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Introduction

The desire to obtain ever greater performance from jet engines with

smaller and smaller diameters has forced the engine designer to consider

relatively complex flow problems. Thus, in most modern jet engines, the

flow relative to the compressor or fan rotor blades in the first few

stages is in the transonic regime. At the tip, supersonic velocities

occur and it may soon be the case that supersonic relative velocities are

found over a large portion of the blades.

Because flows in the transonic and supersonic regimes are so much

more complex, in general, than those found when compressibility effects

are negligible, the computational problems which must be solved in order

to predict the flow fields over arbitrary geometribs are much more diffi-

cult. Both analytical and numerical efforts are required.

The present contract is concerned with problems, associated with

engines, involving both transonic and supersonic flow fields. Generally,

asymptotic methods have been used in the analyses, with numerical compu-

tations being used sometimes only to evaluate analytical results and

at other times to find the complete solution in a region for which anal-

ytical solutions are not available. In this way, it is hoped to find

relatively efficient means of solution which will both exhibit the under-

standing given by analytical solutions and utilize the computational

power offered by the computer in handling problems insoluble by other

means.

Summary of Results; Implications of Work

The research carried out during the past contract year (March 1, 1982

to February 28, 1983) was concerned with three problems: (1) transonic



flow through heavily loaded cascades, (2) transonic flow through three-

dimensional compressor rotors, and (3) the supersonic turbulent boundary

layer at a ramp.

The first problem is an extension of previous work done on transonic

flow over a lightly loaded cascade. l ) The methods and ideas used in

obtaining the latter solutions are being used in analysing the heavily

loaded case, which corresponds to conditions considered in present-day

and future jet engines. In particular, attention is being focused on the

formation of supercritical regions, with and without shock waves, on the

suction surfaces-of the blades. This is a very important part of the flow

field since shock waves cause losses and perhaps separation. At the

present time, the governing equations valid in each region have been

derived to the desired order of approximations and solutions have been

found in one region. The work is the subject of a Ph.D. dissertation.

The second problem, transonic flow through a three-dimensional com-

pressor rotor, has been in progress for some time. It is an extension

of the work done on lightly loaded cascades to three dimensions, and

thus is very complex. Since the solutions are, with the exception of

those in one region, analytical, they should prove very beneficial in

explaining the detailed flow picture in a rotor. Considerable time has

been spent in finding the numerical solutions in the one region in which

this is necessary and in joining this and the analytical results in

composite solutions which can be used for the calculation of numerical

examples. This work is finally nearing completion. A paper will be

written and submitted for publication.

The third problem, supersonic turbulent boundary layer at a ramp,

has been completed and a Ph.D. dissertation has been written. The solutions
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obtained allow one to calculate the pressure and wall shear stress distri-

butions for unseparated flow downstream of the leading edge of the ramp,

for a relatively large range of supersonic Mach numbers and ramp angles.

The results are entirely analytical so that no complex numerical schemes

are needed. The surface pressure distribution is in close agreement with

experiment for cases in which the flow appears to be unseparated. The

calculated wall shear stress is within about 10% of the experimental data

in the case compared, even though a simple mixing-length eddy-viscosity

model is employed. A journal article covering this work is being written.

A detailed description of the work done on the above problems is con-

tained in a following section.

Publications and Invited Talks

The following publications are based on work supported by this con-

tract.

(1) Adamson, T. C. and Sichel, M. (1982), "Transonic Shear Flow in a

Three-Dimensional Channel." J. Fluid Mech., vol. 123, pp. 443-457.

(2) Agrawal, S. "Asymptotic Theory of an Unseparated Supersonic Tur-

bulent Boundary Layer at a Compression Corner." Ph.D. Thesis, Univ.

of Michigan, 1983 (Chairman of Dissertation Committee, A. F. Messiter).

In addition, Prof. T. C. Adamson has been invited to give a talk on

the analysis of supersonic inlet diffusers at the ONR/AFOSR Workshop on

Mechanisms of Instability in Liquid Fueled Ramjets, and to give a seminar

at SUNY at Buffalo on Asymptotic Methods in Internal Transonic Flows;

both of these talks are to be given in March, 1983. Both are concerned

with work supported by ONR either through Project SQUID or the present

contract. Also, Prof. A. F. Messiter has written an invited review article
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on boundary-layer interaction theory, one section of which discusses the

theoretical background for the work done on the ramp problem studied

under this contract.
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Discussion of Work

(1) Transonic Flow through Heavily Loaded Cascades

The first cascade problem studied under ONR (Project SQUID) support was

that of a lightly.loaded cascade in transonic flow. (1 ) The term "lightly

loaded" refers to the fact that the blade thickness, maximum camber, and

angle of attack were all of the same order, and in a certain sense small

compared to the order of corresponding terms in typical single airfoil theory.

If M is the Mach number in the incoming flow far upstream of the cascade,
02

these three parameters were all O((M_2-1)2 ) whereas according to the

00

M2_l32
transonic similarity law for single airfoils they would be 0(M 0 )3/2

since the flow is transonic, M 2-1 << 1. The result of this ordering is

that the lift forces on the blades are thus relatively smaller than in the

single airfoil case; the blades are said to be lightly loaded. This set

of conditions was chosen for study because the resulting flow problem is

easier to solve and yet has technical relevance; moreover, it gives impor-

tant information concerning the structure of the flow field. It is a good

first problem, and the experience gained from it has been used to formulate

the more demanding problem of a heavily loaded cascade.

A sketch indicating the geometry considered and the notation used is

shown in Figure 1. An inviscid, steady, transonic flow of a perfect gas

with constant specific heats is considered. A small parameter E is intro-

duced such that E = O(M 2-1), as in the previous work. The blades in the

cascade have shapes given by

Yu = YO + 3/2fu (x) + C2gu (x) - xa (la)

Yz = YO E3/2 f (x) g- C2g(x) - xc (Ib)
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where y0 is the position of the leading edge of the blade in question, a is

the angle of attack (a=0(d/2 )), and the subscripts u and Z refer to upper

and lower surfaces of the blade respectively. All lengths are made dimen-

sionless with respect to the blade chord. Thus the thickness-to-chord

ratio is 0(E3 /2) for this case; a convenient definition of E is obtained

3/2by setting e equal to the thickness ratio. The incoming flow velocity

is written as

Uo  = l+Kls ! K3/2'3/2 + (2)

where the Ki are constants, + and - refer to supersonic and subsonic flows

respectively, and all velocities are dimensionless with respect to the sonic

velocity in the incoming flow. Because the flow is transonic, shock waves

are weak enough that to the order retained a velocity potential may be

considered. A perturbation potential 0 is defined by

u = Uo + cx v y (3a,b)

The governing equations are the gasdynamic and energy equations:

a2V.q = (.V) I (4a)
.2

22
a2  + U 2  (4b)
y-l 2 y - -

where the vector velocity q has components u and v, and where y is the ratio

of specific heats. If Eqns. (3a,b) and (4b) are substituted into (4a), a

single equation for 0 results. The boundary conditions are given by

(v/U)u, = dy /Udx (5)
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As in the lightly loaded cascade analysis, the flow field can be divided

into several regions, illustrated in Fig. 2 . In the region marked "c",

there is a channel flow bounded by the two blades. Because the channel

walls are not symmetric and because the slopes of the walls are 0(C3/2

the same as the thickness ratio, the expansion for 0 in the channel can be

shown to be as follows:

= E3/401 + 602 + E5/4,3 + C3/2 4 + (6)

That is, the expansion proceeds in powers of C1/4 rather than in powers of

1/2 as in the lightly loaded case. Although this expansion is more corn-

plicated in that more terms are required, the first dependence upon y oc-

curs in 04; 01'02, and 4,3 are all dependent upon x alone because the tsoun-

dary conditions give - = 0 until those for 44 are reached. Solutions

for this region, valid to order £2, have been found, i.e. solutions for

1' 02$ 43, and 44 are known.

Upstream of the channel, in the region marked "U" in Fig. 2 , the

expansion shown in Eq. 6 and the same governing equations found in the

channel flow analysis hold for each 0i for y = 0(1). The essential dif-

ference, of course, is the fact that there is no outer wall or blade;

only one boundary condition can be used. Therefore, it is necessary to

find an outer solution, for the region "0" in Fig. 2, in which y 11 2 = 0(1);

that is, since c << 1, y >> 1 in this region. If y = Xx along the line

passing through each of the leading edges of the cascade (Fig. 1), then

the independent variables, the expansion for 4, and the governing equation

for the lowest order tern in 4 are, respectively,
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= (Ek l ) / 2 (y-Xx) R x (7a,b)

0 I(XY) + C 3/2 3/2(,Y ) + ... (7c)

((y+I)I + k klIRR - kll1v , I (7d)

where k : 2KI . Thus, the nonlinear transonic small-disturbance equation

holds for the far field, as opposed to the Laplace or wave equation which

was found in the case of lightly loaded blades. The boundary condition is

the same, in principle; that is, in R,Y coordinates, the cascade appears as

a periodic cusped wall as 0 0 with period d, where d is defined as Fig. 1.

As 0 + 0, the flow must be tangent to this wall and for subsonic flow, as

y =, velocity perturbations tend to zero.

The solution in the outer region must match term by term with the solu-

tion valid in the upstream region in the limits 3 0 and y . This

matching is in lieu of the missing boundary conditions and supplies func-

tions and constants necessary to complete the solutions in the upstream

regions. From this matching, it is found, for example, that 0l = 0 in the

upstream region. That is, there is no term 0( 3/4) outside the channel;

the lowest order term in u is O(e). Because of this difference between

the upstream and channel flow solutions, there is another region which must

be considered, the inner region marked "I" in Fig. 2.

In the inner region, where x - d << 1, the perturbation in the flow

velocity u becomes stronger, going from 0(e) to O( 3/4) as the channel

is entered. One expects the flow acceleration to be important here so that

velocity changes are large enough that the nonlinear equation is needed.

One can show that in order for this to be true, the inner region must be

O(C1/2) in thickness. Thus, since the inner region must be found at any

8



leading edge, the dependent variables, expansion for p, and lowest order

governing equation are, respectively,

* 1/2 z y-ni) n=O, + 1, + 2,...

(8a,b)
_-; (€/¢*(x* * .7/ **

- (,: + *q2 XX ,y ) + .. .. ) (8c)
7T 1 02(xl +

((y+)ix + kl)cix*. -bly** = 0 (8d)

where X is the blade spacing. (Fig. 1). Boundary conditions are given by

the tangency conditions at the airfoil surfaces, and the solutions must

match with the outer and channel flow solutions in the proper limits. The

latter matching condition is of interest here because of the aforementioned

change of order of u-u0 as the inner region is traversed. From Eqs. (8a)

and (8c),

*x = Cx* + "'" (9)

so, first, as x - lx* - 02x(d), a constant. Now in the channel, it

is found that

Z(y+l)Olxixx f'u(x) - fj(x-d) (10)

Hence, as x - d, with Oix(d) = 0 because there is no term of O(c3/4

for matching,

0 2 ~ (x-nd) constant 1 el/2x* constant
ixX

or

C 3/4lx - constant £(x*) / 2 + ... ()

Hence, as x , if

9



lx* /(x 2 constant + ... (12)

the solutions will match. Equation (12) then is the boundary condition to

be used in the solution of Eq. (8d) as x - -. It is seen from Eqn. (11)

that the lowest order perturbation in u does indeed change order as the

flow passes through the inner region into the channel region. Finally,

it should be noted that an inner region, formulated in essentially the

same way, exists at the trailing edge of each airfoil; since no fundamen-

tally new ideas are involved in its description, it will not be considered

further here.

When compared to the corresponding development of the problem for the

lightly loaded cascade, the above formulation shows some similarities and

several differences. In a gross sense, the description of the flow field

is the same in each case in that the same regions, with the same scales,

are found in each. However, in the heavily loaded case, the solutions in

the channel are larger in magnitude at each order of approximation, and

the lowest order solutions in the inner and outer regions are governed by

nonlinear equations rather than by the linear equations found in the lightly

loaded case. This means that numerical computations must be made now to

find even the lowest order solutions.

The expansion for u in the region U upstream of the channel can be

written as

* 12K + 3/2 2K3/2  + (13)u = a + E(02x - y+l 4x " y) + "'

because Olx = 03x = O. That is, el(x), 02(x), and 43 (x) are found by

matching with the solutions valid in the outer region and there are no
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terms of order 3/4 or 5/4 in the expansion foi in the outer region. In

Eq. (13) the incoming flow has been assumed to be subsonic, and

a I- l y- EK1  (y-1)E/'a l (y'-l)K - (yjl) e3/ 2K3/ 2 + ....

Y+l 1 ~ /

Finally, it is easily shown from Eqn. (4b) that for u = a = a

2x = 2K1 /(Y+l), 03/2x = 2K3/2/(Y+l), etc.

As the flow accelerates along the upper side of the blade airfoil (in

region U) it is possible that a small supersonic region of flow may

occur. Thus, supercritical regions of the kind shown in Fig. 3 are found.

These regions may or may not be terminated by a shock wave; that is, it is

possible to have a "shockless" acceleration and deceleration into and out

of the supersonic flow region, and losses in stagnation pressure then do not

occur. If the extent of the supercritical region in the y direction is taken

to be 0(1), then the flow in the outer region is still subsonic and hence

to the scale of this outer region the supercritical region is simply a

point on the airfoil surface, at which the local velocity can be no higher

than sonic velocity. That is, the scale of the supercritical region in the

x direction must be small compared to one and it is thus another inner region.

Solutions valid in this region must match with the solutions in region U

and the outer region. An idea of the scale of this inner region may be

gained by consideration of Eqn. (13) in the event that 02x is expanded about

a point x° where the velocity just reaches sonic value; recall that

02x= (,O) from matching. Then since at xo €2x is a maximum, a Taylor

expansion gives

11



2KI  (x-X0 )
2

(X ) = y- + 2 2xxx (X ) +."' (14)

Since ¢4x is a function of both x and y one can write only

=2K 3/2

(X,y) = -/+ f(x ,Y) + ... (15)

when f(x ,y) = O(1). If Eqns. (14) and (15) are substituted into Eq. (13),

it is seen that the term of 0(c) can decrease as x - xo until for

(x-xo) 0 0(P1/4), it is 0(93/2), the order of the next term in the expan-

sion. When two terms become of the same order, then another region may

be indicated, in this case 0(e 1/4) in length.

When an inner region Ax = 0( 1/4) is investigated, it is found that

the lowest order governing equation is linear and that the solution

describes a shockless supercritical flow region. On the other hand, if it

is assumed that the non-linear equation must hold, thus allowing for shock

waves, then it is found that the thickness of this inner region must be

0( 3/4 ). The conditions under which either analysis may hold in the inner

region are not yet understood. This is part of the ongoing work which is

the subject of a Ph.D. dissertation.

In sumary, it has been found that the work done on the lightly loaded

ciscade(1) has been very beneficial in providing a model of the gross

structure of the flow field. The indications are that more numerical work

will be required to describe the flow field of a heavily loaded case, as

expected. The work is proceeding well and is the subject of a Ph.D.

dissertation.

12
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(2) Transonic Flow through a Three-Dimensional Compressor Rotor

This analysis is concerned, again, with lightly loaded blades. However,

a three-dimensional rotor is considered rather than just a cascade. The

flow is assumed to be inviscid and transonic and is steady in a coordinate

system attached to the rotating blades; thus, the results hold for a rotor

in the first stage of a compressor or in those cases where the effects of

the wakes from blades upstream of the row in question are negligible.

In the coordinate system fixed to the blades, x is the distance along

a helical line which has the direction, with respect to the axis, of the

incoming flow; this helix can be pictured as being the line traced on a

cylinder of constant radius by a fluid particle in the undisturbed flow.

The coordinate y gives an angular measure in a direction perpendicular to x

at the origin and the z coordinate is ;n the radial direction. Because the

coordinate system is not orthogonal, in general, there are some extra terms

introduced into the governing equations. On the other hand, because y

measures an angular difference, blades lie along lines y = constant, and,

locally, the picture of the flow field on an x,y plane, z = constant, is

essentially that shown in Figs. 1 and 2, so the physical ideas and explana-

tions found in the study of the cascade are easily transferred to this

three-dimensional case.

Lengths are made dimensionless with respect to the ratio of the speed

of sound in the incoming flow to the (constant) angular velocity and ve-

locities with respect to the incoming sound speed. Then lengths are

divided by and thus scaled with respect to 6 the dimensionless axial chord

at the blade hub. Also, 6 is chosen as the small parameter; it is numeri-

cally small for typical compressor blades. It may be noted that the actual

13



local chord was not chosen here to scale dimensions because it varies with

the span; the axial chord at the hub is the same order as the local chord.

The velocity components relative to the blade in the incoming flow in

the x, y, and z directions and the dimensionless radius at which this veloc-

ity is sonic are, respectively

u0 = [1 +25rsoz + 622z2]1/2  (16a)

v°  0 wo  0 (16b,c)

so oa

where Moa is the Mach number of the (absolute) incoming flow in the axial

direction; i.e., it is the Mach number of the flow entering the stage. Thus

6 orders the change in velocity which occurs across the blade span as a re-

sult of the spanwise variation of the tangential velocity (rw). On the

other hand, the thickness and camber of the blades is 0(C2) and so in a

channel region between adjacent blades the perturbations in u is 0(C). It

is the order of the ratio S/E which characterizes the various problems

which may be studied. Because the blades cause the largest changes in the

incoming flow when 6/E = O(1), it is this case which is considered here;

in particular

em = 6rso (17)

where m is an arbitrary constant of O(1).

An analysis of the three-dimensional flow field shows that the various

regions found are the same as those which occur in the study of the cascade,

illustrated in Fig. 2. The channel flow region is again one-dimensional to

14
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lowest order, but now variations in both y and z are found in higher order

terms. In the outer region, a very interesting result is found in that to

the lowest order of approximation the flow is two-dimensional with a Mach

number equal to the average value over the span of the blade. Again, the

outer solutions do not match with the channel flow solutions and so a thin

(O(E1.2)) inner region is again necessary, and it is the solution in this

inner region which has been very difficult to obtain.

In the inner region, the flow changes from a two-dimensional outer

flow, in lowest order, to a three-dimensional channel flow. If the velocity

is written in terms of a perturbation (from u ) potential, this perturbation
0

potential can be divided into two parts. Thus, if 4i(x ,y ,z ) is the

lowest order approximation to the perturbation potential and x , y and z

are independent variables all in the inner region, one can write
* : (2)*****

(2) (x*,y*) + l(X* ,y ,z*) (18)

where (2) (x*,y*) is the known inner solution for a two-dimensional cascade

flow written in terms of the parameters of the three-dimensional flow problem.

It can be shown that 0(2) satisfies the matching conditions from the outer

flow, the boundary conditions at the surfaces of the blades, and the match-

ing conditions from the solutions in the channel region. It does not satisfy

the governing equations and, of course, it does not give any values for w so

there is no agreement with channel flow solutions for w. Hence, an addi-

tional potential *l is needed, satisfying the equation (C is a constant)

z• (2)I* o1x. (19)
I l** " 1Iz*z* = - (

Z avy 0 Z av

where Zav is the average value of z over the span of the blade. The flow

.5
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r*
picture seen at any constant radius (z*), to the scale of the inner region,

is shown in Fig. 4. The boundary conditions are simply that at all solid

surfaces, the normal derivative of I is zero and as infinity is approached

whenever there are no solid surfaces, all derivatives tend to zero. The

problem is thus posed as a Neumann problem.

It is necessary to find the solution to Eqn. (19) numerically. Because

boundary conditions at infinity are involved, it was decided to transform

the physical region into a bounded computational region. This was done in

two steps. The first consisted of transforming the flow in the physical

plane seen at any radius, as in Fig. 4, to one in an upper half plane at the

same value of z. The transformation is, in complex form with c = + in,

x + iy = I - In (20)

Next, the field was reduced to one of finite extent by the transformation

l+-p (21a)

p = = 2 tan-'l (21b,c)

where p and 6 are polar coordinates in the intermediate plane defined by

Eqn. (20). The net result is a three-dimensional rectangular computational

domain defined by 0 < s < 1, 0 < 6 < n, and zh < z < zt. The subscripts t

and h refer to conditions at the blade tip and the hub, respectively.

Physically, the boundary plane at s = 0 corresponds to the flow field at

p = , far from the channel, and the boundary plane at s = I corresponds to

the flow in the channel as x =. The transformed equation for 0, is

relatively long and complex and will not be given here.

16



Although the problem of boundary conditions at infinity is taken care

of by the transformation, it is easily shown that if 0l(X*,y*,z*)

= (s,e,z ), then

Olx* (l-S)Os + "'" (22)

Hence, since the boundary condition Plx* - 0 as x corresponds to a

condition on 0s as s - 1, it is seen from Eqn. (22) that the corresponding

condition on s cannot be found. Several methods by which this difficulty

could be remedied were tried. For example, if the velocity lx* rather

than the potential 0, were to be sought, then the problem is a Dirichlet

rather than a Neumann problem and the difficulty with the boundary condition

is removed; the governing equation is also easily modified so as to be writ-

ten in terms of lIx*" However, one must then deal with the singularity in

the velocity at the leading edge of the blade typically found in inviscid

airfoil theory. Two-dimensional model problems were considered with the

same kind of singularity and it was found that there was apparently no way

to handle this type of singularity adequately using the finite difference

schemes one is forced to use, due to financial constraints, when three-

dimensional flows are considered.

After discussion of this problem with several experts in numerical

methods over the country, it was decided to solve a mixed problem for ¢I

in which the normal derivatives at solid surfaces are set equal to zero, an

arbitrary value for *, is set at s = 0, and the unknown constant *1 at the

s = I plane is found by using the numerical boundary condition 0ss = 0

there. This procedure worked very well in the model problems and can be

shown to restrict computational errors to a thin region near s = 1, in which,
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because of matching conditions, the solution is known. Although some diffi-

culties in rates of convergence still exist, it is believed that these prob-

lems are now solvable and solutions are being obtained. It should be noted

that because 30 mesh points in the s and z directions and 10 to 20 in the 0

direction are being used, a relatively large amount of memory is required

for the SOR techniques being employed. Programs to transform the solutions

back to the physical plane in terms of velocities have been completed as

have those for lines of constant velocity.

It remains to program the known upstream solutions and then form com-

posite solutions valid everywhere in the field. This is being done. Re-

sults will be shown in the form of pressure distribution on the blades,

and lines of constant velocity or Mach number.

(3) Supersonic Turbulent Boundary Layer at a Ramp

When a turbulent boundary layer at supersonic speed encounters a shal-

low compression corner, details of the local mean flow are determined by an

interaction between the boundary layer and an oblique shock wave. For an

unseparated flow, the shock wave forms at a distance from the corner which

is quite small in comparison with the boundary-layer thickness, and the

initial rise in pressure is very steep. The subsequent more gradual pres-

sure increase continues for a distance of perhaps a few boundary-layer

thicknesses, depending on the local Mach number (e.g., Ref. 2).

In these regions near the corner, the mean fluid acceleration has much

larger magnitude than in the undisturbed boundary layer, and the pressure

gradient is much larger than the perturbation in the force due to Reynolds
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shear stresses. Changes in the mean flow properties may then be described

approximately by inviscid-flow equations, except at points in a thinner

sublayer, very close to the surface. That is, if suitable asymptotic

expansions for small nondimensional friction velocity, and therefore large

Reynolds number, are substituted into the averaged Navier2Stokes equations,

it is found that the largest terms satisfy inviscid-flow equations. This

formulation has been used previously in studies of the closely related

flow problem of interaction at transonic speeds between an unseparated

turbulent boundary layer and a normal shock wave (e.g., Refs. 3-7). Other

turbulent boundary-layer interactions which have been studied in this way

include the subsonic flow at a trailing edge (e.g., Ref. 7) and the in-

compressible flow over a shallow bump.
(8)

The present investigation was motivated largely by the work of Roshko

and Thomke, (2 ) which included measurements of surface pressure for a wide

range of Mach numbers and corner angles. They also demonstrated that nu-

merical calculations by the method of characteristics agree very closely

with experimental data for most of the gradual part of the pressure rise.

This agreement provides strong support for the use of an inviscid-flow

approximation. However, their calculation introduced a supersonic slip

velocity at the wall, and an estimate of the "slip Mach number" was re-

quired.(2),(9)

The purposes of the present work have been to obtain analytical solu-

tions for the portion of the pressure rise calculated numerically in Refs.

2 and 9, to explore in a systematic way the implications of an asymptotic

inviscid-flow description at smaller distances from the corner, and to
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attempt a prediction of the surface shear-stress distribution, all for

unseparated flow.

A sketch of the mean flow field is shown in Fig. 5. The mean velocity

profile in the undisturbed boundary layer is described by the velocity-

defect law and the law of the wall, suitably modified for compressible

flow.(1O),(ll) The corner angle is c << 1 and the nondimensional friction

velocity is u << 1, where the reference velocity is the undisturbed

external-flow velocity. Solutions have been obtained using the method of

matched asymptotic expansions, in the limit as E - 0 and uT 0 such

that also u /c - 0. Outer solutions, for a transverse length scale equal

to the boundary-layer thickness, have been derived in supersonic, hyper-

sonic, and transonic small-disturbance limits. A number of different

intermediate solutions have been found for smaller distances from the

corner. Finally, the solution in an appropriate sublayer limit allows cal-

culation of the wall shear-stress distribution downstream of the corner.

These solutions are described in somewhat greater detail in the following

paragraphs.

In the supersonic small-disturbance limit, with the boundary-layer

thickness as the length scale, the shock wave and the outgoing characer-

istics have the same slope. The surface pressure changes continuously

because of incoming disturbances which result from the continuous reflec-

tion of the shock wave as it passes through the boundary layer. The solu-

tion for pressure has a constant part equal to the value for uniform flow

past a corner and a variable part derived from a perturbation velocity

potential which satisfies a wave equation. The boundary condition at the

shock wave is obtained from the shock-polar equation, and also requires
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calculation of the small change in vorticity across the shock. A tangency

condition is imposed at the surface, since it can be shown that the dis-

placement effect due to deceleration of fluid close to the surface is of

higher order.

For higher values of the Mach number M' the flow is studied in a hyper-

sonic small-disturbance limit. The shock wave now is no longer weak, and

is inclined at a shallow angle O(E). Disturbances in the flow behind the

shock wave will overtake and be reflected from the shock, giving additional

contributions to the surface pressure. The vorticity, however, is small

enough that reflections of small disturbances within the boundary-layer

region between the shock and the wall are found to be of higher order. As

in the supersonic limit, the constant part of the pressure is the same as

for uniform flow past a corner and the variable part is determined by

solving a wave equation subject to the flow tangency condition at the

surface and the shock-wave jump conditions. Now, however, these boundary

conditions lead to a functional equation, in the same form as obtained by

others for uniform flow past a wedge-like shape with small perturbations

in surface slope. (12),(13) The functional equation has a solution in

the form of an infinite series.

Neither the supersonic or the hypersonic solution alone gives good

agreement with the data of Roshko and Thomke. A composite supersonic-

hypersonic solution leads to improved but still not satisfactory agree-

ment, with an error which grows as the distance from the corner decreases.

The inaccuracy arises because these solutions use the external-flow

velocity as a first approximation to the mean velocity within the boundary
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layer, and is related to the logarithmic behavior of the undisturbed

velocity profile. By a careful study of intermediate limits of the

equations, in a manner first suggested for another flow problem in Ref.

6, still better agreement with experiment can be achieved. The super-

sonic-hypersonic solution is thereby modified, Oth the help of "super-

sonic intermediate solutions," so as to remain uniformly valid over an

extended range which includes points much closer to the corner.

This combined solution leads to the following expression for the

predicted surface pressure:

2 M 2{(M 2-2)2 + YM 4}

1l B 0 4 8 0 4y) 0

02

A 0U' BMo2 AoU0
y oU + U YP f(R) + ... , (24)B 0 o 82U--- T I Bo2 U

Here p has been made nondimensional with the undisturbed pressure, y is

the ratio of specific heats, x is a coordinate made nondimensional with

the boundary-layer thickness and measured along the surface downstream

from the corner, and

-1 (171M 2)1/2 a}(2a

U = r sin{sin~ 1 1 + (25a)

U' = {l +L]-IM 2(l - U 2)11/2  (25b)
o 2o

M U0  (25c)
U,
u0

B = M2 (25d)
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= ± + {(y+1) 2 + y . 1/2(2)

80 = B~ S, L1/ (25k)
0 0 1)1/2P

= Ex (251)

SX
f= U ol(lI(25 ")

l+BST-B

The velocity defect in the outer part of the undisturbed boundary layer is

UTU01(Y), where y is a coordinate made nondimensional with the boundary-

layer thickness and measured normal to the surface. The single term shown

for the function f is the first term of the infinite-series solution to

the functional equation mentioned earlier.

Calculation of the pressure according to this formula does not require

the introduction of a "slip Mach number" as in the calculation of Ref. 2.

Rather, the solution simply requires substitution of values for x and for

the parameters. In Fig. 6 it is shown that this modified solution for the
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surface pressure gives excellent agreement with experiment for Mo. 5 and

e : 150. The Reynolds number based on boundary-layer thickness in this

case is about 5 x 1O6. Similar agreement is found for M z 4 and c z 150.

Agreement with a numerical solution obtained by Roshko and Thomke using

the method of characteristics is equally good. In a comparison at M. 3

and c : 100, however, the theoretical prediction lies about 8% below the

experimental values over a similar range of distance.

At a still lower Mach number, M z 2, for c z 5° , the data show a

completely different trend. A rather high maximum pressure is reached

slightly downstream of the corner, and the pressure then decreases toward

the final value. For parts of the boundary layer where the Mach number M

has low supersonic values, the incoming waves, due to reflection of the

shock wave, are expansions rather than compressions; in the linear approxi-

mation the change occurs when M = r . Roshko and Thomke suggested that

the reversal of the pressure gradient at the surface may be associated with

the sign change of the reflected waves. However, the present solutions

show that this effect occurs over a far smaller length scale than is

shown by the experiments. This conclusion is based on detailed derivations

of "transonic intermediate solutions" corresponding to points in the boun-

dary layer where M is close to 1. An inviscid-flow description therefore

does not seem capable of reproducing the measured pressure distribution

for this case. It does seem possible, however, that the presence of a

shallow separation bubble, perhaps of length comparable with the boundary-

layer thickness, might lead to a pressure distribution of the form

observed.
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At the higher Mach numbers where good agreement between theory and ex-

periment is obtained, it is anticipated that an extremely short separation

bubble is present. Measurements by a "liquid-line" technique (e.g., Ref.

14) have been able to detect bubbles as short as perhaps one-tenth of a

boundary-layer thickness for values of the parameters similar to those

quoted above. Roshko and Thomke (15) gave an empirical formula for an inter-

action length, and proposed two different values of this length as corre-

sponding to inciplient separation detected by surface-flow or pressure

measurements. An extrapolation of this idea for one of the cases con-

sidered above would imply a separation bubble with length of about one

per cent of a boundary-layer thickness. This length, however, is compara-

ble with the length scales for intermediate solutions corresponding to

distances from the corner such that the local Mach number is close to one.

These "transonic intermediate solutions" therefore seem useful for predic-

ting the pressure at best for very small corner angles. Moreover, it seems

possible that oscillations of the shock wave due to turbulent fluctuations

might tend to smear out the measured pressure distributions for these very

small distances. The transonic intermediate solutions do serve the purpose

of showing that the measured pressures for M O, 2 can not be predicted

using inviscid-flow equations. The supersonic intermediate solutions, on

the other hand, are essential for the accuracy shown in Fig. 6. A compari-

son for points very close to the corner is not shown in Fig. 6, since, as

noted above, the theory appears inapplicable there, and since experimental

results are not available for distances from the corner smaller than a few

per cent of the boundary-layer thickness.
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The largest terms in the "outer" solutions given earlier are derived

from inviscid-flow equations, and therefore can not be expected to contain

enough information for calculation of changes in the wall shear stress.

Instead, the flow details must also be studied in a sublayer where the

changes in turbulent stresses are important. This sublayer will play

the role of a new, thinner boundary layer, in an inviscid rotational exter-

nal flow described by the outer solutions. From a different view, the

Reynolds stress in the very thin wall layer will be nearly in equilibrium

with the local value of the wall shear stress, and can not be expected to

match with the Reynolds stress in the outer part of the boundary layer,

which depends primarily on upstream history. Instead, the perturbations

in the wall-layer solution and in the outer solution are to be matched

with the perturbations in the sublayer. This sublayer has been called a

"Reynolds-stress sublayer"
'(5),(6) or a "blending layer."

(3),(7 )

2
Terms of order c and E in the non-dimensional shear stress do not

depend on solution of a sublayer equation, but terms of order eu are

found by solving a momentum equation of boundary-layer type, which ex-

presses a balance of Reynolds-stress, pressure and inertia terms in a

sublayer having thickness smaller than the boundary-layer thickness by a

factor uT . An approximate solution has been obtained using a Prandtl

mixing-length representation. The result for one case is compared with

experiment (16 ) in Fig. 7. Except for points very close to the corner,

the form of the shear stress is predicted accurately, but the theoretical

values are everywhere roughly 10% too high.
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In summary, the composite of supersonic and hypersonic, outer and

intermediate solutions for surface pressure gives excellent agreement

with experiment for M. 4 or M z 5 and e - 15°; transonic intermediate

solutions suggest that the same type of asymptotic formulation is not

adequate for M. - 2 and E = 50, and experiments also indicate that a

very short separation bubble influences the flow close to the corner at

the higher Mach numbers; and approximate solution of a sublayer momentum

equation gives fair agreement with measured wall shear stresses in a

particular case.

A Ph.D. dissertation covering this work has been completed. A paper

i:s in preparation for journal publication.
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Figure 1. Flow geometry
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