THEORY OF COLLISION-INDUCED IONIZATION OF ADSORBED SPECIES ON SOLIDSURFACE:
G. E. ROCHERER UNIVERSITY OF UBERLANDI
9/8/83
UNCLASSIFIED
Theory of Collision-Induced Ionization of Adsorbed Species on Solid Surfaces in the Presence of Laser Radiation

by

Kai-Shue Lam and Thomas F. George

Prepared for Publication in Zeitschrift für Physik B

Department of Chemistry
University of Rochester
Rochester, New York 14627

May 1983

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Title: Theory of Collision-Induced Ionization of Adsorbed Species on Solid Surfaces in the Presence of Laser Radiation

Authors: Kai-Shue Lam and Thomas F. George

Organizations:
- Performing Organization: Department of Chemistry, University of Rochester, Rochester, New York 14627
- Controlling Office: Office of Naval Research, Chemistry Program Code 472, Arlington, Virginia 22217

Report Date: May 1983

Number of Pages: 30

Security Classification: Unclassified

Abstract: A formalism is proposed for treating the problem of ionization of adsorbed species on solid surfaces. The ionizing agents are taken to be impact atoms and laser radiation with frequency low compared to the inverse of characteristic collision times. The physical constraints of short collision times and low laser frequency then allow one to treat the adatom-surface-plus-field system under the quasi-static approximation (QSA) and the impact-atom-adatom-surface collision dynamics under the impulse approximation (IMA). The latter leads to a time-dependent ionization cross-section which is factorizable into the square of an electron-atom scattering matrix element and

Key Words:
- Collision-Induced Ionization
- Impulse Approximation
- Adsorbed Species
- Factorization of Cross Section
- Solid Surface
- Electron-Atom Matrix Element
- Laser Radiation Effects
- Spectral Function
- Quasi-Static Approximation
- Single-Particle Green's Function
a spectral function describing the energy-momentum distribution of electrons in the adatom-surface-plus-field system. The formalism focuses on the spectral function which is shown to be derivable from a single-particle Green's function exactly calculable for the present problem.
Theory of Collision-Induced Ionization of Adsorbed Species on Solid Surfaces in the Presence of Laser Radiation

Kai-Shue Lam and Thomas F. George

Department of Chemistry
University of Rochester
Rochester, New York 14627
USA

Abstract

A formalism is proposed for treating the problem of ionization of adsorbed species on solid surfaces. The ionizing agents are taken to be impact atoms and laser radiation with frequency low compared to the inverse of characteristic collision times. The physical constraints of short collision times and low laser frequency then allow one to treat the adatom-surface-plus-field system under the quasi-static approximation (QSA) and the impact-atom-adatom-surface collision dynamics under the impulse approximation (IMA). The latter leads to a time-dependent ionization cross-section which is factorizable into the square of an electron-atom scattering matrix element and a spectral function describing the energy-momentum distribution of electrons in the adatom-surface-plus-field system. The formalism focuses on the spectral function which is shown to be derivable from a single-particle Green's function exactly calculable for the present problem.
I. Introduction

Photoemission studies of adsorbed species on solid surfaces, both theoretical1-3 and experimental,4-6 have produced considerable information on the nature of chemical bonding between adsorbed atoms or molecules and solid surfaces. The process of collision-induced ionization of surfaces, of potential importance in generating the same information, has, however, claimed relatively little attention, due to the widespread belief that it would be extremely difficult to extract useful experimental information from such studies. In this area, new ground has been broken recently by Conrad et al.,7 who considered theoretically the problem of surface Penning ionization of a single CO molecule chemisorbed on a Pd(111) surface by metastable He*-beams and compared their results with existing experimental data. On another front, gas-phase studies of Penning ionization also suggest that laser radiation can have pronounced effects on the emitted-electron energy spectrum8,9 as well as the ionization probability itself.10 These works all point to the likely fruitfulness of carrying out studies on collision-induced ionization of adsorbed species on solid surfaces in the presence of laser radiation. In this paper, we will propose a formalism to treat this problem.

The physical situation we are considering may entail several competing processes in addition to the emission of electrons. There may be desorption11 and migration12 of adatoms, or even formation of free ions. However, the degree of catastrophe induced on the surface by the atom beam and the laser radiation is not entirely
beyond the experimentalist's control. Laser power and laser frequency, for instance, could be selected to minimize desorption and migration, and the incident-atom impact energy could conceivably be adjusted such that free-ion formation does not compete significantly with pure scattering. Also the amount of internal excitation carried by the impact-atoms may be tailored to preferentially ionize the adsorbed atoms rather than those of the bulk medium.

The main advantage of the laser as an inducing tool in the present case is that it has much greater versatility here than, say, in the process of laser-induced desorption, because no resonance requirement on the laser frequency need be imposed. We will, however, assume that the laser frequency is much less than characteristic band structure resonances of the pure metallic surface so that photoemission need not be considered as a competing process. We also require it not to be in resonance with adatom vibration or phonon coupling modes so as to avoid dealing with desorption or migration of adsorbed species.

Since the laser frequency is considered to be low, most of the energy required for ionization will have to be supplied by the internal excitation energy and the translational kinetic energy of the incident atoms. Hence we consider projectile atoms in an excited state with large impact velocities, leading to short collision times \(\tau \) such that \(\tau \ll \omega_L^{-1} \), where \(\omega_L \) is the laser frequency. This means that the laser photons will only have a relatively short time in delivering energy. But since the adsorbed atom (adatom) states can
be considered to be broadened by the solid surface into a "near-continuum of states"13 (with large uncertainties in orbital energies), the low frequency photons may still be effective in transferring energy to electronic degrees of freedom in the adatom-surface system, facilitating electron "hops" between the adatom and the surface.14 This would not be the case if sharp resonance electronic states were considered (such as in gas-phase collisions).

The conditions of short collision time and low laser frequency permits the use of the quasi-static approximation (QSA) where, even though the total Hamiltonian is time-dependent (due to the radiation interaction), the energy of the system is considered to be adiabatically conserved within the duration of a characteristic collision time [cf. Eqs.(2.6) and (2.7) below]. Also, the smallness of τ warrants the use of the impulse approximation15 (IMA) in the treatment of the projectile atom-adatom-surface collision dynamics. Within this approximation, the collision between the projectile atom and the adatom-surface (AS) system is assumed to be mediated by a single electron possessing a characteristic momentum and energy distribution determined by virtue of its being part of the adatom-surface plus field system and otherwise considered to be free. Naturally the IMA will be more suitable when applied to cases where the adatom-surface system to be ionized has loosely bound electrons. The momentum and energy distribution will be most conveniently obtained through a Green's function formalism. The IMA has been successfully applied to a wide variety of collision processes, such as fast electron-atom collisions,16 A(p,2p)B scattering in nuclear reactions,17,18 and gas-phase collisional ionization.19 Recently, we have also applied it to high-energy positron ionization of adsorbed species,20 a process closely related to that discussed in the present work.
In what follows we will construct a formalism for the calculation of the differential cross section of the ionization process. This formalism is based largely on many-body techniques leading to the construction of an adatom-surface-plus-field Green's function that is time-dependent. The implementation of the main approximations, the QSA and the IMA, will be shown in the course of the development.

II. The Ionization Cross-Section

We consider the process in which projectile atoms B with momentum \(\mathbf{p}_i \) are incident on an adatom-surface (AS) system which is driven by monochromatic laser radiation with field strength represented classically by \(\hat{E}(t) = E_0 \cos \omega_L t \), where \(\omega_L \) is the laser frequency. Assuming that this collisional process leads to ionization with emitted electron momentum and final momentum for the atoms B equal to \(\mathbf{p} \) and \(\mathbf{p}_f \) respectively, the time-dependent differential ionization cross-section can in general be written in the form \(^{17} \)

\[
d^6\sigma(t) = \frac{2\pi}{\hbar} |T(t)|^2 \delta(\varepsilon + \epsilon_f + E(+) - (E_0(t) + \epsilon_i + \Delta)) \frac{1}{v_0} \frac{d^3p d^3p_f}{(2\pi\hbar)^3}.
\]

In Eq. (2.1) \(v_0 \) is the incident velocity of B atoms;

\[
\varepsilon = \frac{p^2}{2m},
\]

\[
\varepsilon_i = \frac{p_i^2}{2m_B},
\]

and

\[
\varepsilon_f = \frac{p_f^2}{2m_B}
\]

are the kinetic energies of the emitted electron and the free atoms B before and after the collision respectively, with \(m = \) mass of
electron and \(m_B \) = mass of atom B; and

\[\Delta = E_i - E_f, \]

the internal energy transfer, is the difference between the initial and final internal energies of the atom B. The presence of the \(\delta \)-function with time-dependent energy variables follows from the quasi-static approximation (QSA), where it is assumed that if the collision time \(\tau \) is short enough compared with the period of the driving force, the ground state energy \(E_0 \) and excited energies \(E^{(+)} \) of the unperturbed and singly-ionized AS+field system vary adiabatically over \(t < \tau \); also, the total energy of the system is adiabatically conserved. The QSA then implies that

\[\hat{H}_{AS}(t)|\psi_0(t)\rangle = E_0(t)|\psi_0(t)\rangle, \]

and

\[\hat{H}_{AS}(t)|\psi^{(+)}(t)\rangle = E^{(+)}(t)|\psi^{(+)}(t)\rangle, \]

where \(\hat{H}_{AS}(t) \) is the total time-dependent Hamiltonian of the AS system plus field; and \(|\psi_0(t)\rangle \) and \(|\psi^{(+)}(t)\rangle \) are the corresponding adiabatic ground state and excited state wave functions, unperturbed and singly-ionized, respectively. The summation in Eq.(2.1) is over all the final singly-ionized AS states \(|\psi^{(+)}(0)\rangle \), where it is assumed that at \(t=0 \), the laser field is turned on. Within the impulse approximation (IMA), the transition matrix element \(T \) can be written as

\[T(t) = \langle \psi^{(+)}(t)|\hat{a}(\hat{p}_1)|\psi_0(t)\rangle T_{E_f,P_f,E_i,P_i}, \]

where \(\hat{a}(\hat{p}_1) \) is a fermion annihilation field operator (removing an electron of momentum \(\hat{p}_1 \) from the AS system in its ground state at time \(t \)) and \(T_{E_f,P_f,E_i,P_i} \) is an off-shell electron-atom scattering
matrix element, describing the collision between an atom B in the initial state \(|i> \) with kinetic energy \(p_i^2/2m_B \) and a free electron with momentum \(\hat{p}_i \), to produce an atom B in the state \(|f> \) with kinetic energy \(p_f^2/2m_B \) and a free electron with momentum \(\hat{p}_f \). The IMA to T is schematically represented in Fig 1, in which \(\epsilon_1 \) and \(\hat{p}_i \) represent the energy and momentum removed from the AS field system at time \(t \). The IMA also implies that at the right vertex (blank circle) energy and momentum are both strictly conserved. Hence we have

\[
\epsilon_1 + \frac{p_i^2}{2m_B} + \Delta = \frac{p_f^2}{2m_B} + \frac{\hat{p}_f^2}{2m} ,
\]

and

\[
\hat{p}_i + \hat{p}_i = \hat{p} + \hat{p}_f .
\]

We first discuss the sum in Eq.(2.1). This equation, together with Eqs.(2.8) and (2.9), implies that the sum can be written as:

\[
S(\hat{p}_1,\epsilon_1,t) = \sum_{(+)} |\langle \psi(+) | \hat{a}(\hat{p}_1) | \psi_0(t) \rangle|^2 \delta(\epsilon_1+E(+)(t)-E_0(t))
\]

\[
= \sum_{(+)} \langle \psi_0(t) | \hat{a}^+(\hat{p}_1) \delta(\epsilon_1+E(+)(t)-E_0(t)) | \psi(+) \rangle \times \langle \psi(+)(t) | \hat{a}(\hat{p}_1) | \psi_0(t) \rangle
\]

\[
= \sum_{(+)} \langle \psi_0(t) | \hat{a}^+(\hat{p}_1) \delta(\epsilon_1+H_{AS}(t)-E_0(t)) \hat{U}_s(+) (t,0) \psi(+) (0) \rangle \times \langle \psi(+) (0) | \hat{U}_s(+) (t,0) \hat{a}(\hat{p}_1) | \psi_0(t) \rangle
\]

\[
= \langle \psi_0(t) | \hat{a}^+(\hat{p}_1) \delta(\epsilon_1+H_{AS}(t)-E_0(t)) \hat{a}(\hat{p}_1) | \psi_0(t) \rangle ,
\]

where in the second equality use has been made of Eq.(2.7) (the QSA), and the time evolution operator, \(\hat{U}_s(+) (t,0) \), for the Schrödinger picture wave function \(\psi(+) (t) \) has been introduced such that
The quantity $S(p_1, \epsilon_1, t)$ is referred to as the time-dependent spectral function and can be interpreted as the probability at time t of finding an electron with momentum p_1 in the $AS+$ field system and the energy $E_0(t) - \epsilon_1$ in the residual system after an electron has been removed. The differential ionization cross-section can then be written as:

$$d^6\sigma(t) = \frac{2\pi}{\hbar} S(p_1, \epsilon_1, t) |T_{E_f, p_f, p_1, E_1, p_1, E_0(t - t')}|^2 \frac{1}{\gamma_0} \frac{d^3p_1}{3}. \quad (2.13)$$

The time-dependent spectral function can be shown to be related to the Fourier Transform of the advanced single-particle Green's function as follows. We start with the definition of the advanced single-particle Green's function;

$$G_A(p_1, t, t') \equiv i\langle\psi_0^+|a_H(p_1, t)\hat{a}_H(p_1, t')|\psi_0\rangle \delta(t-t'). \quad (2.14)$$

where

$$|\psi_0\rangle \equiv |\psi_0(0)\rangle, \quad (2.15)$$

and $\delta(t-t')$ is the Heaviside step function. $\hat{a}_H(p_1, t)$ is the time-dependent Heisenberg picture fermion annihilation field operator given as:

$$\hat{a}_H(p_1, t) = \hat{U}_S^+(t, 0)\hat{a}(p_1)\hat{U}_S(t, 0), \quad (2.16)$$

with $\hat{U}_S(t, 0)$ satisfying the relation

$$|\psi_0(t)\rangle = \hat{U}_S(t, 0)|\psi_0\rangle. \quad (2.17)$$

We can then write the advanced Green's function as:

$$\hat{U}_S^+(t, 0)|\psi_0^+(0)\rangle = |\psi_0^+(t)\rangle. \quad (2.12)$$
\[G_{A}(\vec{p}_1; t, t') = i\langle \psi_0 | \hat{U}^+_S(t, 0) \hat{a}^+(\vec{p}_1) \hat{U}^+_S(t', 0) \hat{a}(\vec{p}_1) \hat{U}_S(t', 0) | \psi_0 > \delta(t-t') \]
\[= i\langle \psi_0 | \hat{U}^+_S(t, 0) \hat{a}^+(\vec{p}_1) \hat{U}^+_S(t', t') \hat{a}(\vec{p}_1) \hat{U}_S(t+t_1, t) \hat{U}_S(t, 0) | \psi_0 > \delta(-t_1) \]
\[= i\langle \psi_0 | \hat{U}^+_S(t, 0) \hat{a}^+(\vec{p}_1) \hat{U}^+_S(t+t_1, t) \hat{a}(\vec{p}_1) \hat{U}_S(t+t_1, t) \hat{U}_S(t, 0) | \psi_0 > \delta(-t_1) \]
\[= i\langle \psi_0(t) | \hat{a}^+(\vec{p}_1) \hat{U}^+_S(t+t_1, t) \hat{a}(\vec{p}_1) \hat{U}_S(t+t_1, t) | \psi_0(t) > \delta(-t_1). \]

(2.18)

In the second equality above we have made the change of time variables
\[t_1 = t' - t \]
(2.19)

and use of the property for the time evolution operator \(\hat{U}_S \) that
\[\hat{U}_S(t_1, t_2) \hat{U}_S(t_2, t_3) = \hat{U}_S(t_1, t_3). \]
(2.20)

Under the QSA we can write
\[\hat{U}_S(t_1 + t, t) = \exp\{-\frac{i}{\hbar} \hat{H}_{AS}(t)t_1 \} \]
(2.21)

if \(|t_1| \leq \tau \) and it follows that
\[G_{A}(\vec{p}_1; t, t+t_1) = i\langle \psi_0(t) | \hat{a}^+(\vec{p}_1) \exp\{\frac{i}{\hbar} (\hat{H}_{AS}(t) - E_0(t))t_1 \} \hat{a}(\vec{p}_1) | \psi_0(t) >, \]
\[|t_1| \leq \tau. \]
(2.22)

Introducing the integral representation for the step function
\[\theta(t) = -\frac{1}{2\pi i} \int_{-\infty}^{\infty} d\omega \frac{e^{-i\omega t}}{\omega + i\eta} \]
(2.23)

we have
\[\theta(-t_1) \exp\{\frac{i}{\hbar} (\hat{H}_{AS}(t) - E_0(t))t_1 \} = \frac{1}{2\pi i} \int_{-\infty}^{\infty} d\omega \frac{e^{-i\omega t_1}}{\omega + \frac{1}{\hbar} (\hat{H}_{AS}(t) - E_0(t)) - i\eta}. \]
(2.24)

Hence the restricted Fourier Transform of \(G_{A}(\vec{p}_1; t, t+t_1) \) can be written
as
\[\tilde{G}_A(\vec{p}_1, \omega, t) = \langle \psi_0(t) | \hat{a}^\dagger(\vec{p}_1) \frac{1}{\omega + \frac{\hbar}{\pi^2} [\hat{H}_{AS}(t) - E_0(t)]} \hat{a}(\vec{p}_1) | \psi_0(t) \rangle. \] (2.25)

From Eq. (2.11), the relation between the spectral function and the restricted advanced Green's function is then
\[S(\vec{p}_1, \epsilon, t) = \frac{1}{2\pi i \hbar} \lim_{\eta \to 0} \{ \tilde{G}_A(\vec{p}_1, \omega - i\eta, t) - \tilde{G}_A(\vec{p}_1, \omega + i\eta, t) \} \]
\[= \frac{1}{\pi \hbar} \lim_{\eta \to 0} \text{Im} \tilde{G}_A(\vec{p}_1, \omega - i\eta, t), \] (2.26)
where
\[\hbar \omega \equiv \epsilon \] (2.27)
and the representation for the delta function
\[\delta(x) = \frac{1}{2\pi i} \lim_{\eta \to 0} \left(\frac{1}{x-i\eta} - \frac{1}{x+i\eta} \right) \] (2.28)
has been used. We note that in arriving at Eq. (2.25) the restricted Fourier Transform is taken as though \(\hat{U}(t_1 + t, t) \) assumes for all \(t_1 \) the functional form dictated by \(|t_1| < \tau \), that is, the Hamiltonian entering into the computation of \(G_A(\vec{p}_1; t, t') \) is just \(\hat{H}_{AS}(t) \) [cf. Eq. (2.21)].

The restricted transform is, of course, distinct from the true transform
\[\hat{G}_A(\vec{p}_1, \omega, t) = \int_{-\infty}^{\infty} dt_1 e^{i\omega t_1} G_A(\vec{p}_1; t, t'), \ t_1 = t' - t. \] (2.29)

The computation of \(G_A(\vec{p}_1, t, t') \) will be discussed in the next section, and that of \(\hat{G}(\vec{p}_1, \omega, t) \) in Appendix I.

We now turn our attention to \(T_{e,f,e,f} \), the electron-atom scattering matrix element. This is a well-studied problem which we will not pursue in detail. Under ordinary situations where only
\(\hat{p} \gg \hat{p}_f \) leads to significant cross-sections in Eq. (2.1), the Born approximation can usually be applied. In this case

\[
T_{E_f, \hat{p}_f, \hat{p}; E_i, \hat{p}_i, \hat{p}_1} = \int d^3r e^{i \hat{q} \cdot \hat{r}} \langle f | V(\hat{r} - \hat{x}) | i \rangle
\]

where \(\hat{q} \), the electronic momentum transfer, is given by

\[
\hat{q} = \hat{p}_1 - (m/m_B) \hat{p}_i - [\hat{p} - (m/m_B) \hat{p}_f]
\]

and \(V(\hat{r} - \hat{x}) \) is the electrostatic interaction between an electron (with coordinate \(\hat{r} \)) and the electrons in atom B (with collective coordinates \(\hat{x} \)).

III. Development of the Green's Function in the Presence of an External Field - Time-dependent Spectrum

We wish to calculate the space-time Green's function

\[
G(\hat{x}', t'; \hat{x}, t) = -i \langle \psi_0 | T [\hat{a}_H(\hat{x}', t') \hat{a}_H^+ (\hat{x}, t)] | \psi_0 \rangle
\]

(and its Fourier Transform) where \(T \) denotes the time-ordered product, \(\hat{a}_H(\hat{x}, t) \) is the time-dependent Heisenberg picture fermion creation field operator and \(| \psi_0 \rangle \) satisfies [cf. Eq. (2.15)]

\[
| \psi_0 \rangle = 1.
\]

\(\hat{a}_H(\hat{x}, t) \) is the Fourier Transform of \(\hat{a}_H(\hat{p}, t) \) [cf. Eq. (2.14)]:

\[
\hat{a}_H(\hat{x}, t) = \frac{1}{(2\pi)^{3/2}} \int d^3p \ e^{i \hat{p} \cdot \hat{x}} \hat{a}_H(\hat{p}, t).
\]

We assume that the separate problems of the adatom orbitals \(\phi_i(\hat{x}) \) and the self-consistent eigenstates \(\phi_q(\hat{x}) \) of the unperturbed semi-infinite surface are solved so that the time-independent field operators can be expressed as
\[\hat{a}(\vec{x}) = \sum_i \hat{a}_i \phi_i(\vec{x}) + \sum_\sigma \hat{a}_\sigma \phi_\sigma(\vec{x}) = \hat{a}_H(\vec{x},0). \] (3.4)

The surface is taken to be metallic and \(\sigma \) includes the wave number and the band index. \(\hat{a}_i \) and \(\hat{a}_\sigma \) are the electron annihilation operators for the \(i \)th adatom state and \(\sigma \)th surface state, respectively. Each electron in the adatom-surface plus field system is considered to be under the influence of a self-consistent field so that the single-particle Hamiltonian can be written as

\[h_{AS}(\vec{x},t) = h(\vec{x}) - \mathbf{E}_0 \cdot \vec{\phi}(t) \cos \omega_L t. \] (3.5)

where the second term is the classical interaction Hamiltonian between an electron at \(\vec{x} \) and an external laser field of field strength \(E_0 \) and frequency \(\omega_L \) (in the dipole approximation). The field-free Hamiltonian \(h(\vec{x}) \) is assumed to have the properties

\[\langle \phi_i | h | \phi_j \rangle = \epsilon_i \delta_{ij} \] (3.6)
\[\langle \phi_\sigma | h | \phi_\sigma' \rangle = \epsilon_\sigma \delta_{\sigma\sigma'} \] (3.7)

where \(\epsilon_i \) and \(\epsilon_\sigma \) are energies belonging to the states \(\phi_i \) and \(\phi_\sigma \) with the adatom at infinite distance from the surface. The interaction leading to adsorption is given by the matrix elements

\[\langle \phi_i | h | \phi_\sigma \rangle \equiv v_{i\sigma}. \] (3.8)

Using the basis \(\{ \phi_i, \phi_\sigma \} \), \(h \) can then be written in matrix form as
It is also convenient for the computation of the Green's function, to write the total single-particle Hamiltonian as

\[h_{AS}(\vec{x},t) = h_0(\vec{x}) + h_I(\vec{x}) + h_f(\vec{x},t) \]

\[\equiv h_0(\vec{x}) + h_I(\vec{x},t) \quad (3.10) \]

where \(h_f(\vec{x},t) \equiv -e\vec{E}_0 \cdot \vec{\Theta}(t) \cos \omega_L t \) and \(h_0(\vec{x}) \) corresponds to only the diagonal elements in Eq. (3.9). The total Hamiltonian in second quantized form is then given by

\[\hat{H}_{AS}(t) = \int d^3x \hat{a}^\dagger(\vec{x}) h_{AS}(\vec{x},t) \hat{a}(\vec{x}) \]

\[= \sum_{\sigma} \hat{a}_{\sigma}^\dagger \hat{a}_{\sigma} \epsilon_\sigma + \sum_i \hat{a}_i^\dagger \hat{a}_i \epsilon_i + \sum_{i\sigma} (V_{i\sigma}(t) \hat{a}_i^\dagger \hat{a}_{\sigma} + V_{i\sigma}^*(t) \hat{a}_{\sigma}^\dagger \hat{a}_i) \]

\[+ \sum_{\sigma \neq \sigma'} \hat{a}_{\sigma}^\dagger \hat{a}_{\sigma'} u_{\sigma\sigma'},(t) + \sum_{i \neq i'} \hat{a}_i^\dagger \hat{a}_{i'} u_{ii'},(t) \quad (3.11) \]

where

\[V_{i\sigma}(t) = \langle \phi_i h_I(\vec{x},t) \phi_\sigma \rangle \]

\[= v_{i\sigma} + u_{i\sigma}(t), \quad (3.12) \]
and

\[u_{ab}(t) = \langle a | h_f(x', t) | b \rangle \] \hspace{1cm} (3.13)

with \(a, b\) standing for \(\{i\}\) or \(\{\sigma\}\). In Eq. (3.11) the first two terms describe "unperturbed" electrons corresponding to the states \(|\phi_i\rangle\) and \(|\phi_\sigma\rangle\); the third term accounts for the combined effects of adsorptive and radiative interaction between the states \(|\phi_i\rangle\) and \(|\phi_\sigma\rangle\); and the last two terms describe radiative interactions within the sets of states \(|\phi_\sigma\rangle\) and \(|\phi_i\rangle\) respectively.

Since the interaction Hamiltonian \(h_I\) only involves single-particle coordinates [cf. Eq. (3.10)], the series expansion of the Green's function [defined in Eq. (3.1)] assumes a particularly simple form. The usual expansion procedure using Wick's theorem\(^{21}\) leads to the following diagrammatic representation for \(G(x', x)\):

\[
\begin{align*}
 \begin{array}{c}
 x' \\
 \downarrow \\
 x
 \end{array}
 =
 \begin{array}{c}
 x' \\
 \downarrow \\
 x
 \end{array}
 + \ldots \hspace{1cm} (3.14)
\end{align*}
\]

where the contracted notation \(x\) stands for the space-time point \((x, t)\), etc.; the double bar and the single bar stand for the full
Green's function and the "non-interacting" Green's function respectively; and the wavy lines stand for the interactions \(h_I \) integrated over intermediate space-time variables. Eq. (3.14) is equivalent to

\[
G(x',x) = G^0(x',x) + \frac{1}{\hbar} \int d^4x_1 \, G^0(x',x_1)h_I(x_1)G(x_1,x)
\]

\[
+ \left(\frac{1}{\hbar} \right)^2 \int d^4x_1 \int d^4x_2 \, G^0(x',x_2)h_I(x_2)G^0(x_2,x_1)h_I(x_1)G(x_1,x)
\]

\[
+ \left(\frac{1}{\hbar} \right)^3 \int d^4x_1 \int d^4x_2 \int d^4x_3 \, G^0(x',x_3)h_I(x_3)G^0(x_3,x_2)h_I(x_2)
\]

\[
\times G^0(x_2,x_1)h_I(x_1)G(x_1,x) + \ldots , \tag{3.15}
\]

where \(G^0 \) is the "non-interacting" Green's function; and it leads to the Dyson's equation

\[
G(x',x) = G^0(x',x) + \int d^4x_1 \, G^0(x',x_1)\Sigma(x_1)G(x_1,x) \tag{3.16}
\]

where \(\Sigma(x) \), the proper self-energy, is simply given as

\[
\Sigma(x) = \frac{h_I(x)}{\hbar} . \tag{3.17}
\]

Equation (3.16) can also be represented in the diagrammatic form

\[
G(x',x) = G(x',x) + \int d^4x_1 \, G(x',x_1)\Sigma(x_1)G(x_1,x) \tag{3.18}
\]
where the shaded circle stands for the proper self-energy.

We are now in a position to calculate \(\tilde{G}(\hat{x}',\hat{x};\omega,t) \), the restricted Fourier Transform of \(G(\hat{x}',t';x,t) \), by converting Eq. (3.16) into an algebraic equation. First we note that the QSA allows us to replace \(\Sigma(\hat{x}_1,t_1) \) in Eq. (3.16) by \(\check{\Sigma}(\hat{x}_1,t) \) [cf. discussion following Eq. (2.28)]. Dyson's equation can then be written

\[
G(\hat{x}',t';\hat{x},t) = G^0(\hat{x}',t';\hat{x},t) + \int d^3x_1 \int dt_1 G^0(\hat{x}',t';\hat{x}_1,t_1) \Sigma(\hat{x}_1,t) \times G(\hat{x}_1,t_1;\hat{x},t).
\] (3.19)

Fourier transforming with respect to \(t'-t \), Eq. (3.19) becomes

\[
\frac{1}{2\pi} \int d\omega e^{-i\omega (t'-t)} \left[G(x',x,\omega,t) - G^0(x',x,\omega) \right] = \frac{1}{(2\pi)^2} \int d^3x_1 \int dt_1 \Sigma(\hat{x}_1,t) \int d\omega e^{-i\omega (t'-t_1)} G^0(\hat{x}',\hat{x}_1,\omega) \int d\omega' e^{-i\omega'(t_1-t)} \times G(\hat{x}_1,t_1;\hat{x}',\hat{x},\omega',t),
\] (3.20)

since \(G^0 \) only depends on the difference of the time variables, \(h_0(\hat{x}) \) being time-independent. By first performing the integration with respect to \(t_1 \) and then \(\omega' \), the right side of Eq. (3.20) can be expressed as

\[
\frac{1}{(2\pi)^2} \int d\omega e^{-i\omega t'} \int d^3x_1 G^0(\hat{x}',\hat{x}_1,\omega) \Sigma(\hat{x}_1,t) \int d\omega' e^{i\omega' t} G(\hat{x}_1,t_1;\hat{x}',\hat{x},\omega',t) \times \int dt_1 e^{i(\omega-\omega')} t_1
\]

\[
= \frac{1}{2\pi} \int d\omega e^{-i\omega t'} \int d^3x_1 G^0(\hat{x}',\hat{x}_1,\omega) \Sigma(\hat{x}_1,t) e^{i\omega t} G(\hat{x}_1,t_1;\hat{x}',\hat{x},\omega,t)
\]

\[
= \frac{1}{2\pi} \int d\omega e^{-i\omega (t-t')} \int d^3x_1 G^0(\hat{x}',\hat{x}_1,\omega) \Sigma(\hat{x}_1,t) G(\hat{x}_1,t_1;\hat{x}',\hat{x},\omega,t).
\] (3.21)
Eq. (3.20) then leads to the following Dyson's equation for \(G(\vec{x}', \vec{x}, \omega, t) \):

\[
G(\vec{x}', \vec{x}, \omega, t) = G_0(\vec{x}', \vec{x}, \omega) + \int d^3x_1 G_0(\vec{x}', \vec{x}_1, \omega) \Sigma(\vec{x}_1, t) G(\vec{x}_1, \vec{x}, \omega, t). \tag{3.22}
\]

Next, the spatial Fourier transforms of \(G(\vec{x}', \vec{x}, \omega, t) \) are performed to obtain \(\tilde{G}(\vec{k}', \vec{k}, \omega, t) \). Eq. (3.22) can be written as

\[
\frac{1}{(2\pi)^6} \int d^3k' d^3k e^{i\vec{k}' \cdot \vec{x}'} e^{i\vec{k} \cdot \vec{x}} [\tilde{G}(\vec{k}', \vec{k}, \omega, t) - \tilde{G}_0(\vec{k}', \vec{k}, \omega)]
\]

\[
= \frac{1}{(2\pi)^6} \int d^3x_1 \int d^3k_1 e^{i\vec{k}_1 \cdot \vec{x}_1} [\tilde{G}(\vec{k}', \vec{k}_1, \omega, t) - \tilde{G}_0(\vec{k}_1, \vec{x}_1, \omega)] \int d^3k_2 d^3k e^{i\vec{k}_2 \cdot \vec{x}_1} \times e^{i\vec{k} \cdot \vec{x}} G(\vec{k}_2, \vec{k}, \omega, t), \tag{3.23}
\]

where

\[
Z(\vec{k}', \vec{k}_1, \omega, t) \equiv \int d^3x' d^3x_1 e^{-i\vec{k}' \cdot \vec{x}'} e^{-i\vec{k}_1 \cdot \vec{x}_1} G_0(\vec{x}', \vec{x}_1, \omega) \Sigma(\vec{x}_1, t). \tag{3.24}
\]

Again, by doing the appropriate integrations, we can reduce the right side of Eq. (3.23) as follows:

\[
\frac{1}{(2\pi)^6} \int d^3k' d^3k_{1} e^{i\vec{k}' \cdot \vec{x}'} e^{i\vec{k}_1 \cdot \vec{x}_1} \int d^3k_2 Z(\vec{k}, \vec{k}_1, \omega, t) \int d^3k_2 G(\vec{k}_2, \vec{k}, \omega, t)
\]

\[
\times \int d^3x_1 e^{i(\vec{k}_1 + \vec{k}_2) \cdot \vec{x}_1} = \frac{1}{(2\pi)^6} \int d^3k' d^3k_{1} e^{i\vec{k}' \cdot \vec{x}'} e^{i\vec{k}_1 \cdot \vec{x}_1}
\]

\[
\times \int d^3k_1 Z(\vec{k}', \vec{k}_1, \omega, t) \tilde{G}(\vec{k}_1, \vec{k}, \omega, t). \tag{3.25}
\]

Comparison with Eq. (3.23) yields the Dyson's equation for \(\tilde{G}(\vec{k}', \vec{k}, \omega, t) \):

\[
\tilde{G}(\vec{k}', \vec{k}, \omega, t) = \tilde{G}_0(\vec{k}', \vec{k}, \omega) + \frac{1}{(2\pi)^6} \int d^3k_{1} Z(\vec{k}', \vec{k}_1, \omega, t) \tilde{G}(\vec{k}_1, \vec{k}, \omega, t), \tag{3.26}
\]

which can also be written in the diagrammatic form.
where the angular bar stands for the interaction $Z/(2\pi)^3$ and the intermediate momentum variables are to be integrated over.

At this point it is convenient to expand \tilde{G} and \tilde{G}^0 as

$$\tilde{G}(\vec{k}', \vec{k}, \omega, t) = \sum_{\alpha \beta} \tilde{\phi}_\alpha^*(-\vec{k}') \tilde{\phi}_\beta(\vec{k}) \tilde{G}_{\alpha \beta}(\omega, t),$$

$$\tilde{G}^0(\vec{k}', \vec{k}, \omega) = \sum_{\alpha \beta} \tilde{\phi}_\alpha(-\vec{k}') \tilde{\phi}_\beta(\vec{k}) \tilde{G}^0_{\alpha \beta}(\omega) \delta_{\alpha \beta}$$

where each of the sums runs over the complete set of indices $\{i\}$ and $\{\sigma\}$ [i.e., the non-interacting adatom and surface states, cf. Eq. (3.4)] and

$$\tilde{\phi}_\alpha(\vec{k}) = \int d^3x e^{-i\vec{k} \cdot \vec{x}} \tilde{\phi}_\alpha(\vec{x}).$$

Expressing $G^0(\vec{x}', \vec{x}_1, \omega)$ also as

$$G^0(\vec{x}', \vec{x}_1, \omega) = \sum_{\alpha} \phi_\alpha^*(\vec{x}') \phi_\alpha(\vec{x}_1) G^0_\alpha(\omega),$$

we obtain the following form for $Z(\vec{k}', \vec{k}, \omega, t)$:
\[z(\vec{k}', \vec{k}_1, \omega, t) = \frac{1}{\hbar} \sum_\alpha \int d^3 x \int d^3 x_1 e^{-i \vec{k}' \cdot \vec{x}} e^{-i \vec{k}_1 \cdot \vec{x}_1} \phi_\alpha(\vec{x}) \phi_\alpha(\vec{x}_1) \]

\[\chi_\alpha(\vec{k}', t) \tilde{G}_\alpha(\omega) = \sum_\alpha \phi_\alpha^*(-\vec{k}') \chi_\alpha(\vec{k}_1, t) \tilde{G}_\alpha(\omega), \quad (3.32) \]

where

\[\chi_\alpha(\vec{k}, t) \equiv \frac{1}{\hbar} \int d^3 x_1 e^{-i \vec{k}_1 \cdot \vec{x}_1} \phi_\alpha(\vec{x}_1) h_I(\vec{x}_1, t). \quad (3.33) \]

Using Eqs. (3.28), (3.29), (3.32) and (3.33), Eq. (3.26) becomes

\[\sum_{\alpha, \beta} \phi_\alpha(-\vec{k}) \tilde{\phi}_\beta(\vec{k}) [\tilde{G}_{\alpha \beta}(\omega, t) - \tilde{G}_{\alpha \beta}^0(\omega)] = \frac{1}{(2\pi)^3} \int d^3 k \sum_\alpha \phi_\alpha^*(-\vec{k}') \chi_\alpha(-\vec{k}_1, t) \tilde{G}_\alpha(\omega) \sum_\beta \phi_\beta^*(-\vec{k}') \tilde{G}_\beta(\omega, t) \]

\[= \frac{1}{(2\pi)^3} \sum_{\alpha, \beta} \phi_\alpha^*(-\vec{k}') \tilde{\phi}_\beta(\vec{k}) \tilde{G}_\alpha(\omega) \sum_\alpha \int d^3 x_1 \phi_\alpha(\vec{x}_1) \frac{h_I(\vec{x}_1, t)}{\hbar} \int d^3 x_1 e^{-i \vec{k}_1 \cdot \vec{x}_1} \]

\[\times \phi_\alpha^*(-\vec{k}_1) \tilde{G}_{\alpha \beta}(\omega, t) \]

\[= \sum_{\alpha, \beta} \phi_\alpha(-\vec{k}') \tilde{\phi}_\beta(\vec{k}) \tilde{G}_\alpha^0(\omega) \sum_\alpha \int d^3 x_1 \phi_\alpha^*(\vec{x}_1) \frac{h_I(\vec{x}_1, t)}{\hbar} \tilde{G}_{\alpha \beta}(\omega, t) \]

\[= \sum_{\alpha, \beta} \phi_\alpha(-\vec{k}') \tilde{\phi}_\beta(\vec{k}) \tilde{G}_\alpha^0(\omega) \sum_\alpha \gamma_\alpha^*(t) \tilde{G}_{\alpha \beta}(\omega, t), \quad (3.34) \]

where

\[\gamma_\alpha^*(t) \equiv \int d^3 x_1 \phi_\alpha^*(\vec{x}_1) \frac{h_I(\vec{x}_1, t)}{\hbar} \phi_\alpha(\vec{x}_1) \quad (3.35) \]

may be considered to be a generalized time-dependent Rabi frequency.

Eq. (3.34) yields immediately the algebraic Dyson's equation for \(\tilde{G}_{\alpha \beta}(\omega, t) \):

\[\tilde{G}_{\alpha \beta}(\omega, t) - \tilde{G}_\alpha^0(\omega) \delta_{\alpha \beta} = \tilde{G}_\alpha^0(\omega) \sum_\alpha \gamma_\alpha^* \tilde{G}_{\alpha \beta}(\omega, t) \quad (3.36) \]
or \[\sum_{\alpha} \left(\frac{\delta_{\alpha',\alpha}}{G_0^\alpha(w)} - \gamma_{\alpha}(t) \right) \tilde{G}_{\alpha'\beta}(w,t) = \delta_{\alpha\beta}. \] (3.37)

In matrix notation,
\[G(w,t) = \Gamma^{-1}(w,t), \] (3.38)
where
\[\Gamma_{\alpha\beta} = \frac{\delta_{\alpha\beta}}{G_0^\alpha(w)} - \gamma_{\alpha}(t). \] (3.39)

Since
\[\tilde{G}_0^\alpha(w) = \frac{1}{\omega - \omega_\alpha}, \] (3.40)
where
\[\omega_\alpha = \epsilon_\alpha / \hbar, \] (3.41)
\[\Gamma_{\alpha\beta} = (\omega - \omega_\alpha) \delta_{\alpha\beta} - \gamma_{\alpha}(t). \] (3.42)

If we let
\[\tilde{v}_{\alpha\beta} = e^{\langle \phi_\alpha | x | \phi_\beta \rangle} , \] (3.43)
we have
\[\gamma_{ij}(t) = - \frac{1}{\hbar} \hat{E}_0 \cdot \tilde{v}_{ij} \theta(t) \cos \omega_L t \] (3.44)
\[\gamma_{i\sigma}(t) = \frac{1}{\hbar} \left(\nu_{i\sigma} - \hat{E}_0 \cdot \tilde{v}_{i\sigma} \theta(t) \cos \omega_L t \right), \] (3.45)
and
\[\gamma_{\sigma\tau}(t) = - \frac{1}{\hbar} \hat{E}_0 \cdot \tilde{v}_{\sigma\tau} \theta(t) \cos \omega_L t. \] (3.46)

Eqs. (3.28) and (3.38) then determine the time-dependent Green's function \(\tilde{G}(\vec{k}', \vec{k}, \omega, t) \).

\(\tilde{G} \) is related to \(\tilde{G}_A \), the advanced Green's function, through the following relationships:
\[\tilde{G}_A(\vec{p}, \omega, t) = \tilde{G}(\vec{p}, \vec{p}, \omega, t), \quad \omega < u(t)/\hbar \]
\[= \tilde{G}^*(\vec{p}, \vec{p}, \omega, t), \quad \omega > u(t)/\hbar \] (3.47)
where \(\mu(t) \) is the time-dependent chemical potential of the adatom-surface-field system. According to the Lehmann representation,\(^{22}\) \(\mu(t) \) is determined as the point in real \(\omega \) space at which the imaginary parts of the poles of \(\tilde{G} \) (regarded as a function of \(\omega \)) change sign. These poles are determined by Eqs.\((3.38)\) and \((3.42)\). Eq.\((2.26)\) can then be used to give the spectral function.

IV. Conclusion

We have proposed a non-perturbative formalism to treat the bound-continuum (BC) problem of collisional ionization of solid surfaces. This formalism has certain advantages over conventional treatments of BC problems. First it provides a direct way of obtaining differential cross sections with respect to the continuum of emitted electronic energies, whereas the usual optical potential methods would only lead to the total cross section. Second, it bypasses the approximation of limiting the problem to a finite number of channels, usually two, that is often required in coupled-channels approaches. Further, it renders the discretization of electronic energies unnecessary, which is again the standard procedure in coupled-channels as well as semiclassical treatments.

The QSA and the IMA, however, pose limitations on the validity and usefulness of the present approach. In situations where the applied field has frequencies \(\omega_L \) large compared to or of the order of \(1/\tau \), the QSA breaks down, although the IMA may still be applicable to the field-free problem. Fields with large \(\omega_L \) may by themselves lead to electronic excitation or ionization, and the inclusion of collisional effects may not necessarily provide extra information
on the systems of interest. However, the general collisional problem with arbitrarily variable ω_L is definitely of immense theoretical interest. It should also be noted that the underlying criterion for the validity of both the QSA and the IMA is the shortness of the collision time τ. With the relaxation of this criterion to the extent that the IMA is no longer valid, electron correlation effects will have to be considered which would render the Green's function formalism much more complicated than the present treatment.
Appendix I

In this appendix we will derive the Dyson's equation for the quantity \(\tilde{G}(p_1, \omega, t) \) [cf. Eq. (2.29)]. We start from Eq. (3.16):

\[
\begin{align*}
G(\mathbf{x}', t'; \mathbf{x}, t) &= G^0(\mathbf{x}', t'; \mathbf{x}, t) + \int d^3x_1 \int dt_1 G^0(\mathbf{x}', t'; \mathbf{x}_1, t_1) \\
&\quad \times \Sigma(\mathbf{x}_1, t_1) G(\mathbf{x}_1, t_1, \mathbf{x}, t) . \tag{A.1}
\end{align*}
\]

It should be noted this equation differs from Eq. (3.19) [which is used to obtain the restricted Fourier Transform \(G(p_1, \omega, t) \)] only in the time variable in the proper self-energy \(\Sigma \). Fourier Transforming with respect to \(t' - t \), Eq. (A.1) becomes

\[
\int \frac{d\omega}{2\pi} e^{-i\omega(t' - t)} [G(\mathbf{x}', \mathbf{x}, \omega, t) - G^0(\mathbf{x}', \mathbf{x}, \omega)] = \frac{1}{(2\pi)^2} \int d^3x_1 \int dt_1 \Sigma(\mathbf{x}_1, t_1) \int d\omega e^{-i\omega(t' - t_1)} G^0(\mathbf{x}', \mathbf{x}_1, \omega) \int d\omega' e^{-i\omega'(t_1 - t)} \times G(\mathbf{x}_1', \mathbf{x}, \omega', t) . \tag{A.2}
\]

From Eqs. (3.17) and (3.10)

\[
\Sigma(\mathbf{x}_1, t_1) = \frac{1}{\hbar} [\hbar \mathbf{L}(\mathbf{x}_1) - \mathbf{e}\mathbf{E}_0 \cdot \mathbf{x}_1 \theta(t_1) \cos \omega \mathbf{L} t_1].
\]

The \(t_1 \)-integration on the right side of Eq. (A.2) can then be written as:

\[
\int dt_1 \Sigma(\mathbf{x}_1, t_1) e^{-i(\omega' - \omega) t_1} = \frac{2\pi}{\hbar} h_1(\mathbf{x}_1) \delta(\omega' - \omega) - \frac{1}{\hbar} \mathbf{e}\mathbf{E}_0 \cdot \mathbf{x}_1 \int_{-\infty}^{\infty} dt_1 e^{-i(\omega' - \omega) t_1} \theta(t_1) \cos \omega \mathbf{L} t_1
\]

\[
= \frac{2\pi}{\hbar} h_1(\mathbf{x}_1) \delta(\omega' - \omega) - \frac{1}{2\hbar} \mathbf{e}\mathbf{E}_0 \cdot \mathbf{x}_1 \left(\frac{1}{\omega + \omega \mathbf{L} - \omega' + i\hbar} + \frac{1}{\omega - \omega \mathbf{L} - \omega' + i\hbar} \right) . \tag{A.3}
\]
where \(\eta \) is a vanishingly small positive quantity, and the integral representation for \(\theta(t) \) [Eq. (2.23)] has been used. Performing the \(\omega' \) integration next, we find that

\[
G(\hat{x}', \hat{x}, \omega, t) = G^0(\hat{x}', \hat{x}, \omega) - \frac{\eta h_1(\hat{x}_1)}{h} G(\hat{x}_1) - \frac{\eta h_0}{2n} \int \frac{d\omega''}{2\pi i} \frac{e^{i\omega''t}}{\omega''-i\eta} G(\hat{x}_1, \omega''+\omega, t) \times \left\{ \begin{array}{l}
e -i\omega L \int \frac{d\omega''}{2\pi i} \frac{e^{i\omega''t}}{\omega''-i\eta} G(\hat{x}_1, \omega''+\omega, t) \end{array} \right\}
\]

The spatial Fourier Transforms are then performed by rewriting Eq. (A.4) as follows:

\[
\frac{1}{(2\pi)^6} \int d^3k' d^3ke \hat{k}' \cdot \hat{x}' e^{i\hat{k}' \cdot \hat{x}'} e^{i\hat{k} \cdot \hat{x}_1} \tilde{G}(\hat{x}', \hat{k}, \omega, t) = \tilde{G}^0(k', k, \omega) + \frac{1}{(2\pi)^6} \int d^3x d^3k' d^3ke \hat{k}_1 \cdot \hat{x}_1 e^{i\hat{k}_1 \cdot \hat{x}_1} \tilde{G}(\hat{x}', \hat{k}, \omega, t)
\]

\[
\times \left\{ \begin{array}{l}
\frac{1}{(2\pi)^6} \int d^3x d^3k' d^3ke \hat{k}_1 \cdot \hat{x}_1 e^{i\hat{k}_1 \cdot \hat{x}_1} \tilde{G}(k_2, k, \omega, t)
\end{array} \right\}
\]

\[
+ \frac{1}{(2\pi)^6} \int d^3x d^3k' d^3ke \hat{k}_1 \cdot \hat{x}_1 e^{i\hat{k}_1 \cdot \hat{x}_1} \tilde{G}(k_2, k, \omega, t) \frac{d\omega''}{2\pi i} \int d^3x d^3k' d^3ke \hat{k}_1 \cdot \hat{x}_1 e^{i\hat{k}_1 \cdot \hat{x}_1} \tilde{G}(k_2, k, \omega, t)
\]

where

\[
z_1(k', \hat{k}_1, \omega) = \int d^3x' d^3x d^3k' e^{-i\hat{k}' \cdot \hat{x}'} e^{-i\hat{k}_1 \cdot \hat{x}_1} \frac{h_1(\hat{x}_1)}{h} G^0(\hat{x}', \hat{x}, \omega, t),
\]

\[z_2(k', \hat{k}_1, \omega) = \int d^3x' d^3x d^3k' e^{-i\hat{k}' \cdot \hat{x}'} e^{-i\hat{k}_1 \cdot \hat{x}_1} \frac{h_1(\hat{x}_1)}{h} G^0(\hat{x}', \hat{x}, \omega, t).
\]
and

\[z_2(\vec{k}', \vec{k}_1, \omega) = \int d^3x' d^3x_1 e^{-i\vec{k}' \cdot \vec{x}'} e^{-i\vec{k}_1 \cdot \vec{x}_1} (-\frac{e\vec{E}_0 \cdot \vec{x}_1}{\hbar}) G_0(\vec{x}', \vec{x}_1, \omega). \quad (A.7) \]

By first performing the \(x \) and then the \(k \) integrations, we obtain the Dyson's equation for \(\tilde{G}(\vec{k}', \vec{k}, \omega, t) \):

\[
\tilde{G}(\vec{k}', \vec{k}, \omega, t) = \tilde{G}^0(\vec{k}', \vec{k}, \omega) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3k_1 z_1(\vec{k}', -\vec{k}_1, \omega) \tilde{G}(\vec{k}_1, \vec{k}, \omega, t)
+ \frac{1}{\sqrt{(2\pi)^3}} \int d^3k_1 z_2(\vec{k}', -\vec{k}_1, \omega) \left(\frac{e}{2} \int \frac{d\omega'}{2\pi} \frac{e^{i\omega t}}{\omega - \omega_0} G(\vec{k}_1, \vec{k}, \omega + \omega_0), \right)
+ e^{i\omega t} \int \frac{d\omega'}{2\pi} \frac{e^{i\omega t}}{\omega - \omega_0} \tilde{G}(\vec{k}_1, \vec{k}, \omega + \omega_0, t). \quad (A.8)
\]

We again invoke the expansions [cf. Eqs. (3.28), (3.29) and (3.31)]:

\[
G^0(\vec{x}', \vec{x}_1, \omega) = \sum_\alpha \phi^*_\alpha(\vec{x}') \phi_\alpha(\vec{x}_1) G_0^\alpha(\omega),
\quad (A.9)
\]

\[
\tilde{G}^0(\vec{k}', \vec{k}, \omega) = \sum_{\alpha \beta} \phi^*_\alpha(-\vec{k}') \phi_\beta(\vec{k}) \tilde{G}_0^\alpha(\omega) \delta_{\alpha \beta},
\quad (A.10)
\]

and

\[
\tilde{G}(\vec{k}', \vec{k}, \omega, t) = \sum_{\alpha \beta} \phi^*_\alpha(-\vec{k}') \phi_\beta(\vec{k}) \tilde{G}_{\alpha \beta}(\omega, t). \quad (A.11)
\]

The interaction terms \(z_1 \) and \(z_2 \) can then be written:

\[
z_1(\vec{k}', -\vec{k}_1, \omega) = \sum_\alpha \int d^3x' d^3x_1 e^{-i\vec{k}' \cdot \vec{x}'} e^{i\vec{k}_1 \cdot \vec{x}_1} \phi^*_\alpha(\vec{x}') \phi_\alpha(\vec{x}_1) \frac{h_1(\vec{x}_1)}{\hbar} G_0^\alpha(\omega)
= \sum_\alpha \tilde{\phi}^*_\alpha(-\vec{k}') \chi_\alpha(1)(-\vec{k}_1) G_0^\alpha(\omega),
\quad (A.12)
\]

\[
z_2(\vec{k}', -\vec{k}_1, \omega) = \sum_\alpha \int d^3x' d^3x_1 e^{-i\vec{k}' \cdot \vec{x}'} e^{i\vec{k}_1 \cdot \vec{x}_1} \phi^*_\alpha(\vec{x}') \phi_\alpha(\vec{x}_1) \frac{-e\vec{E}_0 \cdot \vec{x}_1}{\hbar^2} G_0^\alpha(\omega)
= \sum_\alpha \tilde{\phi}^*_\alpha(-\vec{k}') \chi_\alpha(2)(-\vec{k}_1) G_0^\alpha(\omega), \quad (A.13)
\]
where
\[\chi^{(1)}_{\alpha}(\mathbf{k}_1) = \int d^3x_1 e^{-i\mathbf{k}_1 \cdot \mathbf{x}_1} \frac{h_1(\mathbf{x}_1)}{\hbar}, \]
\[\text{and} \]
\[\chi^{(2)}_{\alpha}(\mathbf{k}_1) = \int d^3x_1 e^{-i\mathbf{k}_1 \cdot \mathbf{x}_1} \frac{\phi_{\alpha}(\mathbf{x}_1)}{\hbar}. \]

Finally, we perform the \(\mathbf{k}_1 \) integration on the right hand side of Eq. (A.8) and thus obtain [following the procedure in Eq. (3.34)] the Dyson's equation for \(\tilde{G}_{\alpha\beta}(\omega, t) \):
\[\tilde{G}_{\alpha\beta}(\omega, t) = \tilde{G}^0_{\alpha}(\omega) \mathcal{D}_{\alpha\beta} + \sum_{\alpha'\alpha} \gamma^{(1)}_{\alpha'\alpha} \tilde{G}_{\alpha'\beta}(\omega, t) \]
\[+ \sum_{\alpha'\alpha} \gamma^{(2)}_{\alpha'\alpha} \left(e^{i\omega_L t} \int\frac{dw''}{2\pi i} \frac{e^{i\omega'' t}}{\omega'' - i\eta} \tilde{G}_{\alpha'\beta}(\omega'' + \omega + \omega_L, t) + e^{-i\omega_L t} \int\frac{dw''}{2\pi i} \frac{e^{i\omega'' t}}{\omega'' - i\eta} \right) \]
\[\times \tilde{G}_{\alpha'\beta}(\omega'' + \omega - \omega_L, t). \]
(A.16)

where
\[\gamma^{(1)}_{\alpha'\alpha} \equiv \int d^3x \phi_{\alpha'}^*(\mathbf{x}) \frac{h_1(\mathbf{x})}{\hbar} \phi_{\alpha}(\mathbf{x}), \]
\[\gamma^{(2)}_{\alpha'\alpha} \equiv \int d^3x \phi_{\alpha'}^*(\mathbf{x}) \frac{-e\mathbf{E}_0 \cdot \mathbf{x}}{\hbar} \phi_{\alpha}(\mathbf{x}), \]
(A.17)
(A.18)

which may again be considered as Rabi frequencies [cf. Eq. (3.35)].

In matrix notation Eq. (A.16) can be written as
\[I = \Gamma^{(1)}_{\alpha} \mathcal{G}(\omega, t) - \frac{1}{2\gamma} \Gamma^{(2)}_{\alpha} \mathcal{G}(\omega, t) \]
\[+ \mathcal{G}(\omega, t) \int\frac{dw'}{2\pi i} \frac{e^{i\omega' t}}{\omega' - i\eta} \mathcal{G}(\omega' + \omega + \omega_L, t) + e^{-i\omega' t} \mathcal{G}(\omega' + \omega - \omega_L, t). \]
(A.19)

where
\[\Gamma^{(1)}_{\alpha} = \delta_{\alpha\beta} \mathcal{G}^0_{\alpha}(\omega) - \gamma^{(1)}_{\alpha\beta}. \]
(A.20)
This research was supported by the National Science Foundation under the Grant No. CHE-80022874, the Air Force Office of Scientific Research (AFSC), United States Air Force, under Grant No. AFOSR-82-0046 and the Office of Naval Research. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon. T.F.G. acknowledges the Camille and Henry Dreyfus Foundation for a Teacher-Scholar Award (1975-1984).

References

Figure 1. Schematic representation of the transition matrix element $T(t)$. The shaded circle represents the hole momentum distribution function $<\psi_0^+(t)|\hat{a}(\mathbf{p}_1)|\psi_0(t)>$ for the adatom-surface + field system whereas the blank circle represents the electron-atom scattering matrix element $T_{E_f',\mathbf{p}_f',\mathbf{p}_i',\mathbf{E}_i',\mathbf{P}_1',\mathbf{P}_1}$. At the shaded circle, energy is adiabatically conserved; and at the blank circle, energy and momentum are strictly conserved.
TECHNICAL REPORT DISTRIBUTION LIST, GEN

<table>
<thead>
<tr>
<th>Office/Copy No.</th>
<th>Address/Contact Person</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>Attn: Code 413</td>
<td>1</td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td>Arlington, Virginia 22217</td>
<td>1</td>
</tr>
<tr>
<td>ONR Pasadena Detachment</td>
<td>Attn: Dr. R. J. Marcus</td>
<td>1</td>
</tr>
<tr>
<td>1030 East Green Street</td>
<td>Pasadena, California 91106</td>
<td>1</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td>1</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td>Washington, D.C. 20360</td>
<td>1</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>Building 5, Cameron Station</td>
<td>1</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dr. Fred Saalfeld</td>
<td>Chemistry Division, Code 6100</td>
<td>1</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>Washington, D.C. 20375</td>
<td>1</td>
</tr>
<tr>
<td>U.S. Army Research Office</td>
<td>Attn: CRD-AA-IP</td>
<td>1</td>
</tr>
<tr>
<td>P. O. Box 12211</td>
<td>Research Triangle Park, N.C. 27709</td>
<td>1</td>
</tr>
<tr>
<td>Mr. Vincent Schaper</td>
<td>DTNSRDC Code 2803</td>
<td>1</td>
</tr>
<tr>
<td>Annapolis, Maryland 21402</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>Attn: Dr. S. Yamamoto</td>
<td>1</td>
</tr>
<tr>
<td>Marine Sciences Division</td>
<td>San Diego, California 91232</td>
<td>1</td>
</tr>
<tr>
<td>Dr. David L. Nelson</td>
<td>Chemistry Program</td>
<td>1</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>800 North Quincy Street</td>
<td>1</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>Attn: Mr. Joe McCartney</td>
<td>1</td>
</tr>
<tr>
<td>San Diego, California 92152</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Naval Weapons Center</td>
<td>Attn: Dr. A. B. Amster, Chemistry Division</td>
<td>1</td>
</tr>
<tr>
<td>China Lake, California 93555</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>Attn: Dr. R. W. Drisko</td>
<td>1</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dean William Tolles</td>
<td>Naval Postgraduate School</td>
<td>1</td>
</tr>
<tr>
<td>Monterey, California 93940</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Scientific Advisor</td>
<td>Commandant of the Marine Corps (Code RD-1)</td>
<td>1</td>
</tr>
<tr>
<td>Washington, D.C. 20380</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Naval Ship Research and Development Center</td>
<td>Attn: Dr. G. Bosmajian, Applied Chemistry Division</td>
<td>1</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mr. John Boyle</td>
<td>Materials Branch</td>
<td>1</td>
</tr>
<tr>
<td>Naval Ship Engineering Center</td>
<td>Philadelphia, Pennsylvania 19112</td>
<td>1</td>
</tr>
<tr>
<td>Mr. A. M. Anzaione</td>
<td>Administrative Librarian</td>
<td>1</td>
</tr>
<tr>
<td>PLASTEC/ARRADCOM</td>
<td>Bldg 3401</td>
<td>1</td>
</tr>
<tr>
<td>Dover, New Jersey 07801</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Copies</td>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>Dr. G. A. Somorjai</td>
<td>1</td>
<td>Dr. W. Kohn</td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td></td>
<td>Department of Physics</td>
</tr>
<tr>
<td>University of California</td>
<td></td>
<td>University of California</td>
</tr>
<tr>
<td>Berkeley, California 94720</td>
<td></td>
<td>(San Diego)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La Jolla, California 92037</td>
</tr>
<tr>
<td>Dr. J. Murday</td>
<td>1</td>
<td>Dr. R. L. Park</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>Director, Center of Materials Research</td>
</tr>
<tr>
<td>Surface Chemistry Division (6170)</td>
<td></td>
<td>University of Maryland</td>
</tr>
<tr>
<td>455 Overlook Avenue, S.W.</td>
<td></td>
<td>College Park, Maryland 20742</td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. J. B. Hudson</td>
<td>1</td>
<td>Dr. W. T. Peria</td>
</tr>
<tr>
<td>Materials Division</td>
<td></td>
<td>Electrical Engineering Department</td>
</tr>
<tr>
<td>Rensselaer Polytechnic Institute</td>
<td></td>
<td>University of Minnesota</td>
</tr>
<tr>
<td>Troy, New York 12181</td>
<td></td>
<td>Minneapolis, Minnesota 55455</td>
</tr>
<tr>
<td>Dr. Theodore E. Madey</td>
<td>1</td>
<td>Dr. Chia-wei Woo</td>
</tr>
<tr>
<td>Surface Chemistry Section</td>
<td></td>
<td>Department of Physics</td>
</tr>
<tr>
<td>Department of Commerce</td>
<td></td>
<td>Northwestern University</td>
</tr>
<tr>
<td>National Bureau of Standards</td>
<td></td>
<td>Evanston, Illinois 60201</td>
</tr>
<tr>
<td>Washington, D.C. 20234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. J. M. White</td>
<td>1</td>
<td>Dr. Robert M. Hexter</td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td></td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td>University of Texas</td>
<td></td>
<td>University of Minnesota</td>
</tr>
<tr>
<td>Austin, Texas 78712</td>
<td></td>
<td>Minneapolis, Minnesota 55455</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Keith H. Johnson</td>
<td>1</td>
<td>Dr. R. P. Van Duyne</td>
</tr>
<tr>
<td>Department of Metallurgy and Materials Science</td>
<td></td>
<td>Chemistry Department</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td></td>
<td>Northwestern University</td>
</tr>
<tr>
<td>Cambridge, Massachusetts 02139</td>
<td></td>
<td>Evanston, Illinois 60201</td>
</tr>
<tr>
<td>Dr. J. E. Demuth</td>
<td>1</td>
<td>Dr. S. Sibener</td>
</tr>
<tr>
<td>IBM Corporation</td>
<td></td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td>Thomas J. Watson Research Center</td>
<td></td>
<td>James Franck Institute</td>
</tr>
<tr>
<td>P. O. Box 218</td>
<td></td>
<td>5640 Ellis Avenue</td>
</tr>
<tr>
<td>Yorktown Heights, New York 10598</td>
<td></td>
<td>Chicago, Illinois 60637</td>
</tr>
<tr>
<td>Dr. C. P. Flynn</td>
<td>1</td>
<td>Dr. M. G. Lagally</td>
</tr>
<tr>
<td>Department of Physics</td>
<td></td>
<td>Department of Metallurgical and Mining Engineering</td>
</tr>
<tr>
<td>University of Illinois</td>
<td></td>
<td>University of Wisconsin</td>
</tr>
<tr>
<td>Urbana, Illinois 61801</td>
<td></td>
<td>Madison, Wisconsin 53706</td>
</tr>
<tr>
<td>No. Copies</td>
<td>No. Copies</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637</td>
<td>Dr. K. G. Spears
Chemistry Department
Northwestern University
Evanston, Illinois 60201</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dr. R. G. Wallis
Department of Physics
University of California, Irvine
Irvine, California 92664</td>
<td>Dr. R. W. Plummer
University of Pennsylvania
Department of Physics
Philadelphia, Pennsylvania 19104</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052</td>
<td>Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dr. P. Hansma
Physics Department
University of California, Santa Barbara
Santa Barbara, California 93106</td>
<td>Professor D. Hercules
University of Pittsburgh
Chemistry Department
Pittsburgh, Pennsylvania 15260</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dr. J. C. Hemminger
Chemistry Department
University of California, Irvine
Irvine, California 92717</td>
<td>Professor N. Winograd
The Pennsylvania State University
Department of Chemistry
University Park, Pennsylvania 16802</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dr. Martin Fleischmann
Department of Chemistry
Southampton University
Southampton S09 5NH
Hampshire, England</td>
<td>Professor T. F. George
The University of Rochester
Chemistry Department
Rochester, New York 14627</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P. O. Box 218
Yorktown Heights, New York 10598</td>
<td>Professor Dudley R. Herschbach
Harvard College
Office for Research Contracts
1350 Massachusetts Avenue
Cambridge, Massachusetts 02138</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dr. J. A. Gardner
Department of Physics
Oregon State University
Corvallis, Oregon 97331</td>
<td>Professor Boria Metiu
University of California, Santa Barbara
Chemistry Department
Santa Barbara, California 93106</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dr. G. D. Stein
Mechanical Engineering Department
Northwestern University
Evanston, Illinois 60201</td>
<td>Professor A. Steckl
Rensselaer Polytechnic Institute
Department of Electrical and Systems Engineering
Integrated Circuits Laboratories
Troy, New York 12181</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Copies</td>
<td>Name</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. John T. Yates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professor G. H. Morrison</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cornell University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Captain Lee Myers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bolling AFB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. David Squire</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. O. Box 12211</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professor Ronald Hoffman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cornell University</td>
</tr>
</tbody>
</table>