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\ ABSTRACT

A variety of optimization algorithms for engineering
synthesis are included in a new general-purpose optimization
computer program called ADS-1 (Automated Design Synthesis,
Version 1l). Preliminary testing of all presently available
algorithms is conducted utilizing several carefully selected
problems of significant size and complexity. These include
a problem with 56 design variables and over 3500 inequality
constraints.

The capabilities and utility of the ADS program coupled
with a structural analysis code utilizing finite element tech-
niques is demonstrated and numerical results are presented
that compare the relative efficiency and reliability of the
various optimization algorithms. The number of function and
gradient calculations are considered important measures of
merit in comparing the various algorithms.

A comparison of results with another existing optimiza-
tion computer code is included to document the accuracy and
reliability of the ADS program. Preliminary testing of the
ADS program demonstrates the flexibility a design engineer

would have in selecting an optimization algorithm best

suited to solve a particular problem.
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I. INTRODUCTION

A. BACKGROUND

The concept of structural synthesis, a new general ap-
proach to structural optimization, was popularized by Schmit
in 1960 [Ref. 1l]. Structural synthesis, simply stated,
couples finite element structural analysis with non-linear
mathematical programming techniques. Schmit reasoned that the
design of structures for minimum weight was, after all,
simply the classic problem of allocation of scarce resources.
He emphasized the importance of considering a multiplicity of
distinct loading conditions and the need for inequality con-
straints to deal with a variety of different failure modes
simultaneously, as well as side constraints (or bounds) on
the size of the elements in the structure [Ref. 2].

Numerical techniques to solve the general non-linear,
inequality constrained optimization problem developed rapidly
after 1960. It was the advances of the high speed digital
computer however, that allowed the science to fully mature.
In fact the state of the art in mathematical programming is
such, that the design engineer today should not find it nec-
essary to develop his own computer program considering the
widely available existing codes and the prohibitive costs of
developing a new optimization code. The state of the art

in finite element analysis has also enjoyed a considerable

advancement. Thus there exists today the ability to efficiently
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design complex structures with many design variables under
multiple loading conditions subject to a variety of con-
straints including stress, displacement. buckling and fre-
quency as examples.

Structural synthesis continues to be the subject of
active research; two specific areas for further study have
been identified by Vanderplaats in [Ref. 3]. First is the
need for public availability of a computer code incorporating
a variety of optimization algorithms that reflect the state
of the art in optimization. Secondly, the efficiency, relia-
bility and accuracy of the various algorithms need to be com-
pared and the results well documented. With this information,
the engineer who may not have written his own optimization
code, would be able to intelligently select the appropriate
algorithm with only a basic knowledge of structural synthe-
sis concepts, and tailor the algorithm to suit a particular
problem.

The ADS library of design optimizaticn algorithms was
developed by Vanderplaats in response to the first need for
a new general-purpose optimization computer code [Ref. 4].
ADS is unique insofar as it incorporates in a single program,
a variety of different optimization algorithms. The purpose
of this research is to perform some of the preliminary testing
of this code and document the comparative studies. The
specific objectives of this thesis as well as the details of
the development of the various computer codes will be dis-

cussed in the remaining sections of this chapter.

13
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B. THESIS OBJECTIVES

The primary objective of this thesis is to conduct the
preliminary testing of all presently available algorithms in
the ADS program. Although more than two years in develop-
ment, numerous programming bugs remain to be ferreted out.
Furthermore, some algorithms had never been tested with
problems of significant size. Various default values for
control parameters will also be determined by the preliminary
testing.

While testing is in progress a second primary objective
is to compare and document the efficiency of programming,
reliability of results and accuracy of solutions of the
various algorithms. To insure validity <of the comparative
study all testing is to be accomplished in accordance with
the following requirements:

1. The same person is to test all algorithms on the
same computer. The mainframe computer used in this
research is an IBM 3033 system 370. |
2. Default values will be used in the comparative studies. ‘
"Fine tuning" of algorithms by overriding default
settings will be avoided insofar as possible.
3. Test cases of significant size and complexity will
be selected for their potential to demonstrate the ‘
utility and flexibility of the ADS program and not
because of their known ability to work well on a

given algorithm.

14 |
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Finally, a secondary objective is to compare results to
the solutions provided by CONMIN [Ref. 5], a Fortran program
for constrained minimization developed by Vanderplaats in
1973. CONMIN is considered well tested and reliable; the

comparison thus rendered should lend credence to the results.

C. DEVELOPMENT OF COMPUTER PROGRAMS

1. ADS-1 (Automated Design Synthesis, Version 1)

The primary motivation behind ADS-1 was the need to
provide a selection of optimization algorithms in a sophis-
ticated computer code that could be applied to a variety of
design problems. The ability to easily override default
values of control parameters further enhances the flexi-
bility of the program to be tailored to suit the particular
design problem at hand.

The ADS program [Ref. 4] is written in subroutine
form, well documented internally, and contains pseudo-

dynamic dimensioning to maximize the efficient use of storage

in the computer. Due to its inherent mcocdularity the program
is easy to interrupt and restart and amenable to multi-level

optimization. These features add tc its portability and

ke
~
[
%
b
g
~

reflect the state of the art in modern programming practices.
?t COPES, the control program for invoking CONMIN [Ref.
6], was modified for use with ADS and is named "COPESA",
whereby data transfer into and out of ADS is readily accomplished.
The solution of an optimization problem is divided

into three user defined levels:
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l. STRATEGY--The method of optimization used may be
direct, where control is transferred directly to the
optimizer, or indirect as in various penalty function
methods. A complete list of strategies is in Table I.

2. OPTIMIZER--~Algorithms presently include methods for
unconstrained functions as well as direct methods for
constrained methods. A complete list of optimizers is
in Table II.

3. ONE-DIMENSIONAL SEARCH~-The user is given a choice
of curve fitting a polynomial with or without finding
bounds, using the Golden Section method or using a
combination of polynomial and Golden Section methods.
A complete list of one-dimens:onal search techniques
is in Table III.

The program assumes the user is knowledgeable enough
to select an appropriate combination of strategy, optimizer
and one-dimensional search. For example, it would not be
appropriate to use a variable metric cptimizer on a con-
strained optimization problem unless one of the penalty
function strategies was specified. Table IV lists the
available options and feasible combinations are indicated.

2. SADT (Structural Analysis and Design-~-Trusses)

The primary purpose of SADT by Fitzgerald in [Ref.
36) was the development of a finite element code for three-
dimensional indeterminate truss analysis and design. The

code was written such that it could be easily coupled to an

16
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TABLE I

Strategy Options in ADS

ISTRAT STRATEGY TC BE USED

0 None. Go directly to the optimizer.

1 Sequential unccnstrained minimization using
the quadratic exterior penalty function
method [Refs. 7 and 8].

2 Sequential unconstrained minimization using
the linear extended interior penalty function
method [Refs. 9 through 11].

3 Sequential unconstrained minimization using
the quadratic extended interior penalty function
method [Ref. 12].

4 Sequential unconstrained minimization using
the cubic extended interior penalty function
method [Refs. 13 and 14].

5 Augmented Lagrange multiplier method
[Refs. 15 through 19].

6* Sequential Linear Programming (Refs. 20 and 21].

7% Method of Centers (Method of Inscribed
Hyperspheres) [Ref. 22].

8* Powell's Variable Metric Method for Constrained

Minimization [Refs. 17, 23 and 24].

*
Not available as of February, 1983
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TABLE I1

Optimizer Options in ADS

OPTIMIZER TO BE USED

None. Go directly to one-dimensional search.
This option should be used only for program
development.

Method of Feasible Directions (MFD) for con-
strained minimization [Refs. 25 and 26].

Fletcher-Reeves algorithm for unconstrained
minimization [Ref. 27].

Robust Method of Feasible Directions for con-
strained minimization [Ref. 28].

Davidon~Fletcher-Powell (DFP) variable metric
method for unconstrained minimization [Refs. 29
and 301.

Broydon-~Fletcher-Goldfarb-Shanno (BFGS) variable

metric method for unconstrained minimization ([Refs.

31 through 34].

Random Search for unconstrained minimization.
Random Search for constrained minimization.
Newton's Method for unconstrained minimization.

Quadratic Programming [Ref. 35].

*
Not available as of February, 1983
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TABLE III

One-Dimensional Search Options in ADS

IONED ONE-DIMENSIONAL SEARCH OPTION [Refs. 7 and 52]
1 Find brackets on the minimum of an unconstrained
function.
2 Find the minimum of an unconstrained function

using the Golden Section method.

Find the minimum of an unconstrained function
using the Golden Section method, followed by
cubic polynomial interpolation.

- —i?,r‘._'{""‘fff',.‘
w

4 Find the minimum of an unconstrained function
by first finding bounds and then using
polynomial interpolation.

5 Find the minimum of an unconstrained function
by polynomial interpolation/extrapolation without
first finding bounds on the solution.

6 Find brackets on the minimum of a constrained
function.
7 Find the minimum of a constrained function

using the Golden Section method.

8 Find the minimum of a constrained function
using the Golden Section method, followed by
cubic polynomial interpolation.

9 Find the minimum of a constrained function by
first finding bounds and then using polynomial
interpolation.

10 Find the minimum of a constrained function by

polynomial interpolation/extrapolation without
first finding bounds on the solution.

19
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TABLE IV

Program Options in ADS

OPTIMIZER

3 4
X X
0 X
0 X
0 X
0 X
0 X
X 0
X 0
X 0
0 0
0 X
0 X
0 X
0 X
X 0
X 0
X 0
X 0
X 0
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optimizer for comparative studies. A secondary objective

was to provide a user-friendly computer code that could be
employed for truss analysis only. SADT was therefo:re
selected as the analysis code for test cases involving
trusses and space towers.

Design variables may include member element cross
sectional areas, nodal éoordinateé, or both. A well written
user's manual is included in [Ref. 36] and provides neces-
sary details for coupling the program to an optimizar as
well as for test case data preparation.

The finite element method of analysis is used for
static analysis, and eigenvalues are computed according to
the subspace iteration technique when frequency constraints
are specified [Ref. 37]. Multiple static loading conditions
can be accommodated as well as constraints on stress, Euler
buckling, displacement and the first fundamental frequency
of the structure. The objective function is minimum weight
of the structure. Side constraints may be imposed on the
upper and/or lower bounds of the design variables. Design
variable linking is permitted for both member areas and
coordinates. The user may specify different materials for
the various members. All loads are assumed concentrated at

the joints and the truss is treated as a discrete, pin-

connected structure.
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D. PREVIOUS COMPARATIVE STUDIES

Even though many methods are available for solving the

constrained, non-linear optimization problem there has been

-
b
N
-

relatively little research done in the way of comparative
studies since the inception of structural synthesis in 1960.
Colville, in a landmark study in 1968, sent eight con-
strained problems (threé to 16 deéign variables each) to the
developers of 30 different codes. Solution times as well as
preparation time and the number of function and constraint
evaluations were requested from each participant [Ref. 38].

Colville placed great emphasis on solution times and there-

fore developed a standard timing routine in an attempt to

-
il

e Tae

normalize solution times to eliminate differences among

F
[l

computers. He could not of course, eliminate the differences

in the developers' abilities to efficiently code their

R

problems for solution.

AL AP A A aar
i
&

Eason and Fenton tested 13 different problems on 20 dif-
ferent codes in 1972 [Ref. 39]. They effectively eliminated
the problems evident in Colville's study. All of their test
case problems however, had fewer than seven independent design

variables.

SRS 0 LGOI

Sangren and Ragsdell conducted a comparative study on 30

problems in (Ref. 40]. The number of design variables in

~1arer

: this study range from two to 48 while the number of con-
ff straints range from zero to 19.
3 The problems selected for comparative study in this

research have from S5 to 56 design variables and from ll to

22




3550 constraints, the largest problem being the design of a

234-bar space tower subject to constraints on stress, Euler

buckling, and displacement of joints.
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II. OPTIMIZATION TECHNIQUES

A. OPTIMIZATION CONCEPTS
The general, non-linear, constraired optimization
problem can be stated mathematically e&s:

Minimize:
F(X) (2.1)
Subject to:

G.(X) <0 j

-~

1,NCON (2.2)

a .
< X, 1
- 1

X; < X,

1

3
: 1,NDV (2.3)
F(§) 1s called the objective function. It is the function
with respect to which the design is optimized. It may be a
linear or non-linear function of the design variables X.
Generally speaking, the objective function may be implicit
or explicit functions of g. It is important however, that
these functions be continuous and have continuous first
derivatives in §. The Gj(X) inequalities define the con-
straints which the user imposes on the design. Equation 2.3
defines side constraints or bounds on the design and are the
limits over which F(§) and G(§) are defined. If the inequality
condition of equation 2.2 is not met for any constraint,

that constraint is said to be violated. If the equality

24
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condition of equation 2.2 is met then the constraint is
called active.

The ability to deal with equality constraints is also
included in the ADS program. This feature was not fully
operational at the time of this writing however, and there-
fore was not tested.

The n-dimensional space spannéd by the design variables
X is referred to as the design space. Any design satisfying
equations 2.2 and 2.3 is a feasible design and the minimum
feasible design is said to be optimal. Problems in optimi-
zation may be classified according to whether or not they
are constrained. Algorithms to solve these problems are
therefore generally classified by the type of problem they
were developed to solve efficiently. 1In the remaining sec-
tions of this chapter the algorithms used in the preliminary
testing of the ADS library will he discussed. Techniques to
solve the unconstrained minimization problem will be discussed
first, followed by constrained minimization methods. Lastly,
the various techniques for minimizing functions of one varia-
ble, the so-called one-dimensional search, will be discussed.
These techniques are called upon by both major categories
of algorithms to solve a sub-problem in the optimization task,
wherein the following recursive relationship is commonly
employed:

x3 = x9°1 4 454 (2.4)

~ ~
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in this equation q is the iteration number, o* is the scalar

step size and S is the vector search direction.

B. UNCONSTRAINED MINIMIZATION

l. Introduction

In the general case of unconstrained minimization of
a multi-variable function, the calculus requires for a
minimum solution, that the gradient of the objective function
with respect to the design variables equate to zero and that
the Hessian matrix of second partial derivatives of the
objective function with respect to the design variables be
positive definite (all eigenvalues > 0). If the Hessian
matrix is positive definite a relative minimum at least is
guaranteed. Unconstrained methods are therefore, intrinsically
concerned with gradient information; as a result, they are
classified according to the type of derivative information
they require. Zero-order methods such as Random Search and
Powell's Conjugate Directions Method are non-gradient methods
whereas first-order methods such as Fletcher-Reeves require
first derivative information only and so on. These methods
as well as the variable metric methods of Davidon-Fletcher-
Powell and Broydon-Fletcher-Goldfarb-Shanno will be discussed
in the next few sections.

2. Non-Gradient Methods

a. Random Search
Random Search methods represent the simplest

possible approach to optimization, wherein a randomly

26
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selected large number of possible X vectors are evaluated
for values of the objective functions. The X vector corres-
ponding to the least objective function is the optimal design.
There are many drawbacks, not the least of which is efficiency.
The necessity to evaluate a large number of possible designs
is required to insure a precise optimum has been obtained.
The need to improve efficiency is.the motivation behind many
of the modificaticns available for random search methods.
These methods lend themselves well to coding on a hand-held
calculator, furthermore they require little storage on the
computer, making them efficient from that point of view.

b. Powell's Conjugate Directions Method

Powell's method is certainly the most popular,
if not the most efficient., of all zero-order methods. Powell's
Method is based on the concept of conjugate directions. The
algorithm requires an initial search in n-orthogonal direc-
tions wherein each s=arch updates the X vector according to
equation 2.4.

The new search direction is found by simply con-
necting the first and last design points; this becomes the
n+l conjugate search direction. Powell's Method breaks down
if a search direction makes no improvement because subsequent
search directions will not be conjugate. A second well
recognized problem is the tendency after a few iterations for
the search directions to become nearly parallel. Powell

offers a sophisticated technique to overcome this second
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problem [Ref. 4l1l]. Simply restarting the process with uni-
directional searches is an effective, if not elegant, way

of dealing with this problem as noted in [Ref. 42]. Powell's
Method is not presently available in ADS.

The next logical step in sophistication is to
provide gradient information to the optimizer. 1In the
following sections the Fletcher-Reeves algorithm and variable
metric methods will be discussed insofar as they are first-
order methods presently available in ADS.

3. Gradient Methods

a. Fletcher-Reeves Method of Conjugate Directions
The Fletcher-Reeves algorithm is actually a
modification of the steepest descent algorithm with a signi-
ficant improvement in the rate of convergence. The basic

approach is to pick conjugate search directions according to:

sq

~

- vr(x9) + quq'l (2.5)
where:

|2 (2.6)

IYF(gq)lz/lyF(§)q'l

w
]

The initial search direction is in the direction

of steepest descent:

s = - yrxd) (2.7
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The method is conceptually similar to Powell's
Method, except now each search direction is conjugate.
Theoretically, convergence for a quadratic function in n or
fewer iterations can be expected, however, restarting the
process every few iterations as in Powell's Method is
usually required.

b. Variable Metric Methods

Variable Metric Methods retain information about

previous iterations also. In these methods a matrix § is

created which approximates the inverse of the Hessian matrix.

The search direction is defined at iteration g as follows:

s9 = - myr(x9) (2.8)
Again the initial search direction is determined
by the method of steepest descent. At the end of iteration

g, the H matrix is updated according to:

~

gdtl - 49 4+ p9 (2.9)

-~

where D9 is a symmetric matrix determined according to the

following formulation:

T - 2 2.10
2 (¢ + 81/0 ]ppT ( )

~ ~

the terms in this equation are defined as:
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x3 - x3°1 (2.11)

P = 2

y = vr(xd - grxdh (2.12)
o = p-y (2.13)
T = ¥T I:Iq Y (2.14)

and 6 is a parameter used to select the form of the update
formula, eqguation 2.10. The Davidon-Fletcher-Powell Method

sets 8 = 0 in equation 2.10 whereas the Broydon-Fletcher-

Goldfarb-Shanno Method sets 9§ = 1 [Ref. 42]). There are other
possible algorithms in the class of variable metric methods
but these two methods are the most popular and are presently

available in ADS.

C. CONSTRAINED MINIMIZATION

1. Introduction

Constrained methods of minimization were developed

to deal with problems that have limitations placed on a set

of functions of the design variables. These limitations may
be side constraints which directly impose bounds on the de-
sign variables, or so-called behavior constraints which are
functions of the design variables. Behavior constraints may
take the form of equality or inequality constraints, but in
either case the design must satisfy the behavior constraints

while staying within the bounds imposed by the side constraints.
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Direct methods consider the constraints as limiting hyper-
surfaces and attempt to directly minimize the objective
function in their presence. 1In contrast, the so-called
penalty function methods transform the constrained minimiza-
tion problem into a sequence of unconstrained minimization
problems. Although direct methods are often more efficient,

indirect methods are popular because they are simple to

TTITY ',"r‘- PRI
P . A
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invoke. The engineer must employ an appropriate unconstrained

minimization algorithm when using a penalty function method.
The indirect methods utilizing penalty function

techniques may be further classified into two broad categories:

interior and exterior. Interior methods are designed to ap-
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}g . proach the optimum from the feasible region whereas the ex-
: terior methods approach the solution from the infeasible

sector. A pseudo-objective function is created by imposing {
a penalty for violated constraints. The general technique
is to minimize this pseudo~objective function as an uncon-
strained problem. The methods require repetitive solution

to a series of unconstrained problems thus the term, "Sequen-

tial Unconstrained Minimization Techniques" (SUMT), is applied
to this broad class of indirect methods.

2. Direct Methods

Most optimization algorithms proceed iteratively
toward a solution from a user supplied initial X vector
which may or may not define a feasible design. The design

is modified according to the recursive relationship:

A A A
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x3*L = x93 4 s (2.15)

where g is the iteration number, S is a vector search direc-
tion in the design space and the scalar, a*, defines the
distance the optimizer moves in the search direction S.
The choice of § is such that the objective function is re-
duced. The efficiency and reliability of a given optimization
algorithm is largely due to the fundamental method of deter-
mination of the search direction S and the step size a*.
These methods will be discussed in the next few sections of
this chapter.
a. Method of Feasible Directions

Optimization in the Method of Feasible Directions
prcceeds in two basic steps, first a usable-feasible search
direction is determined, then a one-dimensional search is
performed in this direction to reduce the objective as much
as possible without violating constraints. The method as-
sumes that the initial X vector of design variables defines
a feasible design. A usable-feasible search direction to
improve this design is found by solving the following sub-

problem:

Maximize: B (2.16)
Subject to:

VF(X)'S +8 < 0 (2.17)
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YGj(§)-S + ej-s < 0 j ed (2.18)
S.s < 1 (2.19)
where J is the set of currently active constraints, Gj(X) = 0.

v is the gradient operator and the components of § are re-
ferred to as push-off factors, which act to push the design
away from currently active constraints. A value of unity
for 6 will yield a search direction which approximately bi-
sects the usable-feasible sector.

If the initial design is infeasible it is possible
to find a search direction that will direct the design to the
feasible region [Ref. 42].

Using equation 2.19 with equations 2.16 through
2.18 results in a linear problem of finding § except for one
quadratic constraint. Zoutendijk in [Ref. 25] provides a
direct approach to overcome this difficulty. A detailed
explanation of these techniques is provided in [Ref. 42].

The method then proceeds to update the design in
accordance with equation 2.15. This step is commonly per-
formed by polynomial interpolation but a variety of one-
dimensional search methods may be used.

b. Robust Method of Feasible Directions

The Robust Method of Feasible Directions is a
new algorithm presently being developed by Vanderplaats, and
incorporates the best features of the Method of Feasible

Directions (MFD) and the Generalized Reduced Gradient (GRG)
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Method [Ref. 28]. Only gradients of active constraints are
required in the MFD, which is considered an attractive feature,
while the GRG method has the nice feature of precisely follow-
ing the constraint boundaries from one vertex to the next
without the need to move away from the constraints. The

Robust MFD retains these desirable features but does not re-
guire the addition of slack variables peculiar to the GRG
method, thus avoiding the large matrix operations associated
with the GRG method. The method involves solving the following

search direction sub-problem:

Maximize:

- VF(X)*S (2.20)
Subject to:

ycj(g)-g < 0 j ¢ J (2.21)

(2.22)

N
N
A
._o

This is the same form as the direction finding
sub-problem in MFD except the dimensionality is reduced by
the elimination of the variable 8. The following advantages
in determining the search direction in this manner are re-
peated here from [Ref. 28] for convenience:

1. The dimensionality of the design problem is not in-
creased by the addition of slack variables to the

inequality constraints.
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2. The algorithm for finding S is specifically designed
for inequality constrained problems, thus improving
efficiency.

3. Only gradients of active constraints are required.

4. The number of dependent variables is greatly reduced
in comparison to the GRG method, thus a reduction in
the size of the sub-problem in the one-dimensional
search is achieved.

Equality constraints are effectively handled as

a special case of inequality constraints. 1Initially infeasi-

ble designs require a modification to the search direction-

finding sub-problem where the violated constraints are treated
as inequality constraints. A direction to the feasible region
is then determined in a manner similar to the Method of

Feasible Directions.

The Robust method incorporates a particularly
attractive feature of infrequent gradient calculations.

That is, gradients of active constraints are treated as con-

stants for several iterations thus greatly reducing the

computational cost of the algorithm. It should be noted that
if infrequent gradient calculations are not used the method
yields the same results as the GRG Method.

The one-dimensional search is performed in the
same manner as for the GRG method. Significant in this
procedure is the fact that Newton's Method is employed to

drive the active constraints corresponding to the dependent
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variables to zero. This procedure usually requires several
iterations.
The Robust Method of Feasible Directions shares
some of the limitations of the GRG method [Ref. 28].
1. It produces infeasible designs and relies on Newton's
Method to return to the feasible region.
2. It has difficulty dealing with highly non-linear
functions.
3. If the analysis is itself iterative the method may
be unable to satisfy constraints due to the resulting
instability.

3. Indirect Methods

ADS incorporates several SUMT methods, namely,
exterior, extended interior, and Augmented Lagrange Multi-
plier (ALM) penalty function methods. The numerical ill-
conditioning often encountered in SUMT methods is reduced in
the ALM method. This method has therefore received wide
attention in the literature and is included in the ADS library.

All SUMT methods create a pseudo-objective function

of the general form:

(X, r = F(X) + P(X (2.23
(X, p) (X) T (X) )
where F(X) is the original objective function, P(X) is the

penalty function and the multiplier, rp, determines the

magnitude of the penalty applied. The following sections
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discuss in more detail the technique of determining P (X)
which is the fundamental basis of each method.
a. Exterior Penalty Function Method
The basic mathematical formula for determining
the penalty function P(X) is:
m L

P(X) = ] {(MAX[0,q,(X)1}% + [ [h (017 (2.24)
~ j=1 I~ k=1 “~

A penalty is imposed if, and only if, an inequality, Gj(§),
or equality, Hk(§), constraint is violated. The "offending"
constraint is squared to provide a slope of zero for the
penalty function at the constraint boundary thus insuring a
continuous first derivative for the pseudo-objective func-
tion. The second derivative is not required to be contin-
uous however, therefore if second-order methods are employed
in the unconstrained minimization, numerical ill-conditioning
may result [Ref. 42].

The multiplier, rp, is critical in this method as it
is in all SUMT methods If rp is chosen small the pseudo-
objective function is easily minimized but may result in
extreme constraint violation; whereas a large rp will guard
against this, the resulting problem is usually numerically
ill-conditioned. Therefore the algorithm starts with a small

rp, which is then increased by a factor y. At each iteration

¢ is minimized starting from the previous optimum solution.
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As rp is increased in the sequential optimiza-
tion process, the pseudo-objective function becomes increas-
ingly non-linear. The constrained optimum solution is also
approached from the infeasible region. 1In other words the
optimum is approached with a series of infeasible designs,
none of which are usable. The interior penalty function
method approaches the oétimum from the feasible sector with
a series of improving feasible designs. This attractive
feature is discussed in the next section.

b. Interior Penalty Function Method
The most common formulation for the penalty

function in this method is:

m
P(X) = ] [-1./g9.(X)] (2.253)
.=l J ~
J
resulting in a more complicated pseudo-objective function to
minimize:

%
2

', = : X 2.26

(X, ) F(X) + rp(P(X)] + 1} kzl[hk(~)] ( )

Note that equality constraints (hk) are dealt
with in the same manner by interior and exterior methods.
The significant difference between the methods, besides the
formulation of P(§), is the fact that in interior methods

the penalty parameter, ré, is sequentially decreased with
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every SUMT iteration, while in exterior methods rp is seguen-
tially increased. 1Interior methods result in the approach of
the optimum solution from the feasible region as rp +~ 0, but
is discontinuous at constraint boundaries. The exterior
method, on the other hand, is well-defined everywhere, hut
leads to an optimum solution only in the limit as rp > o,
The extended interior pénalty methods are designed to incor-
porate the best features of both methods by effecting a
transition between the interior and exterior methods at a
point in the optimization task. Needless to say, this transi-
tion point is critical and therefore of fundamental concern
in the various extended interior penalty function methods,
which are discussed next.
c. Extended Interior Penalty Function Method

The chief advantage of the interior penalty method

is that it results in a sequence of improving feasible de-

signs from an initially acceptable starting point. This

desirable feature is maintained in this method by a judiciou:z
selection of the parameter, ¢, in the formulation of the

penalty function P(X):

L:
¥
.
by
e

PLE

. m

P(X) = ] g.(X) (2.27)
~ =1 1~

i j

-4

e where

e 95 (X = -l./gi(X)  if gi(X) < e (2.28)
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9 = -l2. -gj(§)]/€2 Lf g () > e (2.29)

The parameter, €, is a small negative number and
signifies the transition from the interior to the exterior
methods [Ref. 42]. These equations define the linear ex-
tended interior penalty function. Because the second deriva-
tive of ®(§,ré,rp) is discontinuous, Haftka and Starnes

created the quadratic extended interior penalty function by

changing equation 2.29 to:

gy (®) = -1./ellgy(0/el? - 3.0g (X /el + 3.} (2.30)

if (X > &
i gJ(~)

Again the degree of non-linearity of ¢ is in-
creased as a price for the second-order continuity.

The linear and quadratic extended interior
penalty methods are both critically dependent on the selec-
tion of €. Haftka and Starnes recommend that ¢ be determined

according to:
£ = -C(ré)a 1/3 < a < 1/2 (2.31)

where C is a constant. At the beginning ¢ is chosen in the
range -.3 < g < -.1 and ré is chosen such that the objective
and pseudo-objective functions are equal; the resultant

value of C is thus determined [Ref. 43].
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The quadratic extended interior penalty method
has the disadvantage that the penalty increases dramatically
for badly violated constraints. The variable penalty function
method attempts to overcome this difficulty while continuing
to insure second order continuity at the transition poin=z.
The selection of € in the variable penalty method is recom-

mended by Prasad in [Ref. 44] as follows:
a
= = ‘)= 2.32
€ B(rp ( )
where
1/(2+s) < qgq < 1/s for S > ¢ (2.33)

and B is a positive constant chosen such that ¢ is initially
near zero. In ADS, the variable penalty method is used
wherein S = 3 thus the strategy is referred to as the cubic
extended interior penalty function method.

d. Augmented Lagrange Multiplier Method

The efficiency of SUMT methods can be improved

by the inclusion of Lagrange multipliers, thus reducing
dependency of the algorithm on the choice of the pernalty
parameters. The Lagrangian is created for equality con-

strained problems as follows:

3
L(X,\) = [F(X) + k£1 Achy (X) (2.34)

-»
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Since the minimum of the Lagrangian provides the
solution to the general equality constrained problem, a
pseudo-objective function, called the augmented Lagrangian

is created using the exterior penalty function method:
2 2
A(?.é.rp) = F(§) + kél{kkhk(§) + rp[hk(§)] } (2.35)

The method starts with the following valies for

A = +1. if th(X)'VF(X) < 0 (2.36)
= -1. if th(X)‘VF(X) > 0 (2.37)

The pseudo-objective function, A(X.A,rp), is then
minimized holding rp and X constant. A new set of Lagrange

multipliers is calculated according to:

BT o= AR+ h ) k=1 (2.38)
The parameter rp is sequentially increased as in
the exterior SUMT method and the unconstrained minimization
problem is solved for rp and . The process is repea:.<d
until convergence is achieved.
The method is easily extended to handle inequality

constraints by converting them to equivalent equality
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constraints by the addition of slack variables. A more com-
plicated augmented Lagrangian is then formulated as the

pseudo-objective function:

m
A(X,A,g,rp) = F(X) + J

2 2,2
Al . 2 . .
3-1{ J(qj(§)+ J) + rp[gj(g) + ZJ] }

(2.39)

where there are m slack variables, Z?. These are calculated
as a sub-problem and so do not increase the dimensionality
of the optimization task. Note that the pseudo-objective

function has continuous first derivatives with respect to X

but discontinuous second derivatives at gj(¥) -Aj/er; thus
second order techniques should be avoided ir the unconstrained
minimization problem. The method has several af:tractive
features repeated here from [Ref. 42].
1. The method is relatively insensitive to rp, accordingly
it is not necessary to increase rp to <.
2. Equality constraints and inequality constraints pre-
cisely equal to zero are possible.
3. Acceleration to an optimum is achieved by updating
the Lagrange multipliers.
4., The starting point may be feasible or infeasible.

5. At the optimum any Lagrange multiplier not equal

to zero will identify an active constraint.
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4. Other Constrained Minimization Methods

The discussion of optimization algorithms has been
restricted to non-linear programming technicues insofar as
these methods are fully operational in ADS. Sequential
Linear Programming is another category of optimization tech-
niques which will be included in the ADS library where a
particular problem is linearized and a solution sought for
the resulting linear approximation. Considering these tech-
niques are, in theory, well-developed and quite effective
this additional capability will enhance the utility of ADS.

The basic approach is to linearize ‘:he objective and
constraint functions and obtain a solution o this approxima-
tion using the algorithm developed for linear programming.
The process is iterative and therefore the techniques are
referred to as Sequential Linear Programming (SLP)}. It is
pointed out in [Ref. 42] that fully constrained problems
usually converge rapidly while under-constrained problems
often have difficulty in converging to an optimum solution.
The difficulty may be overcome somewhat by sequential reduc-
tion of move limits on the optimizer. SLP characteristically
produces a sequence of improving infeasible designs. The
Method of Centers also called Method of Inscribed Hyperspheres,
has the dual advantage of approaching the optimum with a se-
quence of improving feasible designs while following a path

down the "center" of the design space. This method is dis-

cussed in the remainder of this section.




The basic approach in the Method of Centers is to
inscribe a hypersphere in n-dimensional design space created
g when all of the constraints and objective function are
linearized. The design then moves to the center of the
- hypersphere. This procedure is repeated to convergence
_ within some user-specified tolerance. 1In the case of under-
constrained problems the method is subjsct to the same problem

as SLP in imposing move limits on the optimizer.

D. FUNCTIONS OF ONE VARIABLE: THE ONE-DIMENSIONAL SEARCH

1. Introduction

The one~dimensional search, as it is commonly ceferred
to in algorithms for optimization, usually applies to deter-
mining a*, the step size to be taken in the search direction
S. Finding the minimum of any function of one variable is
simply finding the point at which the first derivative
vanishes. Since the function is not always an easily obtained
analytic function in optimization, it is necessary to make
some fundamental assumptions so that appropriate numerical
analysis techniques may be brought to bear. Accordingly, the
functions are assumed unimodal, that is, the function has
only one relative minima in the region of concern. The func-

tions are also assumed continuous as are their first and

second derivatives. These assumptions will assure convergence
to a minimum.
In the remaining sections of this chapter the methods

used to conduct the one-dimensional search will be discussed.
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2. Polynomial Approximation

The basic procedure in the polynomial approximation
method is to evaluate the function at several points and
then fit a polynomial curve to the data points using an
appropriate curve-fitting technique. The minimum of this
curve is approximately equal to the minimum of the true
function. The method is simple, requires only a few func-
tion evaluations and is generally reliable for functions
which are not too highly non-linear.

It is well known that a hicher order polynomial will
fit the data points more accurately; this gain in accuracy
however can complicate the process of finding the minimum of
the resulting polynomial. Also, interpolation between points
is preferred to extrapolation beyond the region enclosed by
the data points. The process of finding the minimum of the
polynomial requires finding the point where the first deriva-
tive vanishes. Alternatively, there are numerical analysis
techniques available to find the minimum or zeros of a higher

order polynomial. These methods are not discussed here.

3. Golden Section Method

The Golden Section Method is popular because the rate
of convergence is known and the reguirements for function
unimodality and continuity are relaxes. The disadvantage
of the method lies in the inherently large number of function
evaluations required as compared to other one-dimensional

search methods.
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The method involves picking two intermediate points,
xl and X2, between given upper and lower bounds, XQ and xu,
such that Xl < X2. The function is then evaluated at X, and
X2 and one of the previous bourds is replaced by one of the

intermediate points as follows:

L)L A A rrrorey
A 1y v e Te Lt
PR P e

F(Xl) > F(Xz) pt a X1 (2.40)

F(Xz) > F(Xl) X « X (2.41)
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The process is repeated until some user specified
tolerance is satisfied. Fundamental to the method is the
selection of the intermediate points. The Golden Section

number, 1.61803, is used for this purpose:

(X2 - XZ)/(Xl - X = 1.61803 (2.42)

2)

The Golden Section provides the ideal sequence for

dividing the interval such that the minimum number of function
evaluations is required. The advantage of this method is
guaranteed accuracy whereas the relatively large number of
function values required is a distinct disadvantage.

A similar method, the Fibonacci Search, based on the

Ta - &

series of Fibonacci numbers, traps the minimum in successively

smaller intervals. The Fibonacci Search is occasionally

TR Y

more efficient than Golden Section but is far more complicated.
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4. Finding Bounds on the Solution

This method is usually used to obtain brackets on
the solution, then Golden Section or polynomial methods are
called to complete the one-dimensional search.

The method begins with an assumed initial lower
bound X, and a proposed upper bound Xu. These two points are
then evaluated as F(X)) ard F(X,). If F(X)) > F(X,) then X
is the true upper bound. Assuming the slope of the function
at X, is negative at X,, the solution is complete. If F(xu)
< F(Xz) then the following update formula is applied itera-

tively to achieve the desired bounds:

St R a)x‘ald - a xild (2.43)

;¥ = xoid (2.44)
where a = golden section number = 1.61803.

Note that if the last three values of this iterative
procedure are retained along with the function values, the
three required points by the Golden Section and Polynomial
methods are already available.

Many algorithms (e.g., MFD) require the constrained
minimum of F(X). Polynomial and Golden Section methods are

also used in ADS for this purpose. Note that the X used here

is actually o* in equation 2.4.
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III. PRELIMINARY TESTING OF ADS-1

A. INTRODUCTION
Selection of test problems in a comparative study is of

primary importance. Considering one of the objectives of

this thesis is to demonstrate the utility and flexibility of

[ the ADS library, test cases were selected from two fundamen-

u tally different areas in which optimization is commonly

used. These areas are structural design (trusses, frames,
space towers, etc.), and ship synthesis. There are many

éi other areas in engineering where optimization is employed

but the areas chosen here are selected for comparative study
in this research due to> the availability of the analysis codes.

A good test case is one in which no single constraint

dominates the design. Three different truss cases were

selected that met this criteria. They were also chosen

because they are significant in size and complexity and thus
would demonstrate the comparative efficiency and reliability
of the various algorithms to be tested. Truss cases are
popular in the literature because differences due to modeling
details and idealizations can be eliminated easily; they also
lend themselves well to finite element methods of analysis.
Because analytically optimum solutions to the test cases

are not available, solutions obtained by the well developed
and thoroughly tested optimization program "CONMIN" are

provided as a base-line for the results from ADS.
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The remaining two test problems consist of a l0-variable
cantilever beam optimized for minimum volume, and the con-
ceptual design of the FFG-7 Perry Class Frigate where the
objective function is taken to be the full load displacement
of the vessel. The detailsof the various test cases are

presented in the following sections.

B. DESCRIPTION CF TEST PROBLEMS

1. 1l1l0-variable Cantilevered Beam

The 10-variable cantilever beam test case was devel-
oped by Vanderplaats in 1979 as a teaching aid for a graduate
level course in Design Optimization. The problem is gquite
simple, yet the solution is not easily obtained. The beam
consists of a specified number of equal length sections;
each section has a rectangular cross section with the height
constrained not to exceed 20 times the width. This equates
to a crude buckling constraint. The maximum stress at the

left end of each section is constrained as follows:

o, < +20 ksi i=1,5 (3.1)

The beam is cantilevered and tip loaded with a force
of 10 kips downward and the total tip deflection is con-
strained not to exceed two inches. Material properties of
the beam conform to steel where Young's modulus, E = 30 ><106
psi.

The initial X vector of design variables consisting

of height and width dimensions of each section is tabulated
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in Appendix A. There are five equal length segments in the
overall length of 200 inches, resulting in an initial volume
of 80GO0 in3. The objective function is the minimum volume
subject to the constraints of stress, displacement, and

height to width ratio. A three dimensional drawing of the
initial design is shown in Figure 3.1 and the optimum solution
is shown in Figure 3.2. The tip deflection of the optimum
beam is actually two inches downward but no attempt is made

to show this in the figure.

2. 1l0-Bar Planar Truss

Numerous test cases for planar trusses (2-dimensional)
and space towers (3-dimensional) can be found in the litera-
ture. 1In particular, the l0-bar planar truss has been used
in [Ref. 45] to demonstrate how the stress-ratio method,
which seeks a fully-stressed design, yields poor results when
members with significantly different allowable stresses are
specified [Ref. 46].

The configuration of the 1l0-bar planar cantilever
truss is shown in Figure 3.3 and is subject to a single locad
condition of 100 kips downward at nodes two and four. The
initial cross-sectional areas of the truss elements and
bounds on the areas are listed in Appendix B.

There are 20 constraints consisting of maximum and

minimum stresses in each of the 10 members as follows:

-25 ksi < g; < +25 ksi i=1-8,10 (3.2)
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=50 ksi < 9, = +50 ksi i=29 (3.3)

where i is the member element number. It should be noted
that element nine in Figure 3.3 has twice the allowable
stress of the other members. The objective function is
minimum weight of the structure. Material properties include
Young's Modulus, E = 10 xlO6 psi and y = .1 lb/in3 corres-
ponding to the properties of aluminum.

3. Conceptual Design FFG-7 PERRY Class Frigate

The details of this test case may be obtained in
[Ref. 47] where Jenkins optimized the conceptual design of
a FFG-7 Perry Class Frigate. More specifically, he coupled
the Reed synthesis model for surface combatant ships [Ref.
48], with the non-linear optimize CONMIN, a FORTRAN program
for constrained function minimization, via the control pro-
gram COPES. COPES/CONMIN was developed in 1973 by Vanderplaats
[Ref. 5] and has been used in a variety of engineering appli-
cations. The objective function is the full load displace-
ment of the vessel.

The design variables used in the preliminary testing
of the ADS program are the same as those used by Jenkins:
accordingly a comparison of results is appropriate. The
independent design variables include:

1. LBP - Length between perpendiculars, ft.

2. L/B - Length to beam ratio

3. B/H - Beam to draft ratio

PP I Y




4, Cp - Prismatic coefficient

5. Cx =~ Midship section coefficient
The initial values of these variables as well as
their upper and lower bounds are listed in Appendix C.
There are 13 constraints on the design, these are explained
in detail in [Ref. 47], and are not repeated here.

4. 47-Bar Planar Tower

The 47-Bar planar tower shown in Figure 3.4 was
introduced in the literature in [Ref. 49], wherein the tower
was designed subject to multiple loading conditions. The
same tower was designed for optimum geometry in [Ref. 50]
subject to stress and Euler buckling. In [Ref. 50] sub-
structuring was also used. The two sub-structures were over-
lapped so that several members were in both sub-structures.
[Ref. 51] presents configuration optimization with the addition
of frequency constraints.

The 47-Bar planar tower used in this research is
discussed in the remainder of this section. 1Initial cross-
sectional areas of the truss elements, nodal coordinates and
bounds on these parameters are tabulated in Appendix D as
well as the details regarding displacement constraints and
loading conditions. Steel was selected as the material for
all members with Young's Modulus, E = 30 xlO6 psi and
y = .3 lb/in°>.

All elements are subject to the following constraints

on stress:
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(3.4)

where 1 is the element number. Tubular members are speci-
fied with a diameter to thickness (d/t) ratio = 10. Euler
buckling is prohibited by constraining the buckling stress

in the members according to the following equation:
2 .
o; 2 Oy = -10.l1rEAi/8Li i=1,47 (3.5)

Finally, the first fundamental frequency of the
structure is required to exceed 5. cps. Two non-structural
weights of 500 lbs each are attached at nodes 17 and 22 to
facilitate the eigenvalue problem solution.

Member areas and coordinates are linked to maintain
symmetry about the vertical Y axis. Nodes 15, 16, 17 and
22 are fixed in space and nodes 1 and 2 are constrained to
lie on the X axis. The resulting problem thus reduces to 27
member sizing variables and 17 configuration variables for
a total of 44 independent design variables and 436 constraints
on stress, Euler buckling, displacement and frequency.

The optimum design is shown in Figure 3.5. It should
be noted there was no attempt to show member sizing variables
in the figures.

5. 234-Bar Space Tower

The configuration of the 234-Bar space tower is shown

in Figure 3.6. Initial cross-sectional areas of the truss
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elements, nodal coordinates, bounds on these parameters, as
well as the details regarding displacement constraints and
loading conditions are tabulated in Appendix E. Aluminum
was selected as the material for all members with Young's
Modulus, E = 10 x10® psi and y = .1 1b/in>.

All elements are subject to the following constraints

on stress:
=15 ksi < oi < +20 ksi i=1,234 (3.6)

where i is the element number. Tubular members are speci-
fied with a diameter to thickness (d/t) ratio = 10. Euler
buckling is prohibited by constraining the buckling stress

in the members according to the following equation:

= 2 . =
g, > obi = lO.lnEAi/SLi i=1,234 (3.7)
Member areas and coordinates are linked to maintain
symmetry about the vertical Y axis. Nodes 1, 2, 3 and 4 are
constrained to lie on the XZ plane. The resulting problem
thus reduces to 56 member sizing variables and 3550 constraints

on stress, Euler buckling, and displacement.

C. COUPLING ANALYSIS AND OPTIMIZATION COMPUTER CODES

A |

The test case data files were prepared in accordance

-
l".

with the user's manual for SADT [Ref. 36] and the user's

manual for COPESA, similar to [Ref. 6]. The problems were

AN #-4 Ja ST 4
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:i then coupled to the ADS library of optimization algorithms

5: via a brief driver program in the case of trusses and towers
g! » and via COPESA on the cantilever beam and Ship design cases.
gx All test case results were printed and filed for future refer-
?} ence. The default values for all program control parameters
hl such as convergence tolerances were used insofar as possible.

Gradients were calculated analytiéally for the truss and
tower cases and by finite differences in the cases of the
beam and ship.

The results obtained were carefully tabulated and opti-
mum solutions determined based on the best objective function
and the fewest equivalent function evaluations. This param-

eter was computed as follows:

NFE = IFCALL + NDV*IGCALL (3.8)

where IFCALL is the number of objective and constraint
function evaluations, IGCALL is the number of times gradients
are evaluated by the user and NDV is the number of design
variables. This provides an equivalent number of function
evaluations that would be required if all gradients were
calculated by finite differences. 1If gradients are calcu-

lated by finite differences, IGCALL will be zero because

IFCALL includes the function evaluations needed to calcu-

late gradients.
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IV. RESULTS AND CONCLUSIONS

A. INTRODUCTION

There are presently 85 possible, meaningful combinations
of strategy, optimizer and one-dimensional search methods
available in the ADS library. Testing all methods on all
problems is not practical considering some test cases con-
sume over 40 minutes of CPU time per run. Accordingly,
the scope of research was limited to testing all strategies
and all optimizers with three one-dimensional searches on
all five problems, for a total of 260 test case computer runs.
The two one-dimensional search methods not tested were bounds
only and polynomial without bounds. The results are tabulated
in Appendix F. 1In Tables V through IX the best optimum de-
signs to each of the five problems are presented. Optimum
design A represents the best objective function achieved,
whereas optimum design B represents the solution within 5%
of the objective function for optimum design A but which had
the fewest equivalent function evaluations. Both solutions

were required to have no violated constraints (g(X) < 0.0l).

B. RELATIVE RANKING OF OPTIMIZATION METHODS

l. Execution Time

A timing routine available in the Non-IMSL library
at the computer center was utilized to record execution time

in CPU seconds for each test run. Times were then averaged
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for all runs using the same one-dimensional search on a given
problem. In other words, CPU time per function evaluation was
averaged for all runs recorded on any given table in Appendix
F. These run times, when multiplied by the equivalent number
of function evaluations, is a good approximation of CPU seconds
to optimize a problem with any given combination of strategy,
optimizer and one-dimensional search. For example, average

CPU time per function evaluation for the cantilever beam range
from .002581 seconds to .0037283, whereas the range on the 234-
Bar space tower is .32508 to .36011 seconds. It is readily
apparent that on problems of significant size, like the 234-
Bar tower (Table XXXV, Appendix F) run times of 34 CPU minutes
may be realized. The significant point is that the efficiency
of an algorithm to reduce NFE to a minimum is of vital concern
on problems of practical interest.

2. Number of Function/Gradient Calculations

A perusal of all results in Appendix F reveals that
direct methods are far more efficient than indirect methods
as far as NFE is concerned when solving constrained minimi-
zation problems. Furthermore it is apparent that the ALM
method is effective in reducing NFE for SUMT methods as theory
would suggest.

Contrary to expectations, there is no apparent trend
that would indicate which unconstrained minimization method
is "best" to use when employing a SUMT method for the solu-
tion of a constrained problem. Perhaps more extensive testing

would result in establishing these desirable guidelines.
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A review of Table VII points out an interesting fact
concerning NFE. In this table the optimum solutions for the
FFG-7 test case are recorded. Note that the Method of Feasi-
ble Directions results in a quite acceptable objective func-
tion in 55 function evaluations while a SUMT method (exterior
penalty) required 555 function evaluations to achieve a
slightly better result! This situation is shown graphically
in Figure 4.1. The point here is for the user to be aware
of the possibility that an optimizer may be using an inordinate
amount of computer resources to achieve an insignificant gain
in the objective.

3. Values of the Objective Function

A comparison of objective functions points out that
in general all presently available algorithms are working
well in ADS with the exception of SUMT methods on the 234-
Bar space tower. 1In this case the optimizers were unable to
overcome the constraint violations and make progress tcward
a solution; the trouble is attributed to needed refinement in
choosing the penalty parameters.

The efficiency, reliability, and accuracy of the
various algorithms however, is clearly demonstrated on the
other four test problems as recorded in Tables XXIII through
XXXIV in Appendix F. In these four test cases, extremely

good objective functions were obtained and generally resulted

in the production of feasible designs (no violated constraints).

Tables V through IX record the best objective func-

tion achieved for each problem. Again, the direct methods
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TABLE V

Optimum Design of l0-Variable Cantilever Beam

DESIGN
VARIABLES

1
2

10

OBJ:

INITIAL
VALUES

.20000E+01
.20000E+01
.20000E+01
.20000E+01
.20000E+01
.20000E+02
.20000E+02
.20000E+02
.20000E+02

.20000E+02
.80000E+04

IFCALL:
IGCALL:
NFE:
ISTRAT: :
IOPT:

IONED:

OPTIMUM
DESIGN A

.85538E+00
.84340E+00
.96538E+00
.10625E+01
.11446E+01
.17108E+02
.16868E+02
.19308E+02
".21251E+02

.22892E+02

.38513E+04

365
9
365

67

OPTIMUM
DESIGN B

.85534E+00
.84342E+00
.96547E+00
.10626E+01
.11447E+01
.17107E+02
.16869E+02
.19210E+02
.21253E+02

.22894E+02

.38517E+04

191
0
191




TABLE VI

Optimum Design of 10-Bar Planar Truss

DESIGN INITIAL OPTIMUM OFTIMUM

VARIABLES VALUES DESIGN A DESIGN B

1 .10000E+02  .79149E+01 .78869E+01

2 .10000E+02  .10000E+00 .1C000E+00

3 .10000E+02  .80888E+01 .81114E+01

4 .10000E+02  .39278E+01 .35 154E+01

5 .10000E+02  .10000E+00 .1C000E+00

6 .10000E+02  .10002E+00 .10001E+00

7 .10000E+02  .57843E+0l .58135E+01

8 .10000E+02  .54622E+01 .5%145E+01

9 .10000E+02  .36814E+01 .36493E+01

10 .10000E+02  .14060E+00 .14060E+00

OBJ: .41965E+04  .14955E+04 .14974E+04
o IFCALL: 219 76
El IGCALL: 10 14
= NFE: 319 216
gi ISTRAT: 0 0
:, IOPT: 3 3
E! IONED: 7 9
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TABLE VII

Optimum Conceptual Design of FFG-7 Perry (Class Frigate

LR AP i N A 2
h LTl P ) P

DESIGN INITIAL OPTIMUM OPTIMUM
VARIABLES VALUES DESIGN A DESIGN B
1 .30000E+03 .39429E+03 .39441E+03
o 2 .90700E+01 .73383E+01. .84923E+01
3 .31400E+01 .40000E+01 .34438E+01
4 .59300E+00 .51969E+00 .50000E+00
5 .75100E+00 .90000E+-00 .77578E+00
OBJ: .28650E+04 .35039E+04 .35120E+04
. IFCALL: 555 55
IGCALL: 0 0
NFE: 555 55
ISTRAT: 1 0
IOPT: 5 1l

IONED: 2 9
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TABLE VIII
Optimum Design of 47-Bar Planar Tower
g! DESIGN INITIAL OPTIMUM OPTIMUM
2 VARIABLES VALUES DESIGN A DESIGN B
i 1 .50000E+01  .46860E+01 none within
! 2 .50000E+01 .41759E+01 5% of optimum
L 3 .50000E+01  .18816E+01 design A and
EZ 4 .50000E+01  .37585E+01 no violated
- 5 .50000E+01 .18577E+01 constraints
6 .50000E+01 .37921E+01
7 .50000E+01 .32165E+01
8 .50000E+01 .31278E+01
9 .50000E+01 .21022E+01
10 .50000E+01 .28899E+01
11 .50000E+01 .22567E+01
12 .50000E+01 .40493E+01
13 .50000E+01 .24314E+01
14 .50000E+01 .23419E+01
15 .50000E+01 .37355E+01
16 .50000E+01 .36838E+01
17 .50000E+01 .42922E+01
18 .50000E+01 .79178E+00
19 .50000E+01 .29163E+01
20 .50000E+01 .38352E+01
21 .50000E+01 .94515E+00
22 .50000E+01 .26998E+01
23 .50000E+01 .41409E+01
24 .50000E+01 .12333E+01
25 .50000E+01 .24597E+01
26 .50000E+01 .43808E+01
27 .50000E+01 .10245E+01
28 .60000E+02 .68591E+02
29 .60000E+02 .53476E+02
30 .12000E+03 .13530E+03
70




TABLE VIII (Cont'aqd)

DESIGN INITIAL OPTIMUM OPTIMUM
VARIABLES VALUES DESIGN A DESIGN B

31 .60000E+02 .40992E+02
32 .24000E+03 .27822E+03
33 .60000E+02 .32738E+02
34 .36000E+03 .37854E+03
35 .30000E+02 .24938E+02
36 .42000E+03 .45161E+03
37 .30000E+02 .24265E+02
38 .48000E+03 .47202E+03
39 .30000E+02 .23896E+02
40 .54000E+03 .51176E+03
41 .90000E+02 .82690E+02
42 .60000E+03 .59193E+03
43 .30000E+02 .26367E+02
44 .60000E+03 .56721E+03
.28650E+04 .30141E+04

IFCALL: 948

IGCALL: 51

NFE: 3192

ISTRAT: 2

I0PT: 4

IONED: 2
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TABLE IX

Optimum Design of 234-Bar Space Tower

F DESIGN INITIAL OPTIMUM OPTIMUM
2 VARIABLES VALUES DESIGN A DESIGN B
o 1 .25000E+02 .69559E+02 .69357E+02
i 2 .25000E+02 .68288E+02 .68117E+02
2 3 .25000E+02 .66756E+02 .66428E+02
- 4 .25000E+02 .64988E+02 .64421E+02
& 5 .25000E+02 . 62568E+02 .61759E+02
& 6 .25000E+02 .59297E+02 .58494E+02
:: 7 .25000E+02 .54735E+02 .53562E+02
- 8 .25000E+02 .48046E+02 .47554E+02
ES 9 .25000E+02 .37844E+02 .37760E+02
E 10 .25000E+02 .21850E+02 .22198E+02
" 11 .25000E+02 .18359E+02 .18896E+02
% 12 .25000E+02 .20855E+00 .64660E+00
& 13 .25000E+02 .98045E-01 .40680E+00
E 14 .25000E+02 .16474E+00 .16005E+00
" 15 .25000E+02 .17637E+00 .22615E+00
e 16 .25000E+02 .96913E+00 .29182E+01
- 17 .25000E+02 .40538E+01 .60715E+01
] 18 .25000E+02 .72152E+01 .89224E+01
. 19 .25000E+02 .10221E+02 .11365E+02
5 20 .25000E+02 .12806E+02 .13766E+02
' 21 .25000E+02 .20106E+02 .20525E+02
22 .25000E+02 .21018E+02 .21433E+02
23 .25000E+02 .22353E+02 .22841E+02
24 .25000E+02 .25257E+02 .25643E+02
25 .25000E+02 .17203W+01 .19941E+01
(| 26 .25000E+02 .16693E+01 .31480E+01
27 .25000E+02 .16977E+01 .21728E+01
28 .25000E+02 .22347E+01 .29806E+01
29 .25000E+02 .25725E+01 .25564E+01
{ 30 .25000E+02 .30805E+01 .34746E+01
31 .25000E+02 .40618E+01 .35497E+01
32 .25000E+02 .58799E+01 .58570E+01
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%? TABLE IX (Cont'd)
= DESIGN INITIAL OPTIMUM OPTIMUM
(| VARIABLES VALUES DESIGN A DESIGN B
S 33 .25000E+02 .88958E+01 .86716E+01
< 34 .25000E+02 .13261E+02 .12863E+02
' 35 .25000E+02 .10249E+02 .10585E+02
i| 36 .25000E+02 .19124E+02 .19571E+02
= 37 .25000E+02 .37666E+02 . 38444E+02
H“ 38 .25000E+02 .15174E+02 .16716E+02
‘ 39 .25000E+02 .32889E+02 .33776E+02
nl 40 .25000E+02 .20731E+02 .21057E+02
% a1 .25000E+02 .20853E+02 .21187E+02
- 42 .25000E+02 .29991E+02 .30891E+02
= 43 .25000E+02 .17611E+02 .18299E+02
Pl 44 .25000E+02 .95341E+01 .10795E+02
- 45 .25000E+02 .87553E+01 .10064E+02
g 46 .25000E+02 .12634E+00 .72552E-01
¥ 47 .25000E+02 .69780E-01 .20655E+01
ﬂl : 48 .25000E+02 .22711E+01 .41014E+01
5 49 .25000E+02 .44747E+01 .61302E+01
& 50 .25000E+02 .66768E+01 .81517E+01
% 51 .25000E+02 .88756E+01 .10174E+02
52 .25000E+02 .11075E+02 .12196E+02
- 53 .25000E+02 .14990E+02 .15796E+02
2 54 .25000E+02 .15473E+02 .16240E+02
3 55 .25000E+02 .17706E+02 .18293E+02
56 .25000E+02 .17712E+02 .18299E+02
OBJ: .84524E+05 .43967E+05 .45472E+05
IFCALL: 1345 241
IGCALL: 77 63
NFE: 5657 3769
ISTRAT: 5 5
IOPT: 5 4

IONED: 2 4




T v

yielded a better result than the indirect methods on the two
smaller problems while the SUMT methods prevailed on the
larger problems. This suggests that indirect methods deal
with a multitude of active constraints more effectively than

direct methods.

C. COMPARISON WITE CONMIN

All test cases were run on CONMIN to provide a base-line
for the comparative studies. Results from CONMIN are recorded
on the tables of test results in Appendix F. It is inter-
esting, if not surprising, that with the exception of the
234-bar tower test case, ADS routines were able to achieve
better solutions than CONMIN.

CONMIN basically utilizes a Feasible Directions algorithm
for constrained problems. The fact that a different combina-
tion surpassed CONMIN on each test case supports the notion
that the optimization algorithm employed should suit the prob-
lem at hand to gain maximum efficiency. In the past the
thrust has been to merely alter the program parameters of
the same algorithm to deal with fundamentally different prob-
lems. ADS now offers a convenient method for selecting an
algorithm best suited to the problem at hand. This flexi-
bility further enhances an engineer's ability to apply opti-

mization concepts to the various disciplines in design.

D. ADDITIONAL CONCLUSIONS
Preliminary testing of the ADS library resulted in the

modifications of several default values for the various
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optimizers that improved their efficiency dramatically. As

ADS is fully implemented additional testing will be required
to insure all algorithms are as efficient, reliable and
accurate as possible.

A difficulty with a program of this broad capability is
to provide the user with a concise set of guidelines identi-
fying which method or class of methods should be selected
for a given problem. The problem is exacerbated by the
selection of default values, in other words, a default value
which may work well on one problem may cause premature con-
vergence on a different problem. Accordingly, judicious
selection of default values in ADS requires considerable
effort supported by extensive testing on a variety of problems
as the algorithms become operational.

Results given in Appendix F and the optimum solutions
tabulated in Tables V through IX are an indication of relia-
bility, to be sure, however the results are preliminary and
the algorithms are constantly being revised and improved.
The equivalent number of function evaluations (NFE) provide
a measure of relative efficiency of the optimizer to achieve
an optimum solution, the goal being to minimize the use of
computer resources while maximizing the reduction of the
objective function. It should be noted and is evident in
the results tabulated that the efficiency and reliability
are problem dependent. Therefore a wise selection of the

appropriate algorithm and tailoring the program parameters
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to suit the problem at hand is required. ADS achieves this
flexibility and enhances the design engineer's ability to

use optimization as a viable design tool.
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APPENDIX A

10-VARIABLE CANTILEVER BEAM TEST CASE

Table X describes the initial X vector of independent
design variables; the first five variables are segment
widths and the remaining five are segment heights; side

constraints or bounds on the variables are also included.

TABLE X

Initial X Vector for the l0-Variable Cantilever Beam

SEGMENT DIMENSIONS (INCHES)

DESIGN LOWER INITIAL UPPER
VARIABLE BOUND VALUE BOUND
1 .50000E+00 .20000E+01 .50000E+01
. 2 .50000E+00 .20000E+01 .50000E+01
ii 3 .50000E+00 .20000E+01 .50000E+01
X 4 .50000E+00 .20000E+01 .50000E+01
3; 5 .50000E+00 .20000E+01 .50000E+01
" 6 .10000E+02 .20000E+02 .10000E+03
) 7 .10000E+02 .20000E+02 .10000E+03
;S 8 .10000E+02 .20000E+02 .10000E+03
: 9 .10000E+02 .20000E+02 .10000E+03

10 " .100G60E+02 .20000E+02 .10000E+03
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APPENDIX B

10-BAR PLANAR TRUSS TEST CASE

Table XI describes the initial X vector of independent
design variables; the ten variables consist of the truss
element cross-sectional.areas. Side constraints or bounds
on the variables are also included in the table. Table XII

lists the nodal coordinates in inches.

TABLE XI

Initial X Vector for the 10-Bar Planar Truss

DESIGN TRUSS CROSS SECTIONAL AREAS (SQ. IN.)
VARIABLE ELEMENT

NUMBER NUMBER LOWER BOUNDS INITIAL VALUES UPPER BOUNDS
. 1 1 .10000E+00 .10000E+02 .10000E+04 |
é 2 2 .10000E+00 .10000E+02 .10000E+04
: 3 3 .10000E+00 .10000E+02 .10000E+04
! 4 4 .10000E+00 .10000E+02 .10000E+04
ﬁ 5 5 .10000E+00 .10000E+02 .10000E+04
f 6 6 .10000E+00 .10000E+02 .10000E+04
E 7 7 .10000E+00 .10000E+02 .10000E+04
' 8 8 .10000E+00 .10000E+02 .10000E+04

9 9 .10000E+00 .10000E+02 .10000E+04

10 10 .10000E+00 .10000E+02 .10000E+04
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TABLE XII

Initial Nodal Coordinates of the 1l0-Bar Planar Truss

NODE
NUMBER
X
1 .72000E+03
2 .72000E+03
3 .36000E+03
4 .36000E+03
5 0
6 0

COORDINATES (INCHES)

Y Z
.36000E+03 0
0 0
.36000E+03 0
0 0
.36000E+03 0
0 0
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APPENDIX C

CONCEPTUAL DESIGN OF THE FFG-7 PERRY CLASS FRIGATE

Table XIII lists the initial X vector of independent
design variables; side constraints or bounds on the variables

are included in the table.

TABLE XIII

Initial X Vector for the FFG-7 Preliminary Design

DeChi) /‘.r’)m‘:.' VT TR,

- DESIGN
VARIABLE  PARAMETER LOWER INITIAL UPPER

R NUMBER BOUNDS VALUES BOUNDS

- 1 LBP .30000E+03  .30000E+03 . 70000E+03
i 2 L/B .70000E+00  .90700E+00 .12000E+00
_ 3 B/H .20000E+01  .31400E+01 .40000E+01
3 4 Cp .50000E+00  .59000E+00 .90000E+00
‘ 5 Cx .75000E+00  .75000E+00 .90000E+00
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APPENDIX D

47-BAR PLANAR TOWER TEST CASE

Tables XIV and XV describe the initial X vector of inde-
pendent design variables. The 27 variables in Table XIV are
the initial element cross-sectional areas. Table XV lists
the initial nodal coordinates; 17 of these are independent
design variables. It should be noted that since symmetry
about the Y-axis exists only nodes on the positive side are
listed. Side constraints or bounds on the variables are
included in the tables. Tables XVI and XVII describe the

loading conditions and displacement constraints respectively.
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¢
-} TABLE XIV
[;_3 Initial Member Areas for the 47-Bar Planar Tower
E DESIGN TRUSS CROSS SECTIONAL AREAS (SQ. IN.)
= VARIABLE  ELEMENT
" NUMBER NUMBER LOWER INITIAL UPPER
= BOUNDS VALUES BCiNDS
1 3 .10000E-05 .50000E+01 .10000E+04
2 4 .10000E-05 .50000E+01 .10000E+04
3 5 .10000E-05 .50000E+01 .10000E+04
4 7 .10000E-05 .50000E+01 .10000E+04
5 8 .10000E-05 .50000E+01 .10000E+04
6 10 .10000E-05 .50000E+01 .10000E+04
7 12 .10000E-05 .50000E+01 .10000E+04
8 14 .10000E-05 .50000E+01 .10000E+04
9 15 .10000E-05 .50000E+01 .10000E+04
10 18 .10000E-05 .50000E+01 .10000E+04
11 20 .10000E-05 .50000E+01 .10000E+04
12 22 .10000E-05 .50000E+01 .10000E+04
13 24 .10000E~05 .50000E+01 .10000E+04
14 26 .10000E~05 .50000E+01 .10000E+04
15 27 .10000E-05 .50000E+01 .10000E+04
16 28 .10000E~05 .50000E+01 .10000E+04
17 30 .10000E-05 .50000E+01 .10000E+04
18 31 .10000E-05 .50000E+01 .10000E+04
19 33 .10000E-05 .50000E+01 .10000E+04
20 35 .10000E-05 .50000E+01 .10000E+04
21 36 .10000E-05 .50000E+01 .10000E+04
22 38 .10000E-05 .50000E+01 .10000E+04
23 40 .10000E-05 .50000E+01 .10000E+04
24 41 .10000E-05 .50000E+01 .10000E+04
25 43 .10000E-05 .50000E+01 .10000E+04
26 45 .10000E-05 .50000E+01 .10000E+04
27 46 .10000E-05 .50000E+01 .10000E+04
82




TABLE XV

Initial Nodal Coordinates of the 47-Bar Planar Tower

DESIGN NODE LOWER COORDINATES UPPER
VARIABLE NUMBER BOUNDS (INCHES) BOUNDS
NUMBER X Y Z
28 2 .1000E+02 .6000E+02 0 0 .1l000E+04
29 4 .1000E+02 .6000E+02 0 0 .l1l000E+04
30 4 .1000E+02 0 .1200E+03 0 .1l000E+04
31 6 .1000E+02 ,.6000E+02 0 0 .l1000E+04
32 6 .1000E+02 0 .2400E+03 0 .1l000E+04
33 8 .1000E+02 .6000E+02 0 0 .l000E+04
34 8 .1000E+02 0 .3600E+03 0 .lCOOE+04
35 10 .1000E+02 .3000E+02 0 0 .1000E+04
36 10 .1000E+02 0 .4200E+03 0 .1000E+04
37 12 .1000E+02 .3000E+02 0 0 .l1l000E+04
38 12 .1000E+02 0 .4800E+03 0 .l1000E+04
39 14 .1000E+02 ,3000E+02 0 0 .l1000E+04
40 14 .1000E+02 0 .5400E+03 0 .1l000E+04
16 .9000E+C2 .5700E+03 0
41 20 .1000E+02 .3000E+02 0 0 .1l000E+04
42 20 .1000E+02 0 .6000E+03 0 .1000E+04
43 21 .1000E+02 .9000E+02 0 0 .l000E+04
44 21 .1000E+02 0 .6000E+03 0 .1000E+04
22 .1500E+03 .6000E+03 0
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TABLE XVI

Loading Conditions on the 47-Bar Planar Tower

LOAD NODE LOADS APPLIED (LBS)
CONDITION NUMBER FX FY FZ
1 17 .6000E+04 ~.14000E+05 0
22 0 , 0
2 17 0 0
22 .6000E+04 -.14000E+05
3 17 .6000E+04 -.14000E+05
22 .6000E+04 -.14000E+05
TABLE XVII

Displacement Constraints on the 47-Bar Planar Tower

LOAD NODE DISPLACEMENT CONSTRAINTS (INCHES)
CONDITION NUMBER DIRECTION LOWER BOUNDS UPPER BOUNDS

1 17 X -.5000E+01 .5000E+01
17 Y -.5000E+01 .5000E+01
2 17 X -.5000E+01 .5000E+01
17 Y -.5000E+01 .5000E+01
3 17 X -.5000E+01 .5000E+01
i7 Y -.5000E+01 .5000E+01
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APPENDIX E

234-BAR SPACE TOWER TEST CASE

Table XVIII describes the initial X vector of indepen-
dent design variables which consist of the member cross
sectional areas. Side constraints or bounds on the variables
are included in Table XVIII. Table XIX lists the nodal
coordinates. Tables XX and XXI describe the loading conditions

and displacement constraints respectively.
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TABLE XVIII

Initial Member Areas for the 234-Bar Space Tower

DESIGN TRUSS CROSS SECTIONAL AREAS (SQ. IN.)

VARIABLE ELEMENT LOWER INITIAL UPPEK
NUMBER NUMBER BOUNDS VALUES BOUNDS
1 1-4 .10000E-05 .25000E+02 .10000E+03
- 2 5-8 .10000E-05 .25000E+02 .10000E+03
D 3 9-12 .10000E-05 .25000E+02 .10000E--03
i 4 13-16 .10000E-05 .25000E+02 .10000E+03
- 5 17-20 .10000E-05 .25000E+02 .10000E+03
P 6 21-24 .10000E-05 .25000E+02 .10000E+03
Ei 7 25-28 .10000E-05 .25000E+02 .10000E+03
ﬁf 8 29-32 .10000E-05 .25000E+02 .10000E+03
& 9 33-36 .10000E-05 .25000E+02 .10000E+03
P 10 37-40 .10000E-05 .25000E+02 .10000E+03
gi 11 41-44 .10000E-05 .25000E+02 .10000E+03
- 12 45-48 .10000E-05 .25000E+02 .10000E+03
13 49-52 .10000E=05 .25000E+02 .10000E+03
14 53-56 .10000E-05 .25000E+02 .10000Z+03
15 57-60 .10000E-05 .25000E+02 .10000E+03
16 61-64 .10000E-05 .25000E+02 .10000E+03
17 65-68 .10000E-05 .25000E+02 .10000L+03
18 69-72 .10000E-05 .25000E+02 .10000E+03
19 73-76 .10000E-05 .25000E+02 .10000E+03
20 77-80 .10000E-05 .25000E+02 .100G0E+03
21 81,83 .10000E-05 .25000E+02 .10000E+03
o 22 82,84 .10000E-05 .25000E+02 .10000E+03
Eﬁ 23 85,87 .10000E-05 .25000E+02 .10000E+03
?; 24 86,88 .10000E-05 .25000E+02 .10000E+03
H 25 89-96 .10000E-05 .25000E+02 .10000E+03
= 26 97-104 .10000E-05 .25000E+02 .10000E+03
ff 27 105-112 .10000E-05 .25000E+02 .10000E+03
if 28 113-120 .10000E-05 .25000E+02 .10000E+03
E 29 121-128 .10000E-05 .25000E+02 .10000E+03
;§ 30 129-136 .10000E-05 .25000E+02 .10000E+03
3
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TABLE XVIII (Cont'd)

DA~ N

DESIGN  TRUSS CROSS SECTIONSL AREAS (SQ. IN.)
VARIABLE ELEMENT LOWER INITIAL UPPER
NUMBER  NUMBER BOUNDS VALUES BOUNLS

s 31 137-144  .10000E-05 .25000E+02 .10000E+03

= 32 145-152  .10000E-05 .25000E+02 .10000E+03
33 153-160  .10000E-05 .25000E+02 .10000E+03
34 161-168  .10000E-05 .  .25000E+02 .10000E+03
35 169-176  .10000E-05 .25000E+02 .10000E+03
36 177-180  .10000E-05 .25000E+02 .10000E+03
37 181-184  .10000E-05 .25000E+02 .10000E+03
38 185-188  .10000E-05 .25000E+02 .10000E+03
39 189-192  .10000E-05 .25000E+02 .10000E+03
40 193-196  .10000E-05 .25000E+02 .1000CE+03
41 197-200  .10000E-05 .25000E+02 .1000CE+03
42 201,202 .10000E-05 .25000E+02 .1000CE+03
43 203,204  .10000E-05 .25000E+02 .1000CE+03
44 205-208  .10000E-05 .25000E+02 .1000CE+03
45 209-212  .10000E-05 - .25600E+02 .10000E+03
46 213,214  .10000E-05 .25000E402-%." . 10000E+03
47 215,216  .10000E-05 .25000E+02 .10000E+03
a8 217,218  .10000E-05 .25000E+02 .10000E+03
49 219,220  .10000E-05 .25000E+02 .10000E+03
50 221,222 .10000E-05 .25000E+02 .10000E+03
51 223,224  .10000E-05 .25000E+02 .10000E+03
52 225,226  .10000E-05 .25000E+02 .10000E+03
53 227,228 .10000E-05 .25000E+02 .10000E+03
54 229,230  .10000E-05 .25000E+02 .10000E+03
55 231,232 .10000E-05 .25000E+02 .10000E+03
56 233,234 .10000E-05 .25000E+02 .10000E+03

87

D " L. o L e o ) o
PP R G S W L. S S RPN T AP A T T T .




TABLE XIX

» Nodal Coordinates of the 234-Bar Space Tower

NODE COORDINATES (INCHES)

NUMBER X Y Z
1 .12000E+03 0 .12000E+03
2 -.12000E+03 0 .12000E+03
3 3 -.12000E+03 0 ~.12000E+03
- 4 .12000E+03 0 ~.12000E+03
B 5 .11100E+03 .12000E+03 .11100E+03
h‘ 6 -.11100E+03 .12000E+03 .11100E+03
o 7 -.11100E+03 .12000E+03 ~.11100E+03
Eg 8 .11100E+03 .12000E+03 ~.11100E+03
- 9 .10200E+03 .24000E+03 .1020CE+03
il 10 -.10200E+03 .24000E+03 -.10200E+03
- 11 ~.10200E+03 .24000E+03 ~.10200E+03
- 12 .10200E+03 .24000E+03 .10200E+03
2 13 .93000E+02 .36000E+03 .93000E+02
14 -.93000E+02 .36000E+03 .93000E+02
15 -.93000E+02 .36000E+03 -.93000E+02
16 .93000E+02 .36000E+03 -.93000E+02
17 .84000E+02 .48000E+03 .84000E+02
ﬁ 18 - .84000E+02 .48000E+03 .84000E+02
X 19 -.84000E+02 .48000E+03 ~.84000E+02
< 20 .84000E+02 .48000E+03 -.84000E+02
21 .75000E+02 .60000E+03 .75000E+02
’ 22 - .75000E+02 .60000E+03 . 75000E+02
-, 23 -.75000E+02 .60000E+03 -.75000E+02
2 24 . 75000E+02 .60000E+03 - . 75000E+02
: 25 .66000E+02 .72000E+03 .66000E+02
26 - .66000E+02 .72000E+03 .66000E+02
27 -.66000E+02 .72000E+03 - .66000E+02
28 .66000E+02 .72000E+03 —.66000E+02
29 .57000E+02 .84000E+03 .57000E+02
30 - .57000E+02 .84000E+03 .57000E+02




31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

-

NODE
NUMBER

nnnnn

TABLE XIX (Cont'd)

X
-.57000E+02
.57000E+02
.48000E+02
-.48000E+02

-.48000E+02

.48000E+02
.39000E+02
-.39000E+02
-.39000E+02
.39000E+02
.30000E+02
-.30000E+02
-.30000E+02
.30000E+02
.30000E+02
~.30000E+02
~.30000E+02
.30000E+02
.90000E+02
-.90000E+02
.60000E+02
-.60000E+02
.60000E+02
-.60000E+02
-.60000E+02
.60000E+02
-.60000E+02
.60000E+02

---------

Y
.84000E+03
.84000E+03
.96000E+03
.96000E+03
.96000E+03
.96000E+03
.10800E+04
.10800E+04
.10800E+04
.10800E+04
.12000E+04
.12000E+04
.12000E+04
.12000E+04
.12480E+04
.12480E+04
.12480E+04
.12480E+04
.12480E+04
.12480E+04
.12240E+04
.12240E+04
.12480E+04
.12480E+04
.12240E+04
.12240E+04
.12480E+04
.124 80E+04

89

COORDINATES (INCHES)

Z

.57000E+02
.57000E+02
.48000E+02
.480J0E+02
.48000E+02
.48000E+02
.39000E+02
.39000E+02
.39000E+02
.39000E+02
.30000E+02
.30000E+02
.30000E+02
.30000E+02
.30C00E+02
.30000E+02
.30C00E+02
.30C00E+02

0
0

.15000E+02
.15000E+02
.15000E+02
.15000E+02
.15000E+02
.15000E+02
.15000E+02
.15000E+02
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TABLE XX

Loading Conditions on the 234-Bar Space Tower

- LOAD NODE LOADS APPLIED (LBS)
% CONDITION NUMBER FX FY F2
g 1 49 .6000E+04  -.20000E+05 0
!‘ 50 .6000E+04 -.20000E+05 0
¢ 2 49 .6000E+04 ° =-,20000E+05
: 50 -.6000E+04 -.20000E+05
h 3 49 .6000E+04 -.20000E+05 0
- 50 .3000E+04  -.10000E+05 .50000E+04
4 49 .3000E+04 -.10000E+05 ~-.S50000E+04
50 .3000E+04 -.10000E+05 .50000E+04
5 49 -.3000E+04 .10000E+05 .50000E+04
50 -.3000E+04  .100COE+0% -.50000E+04
TABLE XXI

Displacement Constraints on the 234-Bar Space Tower

Loab NODE DISPLACEMENT CONSTRAINTS (INCHES)
CONDITION NUMBER DIRECTION LOWER BOUNDS UPPER BOUNDS
1 49 X,Y -.5000E+01 .5000E+01

50 X,Y -.5000E+01 .5000E+01
2 49 X,Y -.5000E+01 .5000E+01
50 X, Y -.5000E+01 .5000E+01
3 49 X, Y -.5000E+01 .5000E+01
50 X, ¥ -.5000E+01 .5000E+01
4 49 X, Y -.5000E+01 .5000E+01
50 X, Y -.5000E+01 .5000E+01
5 49 XY -.5000E+01 .5000E+01
50 X, Y -.5000E+01 .5000E+01
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APPENDIX F

ADS-1 PRELIMINARY TEST RESULTS

The results of the preliminary testing of the algorithms

available in version 1 of the ADS library in February 1983

‘ﬁ are summarized in Tables XXIII through XXXVII. The nomen-

clature used in these tables is defined in Table XXII.

TABLE XXII

('K
.l

Qe 7
S
PR

Definition of Terms in Test Results

TERM DESCRIPTION

NDV Number of independent design variables

NCON Number of constraints or. design

OBJ Objective function value

NAC Number of active constraints

NFE Number of Equivalent Furniction Evaluations

SUMT Sequential Unconstrained Minimization
Technigue

EXT Exterior Penalty Method

LIN EXT INT Linear Extended Interior Penalty Method
QUAD EXT INT Quadratic Extended Interior Penalty Method
CUBIC EXT Cubic Extended Interior Penalty Method

INT
ALM Augmented Lagrange Multipliers Method
MFD Method of Feasible Directions
DFP Davidon-Fletcher-Powell Algorithm
BFGS Broydon-Fletcher-Goldfarb-Shanno Algorithm
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TABLE XXIII

Test Results l0-Variable Cantilever Beam (IONED: 2,7)

ONE-DIMENSIONAL SEARCH: Golden Section
NDV = 10 NCON = 11 (Stress, Displacement and H/B Ratio)
AVERAGE CPU TIME PER FUNCTION EVALUATION: .27097E-02 seconds

OPTIMIZER: 1 2 3 4 5
METHOD CF FLETCHER- ROBUST D.F.P. B.F.G.S.
STRATEGY : FEAS. DIR. REEVES M.F.D.
0 OBJ .47264E+04 . 38513E+04
DIRECT NAC 1 10
NFE 594 532
1 OBJ .39742E+04 .39188E+04 .39067E+04
StMT NAC 1* 2% 4
(EXT) NFE 568 691 738
2
suMT OBJ .47597E+04 .39268E+04 .39591E+04
(LIN- NAC 3 2 3
EXT- NFE 736 777 795
INT)
3
suMT OBJ .47597E+04 .39288E+04 .39591E+04
(QUaAD- NAC 3 1 3
EXT- NFE 736 772 795
INT)
4
suMr OBJ .4759 7E+04 .39241E+04 .39591E+04
(CUBIC NAC 3 3 3
EXT- NFE 736 892 795
INT)
S
SuMT OBJ .38793E+04 .38968E+04 .38961E+04
(ALM) NAC 4% 0* 0*
NFE 922 692 799
QONMIN RESULIS: * = VIOLATED CONSTRAINT(S)
OBJ: .40808E+04
NC: 4
NFE: 313




Test Results 10-Variable Cantilever Beam (IONED:

TABLE

XXIV

3,8)

ONE-I!:MENSIONAL SEARCH: Golden Section + Cubic Polynomial

NDV = 10

NCON =

1

METHOD OF

FEAS. DIR.

.49338E+04
1
403

.40808E+04

COPTIMIZER:
STRATEGY :

0 OBRJ

DIRECT NAC
NFE

1 OBJ
sur NAC
(EXT) NFE

2
sSuMT oBJ
(LIN~ NAC
EXT- NFE
INT)

3
sur BJ
(QUAD- NAC
EXT- NFE
INT)

4
suMT BJ
(CUBIC NAC
EXT- NFE
INT)

5 OBRJ
suMT NAC
(ALM) NFE
CONMIN RESULTS:
OBJ:

NAC: 4
NFE: 313

2
FLETCHER-
REEVES

. 39856E+04
1*
440

.47397EH04
3
549

.47394F+04
3
552

.47395E+04
3
552

.39740E+04
2%
770

*

3
ROBUST
M.F.D.

.38513E+04
10
365

.25810E-02 Seconds

4
D.F.P.

.40222F+04
5
611

.39563E+04
3
594

.39567E+04
3
599

. 39566E+04
3
599

.38657E+04
2%
587

11 (Stress, Displacement and H/B Ratio)
AVERAGE CPU TIME PER FUNCTION EVALUATION:

5
B.F.G.S.

.38984E+04
1*
501

.39208E+04
1
599

.39211E+04

599

.39211E+04
1
599

.38654E+04
4%
766

VIOLATED CONSTRAINT(S)
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TABLE XXV

Test Results l0-Variable Cantilever Beam (IONED: 4,9)
ONE-DIMENSIONAL SEARCH: Bounds + Polynomial

NDV = 10 NCON =
AVERAGE CPU TIME PER FUNCTION EVALUATION:

11 (Stress, Displacement and H/B Ratio)
.37283E-02 Seconds

94

OPTIMIZER 1l 2 3 4 5
METHOD OF FLETCHER~ ROBUST D.F.P. B.F.G.S.
STRATEGY : FEAS. DIR. REEVES M.F.D.
0 0BJ .49772E+04 .38517E+04
DIRECT NAC 1 10
NFE 287 191
1 OBRJ . 39589E+04 .39489E+04 .39849E+04
suMr Nac 2 1* o*
(EXT) NFE 397 333 293
2
suMTr caBJ .50299E+04 .39495E+04 .39655E+04
(LIN- NAC 1 2 3
EXT- NFE 342 490 519
INT)
3
suMT OBJ .49392E+04 .39313E+04 .39689E+04
(QUAD- NAC 1 2 2
EXT- NFE 400 388 434
INT)
4
s GBJ .49982E+C4 .39260E+04 .39562E+04
(CBIC NAC 1 2 1
EXT- NFE 369 436 411
r: INT)
% 5 QJB .39678E+04 .38536E+04 .38580E+04
B suMr NAC 4 2% 3*
ﬁ (ALM) NFE 531 396 461
P
5 CONMIN RESULTS: * = VIOLATED CONSTRAINT(S)
g OBJ: .40808E+04
. NAC: 4
- NFE: 313
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Test Results l0-Bar Planar Truss (IONEL: 2,7)

ONE-DIMENSIONAL SEARCH:
NCON = 20 (Stress)
AVERAGE CPU TIME PER FUNCTION EVALUATION:

NDV = 10

OPTIMIZER:

1

METHOD CF

STRATEGY: FEAS. DIR.

.15436E+04
1
677

.15009E+04

0 0BJ
DIRECT NAC
NFE

1l OBJ
sur NAC
(EXT) NFE

2
SuMT oBJ
(LIN- NAC
EXT- NFE
INT)

3
suMr OBJ
(QUAD- NAC
EXT- NFE
INT)

4
suMr oBJ
(CUBIC NAC
EXT- NFE

INT)

5 OBJ
suMr NAC
(ALM) NFE
CONMIN RESULTS:
OBJ:

NaC: 10
NFE: u4lu

_____

TABLE

Gold

2
FLETCHER~
REEVES

.16708E+04
6
860

.16205E+04
3
1137

.16205E+04
3
137

.16205E+04
3
1137

.15733E+04
7
1138

* =

XXVI

en Section

.41632E-02 Seconds

-3 4 5
FOBUST D.F.P. B.F.G.S.
M.F.D.

.14955E+04
8
319

.15558E+04 .15372E+04
5 8
824 967

.15104E+04 .15750E+04
6 5
1329 1351

.15967E+04 .15750E+04
4 5
1356 1351

.15967E+04 .15750E+04
4 5
1356 1351

.15285E+04 .14987E+04
8 8
1091 1389

VIOLATED CONSTRAINT (S)
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TABLE XXVII

Test Results l0-Bar Planar Truss (IONED: 3,8)

ONE-DIMENSIONAL SEARCH: Golden Section + Cubic Polynomial
NDV = 10 NCON = 20 (Stress)
AVERAGE CPU TIME PER FUNCTION EVALUATION:

.39329E-02 Seconds

OPTIMIZER 1 2 3 4 5
METHOD OF FLETCHER-  ROBUST D.F.P. B.F.G.S.

STRATEGY:  FEAS. DIR.  REEVES M.F.D.

0  OBJ .15443E+04 .14960E+04
DIRECT NaC 1 8

NFE 666 244

1 onJ .16717E+04 .15743E+04 .15390E+04
SMr  NaC 6 6 7
(EXT) NFE 622 721 681

2
ST OBJ .16160E+04 .15103E+04 .16357E+04
(LIN- NAC 3 5 2

EXT- NFE 885 1059 856

INT)

3
sir GBI .16202E+04 .15760E+04 .15684E+04
(QUAD- NAC 3 5 5

EXT- NFE 826 1002 902

INT)

4
sur  CBJ .16185E+04 .15747E+04 .16352E+04
(CLBIC NAC 3 5 4

EXT- NFE 936 1137 1016

INT)

5  BJ .16076E+04 .14996E+04 .14996E+04
s NAC 7 8 8
(ALM)  NFE 786 868 812

CONMIN RESULTS:

OBJ: .15009E+04
NAC: 10
NFE: 41y

* =

VIOLATED CONSTRAINT(S)
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TABLE XXVIII

Test Results l10-Bar Planar Truss (IONED: 4,9)

ONE-DIMENSIONAL SEARCH:
NDV = 10 NCON

20 (Stress)

Bounds + Polynomial

AVERAGE CPU TIME PER FUNCTION EVALUATION:

.43674E-02 Seconds

OPTIMIZER 1 2 3 4 5
METHOD OF FLETCHER- ROBUST D.F.P. B.F.G.S.
STRATEGY: FEAS. DIR. REEVES M.F.D.
0 OBJ .15313E+04 .14974E+04
DIRECT NAC 1 8
NFE 471 216
1 oBJ .16488E+04 .16755E+04 .15752E+04
suMT NAC 6 7 8
(EXT) NFE 384 310 509
2
suMr aBJ .16034E+04 .15102E+04 .15095E+04
(LIN- NAC 3 3 7
EXT- NFE 676 691 807
INT)
3
suMT BJ .16809E+04 .15113E+04 .15100E+04
(QUaD- NAC 4 4 5
EXT- NFE 525 721 831
INT)
4
suMr oBJ .16822E+04 .15104E+04 .15008E+04
(CUBIC NAC 4 4 8
EXT- NFE 525 812 729
INT)
5 OBJ .15265E+04 .15414E+04 .15121E+04
sur NAC 4* 6* 8
(AIM) NFE 423 446 780

CONMIN RESULTS:

OBJ: .l15009E+04
NAC: 10
NFE: 414

* = VIOLATED CONSTRAINT(S)
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TABLE XXIX

Test Results Conceptual Design FFG-7 (IONED: 2,7)

ONE-DIMENSIONAL SEARCH: Golden Section

- NDV = 5

NCON =

CONMIN RESULTS:

OBJ: .35128E+04
NAC: 3
NFE: 60

PP A A AT

13
AVERAGE CPU TIME PER FUNCTION EVALUATION:

* ==

= VIOLATED CONSTRAINT(S)

98

. VS » WA

.23774E-01 Seconds

OPTIMIZER: 1 2 3 4 5
METHOD OF FLETCHER-  ROBUST  D.F.P. B.F.G.S.
STRATEGY:  FEAS. DIR.  REEVES M.F.D.
0  OBJ .35122E+04 .35077E+04
: DIRECT NAC 1 2
- NFE 155 170
1 o8y .35114E+04 .35044E+04 .35039E+04
: ST NAC 1 2 2
(EXT) NFE 511 514 555
2
s GBJ .35224E+04 .35060E+04 .35067E+04
(LIN- NAC 1 1 1
EXT- NFE 502 544 604
INT)
3
sar g .35265E+04 .35087E+04 .35052E+04
(QUAD- NAC 1 1 1
EXT- NFE 504 537 597
INT)
4
sar  OBJ . 35260E+04 .35122E+04 .35088E+04
(CLBIC NAC 1 1 1
EXT- NFE 503 514 535
INT)
5  OBJ . 3510 7E+04 .35063E+04 .35082E+04
s NAC 1 o* 2
(ALM)  NFE 285 284 248




TABLE XXX

Test Results Conceptual Design FFG-7 (IONED: 3,8)

ONE-DIMENSIONAL SEARCH: Golden Section + Cubic Polynomial
NDV = § NCON = 13

AVERAGE CPU TIME PER FUNCTION EVALUATION: ,25550E-0l1 Seconds

CONMIN RESULTS:

OBJ:
NAC: 3
NFE: 60

.35128E+04

* = VIOLATED CONSTRAINT(S)
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OPTIMIZER: 1 2 3 4 5
METHOD OF FLETCHER- ROBUST D.F.P. B.F.G.S.
STRATEGY : FEAS. DIR. REEVES M.F.D.
0 OBJ .35112E+04 .35079E+04
DIRECT NaC O 2
NFE 117 107
1 oBJ .35110E+04 .35039E+04 .35043E+04
SUIMT NAC 1 2 2
(EXT) NFE 374 388 393
2
sSiMr OBJ .35235E+04 .35088E+04 .35089E+04
{(LIN- NAC 1 1 1
EXT- NFE 359 366 368
INT)
3
siMT  QBJ .35206E+04 .35088E+04 .35091E+04
(QUAD~ NAC 1 1 1
EXT- NFE 352 356 351
INT)
4
siMr  OBJ .35261E+04 .35082E+04 .35087E+04
(CBIC NAC 1 1 1
EXT- NFE 354 399 358
INT)
n 5 OBJ .35130E+04 .35065E+04 .35073E+04
s NAC o* 1* 2
h (ALM) NFE 192 204 210




TABLE XXXI

Test Results Conceptual Design FFG-7 (IONED: 4,9)

ONE-DIMENSIONAL SEARCH: Bounds + Polynomial

NDV = 5

NCON = 13
AVERAGE CPUT TIME PER FUNCTION EVALUATION:

1
METHOD OF
m. Dm.

. 35120E+04
1
55

- +35128E+04

OPTIMIZER:
STRATEGY:

0 aBJ

DIFECT NAC
NFE

1 OBJ
suMT NaC
(EXT) NFE

2
suMT oBJ
(LN~ NAC
EXT- NFE
INT)

3
suMr oBJ
(QUAD- NAC
EXT- NFE
INT)

4
suMT oBJ
(CBIC NAC
EXT- NFE
INT)

5 OBJ
suMT NAC
(ALM) NFE
CONMIN RESULTS:
OBJ:

NAC: 3
NFE: 60

2
FLETCHER-
REEVES

.35109E+04
1
253

.35216E+04
0
238

.35305E+04
1
227

.35135E+04
1
228

.35086E+04
o*
130

-3
ROBUST
M.F.D'

.35078E+04

2
78

D.F.P.

. 35085E+04
2
262

.35174E+04
1
242

.35084E+04
1
227

.35090E+04
1
228

.35085EH04
1
169

* = VIOLATED CONSTRAINT(S)

100

.28926E~01 Seconds

B.F.G.S.

.35083E+04
2
260

.35150E+04
1
242

.35091E+04
1
226

- 35090E+04
1
222

.35095E+H04
1
174




TABLE XXXII

Test Results 47-Bar Planar Tower (IONED: 2,7)

Golden Section

436 (Stress, Displacement, Buckling, and Frequency
.53264E-01 Seconds

N ONE-DIMENSIONAL SEARCH:
NDV = 44 NCON =
AVERAGE CPU TIME PER FUNCTION EVALUATION:

OPTIMIZER: 1 2 3 4 5
METHOD OF FLETCHER- FOBUST D.F.P. B.F.G.S.
STRATEGY:  FEAS. DIR. REEVES M.F.D.
0 OBJ .60646E+04 .4001.2E+04
DIRECT MAC O 10
NFE 756 1443

1 oBJ .59466E+04 .36788E+04 .35326E+04
SIMT  NAC 2 9 1

(EXT) NFE 947 2154 2348

2
ST OBJ .47985E+04 .30141E+04 .33997E+04
(LIN- NAC 3 12 10

EXT- NFE 2819 3192 2618

INT)

3
sar  oBJ .53544E+04 .30141E+04 .33997E+04
(QUAD- NAC 4 12 10

EXT- NFE 2217 3192 2618

INT)

4
SiMT  OBJ .53544E+04 .30141E+04 .33997E+04
(CUBIC NaC 4 12 10

EXT- NFE 2217 3192 2618

INT)

5 OBJ .40389E+04 .23645E+04 .23832E+04
SUM  NAC O* g 13*

(ALM) NFE 711 7260 5434

CONMIN RESULTS:

[ -~

= VIOLATED CONSTRAINT (S)

OBJ: .38078E+04
NAC: 9
NFE: 2021
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TABLE XXXIII

Test Results 47-Bar Planar Tower (IONED: 3,8)
ONE-DIMENSIONAL SEARCH: Golden Section + Cubic Polynomial

NDV = 44 NCON = 436 (Stress, Displacement, Buckling, and Frequency)
AVERAGE CPU TIME PER FUNCTION EVALUATION: .47939E-0l Seconds

OPTIMIZER: 1 2 3 4 5
METHOD OF FLETCHER- ROBUST D.F.P. B.F.G.S.

STRATEGY : FEAS. DIR. REEVES M.F.D.

0 OBJ .61268E+04 .45382E+04
DIRECT NAC 2 7

NFE 404 749

1 oBJ .55662E+04 .36696E+04 .36743E+04
SuMT NaC 3 8 5
(EXT) NFE 1458 2390 2020

2
suMr oBJ .46477E+04 .36015E+04 .35362E+04
(LIN- NAC 4 7 10

EXT~ NFE 2485 2451 2408

INT)

3
suMT oBJ .44886E+04 .36063E+04 .35387E+04
(QUAD- NAC 5 7 8

EXT- NFE 2438 2453 2247

INT)

4
suMr CBJ .45720E+04 .36102E+04 .35357E+04
(CUBIC NAC 3 6 10

EXT- NFE 2064 2282 2404

INT)

5 OBy .57343E+04 .32050E+04 .26490E+04
sur NAC 2 5 5%
(ALM) NFE 883 3816 6258

CONMIN RESULTS:

* =

VIOLATED CONSTRAINT(S)

OBJ: .38078E+04
NAC: 9
NFE: 2021
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TABLE XXXIV

Test Results 47-Bar Planar Tower (IONED: 4,9)
ONE-DIMENSIONAL SEARCH: Bounds + Polynomial

NDV = 44 NCON = 436 (Stress, Displacement, Buckling, and Frequency)
AVERAGE CPU TIME PER FUNCTION EVALUATION: .43639E-01 Seconds

OPTIMIZER: 1 2 3 4 5
METHOD OF FLETCHER- ROBUST D.F.P. B.F.G.S.
STRATEGY : FEAS. DIR. REEVES M.F.D.
0 OBJ .61115E+04 .44852E+04
DIRECT NAC 2 9
NFE 523 970

1 oBJ .61499E+04 .50367E+04 .59280E+04
SUMT NAC 2 4 2

(EXT) NFE 575 1101 726

2
SUMT OBJ .62486E+04 .57233E+04 .58948E+04
(LIN~ NAC 2 0 2

EXT- NFE 1214 1059 1174

INT)

3
SuMT oBJ .62344E+04 .36405E+04 .53255E+04
(QUAD- NAC 0 4 2

EXT- NFE 1153 2651 1314

INT)

4
suMr oBJ .59038E+04 .58969E+04 .56291E+04
(CUBIC NAC 2 2 2

EXT- NFE 1741 1172 1226

INT)

S OB ... .61200E+04 .24724E+04 ***
SuMT NAC 4 4* kR

(ALM) NFE 871 3459 Ktk

CONMIN RESULTS:

* =

VIOLATED CONSTRAINT (S)

OBJ: .38078E+04
NAC: 9
NFE: 2021
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TABLE XXXV

Test Results 234-Bar Space Tower (IONED: 2,7)

ONE-DIMENSIONAL SEARCH: Golden Section
NDV = 56 NCON = 3550 (Stress, Displacement, \and Buckling)
AVERAGE CPU TIME PER FUNCTION EVALUATION: .36011E+00 Seconds

OPTIMIZER: 1 2 3 4 5
METHOD OF FLETCHER- ROBUST D.F.P. B.F.G.S.
STRATEGY:  FEAS. DIR. REEVES M.F.D.

0 OBJ .75378E+05 .53526E+05
DIRECT NAC 1 2
NFE 297 1545

1 OBJ .48933E+05 .52357E+05 .46937E+05
suMr NAC 1* 0* o*
(EXT) NFE 2822 3166 1716

X SIMI  OBJ .84527E+05 .84526E+05 .84525E+05
N LI+ NAC o* O* o*
- EXT- NFE 578 390 388

suMr OBRJ .84480E+05 .84480E+05 .84480E+05
(QUAD- NAC o* o* 0*
EXT- NFE 714 712 712

suMT OBJ .84512E+05 .84512E+05 .84512E+05
(CUBIC NAC o* o* 0*

EXT- MNeE 535 535 585

INT)

5 OBJ .46665E+05 .46849E+05 .43967E+05

suMr NAC 0* 2 2
(AIM) NFE ‘ 4098 3949 5657
CONMIN RESULTS: * = YVIOLATED CONSTRAINT(S)
OBJ: .39353E+05
NAC: 4

NFE: 2946
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TABLE XXXVI
Test Results 234-Bar Space Tower (IONED: 3,8)
ONE~-DIMENSIONAL SEARCH: Golden Section + Cubic Polynomial
NDV = 56 NCON = 3550 (Stress, Displacement, and Buckling)
AVERAGE CPU TIME PER FUNCTION EVALUATION: .34968E+00 Seconds
OPTIMIZER: 1 2 3 4 5
METHOD OF FLETCHER- BUST D.F.P. B.F.G.S.

STRATEGY : FEAS. DIR. REEVES M.F.D.

0 OBJ .58577E+05 .54682E+05
DIRECT NAC 1 2

NFE 2608 1343

1 OBJ .51327E+05 .53002E+05 .45573E+05
suMT NAC 2 2 o*
(EXT) NFE 3189 2917 3101

2
s OBJ .84529E+05 .84528F+05 .84529E+05
(LIN~ NAC o* o* o*

EXT- NFE 584 585 970

INT)

3
suMT OBJ .84480E+05 .84480E+05 .84480E+05
(QUAD- NAC 0* 0* 0*

EXT- NFE 715 713 713

INT)

4
suMr OBJ .84512E+05 .84512E+05 .84512E+05
(CUBIC NAC 0* 0* o*

EXT- NFE 535 535 535

INT)

5 OBJ .46507E+05 ~ .45394EH05 .45364E+05
suMT NAC 2% 1 1
(ALM) NFE 4702 4100 4527
CONMIN RESULTS: * = VIOLATED CONSTRAINT (S)
OBJ: .39353E+05
NAC: 4
NFE: 2946
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Test Results 234-Bar Space Tower (IONED: 4,9)

ONE-DIMENSIONAL SEARCH:
56 NCON =

NDV =

OPTIMIZER: 1l
STRATEGY :
0 BJ .51504E+05
DIRECT NAC 2
NFE 2279
1 OBRJ
suT NAC
(EXT) NFE
2
suMT OBJ
(LIN- NAC
EXT- NFE
INT)
3
sar OBJ
(QUAD- NAC
EXI- NFE
INT)
4
s oBJ
(CUBIC NAC
EXT- NFE
INT)
5 CBJ
saur NAaC
(AIM) NFE
CONMIN RESULTS:
OBJ: .39353E+05
NAC: 4
NFE: 2946

.........
................................

TABLE XXXVII

2

METHOD OF FLFICHER-
FEAS. DIR. REEVES

.45275E+05
o*
1139

.84527E+05
0*
529

.84480E+05
o*
698

.84512E+05
0*
524

.48394E+05
3
3423

*

-3
M.F.D.
. 54825E+05

1
2070

106

Bounds + Polynomial

.32508E+00 Seconds

D.F.P.

.46030E+05
o*
1971

.84526E+05
o*
356

. 84480E+05
o*
698

.84512E+05
o*
524

.45472F+05
1l
3769

= VIOLATED CONSTRAINT(S)

3550 (Stress, Displacement, and Buckling)
AVERAGE CPU TIME PER FUNCTION EVALUATION:

B.F.G.S.

.35709E+05
1*
1487

.84528E+05
o*
706

.84480E+05
o*
698

.84512E+05
0*
524

.45321E+05
2%
3598
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