} |RADIAL 0575

In order to us¢: these results to generate the
solution profiles for specific wall set flows the skin
friction must first e evaluated from Eq (116). It is
convenient to rewrite this equation in the form

At - (1+2a) In A = $in g+ {Bln@l 652) + kC*} (120)

h g Jopet=d

where T enlowd T 2o
This formulation demonstrates that for the radial

wall jet the skin friction coefficient, A, is a con-
stant that depends only on the jet Reynolds number
and turbulence model constants; for a plane wall jet A
is variable that depends on the logarithm of the
streamwise coordinate, x. The solution to Eq (120)
is presented (Fig. 6) for radial and plane wall jets
and for G, =1, G, # 1. As expected, A decays
slowly with J. For the data to be examined here J
is in the 109 < J < 1012 range where A= 0.1.

(121)

(a™/2x)!*) Re}

A solution corresponding to Ljuboja and Rodi's13

numerical result at r*/b* = 200 (x = 60) (Rej = 1.8 x
104, J = 6.48 x 1010) is developed using their alge-
braic Reynolds stress model (G, # 1). The composite
solution for velocity is presented in Fig. 7, along
with the outer and transition layer calculations in
order to indicate the overall nature of the matching.
The large gap between the outer and composite
solutions apparent in this result is an indication of
the importance of higher order terms in the outer
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Fig. 6 Friction Velocity as a Function of Wall Jet Momentum

Parameter from Transition Layer Matching with
Law of the Wall.

1.0

TRANSITION LAYER

COMPOSITE SOLUTION

OUTER LAYER

Fig. 7 Structure of Composite Solution — Plane Wall Jet
(G‘l #1, A =0.100)

solution. The velocity profile merges with the law of
the wall behavior at about y + = 20 (Fig. 8) which is
close to the patching location used by Ljuboja and
Rodi. Since the law of the wall region extends out to
about y + =20 these results indicate that typical solu-
tions exhibit a logarithmic law of the wall behavior
only over a very limited interval. This marginal log
law region is consistent with the experimental ob-
servations8,10,12 discussed previously. The mean
velocity, turbuleni shear stress and energy profiles
obtained13 by a parabolic marching integration of the
partial differential equations are in reasonable agree-
ment with composite for field solution calculated here
(Fig. 9).
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Fig. 8 Composite Solution Match with Law of the Wall — Plane
Wall Jet (G, =1, A =0.100, « = 0.43, c*=5.0
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:-' u_ ~~—— PRESENT CALCULATIONS consistent with the law of wall compatability condition -
MRS Um G, #1,A=0.100 given by Eq (110). In order to have the outer layer
o] turbulence model conform to that of Ljuboja and —
( ‘ Rodi, Eq (110) is used throughout to locally deter- Do
- mine c¢2 as a function of G,. Numerical experi- AN
\',:-', ments carried out here and by Rodi2l jndicate neg-
‘.\_1‘. ligible effects due to this slight inconsistency in )
4_‘.:, their model. -
o v
‘:-: A dimensional analysis performed by Narasimha T
W < et al. 18 suggests that plane wall jets are described
0 / VELOCITY S~ by their initial momentum and the kinematic viscosity. E
Together these quantities provide unique length and T
velocity scales [L*] = [y*2/J*], [U*] = [J*/y*]. 7
<uv> TURBULENT SHEAR STRESS For the radial wall jet this is not the case since J*/
v*2 is itself dimensionless. The results obtained L.
0.16 Ym here conform to the analysis of Narasimha et al. The LA
plane wall jet shear stress is derermined only by the o
A , ) f value of § (Eq 120, Fig 6). The streamwise behavior )
N of the scaled mean and turbulence quantities are
5% 0 1 2 3 universal functions of § which serves as a scaled L
_‘::\.. VARV streamwise coordinate in the planar case. (Fig. sl
“’E: 10a-d). Comparison of the present1 lanar results :
', . . R ’ R . with the proposed universal curves!® show good
:ﬁ::‘ Fig. 9 gom::'",'”n;' ofhl}syv;ptotm Composite Solution with agreement for velocity maximum decay (Fig. 10a). -~
NX] arabolic Matching Result for Plane Wall Jet The present results for the maximum velocity were e
. . . computed from the composite solution given in Eq o]
3 Agreement is good in the region near the wall (117) rather than from the analytic expression given
p and deteriorates toward the edge of the wall jet, which .
o is another indication of the need for including higher s
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by the diffusion layer solution, Eq (64). The velo-
city half-widths are underpredicted by 30% (Fig.
10b). The calculation of Ljuboja and Rodi agree

with Narasimha giving further cause to surmise that
higher order term terms in the outer layer are
.mportant. The velocity half-width is expected to be
quite sensitive to such terms. The height above the
wall, y}"n, of the velocity maximum is considerably
underpredicted by the composite solution (Fig. 10c)
and this is partly explained by the use of an eddy
viscosity model which forces this point to be collo-
cated with the zero shear stress point. Since the
vanishing shear stress location is observed to fall
between the wall and the velocity maximum, some
underprediction is expected., Still, the computations
of Ljuboja and Rodi are considerably closer to the
universal curve of Narasimha et al, The behavior of
the wall shear stress (Fig. 10d) is of particular note.
Narasimha et al give no such result but Hammond
correlates wall shear stress with a scaling based upon
slot height. Here the Hammond result for skin friction
is rescaled and compared with our analytic soll%tion,
Eq (120), the calculations of Ljuboja and Rodil® and
the observations of Bradshaw and Gee22. The
agreement of the latter with the proposed curve of
Hammond is a direct result of our rescaling. The
Bradshaw and Gee'“ result did not correlate well with
the original scaling due to Hammond®. The present
solution shows the correct variation of the wall shear
with distance but overpredicts its level by about 40%
again suggesting a sensitivity of Eq (120) to higher
order terms in the outer layer. Nevertheless, the
results presented here confirm (at least to lowest
order) that the scaling of Narasimha et al.18 does
indeed provide a universal correlation for the far field
of a plane wall jet. Interestingly, radial wall jets have
already been shown to possess far field composite
profiles (i.e. across the entire wall jet) that depend
only upon their initial momentum (i.e. idependent of
streamwise distance). Although plane jet far field
profiles vary slowly with streamwise distance, their
streamwise decay is described by a universal function
of a single variable dependent on initial momentum
and distance while those of radial wall jets are not.
The lack of such universality for radial wall jets as
well as the spareseness of far field observations pre-
cludes their comparison with the composite solution
at the present time,

V]. Conclusions and Discussion

The present paper describes a new analytical
approach for analyzing turbulent plane and radial
wall jets. The method is based on a systematic two
parameter asymptotic expansion using a k-. turbu-
lence model. One of the parameters, v, is related
to the friction velocity and controls the Reynolds
number effects induced by the solid wall; the other
parameter, ., is equal to the model constant appear-
ing in the eddy viscosity formula and controls the
turbulent shear stress levels in the outer free jet
part of the wall jet. The « expansion leads to the
usual boundary layer approximation while the y
expansion leads to a four layer structure of the
wall jet for y»0. The theory is valid in a region
downstream from initial zone where the wall jet is
formed. We have determined the equations and
matching conditions governing the leading term
of the expansion in each layer. The theory leads to
explicit expressions for the magnitude and position of
the maximum velocity in the wall jet and for the shear
stress at the wall. Similarity solutions have been
developed for each luyer to describe the limiting
behavior of the wall jet far downstream. Complete
solutions of the leading order similarity equations
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in each layer have been obtained for plane radial
jets with both the siandard k-o turbulence model
(constant ¢y ) and for the Ljuboja and Rodi
algebraic reynolds stress model. The present
solutions for the plane wall jet where compared with
Ljuboja and Rodi's numerical solution of the bound
ary layer and k-. model cquations and with
Narasimha, Yenga Narayan and qu‘thusur’uthy'sw
experimental correlations.

The main conclusions of the present work are:

® The wall jet develops a four layer structure
for Rej>=. The multi-layer structure is a
consequence of the turbulent shear stress
in the outer layer being large compared to
the sheuar stress levels in the inner wall
layer. We believe this structure is a gen
eral feature of other turbulent shear [lows
that have relatively high turbulent shear
stress levels in the outer region.

e The outer region of a wall jet is similar to
a free jet. The present theory shows that
the overall momentum flux in a wall jet is
constant to lowest order, as it is in a free
jet and that the similarity form of the outer
region of the wall jet is similar to a free
jet with the same velocity and length scales
to lowest order. The prescent theory pro-
vides a theoretical explanation of why the
observed variatien of the velocity and
length scales of wall jets are so close to
those of free jets. Nevertheless, the pres-
ence of the solid surface is felt in the
outer flow through the boundary conditions
on the turbulent energy and dissipation.
Thus the outer solution in the present the-
ory is not a free jet as in Glauert's theory.
The behavior or the outer solution near a
wall is dominated by the vanishing of the
turbulent viscosity at the wall and conse-
quently the profiles in the outer solution
differ significantly from the symmetrical
profiles of a free jet.

® The structural form of the wall jet solution
is sensitive to the turbulence model. It is
the use of the dissipation equation that
leads to the rcquirement for a four layer
structure. The length scale in the "extra”
transition region is sensitive to the model
constants in the k- ¢ model through their
influence on the parameter .. The four layer
structure for this type of flow (i.e. large
turbulent shear stress levels in outer part
of shear layer) may be a general property
of the dissipation equation. Although not
demonstrated here. it can be shown that
for a prescribed algebraic length scale the
extra transition region is not required and
a three layer structure evolves. The con-
sequences of this observation for turbu-
lence modeling remains to be established.

e The present theory indicates dominance of
turbulent diffusion near the wall. The
diffusion layer is a productionless zone
that is dominated by a balance of diffusion
and dissipation to lowest order. Again,
this may be a general feature of flows with
relatively large turbulent shear stress lev-
els in the outer region.
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.‘;'-' o The velocity maximum occurs in the diftu- e Comparisons of the present solutions for
) sion layer. Solution profiles in the diffu- plane wall jet profiles shows relatively
_:.-\.' sion layer are described by simple analytic good agreement with Ljuboju and Rodi's
.‘ expressions that follow from the linear numerical solutions of the boundary layer

shear stress variation across the layer and
from the balance of diffusion and dissipa-
tion. Simple expressions are found for the

cquations. The solution for the decay of
the maximum velocity also shows good
agreement with Ljuboju and Rodi's compu

O magnitude and position of the maximum tations and with the experimental correla-
l.‘;-. . velocity in the wall jet. The expression tions of Ref. 18.

‘o " for the maximum velocity is exactly similar

'_',:’..‘ for a radial wall jet but is not for a plane The present paper was limited to the develop-
Sl wall jet where there is an additional weak ment of the overall asymptotic approach and to the
.:-‘.:‘: logarithimic dependence on the streamwise computation of the leading order terms. Initial
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distance.

L+ he wall jet has an asymptotic similarity
form that describes the flow far down-
stream. The leading crder terms are ex-
actly similar for x>« ., Deviations from
exact similarity arise from higher order
terms in the asymptotic expansions. The
present theory accounts only for leading
order similar terms.

The present theory is consistent with a
conventional law of the wall in the inner-
most layer. Because of the rapid changes
across the diffusion and transition layers
the extent of the overlap region, in which
the velocity profile is well represented by
a conventional logarithmic law of the wall,
is small, which is generally consistent with
experimental observations. The present
theory shows that this diminished overlap
region is due to the large gradients of
shear stress normal to the wall. The pres-
ent theory indicates that this reduces the
extent of the log law region but does not
eliminate it.

The theory leads to a solution for the skin
friction in the form of a standard log law.
A general explicit expression for the skin
friction is deduced for the intermediate
streamwise zone (i.e. x = 0(1)) of the wall
jet where the outer solution is described
by partial differential equations. The so-
lution involves one unknown function B(x)
that must be determined from the numerical
solution of the outer layer partial differen-
tial equations. A completely determined
solution for the skin friction is deduced for
the asymptotic far field similarity region

(x + »). The local skin friction coefficient,

defined in terms of local values of Uy (x)
or Uy (x), is shown to be constant for
radial jets and to depend on log x for plane
jets.

The present theory provides the basis for
the scaling analysis that Narasimha, Yenga
Narayvan, and Parthasarathy ¢18) used o
successfully correlate plane wall jet data.
The present theory leads to the same sim-
ilarity variables deduced by these authors
on the basis of dimensional analysis and
shows that the plane wall jet solution de-
pends only on a suitably defined non-
dimensional momentum flux. The theory
explains why a similar type dimensjonal
analysis does not work for radial wall
jets.

RGP AR PR OO LA S

comparisons of the present theory with "exact"
numerical calculations and with experimental
correlations 18 for plune wall jets shows that it
correctly predicts many features of these flows.,
However, these comparisons also indicate, (Figs.
10b, c), that the present first order theory signif-
icantly underpredicts the spread ruates 6,9 and

om of both the half veloecity and maximum velocity
and maximum velocity points, respectively. Al-
though the overall variation with downstream dis-
tance is correctly predicted, due mainly to sim-
ilarity considerations, the absolute magnitudes are
not. The same is true, to a lesser degree, for the
skin friction predictions (Fig 10d). These discrep-
ancies are indicative of the importance of the ne-
glected second-order terms in the expansions. The
relatively large gap between the outer and composite
solutions for the velocity apparent in the results of
Fig. 7 is indicative of the magnitude of neglected
second-order effects.

The present theory is based on the k-¢ turbu-
lence model, which employs an eddy viscosity model
for the turbulent shear stress. Although the k-¢
model cannot adequately describe the details of the
flow near the points of maximum velocity and zero
shear stress, Ljuboja and Rodi show that their
k-¢ formulation can predict most other features of
wall jet flows on flat surfaces, where these two
points are close together. As indicated by Gibson
and Younis14, the points of maximum velocity and
zero shear stress become more widely separated on
curved surfaces; these flows cannot be well pre-
dicted with an eddy viscosity formulation. How-
ever, Gibson and Younis show that a significantly
improved description of the flow near a velocity
maximum can be achieved with a Reynolds stress
model (RSM) of turbulence that incorporates a wall
damping term of the type used by Ljuboja and Rodi.
The asymptotic approach described in the present
paper can be directly applied to the Gibson and
Younis RSM equations. Since the RSM employs the
same dissipation equation used in the present study
the theory will lead to the same four layer structure
as in present work. The use of a RSM can be ex-
pected to give a significantly improved description
of the solution in the diffusion layer. It would be
useful to determine whether the four layer struc-
ture is a general feature of flows with an outer
region of large Reynolds shear stress or if it is
simply a consequence of the particular form chosen
for the dissipation equation.

We have carried out only limited comparisons
of the theory with experimental data. It is certain-
ly desirable to continue these studies and to per
form more extensive comparisons. Howver, before
proceeding with futher applications, it would appear
best to compute the second-order terms to determine
if they improve the predictions of spread rate and
skin friction levels.
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