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1. Introduction

. Let {Un, n=1,2,...} be an i.i.d. sequence uniformly distributed on [0,1], and

U{") <...% Ui") be the order statistics of Ul,...,>un. The random variables s§n+1)-

: %- * Ugn) - Ugfi, i=1,..., n+l are called the spacings divided by Ul""’ Un’ where
k f Ugn) & 0, Uﬁfl 8 1. The maximum of spacings plays an important part in nonparametric
E %ﬁ problems. Its exact and asymptotic behavior has been studied by many authors (See
. é‘ Darling [4], Pyke [8], Slud [9], Devroye [5] and so on). Write "§n+l) = s§"+rksgrf),
%: i=1,..., n. The behavior of Macs lzg:n w?“‘l) is important in cross-validated ker-
¥

nel density estimation. (See Chow, Geman and Wu [3] and Marron {7]). In this pa-

per we give the exact distribution of Mn in section 2. 1In section 3 we discuss the

behavior of a certain distribution function, which will be called the Fibonacci

et YRR R -

distribution function. Chow, Geman and Wu [3] have shown that there exists a con-
] stant C such that

(1.1) P(nMnllogn <C i.0)=0,

. where "i.o."” means infinitely often. In section 4, we will refine (1.1) by showing

that

DR f_"‘? &
-

(1.2) P(lim ZnMnllogn =1)=1.
n

The limiting distribution of Mn is also discussed in this sectiom.

& : 2. The exact distribution of M_.

Let Yl”"’ Yn be n random variables whose joint distribution function is

F(yys...» ¥.). We call Y.,..., Y exchangeable random varisbles if F(y, ,..., y; ) =
1 n 1 n 11 i“

F(yys-+-» ¥,) for any per-utation'{il..... in] of {1,..., n}. Given yeR, let

A = {Yj>y’ jC{jls---s jk}; YjSYo j?{jl"OOD jk}}’ lsjl<“'<jk‘n .

3y

"k ' If ¥,,..., Y, are exchangeable, the probabilities of the events A will be the

Jpeeody




same. Denote

2.1y Fy - P(Ajl...jk) , 18§,<...<j, 5n

3 ; and F(o)(y) = F(yl,..., yn).

Lemma 2.1

Suppose that Yiseeos Yn are exchangeable. Then

[(n+1)/2.l(n_k+1

)SY) = k

(k)
i+1 Lo ) B,

Y (2.2 P( max (YiAY
1<isn-1

where F(k)(y) is defined by (2.1) and [x] is the integer part of x.

Proof. The event { max (YiAYi+l)Sy} means that there is no index i such that
1<isn-1
'{Yi>y} and {Yi+l>y} happen simultaneously. Hence this event is the union of E,

f k=0,1,..., [(n+1)/2], where Ek is the event ''there are k integers 15j1<...<jk5n\ﬂﬁch
: -{ do not contain two consecutive integers, such that the event Ajl"'jk happens.” We
. obtain
' fn+1)/3
i P tan M) - kZO FE

since {Ek} are disjoint events. Since Yl,..., Yn are exchangeable, it follows that

| peey) = ("R 5 (y)

where (n-:+1) is the number of k-element subsets that can be selected from the set

B

{1,..., n} and that do not contain two consecutive integers (see [1], Chapter 3).

We first find the exact distribution of "n‘ Define

b ¢ x>0

(x), = { .
* 0 x<0

We have

Theorem 2.2

[(n+1) /2]
;o Eh

n-k
(2.3) P(M sx) = ) (-l)t(";k) {ll-(k+t)xlﬂ"'1
t=0

=0




Proof. It is known that

n
(n) (n) . T(1- n-1
P(sl >x1,- » sn >X“) = [(1 iZI xi)"‘] ’
where Xyreess X 8TE nonnegative numbers (see Devroye [5]). Hence the spacings
Sgn),..., Sﬁn) are exchangeable, and Lemma 2.1 can be used in this case. Notice
that }
(n) (n) (n) (n)
P(S1 LS FUN Sk >X, k+l$x,..., Sn $X)
' ; n-k t-1
| | = ps{™sx,..., 5oy - ] D ) Ps(M>x, ..., s{M>x, s(“)>x,....s§“’=d
: t=1 k+lsj1<...<jt5n h I
n-k
| = 1 DR -t
' t=0
?
' so that the theorem is proved.
) 3. The Fibonacci distribution function.
Let X ~G(x), n=1,2,... be an i.i.d. sequence and Z_ = max (X,A ). From
‘ n 1sisn-1 1 M1

(2.2) we have

Lemma 3.1
[(m+1)/2] | 1 o
Gy P = )1 CEhe*eon-ser® .

k=0

Now define the Fibonacci distribution function by

o 0 x<0
. [(n+1)/2]
; (3.2) F*(x) = 5Oy kK 0sx<1 .
- n k
: ; k=0
BT . 1 x21
e The name Fibonacci was chosen because
" ' [(n+1)/2]
Fo0 , FeBy=1 , F = b O L e,
=n

is the sequence of Fibonacci numbers. By using the generating function method for

finding the values of Fibonacci numbers, the sum g, * 2{:52]( ;k)ay can be found as

«
o

¥ | ' follows.




Lemma 3.2

For any n=0,1,2,...,

(3.3) g, = {[1+(1+20)/B1[(1+8)/2]" + [1-(1+20)/8))1(1-8)/2)"Y/2 ,

where B8 = (1+4a)1/2.

Proof. For convenience, let (i) = 0 if k<0 or n<k. Then it follows that
CEL @ e Y L k01, ey,

and therefore that

Bne1 = “gn—l + gn , n=1,2 ... .

Hence we obtain

P(x) - [xP(x)+ax2P(x)] =1+0x ,1i.e.
P(x) = (1+ax)/(1-x-ox?) ,
Q0
where P(x) 4 ) gnx" is the generating function of the sequence {gn}. Expand

n=0
P(x) = (1+ax)/(1-x-ax2) into a power series:

P(x) = {[1+(1+20)/8)/[1-x(148)/2] + [1-(1+20)/B)}/[1-x(1-B)/2]}/2

L {[1+(1+20) /81 [(148)/2]™ + [1-(1+20)/B] [(1-8)/21"}x"/2 .

n=0

[}

Comparing the above series with the definition of P(x), we have (3.3), to complete
the proof.

Now the Fibonacci d.f. can be represented as
n
(3.4) F;(x) = X gn*l((l—x)/x) , O<x<1 ,

where gn+1((1-x)/x) is the value of g, 3t O™ (1-x)/x. We discuss the asymptotic
behavior of the Fibonacci distribution function as follows.

Theorem 3.3

1f xne(o,l). n=1,2,... is a sequence such that, as n + = ,




ESEa S at

(3.5 ny>+0,

where Yy = 1 - X then we have

[1+0(yn)+0(nyi)]exp[-nyi] .

(3.6) F;(Xn)
Proof. Write
(3.7) Fr(x)) =u (x)[1-v (x)/u (x 3}/(2x) ,

where

u (x) = [e(e2y, /x )/ sy /x )Y 21 0 [1s (aty /x )1/ 27210

v (x) [1.(1+2yn/xn)/(1+4yn/xn)1’2]{xn[1-(1+4yn/xn)1/21/z}“+l .

Noticing that

(14»2)'“/)(“)/(1-&4)’“/Jtn)l/2

= (s2y,/x ) (-2, /% +00y2)) = 1+ oY),

2
we know vn(xn)/un(X) = O(yn) » and therefore

2
- vo(x)/u (x) =1+00y) .
Hence to prove (3.6), we need only to show that

u (X)/(2x)) = (140(y,)) (1+0(ny>) ) exp(-ny2)
(See (3.7)). This follows from

u (x )/ (2x ) = (1400y2)) &x_ [1+Q1sdy /x )Y A 21 (1o 1oty /x )M 212

(1400y,)} b, [1+(102y, /% -2y2/x +0(y2)1/2}"

(1+0(y,)) (1-y 1400y N"

(1+0(yn))exp{-ny:+o(nyi)}

(+0(y,)) (1+0(ny}) ) exp {-ny2}

completing the proof of theorem 3.3,

R o, S TR R P T

T N TP I .
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4. The asymptotic behavior of Mn

Unless otherwise stated, Xn, n=1,2,... will be an i.i.d. exponential sequence
in this section.
Lemma 4.1

= 0 : (n) (n) . s
Let T = zi=1 X;. The spacings (S;°°,..., S ') are distributed as (X,/T_,..., Xn/Tn).
Proof. See Pyke [8].

Lemma 4.2

For all x>0, the following inequalities hold:
(4.1) P(T /n-1>x) < exp[-nx2(1-x) /2]

(4.2) P(T_/n-1<-x) s exp(-nx’/2)

Proof. See Devroye [5].

Lemma 4.3

Let {En}, {nn} be r.v. sequences. If there exist a_>0, b such that

P(E_sa xsb ) 5 ¥(x)

P p
nn/n +1 and (nn/n-l)bn/an >0,

then

P(E /n s(a x+b ) /n) $ ¥(x)

Proof. The sequences {(En-bn)/an} and {(in-bnnn/n)/an} have the same limiting dis-
tribution since (nn/n-l)bn/an + 0 in probability. The sequences {(gn-bnnn/n)/an}
and {(nﬁn/nn-bn)/an} have the same limiting distribution since nn/n + 1 in probability.

Hence lemma 4.3 is proved.

Theorem 4.4

For any xeR




-7-

! (4.3) 1lim P(Mn5x/2n+logn/2n) = exp[-exp(-x)] .
) n

Proof. By using lemma 4.1, (4.3) is equivalent to

N (4.4) 1lim P(Zn/THSx/2n+logn/2n) = exp[-exp(-x)] .
! n

By using lemma 4.2, it can be shown that

i e s e e sy

(T /n-1)1ogn 0.

Hence by using lemma 4.3, (4.4) holds if we show that

(4.5) 1im P(Zns(x+logn)/2) = exp[-exp(-x)] .
n

5 } From (3.1) and (3.2), we have

L; | ‘{ P(zns(x+logn/2) = F;;(xn) ’

where X, = 1 - exp{-(x+logn)/2]. It is easy to check that ny: Uyt 0, nyi->exp(-x1

- ~\,§ ) Hence (4.5) follows from (3.6), completing the proof of (4.3).

Remark 1. Using the methods of section 3, we can show that Gnedenko's theorems (See

[6]) for the i.i.d. case will still be valid for the sequencel{xiAXi+1} where {Xi}

é
i
|
i is i.i.d. but not necessarily exponential. The same statement may also follow from
Watson [10].

Remark 2. It is easy to show, from theorem 4.4, that

(4.6) 20M_/logn £,

Now we turn our attention to proving (1.2). It is easy to see that (1.2) is

equivalent to the following equations:

e (4.7 P(Qlimsup ZnMn/lognSI) =1,
n

» o (4.8) P(1liminf ZnMn/logHZI) =1,

: n

But (4.7) and (4.8) are equivalent to the statement that for any 6>0,

(4.9) P(znunllogn>1+6 i) =0,




; -8-
(4.10) P(2nMn/lognsl-6 i.0.) = 0.
1 |
Lemma 4.5
Equation (4.10) holds. o

|
| Proof. Let An = {ZnMnllognsl-G}, n=1,2,... . By the Borel-Cantelli lemma, to prove
’ (4.10), it is sufficient to show that
(4.100 J P(A) <= .
! n=1 n

Using lemma 3.1 and 3.2, we have

(4.11) P(A) = P(2 S(1-8)T, logn/(2n))

< P(Zns(l-é)(1+en)logn/2) + P(Tn/n>l+en)

;i < P(Zns(l—G/Z)logn/2)+ exp(—nei/4),
. where € = Zn'(l°6/2)/2 and therefore (1-6)(1+en) <1 -46/2, l-en >1/2 if n is
sufficiently large. By letting x, = 1 - exp[-(1-8/2)1ogn/2], it is easy to check

§/2

that nyi + 0, nyi =n ' “, and therefore theorem 3.3 can be used for this case. Hence

P(z_$(1-6/2)10gn/2)

N e Y RS < - i *

= (1+0(1))exp(-n’/?)
Now from (4.11), we have
PA) < cexp(-n®/?)
where C is a constant. Then (4.10) follows since Z:=1 exp(-nel converges for any

£>0, completing the proof of lemma 4.5.

P
. ;45- To prove (4.9) we need the following lemma. which is stronger than the Borel-
‘ i . Cantelli lemma.
Lemma 4.6

|

\

f

i : Let {A } be a sequence of events with 1imP(A)) = 0. If either Z:=1 P(A:An+l)<“ or
‘ n

1 c .

i Xzzl P(AnAn+1)< » then P(An i.o.) =0,

{

PRI PR T . R .

T g ‘?" o %ﬁw}_ 0T Coe e
SV E ﬁ@%&‘v‘u- erll L ANE D am e ‘:,.1<f-'-':

To—— Ry - s - r N 3 — —




Lemma 4.7
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Proof. See Barndorff-Neilsen [2].

Equation (4.9) holds.

Proof. Let u, = (1+8)1ogn/2, ;n = (1+d) logn/(2n) and A= {Mn>;n}. By using

lemma 4.6, to prove (4.9) we need only to show ]

) < @

00
C
(4.12) nzl P(AA

L. (n) (n) .(n)_ ~ (n) .(n) _~ .y . . :
Writing F.i for the set {S,1 ASi+l>un, Sj “Sj+15"n+1’ j#i} and noticing that {;n}

is nonincreasing, we have

¢ ~ ~
P(AnAn+1) = P(Mn>un, Mn+lsun+l)

n-1
- (n) g,(n-1) ~ (n-1} ~
= izl P(E; n{ui -u U suy +un+1})

~ ~

n-1
- (n-1) <(n-1)
) iZ1 IEFn)p(Ui < sutP e fus, ., U )dp
1

n+tl  n i n+l'17 7

< n-1 (n)
< 2u .21 P(E;")
1=

IA

2unP(Mn>un)

= ZunP(Zn>unTn/n)

A

ZunP(Zn>(l-en)un) + ZunP(Tn/n<1~€n)

for .ny €, 0. Furthermore, using lemma 4.2, we obtain that
~ 2
unP(Tn/n<l-en) s (1+6)(10gn)exp(-n€n/2)/n ,

and therefore can choose en + 0 such that

Z u P(T_/n<l-g ) < =,
ney MM n




i A ) AT O oot £ T eyt e
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Hence to show (4.12), it is sufficient to prove

@©

(4.13) )

u_P(Z_>(1+8/2)1logn’2) < =
n=1 n n

{ since (l-en)(1+6) > 1 - §/2 and therefore

P(Z <(1-€ Ju ) < P(2,>(1+6/2)10gn/2)

for large enough n. Let x = 1 - exp[-(1+8/2)1ogn/2] =1 - n'(1+6/2)/2,

Then we have nyi = o(yn) and therefore (3.6) can be rewritten as
2
* = -
Fr(x ) = [1+0(y )]exp(-ny )
Now (4.13) follows from the fact that

P(Zn>(1+6/2)logn/2) =1 - F;(xn)

é < Cl[l-exp(-n-dlz)] + Czn‘(1+6/2)/2

< C3n-5/2 + Czn-(1+6/2)/2

(CI’CZ’C3 are constants) and the fact that the series f:=l logn/nl*e converges for
any €>0. This completes the proof of lemma 4.7.

: Combining lemma 4.5 and 4.1, we obtain

Theorem 4.8

Equation (1.2} holds.
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