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PREFACE

The model investigations of the Pointe Coupee Pumping Station pump
intake (sump) and stilling basin (outlet structure) reported herein were
authorized by the Office, Chief of Engineers (OCE), U.S. Army, on 14 Feb-
ruary 1978, at the request of the U. S. Army Engineer District, New
Orleans (LMN). Included in this authorization were model investigations
of the pumping station siphon which are discussed in a separate report
(WES TR HL-82-21).

This investigation was conducted during the period September 1979
to August 1982, in the Hydraulics Laboratory of the U. S. Army Engineer
Waterways Experiment Station (WES), under the direction of Messrs. H. B.
Simmons, Chief of the Hydraulics Laboratory, and J. L. Grace, Jr., Chief
of the Hydraulic Structures Division, and under the general supervision
of N. R. Oswalt, Chief of the Spillways and Channels Branch. The
project engineer for the model studies was Mr. R. R. Copeland, assisted
by Mr. E. L. Jefferson. Mr. B. F. Stanfield is acknowledged for his
work in constructing the models. This report was prepared by
Mr. Copeland.

During the course of the study, Messrs. Cecil W. Soileau,

Reynold D. Broussard, Mike Sanchez-Barbudo, James Ferris, Rober J.
Guizerix, Daniel Marsalone, and Arthur Laurent of LMN; Hugh E. Wardlaw,
John B. Harman, Joe Barber, John Monroe, and James Pendergrass of the
Memphis District; Joe McCormick, Larry Cook, Larry Eckenrod, Roddis C.
Randell, Frank Weaver, Frank Johnson, Roland J. Dubisson, and Robert I.
Kaufman of the Lower Mississippi Valley Division; and John S. Robertson
and Sam Powell of OCE visited WES to discuss the program of model
tests, observe the model in operation, and correlate test results with
concurrent design work.

Commanders and Directors of WES during the conduct of this in-
vestigation and the preparation and publication of this report were
COL Nelson P. Conover, CE, and COL Tilford C. Creel, CE. Technical

Director was Mr. F. R. Brown.
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L
CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) f
UNITS OF MEASUREMENT 4

"o :

U. S. customary units of measurement used in this report can be con- S

verted to metric (SI) units as follows: L

R

R

Multiply By To Obtain ™) )

cubic feet per second 0.02831865 cubic metres per second ]

Fahrenheit degrees * Celsius degrees or Kelvins ;

feet 0.3048 metres ]

feet of water 0.03048 kilograms per square "e :

centimetre h

]

feet per second 0.3048 metres per second .

L

gallons per minute 3.785412 cubic decimetres per minute 3

inches 25.4 millimetres ° 1

miles (U. S. statute) 1.609344 kilometres T f

pounds (mass) per 16.01846 kilograms per cubic metre 1}: g

cubic foot e

square miles 259.0 hectares LT

. 3

..‘,..,..

| .
3 ]
. ]
- -

. °

R i)
PRI

-_—

* To obtain Celsius (C) temperature readings from Fahrenheit (F) read-
ings, use the following formula: C = (5/9) (F - 32). To obtain
Kelvin (K) readings, use: K = (5/9)(F - 32) + 273.15.

Lan andr ar S aded
R

i
L...._.;.'_AA“ PPN PN

——7
-
w
e
K

e bdhendnbnnd




dew uo1jed07]

MR L. i ey e s TR

1 @2and13

D Mniune atn o o

n<..< . -N . .. .> - ’ .-v

4.*1.11.1.41441_1 —
‘ 1 T -

o o

*
.
f.«
.
s
L]
Vo
/
. o7 4 i
/
¥
FIZNv v o¥Om 3
~.,
-
N

7302 im0 B—_
NOILVLS ONIdWd,

e ——— ) ...‘..
. ——— \.T«) \
. NN IS  FOVNMY YO, *

J3TA
o

J4N0H 3ivis ®

33A37 0350d0Nd
33A37 ONILSIX3 T
IUNLONYLS IOVNIvLT

NOILVYLS ONIgwnd L]

gN3Is3d

13N, ;

AV Mao0o0T7d

V A V1T VI VHILY

d S IM
\ S N\




R = IERARAEA AL P Al hy
.

e RIS

Ciei kel

< 80 Mo o anL ol 4 f'T vvrfrrfv—v—rrrv LA S S g S
/ . . el [ f . i
SR - . . i . L e et

o
-

l§

rv—?."'Vf' Mt
r .

'*fr—f "
3
I

POINTE COUPEE PUMPING STATION SUMP AND OUTLET STRUCTURE
UPPER POINTE COUPEE LOOP AREA, LOUISIANA

Hydraulic Model Investigation

PART I: INTRODUCTION

The Prototype

1. The site of the proposed Pointe Coupee pumping station, to
be located in south-central Louisiana in the northernmost portion of
Pointe Coupee Parish (Figure 1), is 2 miles® north of the town of
Melville and about 32 miles northwest of Baton Rouge. The 128-square-
mile drainage area is called the Upper Pointe Coupee loop and com-
prises primarily cropland, pastureland, and forestland. The area is
enclosed by the Mississippi, 0ld, and Atchafalaya River levees and by
the Morganza Floodway upper guide levee. Bayou Latenache and Johnson
Bayou, the principal streams draining the area, collect rainfall runoff
and convey the water to the existing Pointe Coupee gravity-flow drain-
The

proposed Pointe Coupee pumping station would be located about 0.5 mile

age structure where it is discharged into the Morganza Floodway.

west of the gravity-flow drainage structure and would discharge flows
into the Atchafalaya River.

2. Drainage of the Upper Pointe Coupee loop area was blocked by
the construction of the upper guide levee of the Morganza Floodway
which carries excess Mississippi River floodwaters to the Atchafalaya
Basin Floodway. To provide for this drainage, the gravity-flow drain-
age structure was constructed. Extra storage was provided in the
borrow pits that had heen used to build the levee, and flood easements
were purchased over some 20 square miles in the loop area located

below el 35.0 NGVD.** However, flooding continued to affect

* A table of factors for converting U. S. customary units of meas-
urement to metric (SI) is presented on page 3.

*%* All elevations (el) cited herein are in feet referred to the
National Geodetic Vertical Datum (NGVD).

, .
PP SRS 1

—a—

AT

kel

P
A'L'LAL‘.L




PR T ——m—m —

SN ~ ARrRCAEAN NI
‘. : L

et

s
t
L

b A S i G ]
AARANAR
- .. .

T

the area due to an inadequate system of interior drainage and insuffi-
cient capacity of the drainage structure. High flood stages occurred
in 1973 when the Morganza Floodway was operated for the first time.
The high stage in the floodway necessitated the closing of the Pointe
Coupee drainage structure. This action effectively prevented the
floodwaters in the Morganza Floodway from entering the Pointe Coupee
loop area; however, it also prevented any accumulated runoff within
the area from draining. Eight inches of rain fell on the loop area
while the floodway was operating. Serious flooding was prevented by
placing into action 41 portable pumps with a total rated capacity of
1,400 cfs. This emergency measure was successful in keeping water
levels in the area from exceeding el 34.0, 1 ft below the flood ease-
ment elevation. The proposed Pointe Coupee pumping station would pro-
vide for improved drainage in the loop area as well as provide flood-
control capabilities during operation of the Morganza Floodway. '

3. The original design of the pumping station is shown in Fig-
ures 2 and 3. With this design, the approach channel was symmetrical
for 200 ft upstream from the pumping station. The channel had a base
width of 150 ft with 1V-on-3.5H side slopes. The channel bank eleva-
tion was approximately 32.0. Quadrant wing walls with 100-ft radii
were proposed to provide a streamlined transition from the approach
channel to the pumping station.

4. The proposed pumping station will have three vertical 72-in.
pumps operating with siphonic recovery. Design discharge for the sta-
tion is 1,500 cfs, although the discharge per pump will range between
350 and 680 cfs, depending on the operating head and pump manufacturer.
The pump suction bells will have 10.5-ft diameters and will be located
3.5 ft above the sump floor which is at el 10.0. The pumps will be
started when the sump water surface is at el 21.0 and will be stopped
when it is lowered to el 20.0. The maximum sump water surface will be
el 26.0. The pumps will operate in individual sumps 26 ft wide and
98 ft long (measured from pump center line). Cooling water for the die-
sel engines that power the pumps will be provided through the raw water

conduit located in the right (looking downstream) wall of the sump just
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downstream of the sump entrance. The cooling system will have a capac-

ity of 2,680 gpm and will discharge through a 15.5-in.-diam pipe lo-

]u cated in the left wing wall, 5 ft from the sump wall, at el 10.0. [ ] j
- 5. The three discharge pipes from the pumping station will carry g
flows over the Atchafalaya River levee into the outlet structure. The
discharge pipes will transition to 10- by 10-ft box outlets. The in-
!! vert of these outlets will be 5.5 ft above the floor of the basin. ] ?
" The concrete outlet structure will be 70 ft long and 46.5 ft wide. :
E Tailwater elevations in the stilling basin will vary between el 3.1
L and 46.0.
h 6. The outlet channel will be approximately 1,200 ft long A4 -.'i

will carry pumped flows from the stilling basin into the Atchafa ra

River. The channel will have an invert elevation of -1.2, a bas: ~idth
of 80 ft, and 1V-on-4H side slopes. The bank elevation is appro :
mately 32.0. The channel invert and side slopes will be protect. .y o \
riprap for the first 200 ft downstream from the stilling basin.

Purpose of Model Study

7. Pump performance can be adversely affected by unfavorable ]

flow conditions at the pump intake. Air entrainment, vortex action,

pressure fluctuations, and flow circulation in the pump sump can result 1
in cavitation, vibration, and uneven stress on the pump. Some of the -

causes of these problems are low submergence of the pump impeller and

unequal flow distribution entering the sump. Although some studies
have been conducted to determine optimum sump design to eliminate or

reduce these adverse effects, these studies have not yet produced ®

sufficient information to develop general design criteria for pump

.
PUTUPT Y-V OF €F CLAR)

sumps and approach channels.

8. The Pointe Coupee pumping station design requires an impel-

ler submergence considerably lower than most general criteria recom- ®

P R we

mend. The sump and approach channel model study was conducted to
provide an assessment of the approach channel and sump performance for

a range of anticipated operating conditions. The investigation was
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also intended to develop practical modifications that would improve
performance of the pump station.

9. The model study of the stilling basin and outlet channel was

.‘Hr
®
PO

conducted in order to assess the ability of the basin to dissipate
energy and ability of the riprap to protect the channel from scour.

Necessary design modifications were to be developed during the model

investigation.
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PART 11: THE MODELS

Description

10. The models of the Pointe Coupee pumping station inlet and
outlet structures were constructed to undistorted linear scale ratios
of 1:18.75 and 1:19.2, respectively. The pump sump was fabricated of
transparent plastic to allow observation of submerged flow conditions.
Transparent tape scales were attached to the sidewall of the sump to
indicate water-surface elevations. The quadrant wing walls that pro-
vided the transition from the approach channel to the sump were con-
structed of sheet metal. The approach channel was molded of pea gravel
to sheet metal templates and extended 700 ft upstream from the sump.
The outlet basin was also fabricated of transparent plastic, as were
the discharge pipes that were simulated from the crown of the siphon
into the basin. The outlet channel was molded of sand to sheet-metal
templates, except where riprap was specified in the design. The models
as originally designed are shown in Figures 2 and 3.

11. Flow through the models was recirculated by centrifugal
pumps. Each pump column and discharge line had its own separate pump
to permit simulation of various flow rates and operating conditions.

In the sump model, flow was initially measured by turbine flowmeters
and displayed electronically. In the course of the investigation, two
of the turbine meters were removed and measurements were made using
elbow meters that had been calibrated volumetrically in the model head-
bay. Flow discharging into the approach channel was distributed by
causing it to pass over a weir and through a rock baffle. The cooling
water system had a separate pump with flow measured by a rotameter.

In the stilling basin model, flow was measured by paddle-wheel flow-
meters and displayed electronically. Maximum velocities were main-~
tained in the discharge pipes by keeping the air vents open at the

top of the pipes. Water levels were adjusted in the models by adding
or draining water.

12. Various instruments and methods were used to measure the
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a. Pump sump
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b. Approach channel

Figure 2. Type 1 (original) design of pump sump and approach ]
channel, 1:18.75-~scale model
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factors that affect pump and stilling basin performance. Electronic
pressure transducers were placed beneath the pump bells to measure
ins. intaneous pressure fluctuations; a time-history was provided on
strip charts. Velocities were measured by a paddle-wheel velocity
meter. Flow rotation into the pump column (swirl) was measured by
counting revolutions of a freewheeling vortimeter with four zero-
pitched blades mounted in the pump column. Confetti, dye, and par-
tially submerged floats were used to observe and photograph flow pat-
terns. Visual observations were used to determine vortex activity.
Water-surface elevations were measured by point gages attached to a
crossbar supported by level steel rails located on each side of both
models. The primary means of monitoring flow conditions in the model,
visual observation for vortex activity, a pressure transducer, and a
vortimeter, are shown in Figure 4.

13. After the pump sump model was constructed, a design change
was made to the thickness of the divider wall between the individual
pump bays. The wall thickness was increased from 2.5 to 3.5 ft in
order to allow for the placement of more reinforcing steel in the con-
crete walls. Engineers from the U. S. Army Engineer Districts, New
Orleans and Memphis (LMN and LMM), the Lower Mississippi Valley Divi-
sion, and the Office, Chief of Engineers, decided that this change
would not affect flow into the sump; therefore no change was made to

the model.

Interpretation of Model Results

14. The principle of dynamic similarity, which requires that the
ratios of forces be the same in the model and prototype, is the basis
for the design of models and the interpretation of results. Models in-
volving a free surface are scaled to the prototype using the Froudian
criteria because the flow phenomena are determined primarily by gravi-
tational and inertial forces. Viscous forces can also influence the
flow patterns and vortex formations; however, it has been found that

when the Reynolds number exceeds 5 X 104 in the pump column, the
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DIA. 5 (PROTOTYPE)
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Figure 4. Flow condition monitors used in model investigation
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viscous forces are negligible. The Reynolds number in the model pump
column was 1.2 X 105. The general relations expressed in terms of the

model scale or length ratio are as follows:

Scale Relation

Dimension Ratio Sump Model OQutlet Model
Length Lt =L 1:18.75 1:19.2
. _ J 1/2

Velocity Vr =L 1:4.330 1:4.382
Time =12 1:4.330 1:4.382
Discharge Q = 13/2 1:1,522 1:1,615
Pressure Pr =L 1:18.75 1:19.2
Frequency Fr = L.l/2 1:0.2309 1:0.2282

Values for discharge, water-surface elevation, and pressure fluctua-
tion can be transferred quantitatively from the model to the proto-
type by means of the scale relations above. Unless otherwise noted,
all results reported herein will be in prototype units.

15. Adverse flow conditions into the pump intake induce pres-
sure fluctuations, rotational flow, and vortex activity. There are
currently insufficient prototype measurements to establish definite
acceptable limits for these factors; however, general guidelines have
been used at the U. S. Army Engineer Waterways Experiment Station
(WES). For this model study, pressure fluctuations of less than 2 ft
of water are considered acceptable. The severity of rotational flow
or swirl into the pump column may be related to the angular velocity
of the vortimeter or to the dimensionalized rotational flow indicator,
Ri . The rotational flow indicator is the ratio of the tangential
velocity at the tip of the vortimeter blade to the average axial ve-
locity in the pump column and is equal to the tangent of the indicated
swirl angle as used by many investigators. The rotational flow indi-

cator is computed using the following formula:

= U
Ry =¥
a
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n = angular velocity of vortimeter, rpm
d = pump column diameter, ft
V_ = average axial velocity in pump column, fps

a

The rotational flow indicator has the same value in the model and proto-

type and may be used to compare performance
sizes and discharges. Sump performance was
this study when the angular velocity of the

7 rpm and the rotational flow indicator was

of sumps with different
considered satisfactory in
vortimeter was less than

less than 0.09. Every

attempt is made to eliminate vortex activity from the walls, floor, or

water surface. The types of vortex formations and the stages of sur-

face vortex development observed in this investigation are shown in

Figure 5. Using these guidelines, acceptable pump sump design can be

accomplished through the model investigation procedure.
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Vortex formations
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PART III: TEST RESULTS

Method of Operation

16. The proposed pumping station consists of three pumps with

three discharge pipes and outlets. The pumping station sump is de-

signed to operate between water surface el 20.0 and 26.0. Tests were

!
conducted at 1-ft intervals in this range with all three pumps operat- )
4

ing. At el 20.0, various combinations of one and two pumps operating

were also tested. The stilling basin was tested at tailwater el 46.0,

which is the design flood stage; el 18.8, which is the average 50 per- o

cent chance stage; and at el 3.1, which is the minimum river stage.

Tests at all three elevations were conducted with all three outlets

discharging. At the lowest tailwater, tests were also conducted with

different combinations of one and two outlets discharging. The maxi-

mum anticipated flow per pump of 613 cfs was used for initial testing;

however, this value was increased to 680 cfs during the course of the

testing program. The cooling water system was operated for all sump

tests, except for one test where its effect on sump performance was

found to be insignificant. Results of the sump model tests are shown

in Tables 1-32, geometries of test sumps and approach channels are

shown in Figure 6 and Plates 1-4, respectively, and pump numbers are

shown in Figure 2.

Original Pump Sump Design

17. Testing of the type 1 (original) design sump and approach

channel designs revealed that unfavorable hydraulic conditions would

occur at all operating conditions (Table 1). Fully developed air en-

training vortices occurred with a sump water surface at el 20.0 and

surface dimples occurred with the water surface at el 26.0. Measure-

ments of pressure fluctuation and swirl were satisfactory when all

three pumps were operating; however, when one or two pumps were operat-

ing, conditions deteriorated. This deterioration was caused by the
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poor flow distribution entering the active sump when flow had to cross
in front of an inactive sump. Conditions were most severe when pump 1

or pump 3 was operating alone.

Approach Channel Designs

18. The type 1 (original) design approach channel provided for
a symmetrical channel for 200 ft upstream from the sump. The right
bank of this channel was provided by a dike as shown in Figure 2 and
Plate 1. Flow tended to concentrate on the left side of this approach
channel and stagnation occurred at the head of the dike on the right
bank. This caused a curvature of the flow as it approached the sump.
This condition was least severe when all pumps were operating and most
severe when only one pump was operating as shown in Photo 1. The type 1
design approach channel was used to test the type 1-9 design sumps.

19. After testing nine different sump designs (see Figure 6),
attention was focused on approach channel improvements in an attempt
to improve sump performance by eliminating the flow stagnation that
occurred at the dike head. This was accomplished with the type 2 ap-
proach channel (Plate 2) by extending the dike upstream to connect
with the existing bank located approximately 350 ft upstream. The
type 2 design approach channel was compared with the type 1 design
approach channel using the type 7 and 9 design sumps (Tables 4 and 5,
and 7 and 8, respectively). Although the flow conditions in the ap-
proach channel were improved with the type 2 design approach channel,
there was no significant improvement in sump performance. The type 2
design approach channel was also used in tests of the type 10 and 11
design sumps shown in Figure 6.

20. Further improvement was attempted with the type 3 design
approach channel by making the right bank symmetrical to the left bank
for 500 ft upstream from the sump as shown in Plate 3. Flow condi-
tions for this design were not noticeably improved over the type 2
design approach channel. The conditions in the type 11 design sump

were similar for the type 2 and 3 design approach channels (Tables 10
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and 11). Flow conditions with all three pumps operating and with only
pump 1 operating are shown in Photos 2a and 2b. These photographs
show that when all three pumps were operating, the type 3 design ap-

proach channel provided a more uniform flow entering the sump. How-

A "n'_"(‘-'r'_'vT
.' .

ever, when only one pump was operating, flow entered the sump at an

L.
e

acute angle with all three approach channel designs, producing unfavor-

able conditions in the sump. It was apparent that as long as one or
two pumps were not operating, the approach conditions could not be
symmetrical; therefore, the correction of adverse entrance conditions
must be solved with sump design modifications. It was also determined
that hydraulic performance in the sump was essentially the same with
the type 1, 2, and 3 design approach channels and that sump designs
with different approach channels were comparable. The type 3 approach
channel was used to test the type 11-27 design sumps shown in Figure 6.

21. The type 1 (original) design approach channel was preferred
by LMN because less earthwork would be required. Therefore, after
achieving an acceptable sump design, the original approach channel was
reconstructed in the model and tested to check performance with the
better sump designs. The type 1 design approach channel was deemed
adequate for adoption as the final design and was used for subsequent
tests of umbrella supports and the recommended and adopted (type 28)
design sump (Figure 16).

22. During construction of the Pointe Coupee pumping station, a
slope failure occurred along the right bank of the approach channel
just upstream from the sump. Soil conditions were such that a modified
(type 4) design approach channel was more practical to construct and was
tested in the model. The type 4 design approach channel (Plate 4 and
Photo 3) was tested with the type 28 design sump (Figure 16) and with
the type 2 design umbrella supports (Figure 15), the final designs
chosen for construction by LMN. Results with the type 1 (original) de-
sign and the revised (type 4) design approach channels are shown in
Tables 30 and 31. Pressure fluctuations were about the same with both
designs. There was a slight increase in swirl with the type 4 design

approach channel, but the results were still below recommended values.
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The vortex activity with the type 1 design approach channel consisted

of intermittent surface dimples that occurred so infrequently (less

than 10 percent of the time) that the sump was considered vortex-free.
Surface dimples occurred more frequently with the type 4 design approach
channel (10 to 30 percent of the time), but this level of vortex activ-
ity is considered to be acceptable. Flow patterns with the type 4 de-
sign approach channel are shown in Phcoto 4. The type 4 design approach
channel performed within acceptable limits and was considered

satisfactory.

Experimental Pump Sump Designs

23. After testing the type 1 (original) design sump, an attempt
was made to reduce vortex action by raising and lowering the pump suc-
tion bell. The suction bell was originally located at el 13.5, 3.5 ft
above the sump floor or 0.33D in terms of the suction bell diameter,

D . The type 2, 3, and 4 design sumps had the suction bell located
0.20D, 0.45D, and 0.60D above the floor, respectively. The tests were
run with all three pumps operating and with the type 2, 3, and 4 design
sumps in bays 1, 2, and 3, respectively. The surface vortex stage ob-
served in the type 2-4 design sumps is compared with that of the type 1
design sump and suction bell locations in the following tabulation:

Surface Vortex Stage
Bay 1 Bay 2 Bay 3

Type 1 Type 2  Type 1 Type 3  Type 1 Type 4
Elevation Design Design Design Design Design Design

ft Sump Sump Sump Sump Sump Sump
NGVD 0.33D 0.20D 0.33D 0.45D 0.33D 0.60D
32 0 A 0 A 0 B
29 B* A B B B B
26 A B A B B D
23 E E E E E E
20 E E E E E E

* See Figure 5, page 16, for explanation of A-E.
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No improvement was noticed with the type 2 and 3 design sumps, and con-
ditions deteriorated with the type 4 design sump. The suction bell
was returned to its original elevation, 13.5, for further testing.

24. Vortex activity can often be reduced by moving the backwall
of the sump closer to the suctionp bell. However, if the wall is too
close to the suction bell adverse pressure fluctuations are set up on
the sump floor beneath the suction bell, and submerged vortices may
develop off the backwall. The distance from the suction bell to the
backwall in terms of suction bell diameter was G.64D for the original
design sump. Backwalls located 0.26D (type 5 design sump, Table 2)
0.17D (type 11 design sump, Table 10), 0.10D (type 10 design sump,
Table 9), and 0.07D {(type 7 design sump, Table 5) were tested with a
standard type suction bell and rectangular sumps.® The vortex activ-
ity decreased as the backwall was moved closer to the suction bell,
with the least activity occurring with the type 7 design sump, however,
air-entraining surface vortices were still present at the lowest sump
water-surface elevation. The maximum pressure fluctuations occurred
when a single pump was operating and are shown in Figure 7 for the
five designs tested. Pressure fluctuations tended to improve as the
backwall distance was decreased and then deteriorated with the type 7
design sump when the backwall became too close. Swirl was not sig-
nificantly affected by the location of the backwall. It was apparent
that moving the backwall closer improved hydraulic conditions somewhat
but not sufficiently.

25. In order to reduce circulation in the corner of the sump be-
hind the pump, fillets are often employed. In the type 6 design sump,
45-deg fillets were installed in the type 5 design sump. The fillets
connected points along the backwalls and sidewalls located 8 ft from

the corners. This design resulted in a slight improvement in pressure

The type 1 and 5 design sumps were tested with the type 1 design ap-
proach channel while the others were tested with the type 2 design ap-
proach channel so results are not directly comparable. Hovever, it
was determined that the different approach channel designs had an in-
significant effect on sump performance.
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fluctuations, but no significant improvements in swirl or vortex activ-
ity (Table 3). In the type 8 design sump, 45-deg fillets connecting
points along the backwalls and sidewalls located 6 ft from the corners
were installed in the type 7 design sump. Again, a slight improvement
in pressure fluctuations was recorded, but no significant improvement
in swirl or vortex activity was observed (Table 6). From these tests
it was concluded that fillets provided only a slight improvement in
hydraulic conditions.

26. Converging sidewalls reduce circulation behind the pump col-
umn by directing flow into the suction bell and by occupying stagnant
areas in the corners of the pump sump. The converging sidewalls tested
in the type 9 design sump extended 11.25 ft from the backwall such that
the minimum distance between the wall and the bell was 0.07D. With
this design, the severe air-entraining surface vortices were eliminated;
however, surface dimples and stage B vortices were occasionally observed
{Table 7). 1In addition, submerged sidewall vortices appeared where the
suction bell was closest to the sidewall. This type of vortex occurs
when the pressure along the sidewall is reduced sufficiently to cause
air to be removed from solution in the water. The converging sidewalls
significantly reduced swirl. The most significant improvement was
noted when less than three pumps were operating, indicating that the
flow was being directed more evenly into the suction bell, even when
approach conditions were unfavorable. Although some improvement was
noted when less than three pumps were operating, pressure fluctuations
were still excessive. It was apparent that converging sidewalls would
significantly improve the hydraulic conditions, but the walls needed
to be farther away from the suction bell.

27. Converging sidewalls were combined with a rounded backwall
located 0.14D (1.5 ft) from the suction bell in the type 12 design
sump (Table 13). With this design, pressure fluctuations were greater
than those with the type 9 design sump. Surface dimples occurred with
the water surface at el 26.0 and air-entraining vortices occurred with
the water surface at el 20.0. A submerged vortex was observed with

the water surface at el 25.0, but was less severe than that with the
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type 9 design sump. Swirl was reduced, apparently due to the greater
length of the converging sidewalls. It was concluded that the rounded
backwall increased surface vortex activity.

28. The effective sucticn bell diameter can be increased by
streamlining the lip of the suction bell. This was done in the type 13
design sump, Figures 6 and 8, which retained the type 12 design sump
dimensions. This slight modification resulted in a significant drop in
pressure fluctuations, but no significant improvement in swirl or
surface vortex action occurred. Submerged floor vortices were observed
at the higher sump water-surface elevations (Table 14).

29. The diameter of the suction bell can be significantly in-
creased by adding an umbrella. Umbrellas with a 20.75-ft diameter
were used in the type 14 design sump shown in Figure 9, which had the
same sump dimensions as the type 1 (original) design sump. The umbrel-
las reduced the distance to the backwalls from 0.64D to 0.15D.* The
severe air-entraining vortices that occurred with the type 1 design
sump were reduced to surface dimples with the umbrellas. Pressure
fluctuations and swirl were also reduced, but were still excessive
when less than three pumps were operating (Table 15). The addition
of the umbrellas was the single most effective method of improving
hydraulic conditions.

30. The wing walls located at the sump entrance are intended to
provide a smooth transition from the approach channel into the sump.
The original quadrant wing walls had 100-ft radii (Plate 1) and were
used in most of the model sump tests. However, two other wing wall
configurations were tested. The type 15 design sump had parallel wing
walls extending 200 ft upstream from the intake structure while the
sump dimensions were the same as those for the type 14 design sump.

The type 18 design sump had 45-deg wing walls (Figure 10) and had the
same sump dimensions as the type 17 design sump (Figure 6). The wing
wall layouts that were tested with the type 3 design approach channel

(Plate 3) are shown in Figure 10. The parallel wing walls resulted in

* D continues to refer to the suction bell diameter (10.5 ft) rather
than the diameter of the umbrella.
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no improvement in flow conditions (compare Tables 15 and 16); the
45-deg wing walls caused a slight increase in vortex activity (compare
Tables 18 and 19). Tests indicated that the original wing walls pro-
vide better flow transition from the approach channel into the sump
than the 45-deg wing walls and are just as good as the less practical
200-ft-long freestanding wing walls. The quadrant wing walls were
used in subsequent testing.

31. Flow within the sump can be redistributed in a more uniform
fashion by increasing the roughness of the sump walls. This was done
in the type 16 design sump (Figure 11) by adding grids or waffle boards
to the walls of the type 14 design sump. The grids, approximately

20
2.62’1 | 12,
1
10.38°
3
10" SQUARE GRIDS "
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- |-
]
—
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Figure 11. Type 16 design sump
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10 in. square and 10 in. thick, were placed on the backwall and along
the sidewalls for a length of 20 ft and to a height above the sump
floor of 16 ft. With the type 16 design sump, only surface dimples
were observed; and pressure fluctuations and swirl were within accept-
able limits for all operating conditions (Table 17). The New Orleans
District, however, felt that the grids would be difficult to construct
and maintain; thus an alternate solution was required.

32. Testing with the type 9 and 12 design sumps had demonstrated
the effectiveness of converging sidewalls and a backwall closer to the
suction bell in reducing vortex activity, pressure fluctuations, and
swirl. In the type 17 design sump (Figure 6), converging sidewalls
extended 31.5 ft from the backwall, such that the minimum distance be-
tween the umbrella and the sidewalls or backwall was 6 in. (0.05D).
With this design the pressure fluctuations and swirl were reduced to
an acceptable range for all conditions tested; however, some surface
vortex activity was still present (Table 18).

33. Vortex suppressor beams were added to the type 17 design
sump to reduce the vortex activity. In the type 19 design sump, the
beam was located one-half the umbrella diameter upstream from the lip
and was 4 ft high extending between el 18.5 and el 22.5 (Figures 6
and 12). Vortex activity was eliminated when all three pumps were
operating; however, surface dimples occurred when only one or two
pumps were operating, and pressure fluctuations were intermittently
excessive (Table 20).

34. The intermittently excessive pressure fluctuations that
characterized the type 19 design sump were eliminated in the type 20
design sump (Figures 6 and 12) by increasing the minimum clearance be-
tween the umbrellas and the sump walls to 9 in. (0.07D) (Table 21).

In addition, the height of the vortex suppressor beam was reduced to
1 ft, extending between el 19.5 and 20.5. Vortex activity increased
with the type 20 design sump.

35. Several sump tests were conducted to determine a vortex
beam configuration that would satisfactorily reduce surface vortices

without increasing pressure fluctuations (Tables 22-26). Vortex
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suppressor beams tested are shown in Figures 6 and 12. Model tests
indicated that a horizontal beam of any height located directly over
the front lip of the umbrella and extending 1 ft into the water would
eliminate vortex activity. However, as the water level increased and
the depth of flow over the top of the beam reached 1 to 2 ft, vortices
reoccurred. A solid horizontal beam extending through the entire range
of operating sump water-surface elevations caused intermittently exces-
sive pressure fluctuations. After testing several combinations of
vortex suppressor beam sizes and spacings, it was determined that four
1-ft beams spaced 1 ft apart extending from el 19.0 to el 26.0 and lo-
cated directly over the umbrella lip (type 25 design sump) were the
most effective in reducing vortex activity and limiting pressure

fluctuations.

Recommended Pump Sump Designs

36. The type 25 design sump (Figure 13) was recommended based
on the hydraulic model test results. This design provided a 20.75-ft-
diam umbrella on the suction bell. The sidewalls converged on an angle
of 5.14 deg from a point upstream from the umbrella lip equal to one-
half the umbrella's diameter, such that the minimum distance between
the umbrella and the sidewalls and backwalls was 9 in. Four vortex
suppressor beams were placed over the upstream lip of the umbrella.
These beams were 1 ft high, with 1-ft spacings, and extended from
el 19.0 to el 26.0. Pressure fluctuations for the original and recom-
mended designs at a sump water-surface elevation of 20.0 are shown in
Figure 14. Velocities in the sump, 31.14 ft upstream from the pump
column center line, are shown in Plates 5 and 6. With this sump de-
sign, pressure fluctuations were 2 ft of water or less, the rotational
flow indicators were less than 0.09, and vortex activity consisted of
surface dimples that occurred less than 10 percent of the time.

37. Originally, the umbrellas were to be supported by the suc-
tion bell. Two alternative umbrella support designs (Figure 15) were

trsted in which the umbrella was not supported by the suction bell.
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Figure 13. Recommended type 25 design sump
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Both of these designs called for hollow J-bulb seals between the suction

bell and umbrella, with supports on the backwalls and sidewalls. In

addition to the wall supports, the type 2 design umbrella supports con-

sisted of two pipe struts connecting the front lip of the umbrella to
the sidewalls. With the type 3 design umbrella supports, the front
lip of the umbrella was supported by a teardrop pier located beneath
the umbrella. 1Initial test results indicated that both alternatives
would function adequately (Tables 28 and 29).

38. In the course of testing the type 3 design umbrella support,
it was determined that a slight misalignment of the pier would create
excessive flow rotation into the pump column. This adverse condition
could also occur in the prototype if debris accumulated on the pier.
Due to the sensitivity of the pier's location, the type 2 design sup-

port with the pipe struts was recommended for the prototype.

; 39. Subsequent to the completion of testing on the Pointe
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Coupee pumping station model in August 1980, tests on various configu-
rations of vortex suppressor beams were conducted in the generalized
pump station research model at WES. Vortex suppressor beams similar
to those recommended for the Pointe Coupee pumning station were tested
in the generalized model and found to be unsuccessful in eliminating
surface vortices when the sump water-surface elevation was at a level
between the horizontal beams. This problem was eliminated by adding a
second row of staggered beams downstream from the first row in the
generalized facility. The second row of staggered beams allows for
continuous submergence of a vortex suppressor at all sump operating
levels without the flow blockage and head losses created by a single

solid beam. This design with the type 2 design umbrella supports was

tested in the Pointe Coupee pumping station model (Figure 16, Table 30).

The infrequent surface dimples present in the type 25 design sump still
occurred with the type 28 design sump, but less frequently. Velocities
in the type 28 design sump and type 4 design approach channel, 31.14 ft
upstream from the pump center line, are shown in Plates 7 and 8. This
design produces a slight improvement in hydraulic conditions and was
recommended and adopted for prototype construction.

40. The type 25 design sump was tested at sump water surfaces
above and below the design operating elevations (Table 32). At high
water-surface elevations the sump was tested with all three pumps
operating. When the water level exceeded el 27.0 the vortex suppres-
sor beams ceased to provide surface turbulence and vortex activity
increased sign ficantly. Stage C vortices developed as bubble accumu-~
lation made the vortex core visible. The vortices occurred more fre-
quently at the higher water-surface levels. Pressure fluctuations and
swirl were within acceptable ranges at higher water levels. Low water
levels were tested with only pump 3 operating. As the water level
dropped below el 20.0, conditions began to deteriorate. At el 19.0
and 18.0, stage A vortices were observed; but swirl and pressure fluc-
tuations were within acceptable limits. At el 17.0, conditions were
severely adverse, with the development of continuous floor vortices

and stage B surface vortices. The rotational flow indicator increased
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to 0.44 and the pressure fluctuations were 6§ ft of water. At el 16.0,
the strength of the floor vortex increased and mass circulation of

flow occurred around the pump bell. The vortimeter was rotating too
fast to count revolutions and pressure fluctuations were 16 ft of water.
Although operating conditions were not ideal outside the design operat-
ing water-surface elevations, hydraulic conditions were not adverse
between el 18.0 and 32.0; however, below el 18.0 severely adverse

conditions developed.

Original Stilling Basin Design

41. The 1:19.2-scale model of the type 1 (original) design still-
ing basin is shown in Figure 3; stilling basin and outlet channel dimen-
sions are shown in Figure 17. The pump station discharge pipes transi-
tion to 10-ft square conduits as they enter the stilling basin. The
invert of the square outlets was at el 3.0. The stilling basin floor,
at el -2.5, was 70 ft long and 46.5 ft wide with a 1.3-ft-high and
1V-on-1H sloping end sill. The invert of the outlet channel, at
el -1.2, was 80 ft wide. The model was tested at tailwater elevations
of 46.0, 18.8, and 3.1. The basin performed satisfactorily at the
higher tailwater elevations; however, at the lowest tailwater elevation
the basin was unsuccessful in dissipating energy. A large rooster tail
was created as flow was deflected upward by the end sill, and the
plunging flow caused the riprap downstream to fail. Flow conditions
at each tailwater tested are shown in Photos 5-7. It was apparent that
significant modifications would be necessary to provide adequate energy
dissipation. The experimental stilling basins tested are shown in Fig-

ure 18.

Experimental Stilling Basin Designs

42. Stilling basin performance was significantly improved by
adding a single row of baffles to the basin. In the type 2 design
stilling basin the baffles, located 25 ft from the backwall, were 2 ft
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high and 1.5 ft square with 1.5-ft spacings. The basin apron length

was reduced to 33 ft. The 70-ft-long sidewalls were retained so that
] extensive modifications to the model would not be required in this

early phase of the testing. The riprap downstream from the basin did

not fail at tailwater el 3.1 when all three pumps were operating; how-

ever, when less than three pumps were operating, the efflux was con-
! centrated and the riprap failed. At low tailwaters, flow hitting the
7 baffles was deflected upward causing considerable spray for all pump

operating conditions.

43. A second row of baffles was added in the type 3 design still-

E‘ ing basin. The first row of baffles was located 41.6 ft from the back-
wall and the second row, 44.4 ft from the backwall. The baffles had
the same dimensions and spacing as those in the type 2 design stilling
. basin. The stilling basin length of 50 ft was determined by measuring
the trajectory nappe of the flow leaving the outlet pipes and adding
an additional distance equal to three times the downstream depth of
flow. This distance has been found to work satisfactorily in previous
stilling basin studies at WES. The type 3 design stilling basin
performance was similar to the type 2 design; the riprap downstream
from the basin failed when less than three pumps were operating with
tailwater el 3.1. Flow conditions at the low tailwater elevation are
shown in Photos 8-10.

44. 1In order to increase the effective tailwater in the stilling

basin, the floor was lowered 3.5 ft to el -6.0 in the type 4 design
stilling basin. The basin was also lengthened to 56 ft with two rows

of baffles located 40 and 45 ft from the backwall. The baffle dimen-

0

~—w
f

sions and spacing were the same as in previous designs, but the height

TA

of the end sill was reduced to 1.0 ft. This design was based on mea-
surements of the depth of flow leaving the outlet pipes. The measured

flow depth was 2 ft, and the corresponding Froude number was 4.1. The

{ downstream or sequent depth required for formation of a hydraulic jump
in a horizontal rectangular channel was computed to be 10.5 ft using
the following equation:

{
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where
d2 = downstream depth
d, = upstream depth
1 v
1
F. = upstream Froude number =
1 ‘gal
V1 = average upstream velocity
g = acceleration due to gravity

Previous model studies at WES have shown that the energy head absorbed
by the baffles is approximately equal to 0.15d2; therefore, the required

downstream depth is usually assumed to be 0.85d Using this value and

2
the minimum tailwater elevation of 3.1, the stilling basin floor was
set at el -6.0. The theoretical trajectory of the nappe was calculated

using the equation:

y = -x tan © - ——3353—5——
2V~ cos™ ©
where
y = vertical distance
x = horizontal distance
tan © = slope of outlet pipe
g = acceleration due to gravity
V = average velocity leaving outlet pipe

The basin length of 56 ft was determined by adding the trajectory
length of the nappe to a distance equal to three times the calculated
downstream depth. A 1V-on-10H slope was used downstream of the end
sill to transition to the outlet channel invert elevation of -1.2.
45. The stilling action was generally improved with the type &4
design stilling basin, but riprap failure still occurred when less
than three pumps were operating at the low tailwater elevation. Re-
turn flow swept stones into the basin which could cause considerable

concrete abrasion damage. Surface waves downstream from the basin
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were observed to be greater when less than three pumps were operating.

The deterioration of stilling basin performance as the strength of the

flow circulation in the basin increased with two and one pump operation
is clearly shown in Photos 11-13. Riprap failure and rock deposited

in the basin by single pump operation are shown in Photo 14.

46. 1In an attempt to eliminate the flow circulation in the basin
when less than three pumps were operating, a solid trajectory based on
the underside of a free nappe was added between the outlet invert and
the type 5 design stilling basin. The parabolic drop was calculated

from the formula:

y = -X tan O - gx2 5
2(1.25V)° cos™ O

The type 5 design stilling basin trajectory was slightly longer than
the theoretical nappe trajectory calculated for the type 4 design still-
ing basin. This necessitated increasing the basin length to 59.7 ft
with two rows of baffles located 43.8 and 49.2 ft from the backwall.
The baffle dimensions and spacings were unchanged, and the end sill
height remained at 1.0 ft. No significant improvement was observed
with the type 5 design stilling basin trajectory.

47. The New Orleans District decided that the stilling basin
length should be 70 ft as originally designed. In the type 6 design
stilling basin, the type 5 design stilling basin was lengthened to
70 ft and the first and the second row of baffles were positioned
54.1 and 59.5 ft from the backwall. This change had no significant ef-
fect on the performance of the stilling basin.

48. In the type 7 design stilling basin the parabolic trajectory
was i -moved and divider walls were added. These walls allowed the
energy dissipation from each outlet to take place in essentially sepa-
rate basins. The width of the two side bays was 14.75 ft and that of
the middle bay, 14.0 ft. The baffle row locations with respect to the
backwall remained unchanged. The size of the baffles was increased to

1.75 ft square by 2 ft high in order to provide symmetry in location.

43
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The spacing between the baffles was 1.75 ft. Blocks adjacent to a
sidewall in the first row of baffles were located 1.25 ft from the wall
in the two side bays and 0.88 ft in the middle bay. The height of the
45-deg sloping end sill was increased to 5.8 ft so that the exit chan-
nel invert could be returned to el -1.2.

49. With the addition of the divider walls, the problems associ-

ated with one and two pump operations were essentially eliminated.

Wave action downstream from the basin was still more severe than desir-
3 able. Model tests of similar structures at WES have shown that this
wave action can be reduced by removing the basin wing walls and allow-
h ing wave energy to be dissipated on the slope behind the basin rather
than being reflected off the wing wall. Removal of the wing walls
would also result in savings. The higher end sill used in the type 7

b stilling basin design also caused a small standing wave just downstream

from the end sill. Although the riprap was stable during the testing,
the standing wave was considered an undesirable feature and could be
corrected by installing a less abrupt transition between the stilling

basin floor and the outlet channel invert.

Recommended Stilling Basin Design

50. In the type 8 design stilling basin (Figure 19) the wing
walls were removed, the discharge pipes were lowered 3.5 ft so that
the inverts were at el -0.5, and the end sill height was reduced to
1 ft. The exit channel invert sloped up from el -6.0 to el -1.2 on
a 1V-on-10H slope. Flow conditions are shown in Photos 15-18. This

design performed satisfactorily under all operating conditions.

Outlet Channel Riprap Protection

51. Riprap protection downstream from the outlet basin was
tested in the model study. The original design had a 24-in.-thick

riprap blanket for the first 50 ft downstream of the outlet basin, an

18-in.-thick riprap blanket for the next 50 ft, and a 12-in.-thick
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riprap blanket for the next 100 ft. Riprap gradation limits were set
according to the guidelines established in Incl 1 of ETL 1110-2-120%
for riprap with a specific gravity of 150 pcf. Riprap gradations used

in the model are shown in Figure 20.

Percent
Lighter Riprap Weight, 1b
by Weight 24 in. thick 18 in. thick 12 in. thick
100 628-251 265-106 79-31
50 186-126 79-53 23-16
15 93-39 39-17 12-5

52. The original riprap placement was used throughout the stilling
basin testing. After the type 8 design stilling basin was developed and
tested with the original riprap, the 24-in.-thick riprap was replaced
with 18-in.-thick riprap. The model was operated at tailwater el 3.1
for different combinations of pumps operating for 24 hr (prototype).

The 18-in.-thick riprap was found to be adequate. The final recom-
mended riprap plan consisted of 100 ft of 18-in.-thick riprap and
100 ft of 12-in.-thick riprap.

53. The slopes behind the stilling basin were covered with me-
dium sand in the model. There was some erosion and sloughing of these
sand slopes due to wave action. It is recommended that the underwater
portion of these slopes be protected and that grass be provided on the
slope above the riprap to ensure stability. A granular filter should

be provided beneath the recommended riprap.

* Office, Chief of Engineers. 1971 (14 May). '"Additional Guidance
for Riprap Channel Protection," ETL 1110-2-120, Washington, D. C.
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PART IV: CONCLUSIONS

54. Satisfactory hydraulic performance can be achieved in a pump
sump with low submergence by providing umbrellas on the suction bells,
converging sidewalls or wall roughness grids, vortex suppressor beams,
and other appurtenances. The umbrellas used herein significantly re-
duced surface vortices and pressure fluctuations by spreading the flow
entering the suction bell. This reduced the magnitude of downward ve-
locities and the effect of uneven approach flow distributions. Con-
verging sidewalls serQed to streamline the flow lines entering the
suction bell, thus reducing swirl and the tendency to form surface
vortices. Wall roughness grids accomplished the same result by increas-
ing the turbulence adjacent to the walls, thereby streamlining any ad-
verse velocity distribution entering the sump. Such grids may be dif-
ficult to maintain and thus were not included in the recommended design.
If either the converging sidewalls or backwall is too close to the
suction bell, occasional severe pressure fluctuations or submerged wall
vortices will develop. In this model study, the minimum prototype
clearance was found to be 9 in. (0.04 times the umbrella diameter).
Vortex suppressor beams cause a slight surface turbulence that tends
to break up any small vortex that may form in the pump sump. These
beams need to be close enough to the backwall so that the turbulence
created does not dissipate before reaching areas of vortex formation
in the rear of the sump. The best location developed in this model
study for the beams was just above the upstream lip of the umbrella.
Ideally, the beams should extend approximately 1 ft into the flow.
Beams extending much over 1 ft into the flow may disrupt flow patterns
in the sump and may cause intermittently severe pressure fluctuations.
In a sump with a range of operating water-surface elevations, it is
believed that 1-ft beams with 1-ft spacings will create sufficient
surface turbulence without disrupting flow patterns during relatively
high submergence. Satisfactory sump performance was obtained in the
model study with these modifications even for the adverse approach

conditions that occur with single pump operations.
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55. The approach channel designs tested provided for relatively

uniform flow distribution into the sump when all pumps were operating.

Any curvature of flow due to the geometry of the approach channel was

insignificant when compared with the adverse flow patterns set up when

less than all three pumps were operating, and flow had to pass in front

of inactive pump bays.

56. A hydraulic jump-type stilling basin can be used to dissi-
pate the energy from the pump station discharge lines. Each outlet
pipe should discharge into a separate stilling basin to ensure satis-
factory performance when one or more outlets are not discharging.
Essentially separate basins can be created by using structurally
adequate divider walls. Without these walls, strong circulating cur-
rents are set up in the basin which concentrate the flow, reducing
energy dissipation against the baffles and end sill. The circulating
current can also carry riprap into the basin, and severe concrete
abrasion damage may occur. Freestanding sidewalls (no wing walls)

provide for more dissipation of wave energy and eddy formations down-

stream of the stilling basin than do sidewalls with 90-deg wing walls.

Standing waves are set up downstream from the stilling basin when the
end sill is too high. A shorter end sill with a 1V-on-10H transition
slope to the outlet channel invert elevation provides more satisfac-

tory hydraulic performance.
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a. Water-surface el 20.0, three pumps operating
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b. Water-surface el 20.0, pump 1 operating
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Photo 1. Flow conditions with type 1 (original) approach channel
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a.

Photo 2.

b.

Water-surface el 20.0, three pumps operating

Water-surface el 20.0, pump | operating

Flow conditions with type 3 desigun approach channel
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Photo 3. Type 4 design approach channel S
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Photo 4.

Water-surface el 20.0, three pumps operating

b. Water-surface el 20.0, pump 1 operating

Flow conditions with type 4 design approach channel
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b. Flow patterns downstream

Photo 5. Type 1 design stilling basin; tailwater el 46.0,
discharge 613 cfs per pump, three pumps operating
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a. Conditions in stilling basin

b. Flow patterns downstream

Photo 6. Type 1 design stilling basin; tailwater el 18.8,
discharge 613 cfs per pump, three pumps operating
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a. Conditions in stilling basin

b. Riprap failure

Photo 7. Type 1 design stilling basin; tailwater el 3.1,
discharge 613 cfs per pump, three pumps operating
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Photo 8. Type 3 design stilling basin; tailwater el 3.1,
discharge 613 cfs per pump, three pumps operating

Photo 9. Type 3 design stilling basin; tailwater el 3.1,
discharge 613 cfs per pump, two pumps operating
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Type 3 design stilling basin; tailwater el 3.1,
discharge 613 cfs, one pump operating
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Photo 11. Type 4 design stilling basin; tailwater el 3.1,
discharge 613 cfs per pump, three pumps operating

Ha 96827

Photo 12. Type &4 design stilling basin; tailwater el 3.1,
discharge 613 cfs per pump, two pumps operating
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Photo 15. Type 8 design stilling basin; tailwater el 3.1,
discharge 680 cfs, one pump operating

Photo 16. Type 8 design stilling basin; tailwater el 3.1,
discharge 680 cfs per pump, two pumps operating
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Photo 17. Type 8 design stilling basin; tailwater el 3.1,
discharge 680 cfs per pump; three pumps operating

¥
% Photo 18. Type 8 design stilling basin; tailwater el 18.8,
discharge 680 cfs per pump, three pumps operating
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22 July 1977, Subject: Facsimile Catalog Cards for
Laboratory Technical Publications, a facsimile catalog
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Copeland, Ronald R.

Pointe Coupee pumping station sump and outlet
structure, Upper Pointe Coupee Loop Area, Louisiana :
Hydraulic Model Investigation / by Ronald R. Copeland
(Hydraulics Laboratory, U.S. Army Engineer Waterways
Experiment Station). -- Vicksburg, Miss. : The Station ;
Springfield, Va. ; available from NTIS, 1983.

94 p. in various pagings, 8 p. of plates : ill. ; 27 cm.
(Technical report ; HL-83-3)
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