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Abstract

A detailed analysis is performed for a finite element method applied to

the general one-dimensional convection diffusion problem. Piecewise poly-

nomials are used for the trial space. The test space is formed by locally

projecting L-spline basis functions onto "upwinded" polynomials. The error

* is measured in the L mesh dependent norm. The method is proven to be
p

quasi-optimal (yielding nearly the best approximation from the trial space),

provided that the input data is piecewise smooth. This assumption is usually

• "observed in practice. These results are used to establish a posteriori error

- estimates and an adaptive mesh refinement strategy in Part II of this series

(35).
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CHAPTER I

INTRODUCTI ON

Reliable numerical solutions to singularly perturbed boundary value problems

are of great importance in engineering. Because of the degenerative nature of

these problems, conventional numerical methods produce approximations whose

optimality degenerates as well.

In this paper we consider the model problem

(1.1) -Eu" + a(x)u' + b(x)u f(x), in (0,1),

u(O) = 0,

alU'(l) + 62u(l) =,

where

u = u(x) is the solution and may measure, for example, temperature or concentration,

C > 0 is the diffusivity of u(x), a(x) > a > 0 is the velocity of the medium

carrying u(x), b(x) is the coefficient for u(x) used to represent a "loss" if

b(x) > 0, or a "source" if b(x) < 0, and f(x) is the external source term. The

order of this problem degenerates from two to one as e -0 0, and particular

interest will be focused on the case when e is small.

If a(x) > a > 0 and the ratio a/E is large-in practice this iatio may be as

large as 108, the solution to (1.1) will often exhibit boundary layer behavior.

A boundary layer can be loosely defined as a small region near the boundary where

the solution changes rapidly. If the function f is "rough", the solution may

also have interior layers where the solution changes rapidly near some points

{xi! C (0,1). In cases when a, b and f are smooth, the solution will generally

behave like ea(l)(xl)/S near x 1 (see e.g. [10], [15] or [36]).

UNCLASSIFIED
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Much attention has recently been focused on the application of finite element

methods to problems of this type. Because conventional finite element methods

employ piecewise polynomial trial and test spaces, one problem is the ability of

these polynomials to approximate the exact solution well, particularly in the

boundary layer region. However, the most serious problem by far is the loss of

stability or quasi-optimality with these conventional methods.

A finite element solution uh is called quasi-optimal in the norm 11- if there

exists a C, independent of c and the mesh, such that

(1.2) 1 u-uhj I < C inf lu-wJ I,

where Sh is the trial space from which the approximation uh to the exact solution

u is taken. Whenever (1.2) holds we are guaranteed to have nearly the best

approximation from the trial space Sh. With conventional methods, however, the

constant C in (1.2) becomes unbounded as 6 - 0.

This loss of quasi-optimality can be seen numerically by considering the

following problem:

-Eu" + u' f in (0,1)
(1.3a)

u(0) = u(l) = 0,

with
1 if 0 < x < 1/3,

(1.3b 0 if 1/3 < x < 1, x 2/3,

6(x-2/3) if x = 2/3,

where 6(x-2/3) is the Dirac delta function representing a point source at x = 2/3.

* Besides having a boundary layer at x = 1, this problem has an interior layer at

*x = 2/3. The exact and conventional piecewise linear finite element solutions are

shown in Figure 1.1 with £ .0001, and N = 24 elements. The loss of quasi-

optimality expresses itself in the form of spurious oscillations of the finite

element approximation.

2
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FIGURE 1.1: The exact and conventional finite
element solutions to problem (1.3).
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FIGURE 1.2: An a-quadratic upwinded
basis function.
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The most common way to alleviate the problem of oscillations is to "upwind"

the test space. In the case of linear elements this is done by adding a

quadratic term, multiplied by some parameter a, to each linear basis function of

the test space (see [ 81, [ 9], 117]-[21], [30], or , [37]). This procedure

-will be referred to as *-quadratic upwinding throughout this paper. A typical

basis function . upwinded in this way is displayed in Figure 1.2.
mJ

In all of the papers mentioned in the preceding paragraph, the criteria used

for the selection of owas either to eliminate oscillations, or to produce exact

nodal solutions for the model problem (l.3a). For example, Christie, et. al. [ 8],

* Heinrich, et. al. [19]-[21], Mitchell, et. al. (30] and Zienkiewicz, et. al. [37]

*have displayed the "optimal" a which produces the exact nodal values for problem

(l.3a), when f(x) E 1.

S- It is pointed out by Gresho and Lee 116] that "ad hoc" upwinding can be

* deceptive to the analyst by smoothing out the results, and any solution obtained

- by upwinding does not represent a solution to the original problem. Instead of

" upwinding, they advocate the use of conventional finite element methods, and

-propose to use the information given by the oscillations to refine and/or relocate

the mesh points in the areas where any "wiggles" occur.

Although we agree that the upwinding criteria of damping the oscillations

is incorrect, the oscillations themselves may be misleading in determining how

the mesh refinement should proceed. The approximation to problem (l.3a,b)

displayed in Figure 1.1 would mislead one into refining the mesh everywhere.

* The criteria for n-quadratic upwinding should not be to eliminate

oscillations but should be to obtain quasi-optimality as in (1.2) with the

constant C independent of E, and the mesh spacing h. In [18], Griffiths and

Lorenz attempted to select Q in a way to minimize this constant C. Unfortunately,V4

even with a chosen in this way, if E << h their value of C increased with rate

4
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h-1 as h 0.

In [ 3], we have proven that quasi-optimality is attainable for problem (l.3a)

(in a norm different from the one studied by Griffiths) with ct-quadratic

upwinding if and only if the input data f is piecewise smooth - a reasonable

assumption in practice.

Upwinding can also be done with the use of L-spline basis functions. Methods

using these spaces have been studied by Hemker and De Groen ([11], [12], [22])

who prove a-priori estimates of the error at the nodes and in the norm

11u,122 + 11u,1 2
(1.4) iu C = £Ilu'lL2  L2

In this norm, however, the error arising from any piecewise linear approximation

cannot be made small unless h < E. They also propose to upwind the trial space

*in order to get a better fit to the exact solution in the boundary layer region.

*However, this upwinding can introduce spurious internal layers in the approximation.

Also, whenever the norm (1.4) is used, the assumption a(x) > a > 0 and the

additional assumptions

* (1.5) b(x) > 0, and b(x) - - a'(x) > Y > 0,

are needed to prove coercivity of the bilinear form used to pose (1.1)

variationally. When a(x) > a > 0, a much weaker additional assumption, namely -

2(1.6) if b(x) > b then a + 4cb > Y > 0,

is sufficient to guarantee that zero is not an eigenvalue for (1.1) and hence the

solution will be unique. This assumption together with some smoothness of a, b

, and f, are sufficient for the results inthis paper. Note that in (1.6) b and

hence b(x) may be negative. Furthermore, no condition on the expression

- -'- 1b(x) - a'(x) is required.

,4 Since the L-spline basis functions are exponential and have boundary layers

themselves, a special quadrature rule must be devised in order to perform the

5
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K. integrations necded to assemble the matrix equations with sufficient accuracy.

Diaz-Munio and Wellford [131 use exponential]v upwinded basis functions which are

. local asymptotic expansions of the solution, and describe a special numerical

quadrature rule which is exact for integrands of the form tneat.

Kellogg and Han [27] present a scheme in which they add one singular function

of boundary laver type to both the test and trial spaces. Using this method they

were able to prove the error estimate

(1.7) U - uh! l < Ch,

where C is bounded independently of c and h, and 11"H is defined in (1.4).

This method presumes a-priori knowledge of the location of the boundary layer.

For example, in order to solve problem (1.3) which also has an interior layer at

x = 2/3, some modifications must be made in their algorithm.

In this paper we develop a finite element method which produces a quasi-optimal

approximation to (1.1) for all values of c C(0,1]. The norm used to measure

the error is closely related to the Lp norm. An Lp (and in particular an LI)

type norm is appropriate especially when the location of the boundary or interior

layers are of importance. In the second paper of this series: Part II -

A-Posteriori Error Estimates and Adaptivity, the numerical results presented are

based on the L1 type norm.

The norms, spaces, and bilinear form used to pose (1.1) variationally are

presented in Chaiter 2. Chapters 3 and 4 show that a basis for an exponentially

upwinded test space can be found, which produces a quasi-optimal approximation.

In Chapter 5 these exponential basis functions are projected onto a polynomially

upwinded test space. This type of upwinding is a generalization of a-quadratic

upwinding. Finally, in Chapter 6 some remarks are made on the extension of these

results to more general problems.

6
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CHAPTER 2

MATHEMATICAL FRAMEWORK

This chapter sets up the mathematical framework in which the convection-

diffusion problem (1.1) will be studied. First, two theorems are presented which

are used to prove existence for variationallv posed problems, and quasi-optimality

for finite dimensional approximations. Next some results conc -ning the Green's

function to (1.1) are proven. After the norms and spaces nee to pose (1.1)

variationally are provided, the Green's function results are I to prove some

important embedding theorems.

SOME ABSTRACT RESULTS

Two crucial results concerning variationally formulated boundary value

problems and finite element approximations are given in this section.

Theorem 2.1. Let K and K be two reflexive Banach spaces, indexed by a
l,A 2,A

parameter A with A varying over some index set, with norms 11"111lA and 1 H112 ,A

respectively, and let Bbe a bilinear form on KI, A x K 2, A . We suppose the

following are satisfied:

(2.1) IBA(u,v) I < CI lulll,I vII2,A for all uC KlA, v C K2 ,A,

(2.2) inf sup I BA(u,v)l > C2 > 0,
uCK1, A  vCK2,A

I ul!lA = 1 Iv! 1 2,A 1

and

(2.3) sup IBA(u,v)I > 0, for each 0 # vC K2,A
uCK, A

7
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where C1 and C- are positive conmtants, possibly dependinig on '.. Then if

f C (K )', there exists a unique solution u C K to the problem

B (uv) = f(v) for each v C K, .

Moreover, u, satisfies
H ui! < C-1 I l

If the bilinear form B,,(.,.) satisfies the assumptions (2.1), (2.2) and (2.3),

B is said to be a (C1, C,)-proper bilinear form over the space KI, x K, . It

should be noted that (2.2) and (2.3) can be shown to be equivalent to

(2..,) inf sup IB(u,,'v)F > c2 > 0,VCK2,' uC IK,

vH =1 li! 1

and

* (2.3)1, sup IBA(u,v) l > 0, 0 1 u C K1,
VCK2,A

This observation will be specifically used in tiis paper.

Since we will be studying finite element approximations 'o u, we let SI A and

S2, A be finite dimensional subspaces of K1 ,L and K2, A respectively. Clearly,

condition (2.1) holds on SIA x S with the same constant C We will be

invoking the following theorem concerning the finite element solution uh.

Theorem 2.2. Suppose B is (CI,C) - proper over SI A x S2, A furnished with norms

111,A and 2, respectively. Let u C Kl,,, and let uh l, SA be the

unique solution to BA(uh,v) = BA(u,v) for all v C S2, A

Then
C1u - UhI1,A < (1 + -C ,-

1A

8
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For the proof of Theorems 2.1 and 2.2, see e.g. ( 1 ].

We remark that the reflexivity of the space K 1, is not necessary for

Theorem 2.2 to be valid - the reflexivity is needed only on the spaces S and
1,A

$, A . which is guaranteed since they are finite dimensional. However,

Theorem 2.1 will not imply the existence of a solution uC K1, A , if K1, A and K2, A

are not reflexive. Therefore, if KI A and K2 ,A are not reflexive, the solution

u must be assumed or shown to exist in KA by some other method, in order to

apply Theorem 2.2.

* THE GREEN'S FUNCTION

Consider the operator L defined by Lu - -cu" + a(x)u' + b(x) u, for

uCC2[0,1], where Ck[0,1] denotes the space of functions with k continuous

derivatives on [0,1]. Let G(xlv) denote the classical Green's function for the

operator L with boundary conditions:

G(Oy) = 0
(2.4)

T(G(xjv)) F 8,x (l!v) + $2 G(I1y) =0

The following lemma will be used to establish the existence of this function.

Lemma 2.3. Assume a(x)C 1[0,1] and b(x)CC°[0,11. If there exists a positive

* function wC 2 [O,l] which satisfies

Lw > 0,

(2.5) w(0) > 0,

w > 0,

then the Green's function G(xly) to L exists, is unique, and is non-negative.

Proof: This lemma follows from the maximum principle (see e. g. [32], Chapter 1,

Theorem 1.1), and standard results concerning the Green's function (see e.g. [33],

Sections 1.3 and 1.5). A detailed proof of this lemma can be found in [34],

(Lemma 2.5).

9
UNCLASSI FIED
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In order to find a function w satisfying (.5) we make thte fillowinx

assumption for the operator L.

Al: a(x)CL![O,l], a(x) > a 0

b(x) CC°0O,l], b(x) > b and

b is such that a2 + 4cb = Y > 0.

* For the boundary operator F we assume

A2: 6I, 62 > 0, B1 + 62 > 0.

*. The following is a corollary to Lemma 2.3.

Corollary 2.4. Suppose assumptions Al and A2 hold. Then the Green's function

to L, satisfying (2.4), exists, is unique, and is non-negative.

S a2 4
' Proof: Let G (a + (a + 4_b) > 0 and w(x) = eOx. Then w satisfies (2.5).

An important fact used in this paper is that the Green's function is bounded

independently of C. The proof of the following theorem which establishes this

fact is similar to one found in Lorenz [29].

Theorem 2.5. Suppose assumptions Al and A2 hold. Then the Green's function

G(xly) for L, which satisfies (2.4), is bounded by a constant which is

independent of x, y and c.

Proof: Let G(xly) be the Green's function for L where

Lw -Ew" + a(x)w',

with boundary conditions

w(0) = 0

-1w'(l) + a2w(l) = 0.

Then G(xly) is given by

4

10
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al))-6 Vp( ) dt p(t)dt, x < y,

(2.6) (xlV) -

a1P(1 fp(t)dt a2 SYoP( t)dt y
. £P(Y)X + P() p(t)dt, x > y,

PhX +( ep(y)X I
where p(t) exp(-! a(s)ds), and x = 61P(1) + B2o p(t)dt. By assumption A2,

619 B2 
> 0, and KI + a2 > 0, and hence X > 0. Therefore, from (2.6) we havey Y

ep(y)dft exp -a(s)ds)dt&. (xlY) _< wY!) <  )E:p(y) : fo t

< IsY e(t-y)a /dt < (1 - e--/C)/a < 1/a.
. C
* 0

* If b = 0 then b (x) > 0. Let w (x) = G(xlv) - G(xly).

Then

Lw (x) -b(x)G(xly) for each x C (0,1).
y

Hence, wy(x) = - (xj)b(E) G(Cjy)d . Since both G and G are non-negative

by Corollary 2.4, w y(x) < 0. Thus, G(xly) < G(xfy) < I/a.

If b < 0, let a 2E: (a - (a 2 + 4Cb) I /2) > 0, and Low e-xL(eaxw) = -Cw" +

(a(x) - 2cy)w' + (-Ca2 + a(x)a + b(x))w. Since -c 2 + ax) + b(x) > - +

aa + b 0, and a(x) - 2c > a - 2c = (a2 + 4cb)1/2 = yl/2 > 0, we are in the

case when b = 0 for the operator La. Let G,(xly) be the Green's function for La

satisfying the boundary conditions GCr(0Iy) = 0,

3Ga

fara E -b x (1 y) + (8 2 + a 1) G(ly) = 0.

.L 11
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Since a'> 0, the boundary operator Pr satisfies the analogous assumption as

A2 was to the boundary operator F, and therefore, CG(xly) < i/Y1 2.

G C(xJy) is re-1ated to (;(x y) through the identity C(x y) = e (x-v) (x )

Thrfr,_e 3 1/2 a
Therefore, G(xly) < e /Y Now, a = ( ( - (1 + 4eb/a- ) -) I- (1 - 1 + 4Eb/a-))

-2b/a. Thus, G(xly) < e-2b/ 1

NOTATIONS, BILINEAR FORMS, SPACES, AND NORMS

We now define the various norms, spaces, and bilinear forms used throughout

this paper. The norms introduced here are analogous to those defined in [2].

The space Hk (I), k = 0,1,..., 1 < p < - is the usual Sobolev space on the
p

intervall = [0,11 consisting of functions with k derivatives in Lp(I). On this

space we have the usual norms given by

, .f u(j ) (x) Pdx i 1 < p_

llullHk(i) =
P k

ess. sup. Iu(J)1', p =
j=O

01 1
The space H (I) denotes the subspace of H (I) of functions which vanish at theP p

endpoints of I. This has sense because H1 cc°(!). Note that H° = L
P p P

Let A = 10 = x < x1 < ... < xN =1, where N - N(A), be an arbitrary mesh

on the interval I = [0,1]. Let h. = xj - xj I = (X.,Xj), j = 1,.. ,N,

p. = (hj + h )/2, j = 1..., N-1, ON = hN, and h = max h..j

We seek a variational setting for the problem

(2.7) Lu H -cu" + a(x)u' + b(x)u = f in (0,1),

u(O) =

,u - 8IU'(1) + 82u(I) = 8,
12

12
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where the functions a(x), b(x) satisfy assumption Al, and Pl, B2 satisfy

assumption A2. These assumptions Al and A2 will be assumed to hold throughout

the entire paper, and will not be repeated before each theorem.

Let L* denote the formal adjoint operator to L, i.e.,

d2 d
(2.8) L* H- --- a(x) + (b-a')(x).dx-

The boundary operator adjoint to r is F*, where for u sufficiently smooth

(2.9) Ju : + a(1)) u(l) + eu'(1), if B 0,

u(1), if = 0.

We must associate a bilinear form to L, and describe the spaces over which this

form is defined.

* First, we define the space H°  1 < p < to be the completion of:. ~~~~~~~~p,A' 1_- <o ob h opeino

H1 ={U CH(1): u(0) = 0, u(l) = 0 if = 01,

with respect to the norm+Ni 1 p

• TuIPdx + Z P lu(x )l , < p < .

(2.10) iI o = j=l I

H ,A
• IU lL o(I) '  p = w,

N - 1, if = 0

where N1
N, if B1 0.

The space HpA can be easily identified with L* i RN1, that is,

u (U,dl,...,dNl) C HpA = L * RNI, and

13
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p + NI i/p

ilp (1) + r. Pj d. I,] < p < cc
(2.11) o1JI,A ~

I.- max[ l=1 il,

- L(.), p =0.

In consistency with our definition, we say u C H0  r) Hl(I) if C H'(I) and

d. = Z(x.) for j = 1 ...... N1.

Note that the norm l'lHO is very close to the L norm. The term
p,L\

N1
zPId IP is the trapezoid quadrature rule for the function Iu(x)I p , when u(x)

is continuous and dj = u(xj). Therefore, for any continuous function u

limlu1iHO = 211/PIuIL . Because of the boundary layer behavior of the

h- o p,A p

solutions, an Lp (particularly L1 ) type norm is appropriate for measuring the

errors. The quality of our approximations is measured in the Hp norm. In

particular, the computational results and adaptivity presented in [35] are based

on the H0  norm.
l,A

Let us also define H2  ={vC H1M: v(O) = 0, v(1) = 0 if B= 0, and
q,A q

2q
vjI. C H2 (Ij), j = 1,... ,N}, for 1 < q < 0. We will equip this space with aJa

norm to be defined later.

Sn H °  xH 2  whr 1 I
p x ' where - = , 1 < p < co, we define a bilinear formp q, p q -

BA(,') by

N N-1
(2.12) BA(u'v) = =I f iL*vdx E- cd J(v'(x.)) + d r*(v),

A ~ . j=l j .1 N

where J(v'(xj)) = v'(xj+O) - v'(x -0) for 1< j < N - 1, and dN = 0 f 1 = 0.

I

14
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The limits v'(x+0) are well defined because vil. C Hq(T ) for each j. Now we

will furnish the space H2  with the norm II , defined by
q,A

(2.13) lllvil = sup IBA(u,v)j
(2.1) 11v111 SUP T71CHo. I~lHo

D~n p,A

In order to verify that 1I111l is indeed a norm, we must show positive

definiteness - linearitv and the triangle inequality are evident. To prove

positive definiteness we will use the identitv
N N-I

(2.14) v(y) = jl G(xfY)(L*v)(x)dx - J= (v'(xj))G(x lY)
3j

+ G(l y)F*v.

That (2.14) holds for vG [0,1] follows from the properties of the Green's

2
function. By a density argument, and using the fact that Hq is continuously

embedded in L. and H , together with the fact that L* is a continuous mapping from

2 2Hq into Lq, it follows that (2.14) also holds for each vCHqA, Again, see [34]

for a more detailed proof.

For vCH , 1 < q < oo select u o E H , i/p + 1/q = 1, whereq p,q , - - ,

• uo  ( d1 .... ,dNl) and

U sgn(L*v) 1 j, for j =i,..., N,
Ij

d. = -sgn(J(v'(xj)), for j = 1..., N-l,

and dN = sgn r*(v) if 1 # 0.

Then
N N-1

IB (%0 ,v)I E f EL*v dx + *l C(v'())I + Ir*(v)I.

15
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UNCLASSI FIED

If BA(uov) = 0, then L*vIi = 0 a.e., J(v'(xj)) 0, j = ,...,N-1 and

F*(v) = 0. By (2.14), v = 0. Thus, 1l1l-1 is a norm on H2  for 1 < q < °'

Let us conclude this section by introducing another norm. For any

vCH,2 . define 1II.H2 by
q, qs,,A

N N-1

E" f IL*vlqdx + Z j(v'(xj))[ Onj=l I. 3=1l C  -

(2.15)

IIvHHII2 + + h NI*(v) l/q 1< q < %

max[ max I!L*vII Lo(I ) max EIJ(V'(Xj))Ipj1
,

l<j <N i' l<j<N-1

EQUALITY OF NORMS

We shall now prove that the norms IH "IV,2 and 111'11 are equal.
* 11

lq,c, A

Lemma 2.6. Let v C H 2 then

(2.16) IlvI 1H2 I1viil , 1 < q < .

Proof That H2 < IlIvIll follows from Holder's inequality. For the

inequality in the other direction, for a given v, u = uv is selected such that

l= sup IBA(uv)l> BA(uvv) l

UCHUp 9t H'uIHo (uHU O E9
p,* p, ,

16
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If 1 < q < this is done bv selecting U = (i, di . d ) such that

uL*v q-lsgn(l-*v)! 1 < j < N
l 1

d. c q-llj(v'(x ))Iq-lpjq-lsgn( 1 < < N-1

and

dN :If*(v) q-lh~sp (v) if O.
NN ,n.1()

If q = , first assume HlvIIH2 IL*VIIL(I) Let 7m > 0 be given and define

Er, = {xC: (Lv)(x)I > JIL*v j --l
r1 ( *j L1)

Then m(Er ) >0, where m(A) is the Lebesgue measure of A. Select uv = (;,O .... )

such that u :-E (m(E ))-sgn(L*v), where -.A denotes the characteristic function

of the set A. Then fjlv~j I _jvjj!2 -r:, and since n was arbitrary,
bA

| lIlvll > )Iv If

I1 -

If jjHvI2 =EIJ(v'(x))Ic, or Ijvli2 = I*(v) lhN the selection of u
-, E, 00, A

is obvious.

Note that Lemma 2.6 implies that BA is 1-1 proper over HO A X HqEA for

1 < p < -, when 1/p + 1/q = 1.

EMBEDDING RESULTS

The following lemma which Is a slight modification of a result from [28] is

used to prove the embedding result. All constants, C, C I , C2 ,... appearing

in Lemma 2.7 and Theorem 2.8 are independent of p, q, v, E and A.

Lemma 2.7. Let G(x/V) be as defined in (2.6). Then

17



" (x/v) < 1 e-aY!c + C, for 0 < y< x,
y

and

Cl -a(x-v) f1

v) < e + C2  for x < <

_2,

Proof: See [28] or r34].
Theorem 2.8. (Embedding result). If v C H2 then v C Loo(I)T Hq(I) with

.. q, , q

(2.17) lvi Lo(I) < C 1 lvI H2 < c11 V I H2 , 1 < q < 0o
,,A q,,A

and

(2.18) Iv'li1 (i) < c2E l/q-1 1 Ivl 
1H2 , 1 < q < o,

q q,F,A

where C1 and C2 are independent of v, q, E and A.

Proof. Inequality (2.17) follows directlv from (2.14), (2.15) and Theorem 2.5.

In order to prove (2.18), let G(xly) be as defined in (2.6). Then, for

v C H2  we have

v(y) = (xy) K (x) dx - G(xly)c(x)v(x)dx

0 0

N-1
S c J(v'(xj))G(x IY) + G(lV)P*(v),
j=1

where Kv(x) C Lq(I), KI1 = L*vjIl, 1 < j < N, and c(x) = (b-a)(x). So,
.1 v

(2.19) K Kv(x)dx- 0  (x~y)c(x)v(x)dx(2.19) v' (y) = 1 G yv K3xd- o ,

N-1 , x)
E J(X) (xI y) + (1 1y)r*(v)

18
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=W (V) + w2 (Y) + w3 (y) + w4 (y).

First consider w] (y),where
1 3G(x!v) V 1y K ( ~ x + v X d

(2.20') w (Y) = 3y K (x)dx G(xv) K+ 3 (x
1 f0 fo Kxd

= z (y) + z2 (v).

Using Lemma 2.7, we have

VI~)d CCaIIy- xz (y) Ie<C-- -) K (x) ldx + C2  Kv t

1 V 1

where -ax
e if x < 0,

'(x) =

0, if x > 0.

Extend IK by 0 to all of RI. Then through Young's inequality, we have

(2.21 x~ JI r~ IL (I)
(2.21) Il 'L (I) < C l1L 1 (R) Iv! !L (I) 

+ C211Kv!Ll(I)
q q

c< c Kv iL (I), for 1 < q < .
~q

Again, using Lemma 2.7, we have

(2.22) Iz2! IL (I) < l/- 1 IK ILl(I)"
q

Also, from (2.19) we have w2 (Y) = - y (xly)c(x)v(x)dx. Using a

similar agrument to the one used to bound w (y), together with inequality (2.17),

we have

Young's inequality states that for 1 < q < -, if sC Lq (R), and g C L1(Rn

then h = s*g exists a.e., belongs toL q(R n), and i1hl IL < I'ls' lL 1IjgI 11,
q q

19



(2.23) V2, K L cc "  / , . c 1-11I H 2
q q

L for 1 < q <

Next,
N- I N-

() cJ(v(x (x v) =)

and

0 --- 0
x.

• ::" + lx. !3 x-- (x Y) Iq , for 1 < q <

By Lemma 2.7,

.!ziL(T) < clECl [C13(v'(xW))], for 1 < q < oo

Therefore,

N-1
* (2.24) IIw3;L < 1< Cc c- - v' (x j

q q i=1

for 1 < q < o.

Finally,

*and Lemma 2.7 implies that

. (2.25) 1 W I ) I

Expressions (2.19), (2.20)-(2.5) and the triangle inequality imply that
."

4 Yv'H Cc /q- l Iv! 2  for I < q <
C-H q-

20
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EXLSTLNYE OF SIU1TILNS

iu T: ,:," j , A 0I I A', wo makL, the fol lowin, assumpt ion

on the in.-it d, : :i.
A. ... is I,, :r, + L with1f L (I) and - = ' C. Z(x-x.)

1ic , t- function at the mesh point x. Fuirther-

N -

more, C. K i -n.'v:2'2,nJcnt of N and f is indenendent of

ii) ) i. botiidd independcntly of If 0 0, then is bounded

independentv (-f , and if 0, then is bounded independently of L.

Under this assumption, we have the Following representation for the

solution utx). (see e.g., [33]);
N-I

u() > CG(x +i f(v) G(xi y)dv

i= I

+ _L L9 tu(x
7 ( 1 ) u2 (O)

where u1 and u- are non-trivial solutions to Lu1  0, u 1 (0) 0, and

Lu,, = 0, u = 0, respectively. From the maximum principle and assumption

A3ii), it -an be shown that '(i a - ) are bounded independently of ,.

This fact, touether with Theorem 2.5 and assumption A3i), implies that u(x)

is bounded independenty of f.

For the variational formulation, first assume that the essential. boundary

conditions are homogeneous, that is = 0 and = 0 if 0 = . Let

F(v) ,v - 0 if
6' # 0.

(2



Using assumption A3 and Theorem 2.8, it follows that F is a bounded linear

functional on H for I q . Equation 2.13, Lemma 2.6 and a simple

verification 0 (2. 3) imp>' that B.(uv) is (1-1) proper on H x H-
.p , -, q, >,

for 1 - p < ", where -1 + -1 = I. For I < p the spaces H and H-p q pII q,.

are re:lexive. In this case, we may apply Thoorem 2.1 which leads to the

existence of a unique w C H0  .ol\'ing

(2.26) B.(w,v) = F(v) for each v C .- q

If ( or 4( if F0l) we proceed in the standard way writing u=w+u

00
where ti is a p~iecewise linear fiinct ion on "which satisfies the essential

boundary conditions, and w C H°  We remark that since u is bounded
p

independently of , w C H 2 and J'w! 1o is bounded independently of c.

By treati,L the boundary conditions in this way we can restrict the theory

t, the case of homogeneous essential boundary conditions without any loss of

generalitv. Therefore, this restriction is made for the remainder of the

theorems in thin paper. These restrictions are not imposed in the numerical

exampl(:s (see [35]).

Another assumption which will be used later is

A4: a(x)/ C ck+l ( )I. 1 '

b(x)/T. C ck(14),

f (x)/I C C k(I), and

a(x) and b(x) are independent cf *. The specific value of k will depend on

the finite element trial space.

I,



CHAPTEP, 3

L*-SPLINE TEST FUNCTIONS AND THE INF-SLP CONDITION

In order to obtain a finite dimensional approximation to the solution of

(2.26), the finite dimensional spaces S and S must be spocified. To obtain

quasi-optimalitv, these spaces must have the pronertv that the inf-sup constant,

C2, of Theorem 2.2 is bounded away from zero independently of c and A. When

both S1 , and S2 , are the conventional piecewise polynomial spaces, this

condition is violated.

For the trial space, S, we take the space S = {u CC 0 H( 0 :uI is a
r p

polynomial of degree < rj, that is. the usual space of piecewise polynomials of

degree r. For the test Fpace, S2,A, first consider the space of L* splines:

(3.1) = {v CH A: L*v is a polynomial of degree r-2 if r > 1,
]

L*vji = 0, if r =11
.1

It would be ideal if we could use the test space S - not onlv would quasi-

optimalitv result (Theorem 3.3), but also the nodal errors would be zero

(Theorem 3.4). Unfortunately, since the functions a(x) and b(x) are not constant,

it is in general impossible to determine the basis functions for SL exactly.

However, it will be shown (Theorem 3.3) that quasi-optimality is preserved if

basis functions can be found which are sufficiently accurate approximations to

the "ideal" basis unctions of SL .

Suppose we can find basis functions {- 1 j = I......; = -1.r - 2,

satisfying

23



() - on T. and I

(3.2a) L' _ ] , =

0, elsewhere,

'(n-l (xi) : 6. ij for i,j = 1,..., N.

- + r,- (x), on T.,
(q) .. ,1

(3.2b) L

0, elsewhere,

'4y )(xi) = 0, for 9. = 0,...,r-2, i,j = 1,..,N

Let I mx (T) the space
=-...r-2 I . ,j(x) IL and n = maxf. Denote by SL1 =-..the space

spanned by these basis functions. Note that S(0 ) =L sL '

THE TNF-SUP CONDTTION OVER x SSr  L

We will now show that the inf-sup constant C?, is bounded away from zero

independentl, of 6 and A when S = S, and S S L  and n is sufficientlylA r2,A L

small (independently of -.

Before proving this result, we need to define some additional norms over

the space of polynomials of degree r. These norms, as well as the basic idea of

the proof of the inf-sup condition, are taken from [2].

On the space of polynomials of degree r over the interval [xx+hl,
r

f(x) = r b. (x-R) we define the following norms:i=O i

24
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O ir I/

fi b- fIx hx1 < dx<0 1

I f1 [ , -+h

max =l~'

0 < i hlr 1

andp

r(~ l+f X-~ h fI ) h + -2 jfxlhf ) xp) d

L= h= pip

!fIIL+i - 1~ <PI

ma x f0+f( (x9 1 x

p~

(3fa R) I I fi <CI~h JP H
4 p p~-

ma [ lf(zx+FIi] ~j 3i (x-R_ C If L[ ,i hhH+
and0

Lemm 3.. an ar noms oer an thee eist



9 99 ,,,

"" (3.3c) c- f~l L [ ,g+h] .I fi!Cp [ ,x+h] 'CIf I U [L
p pP

The proof of this result can be found in [2].

We will now prove the main result of this section. All constants C, C19 C2,

Do, D appearing in the theorem or the proof are independent of c, ', p. v, and q.

Theorem 3.2. Let n be sufficiently small and _ + - = 1.
p q

Then

inf sup IB. (u,v) > D (1-Din)

vC: S uC S

jvI H2 = 1 iu!H = 1 for 1 < p <o.

Proof. Let vS L be given. In terms of the basis functions

N N r-2

v(x) = E v(xj)'-lij(x) + E E bj hj.i(x).

j=1 j=l t=O

Then, by (3.2a, b)

r-2 r-2

(3.4) L*V !  F, b (x-x + , b i h. i
i=O j j-1 i=O ,j 3 ij

.4 + (v(x -)n-l9- + v(xj)n_ 1,j )II

j

Hence,

(3.5) IL*vHL (I.

r-2 r-2

Di,(x-xj ) 1 + I b h) I L(Ii=0 , j-1 Il. (I.) i j 1 ibi  hj

q j i=O j

+ Iv(x - 1,-1  + (x 1 P-LIj L (I ) for I q

26
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Since, r 2 L/qhqi+l 1/q

[ r-2 E I bi,i ] < q < 0

"-- b j(x-x1 l)  I <

(r-l)maxl b h, 
q cog

, i

-2 Iqhq+l 1/q

Ej lb, h1 < q < o
_ j _Lj i ' -

1 i L (I.)
i=O jL q ( 1 nj(r-l)max lbi, j h , q oo,

and

_+ /q""I Iv(x _lIn ,3_ v (x in ri1, JL ~j) <  2nj IVIl ( h)

1 <q < ° ,

it follows from (3.5) that

N N r-2
(3.6a) L Tll*vI L (I. J

j=l Lq (T j=l 1=0 j j

+ 4 q q Ivl ,q  1 < q < o

and

4 (3.6b) maxIIL*vj! < (l+n) (r-l) max max lb .Ih._ jI'°(Ij1< j<N O<i< r-2

+ 2nrIvIIL q =

From (3.6a,b) and the embedding result (2.17), it follows that if n is

sufficiently small

27
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FN -1 N- I
11,1+ J CJflJ(v'(x.))q

LIII

i= 1 = 0 " i= l

L- 1/q

3.7) i + l'"(v) i N - q < q <

C maxlh lt lh1 -!J(v'(xK)) l 1, -*1vlh-l

where 1, and J are the indices such that

(3.8) lbLjhk = max max lb lhi1 <j <N O <i <r- 2 , .J

and K is the index such that

(3.9) E!J(v'(xK))K 1 = Nmax EIJ(v'(x)) 1
K 1-j<N-l 1

With v S given, select Uv = ,1 + 2 in the following way. Select
L give 2

*1 S such that
U r

l = x , i= 0 ...... N, and if r > 1,

-.- (3.10) (x ldX I -h + sgn h
""S(x-xjl =x lbi 101+ si b

I. I,]

1

for i= 0 ...... r-2, =,...,N, I <q <a'.

Select 2 C Sr such that

(x q-1

(3.11) C(xj) i ))q-101-q sgn(J(v'(x M,

I
1 < j <N,

28



2(xN) = IF*(v) Iq- sgn(r*v), 1 < q <

and if r > 1

J' (x-x _)4' = 0, for i - 0 ...... r-2 and j = ...... N.

-I 0

That ti, and 4. are uniquely determined follows from Lemma 3.1.

Recall,
N N-1

(3.12) B'' -v f (L*v)dx- -J(v'(x.))dA j=] I j =1

+ d N" ,(v).

Bv (3.4), (3.10) and (3.11), we have

B +

N r-2 N-1
lbi 1

q  hqi+l + C9 J(v(xK.
)  P 1-a

j=1 1=0 j=l

N r-2

+ lF*(v)lq N - + f b1 1\ ~ ~ ' + ~2)dx

N

+ f (vx x . LI-' + v(x )1-l M 1 + t. 2 )dx, 1 <q <q
I

Therefore,

(3.13) BA(tl + V)

N r-? N-1

lb q hqi+l + ,q 1 q

i =1 1=0 .1 1il

+ IF*(v) qh1-qN

1 N

nf., F, I l 1,j h j + 211 O l 41 + 4211 0

1 <q < oo

29
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From the definitions of 1 and !2 ((3.10), (3.11)), (3.3c), and (2.11)

we have
N r-2

11+  !'TI' p cP E l, q hq.i+l
H j=1 i=) , j

(3.14) p ,

N-1
4- £lJ(v' (x) o.- + !F,(v)Iq h

.1l N

1 <p <

Inequalities (3.13). (3.14) and (3.7) \,ield

B (t + v > c v) ivy H2  - c2n!IvIKL
[ + ?! H0 -) ., ,A

p,5

> DI(1-Dp) V!vIH2 , 1 < q <
q,E,A

with the list inequality following from the embedding result (2.17).

Next, consider the case when p = 1 and q = m. In this case, we modify the

definition of I in (3.10) such that

0, if 1#J,

f (x-x.
- )i ld =

I h L sgn(b , if J= J3~l 8 i ,Lj (L, J

where L and J are defined in (3.8) and 6i' j is the Kronocker delta. The

definition of q 2 in (3.11) is also modified such that 2 ) = oK Isgn J(v'(xK)),
ini2j "K ,K sg'~'(K)

for 1 < j < N-1, and 2(xN) = hN sgn F*(v), where K is defined in (3.9). By

(3.3c) I ' 211H2I I < C. From the modified definitions of iI and 12' (3.12)

1,A

and (3.7) it follows that

BA(4¢ 1 + 2v

B AI1 + 2 9 0, ,

as desired.

30
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When v = and q = 1 the formulas for ! and ' 2 given in (3.10) and (3.11) are

still valid, and from (3.3c) we have Kj.t1 + '2 U HO =Ik'1 + 21 11oo < C. The

desired result then follows from this fact, and inequalities (3.13), (3.7) and

(2.17)

Theorems 3.2 and 2.2 yield the following result.

Theorem 3.3. Let u C H0  be the solution to BA(u,v) = F(v),V V C H
P,t q ,r ,A

1 < p < 0O 1 + 1 - 1. Furthermore, assume u C HA Then, for TI sufficiently
p q , "

small, there exists a unique solution uL C Sr to the problem BA(ULV) =

F(v),V vC SL, and lu I <C inf lu - w 1 1H , 1 < p < oc, with C

p,A wCS r  pA

*independent of u, p, c, and A.

The next theorem shows that if r 0 = , then (u - u L)(Xx 0, for i 1,..., N.

Theorem 3.4. Let u C H0 A 1 < p < and uL C Sr C H0 A withpA ' -- -- p,A

(3.15) B A(UL,V) = BA(U,V), V V C (0)

Then uLi) - d i = 0, i = 1... N, where u- (- ,dl,....,dNl).

Pro,_ Let 1 < q < -. By Theorem 2.1 there exists v C H2  such that. Vi  q, ,

(3.16) B (u v.) = d i  V u C H0  1 + 1 = i.
Ap, ' p q

From (3.16) and the definition of BA (3.12), it follows that L*(v) = 0 on every I,
1

J(v'(xj)) i for i,j = I .... N-1,
1 C

and

4 '( )'i 6i,N i=I N

Because vi (x) is continuous, and L*(v) = 0, on (O,xi) and (xil), vi is the

Green's function at x = x. Thus, v i ( H2  and also v C SL Ths implies
I

that (3.16) holds for 1 < q < 0, and
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B (u -Uv) = 0 = UL(Xi) - di,

which finishes the proof.

Theorem 3.4 is a restatement of the well known fact that when the Green's

function at x = x,, x. C A, belong to the test space, then the error at the

nodal points is zero.

As pointed out earlier, the space S(0 ) is in general unobtainable. However,
L

in light of Theorem 3.3 it will be satisfactory if we can generate the basis

functions for the space S , (3.2a,b), provided p is sufficiently small. This

*will be done in the following chapter.

32
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CHAPTER 4

EXPLICIT REPRESENTATION OF THE TEST SPACE-S N
]

In this chapter, we will determine the basis functions (3.2a,b) for S
L

explicitly-, with the condition that r* MIx 
< C k The

constant C will depend on I 'min a(x) , and the local smoothness of a(x) and b(x)
xr- I

on Ij, but will be independent of !i and E.

(rI
In order to determine the basis function, for S ) in Ij, we first rescale the

interval Ij to I = [0,1], and then drop the index j for simplicity. A "tilda"

will be used to denote this rescaling, for example, if g(x) is defined for

x C Ij, i(y) is the function defined for v C I such that g(V) = g(yhj + xj-1 ).

Recall that c(x) = b(x) - a'(x).

After rescaling, our goal is to seek approximations to the solutions of

(4la) L*v v- v' + "(y)v = 0, in i,
h'-

v(0) = 1, v(l) = 0,

(4.1b) L*v = 0, in I,

v(3) = 0, v(l) = 1,

and

(4.1c) L*v = v2 .  in I, k = 0,...,r-2

v(0) = v(1) = 0.

33
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Because of our requirement on the space S in (3.2a,b), we must estimate

*I IL' T*'( (I1,J 1,1 L~(..

Notice that the rescaled opt-rator ha.s the coeff ic ient - - in front Of thLi
h

highest order derivative. If a standard asymntotic expansion in powers of E is

used (see e.g. [10], [15], [36]), then the errors -an be shown to be no better

than (() ). This is undesirable because ont of our goals is to use adaptivetha

mesh refinements which will quickly lead to intervals having size h, with h < E.

Although the asymptotic expansion in c will fail as h becomes small, it will

be shown that an asymptotic expansion in h will produce errors of size ((hk)

independently of c. In order to validate our asymptotic expansicn the following

lemmas are needed.

Lemma 4.1. Let v solve

v v" + - -v' = g in 1,
h2 h

v(O) = v(1) = 0,

with A(y) > Q > 0 and g bounded.

Then

'lv L min (h/a, 2h 2 /E) !gli

Proof. From the maximum principle ([321 Chapter, 1, Theorem 11), it follows that

iv(,)' < Jwl (Y)1 where wl(Y) = L, I oh(1-v)/, and Iv(y)! < lw2 (y)l where

K.[:i w2(Y) = h2 (e-eY) Igi /1  "

Lemma 4 2. Let w solve

t . ao

w hw w = g in I
2h

w(O) = 0,

34
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where ao " 0 i. constant and g is bounded. ThVen w , h( - ah!-) g I /ao.

Proof. This result follows immediately from the identity

w~ I h- f -%h(s-v)IC

)E 0

We seek an approximation v to the function v, where v is the solution to

W.. (4.1b) or (4.1c). Assuming sufficient smoothness of the coefficients

a(v) and c(v), we may expand bv the Taylor series around v = 0 to obtain

L*v _- - v" - v' + (v)v
h2  h

_ - - , _ V - _o_ - v'
12 h

" h[- va'(0) v9 + 6(0) v1
h h

2 .
" h2 a"(O) v' + vc'(O) v

2! h h

(k-1
+ k vk a (k ) ( (a ) 1+ Lk-1 c~k l (:c

k! h (k-l)!- h

where {a' c C (0.1). Therefore, we can write

. (4.2) L* =L + hLI + ... + h 9-L +h9RQ•o 1.-1 +  '

where

(4.3a) d 2  A(O) dY
h 2  d, 2 h dv

j 01 d 0-1
(4.3b) L. j a (- 1

d h dv ((-1 -

I = 1U.... S-1

3;
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1 . . .dI - v- )~ - - + -1
113c a dv (-I!

We seek v ( n ) in the form

('4.4) v (r
1
)  = V0 + 1hvI  + 1-2v 2  + ... + h - -( oil)k-

Prom (4.2) and (4.4) it follows that

C4.5) L*v~r] = L v

0 0

+ hloV1I + tv 0vo

+ h[L V2 + L 1V + LV

+ 2+ 1i 2~y 0 v

+ h k-1[L o V k + LlVk-2 + . kl V0

+ h kRiVk-1 + R2vk- 2 + ... + Rv o]

Based on this formula, the functions Vo, vl.... should be defined recursivelY as

fol lows:

(4.6a) L v = 0, if a- roximatine
the solution to

v (0) = 1, V (1) = 0, (4.1a),

1, 0, if approximating
n o

the solution to
v 0 () = 0, V (1) = 1,

h
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(4.6c) L v = v , 9= 0...

v (0) = v (1) = o, if approximating
0 0

the solution to

(4.1c),

i

L v. = - L.v.
0 1 j=l i-.

(4.7)

I- v(0) v i (l) = 0, 1 = 1.... k-l

From (4.7) and (4.5) it follows that

k
(4.8) L*v (T) Lv + h k R V 3

This leads us to the following theorem which is the main result in this chapter.

Theorem 4.3. Assume that a C ck(I), and b Cck-l (I). Let v be defined by

either (4.6a), (4.6b) or (4.6c), and v., i = 1 .... k-l, defined recursively by

(4.7). Let v v + hv. + + hklv Then

Lv L. < Chk -

if v is defined by (4.6a) or (4.6b), and

ok

!Iv n  -LvL I < Ch• " 00 L -

if v is defined bv (4.6c), and in each case C is independent of C and h.
0

Proof. First assume v is defined bv (4.6a). Because of equation (4.8) it must
k

be shown that hil F i",-iI L < C. we prove this by induction on k.
i=l

U
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First, take k=l. From (.3c) (with £=1), we have hRlV = -va'( a)V'"+ c)V
lo a 0 Co

From (4.6a) and the maximum principh, It follows that

(4.q) 0 < v (v) < I.

Let w(y) v ° - (v - 1). Then
0 0

- a(0) a(0) (v2  h (v -

and w(O) 0. By Lemma 4.2 and (4.9)we obtain Iw IL < Hence,

V'IfLo = jw + (Vo-l)ILo < 2, which imolies that

HhR1 vI < 21'a'11 L + 11c[1L < C

with C independent of c and h. Thus, our assertion is true for k 1.

Next, assume that

'Hvi'IL < C, i = 0,1,...,k-1 and

(4.10)
11Iv'. 1 < C, i = 0,1,... k-1.

This is actually our induction assumption because from (4.10) it follows that

JlhRk_ivi[j < C, for i = i,....k--]. We must show

1Ivk1L _< C,

and

1 NkI< C.

From the induction a3sumption, (4.10), the definition of vk , (4.7) and (4.3b)

we have

*(4.11) JIL vk ~ LVk L Co: "=1 - - h

and so by Lemnma 4.1

3A i
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(4.12) 1 IVk'l L < c.

As before, let w = yvk  vk . Then

-- w' a(0) w vLv + A(O) v2  h ok h k,

and

w(O) 0.

Inequalities (4.11), (4.12) and Lemma 4.2 imply that I'W1IL < C. Therefore,

llyv1]L < C which, with (4.12) implies that l1hRlvkllL < C. This, together

with the induction assumption, proves the result when v is defined by (4.6a).

00When v 0is defined bv (4.6b) the proof is almost identical.

When v0 is defined bv (4.6c) we use Lemma 4.1 and deduce that I 1vo 'L < Ch.

If we set w = yv' - v and use Lemma 4.2 it will follow that Iv L Ch.

Induction on the assertions

{IViIIL < Ch,

and

yviL < Ch

yields the desired result.

This theorem proves that it is possible to choose the basis functionY~ni in

.4 -such a way that

- = )n. r ( ) < ChIj I, Lj I) i,j L ) - j

where C = C(all., b1ll , k) is Independent of E, and hi. Recall that by Theorem

we C

3.3 a small value of n will guarantee a quasi-optimal finite element solution.

Since we are approximating the exact solution with a piecewise polynomial of

degree r, the accuracy of the method will not increase in order as we increase

39
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the order of n. Therefore, it is sufficient to take k 2, in which case

S=O(h).

These hasis function 'P ( 1 ) are easily' derivable and their oxplictt formula1,1

are given in [34]. In general, they have the form P1 (y) + P2 (Y)e , where P1

and P2 are polynomials, and X a0h/c is often referred to as the local or cell

Peclet number. For large values of A these basis functions themselves exhibit

boundary layer behavior. When the value of A is small these functions are close

to polynomials.

However, the nodal errors will decrease as r decreases.
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CHAPTER 5

PROJECTION ONTO UPWINDED POLYNOMIALS

When the space SL(l)is used as the test space for the finite element method

Theorems 3.3 and 4.3 vield quasi-optimality for the approximate solution in Sr.

However, since the basis functions of SL are of the form Pl(v) + P2(Y) eaoh

with X = , the bilinear form requires the integration of functions with

boundary layers and smooth functions as well. Unless a special quadrature rule is

used, which integrate terms of the form ym e-Xy exactly, large quadrature errors

will result whenever X is large. Standard quadrature is al-o needcd for thr smooth

terms.

In order to avoid this inconvenience we propose to project these "exponentially

upwinded" basis functions of SL (r) onto a space of polynomially upwinded functions.

These projected basis functions will have the form
M

* (5.1) W(x) = cj(x) + 0aigi(x) for xCI.

where l.(x) is the standard piecewise linear "hat" function and . = cc(i are

the upwind parameters. This is a direct generalization of the commonly used

a-quadratic upwinding in which case M=l and gl(x) is quadratic on Ij. In

particular, it was shown in [ 3 ] that when b(x) E 0, and a(x) is constar- the

value a, computed from projecting the space SL is identical to the so Lalled

11optimal" value of a presented in ([8], [9], [17]-[21], [30], and [37]), uhich

yields the exact nodal solutions when f(x, is constant.
60)

Let l,j be as defined in (3.2a,b) and as constructed in (4.6a,b,c).

Define S(k) by
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(5.2a) k) pan j=l, N; =- ..., r-2,

where () k (, j)

(5.2b) X1, Pk , )') = i
i=O

with Pk denoting the L2 projection operator onto the first k Legendre polynomials

09 ...... Vk on each interval I. Also, we take the convention

x.
(5.2c) X (x) =Xt)+;gjxj_ )

. xj- 1

and hence

S(x - ( )(x )
,,j j-1 9 j-1

and

X (x) = () (x)j (xi kj "

From the results of Chapter 4 these upwind coefficients . = (4', 4i l can be
1

computed exactly, since only integrations of the form f ymeYdy, or integrations
%2

with polynomial integrands are required. Once these coefficients ci, i = 1,...,k

are computed on each interval 1, all integrations remaining will be of the form
1J

f P(y)g(y)dy, where g(y) is smooth independently of E.

(n)Let v (r) Then P V,
Letv L C • h Pk() = v is a piecewise polynomial of degree k with

the property that

(5.3) (g,v -v) = 0, for each g(x) C S

a piecewise polynomial of degree < k. Note, that since v (0) = VL(0) = 0, it

follows from (5.3) that

(5.4) v L(x) = v C(x) j .... ,N.

4C
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Before proving the main result of this section, we first prove two lenas.

Lemma 5.1. Let v e Pk(VL) = v' where Pk is the local I2 projectionLema51.Le L SLi L et"k

operator onto piecewise polynomials of degree k. Then

v~j < (l+C )vI
I vL -v 1 <L1 (I) - k IL ILI)

k
whereC = / 2iT.

k i=O

Proof. Let i' i 0,...,k denote the Legendre polynomials of degree i on the

interval I.. Then

i=O

where (''-)Ij denotes the L2 inner product on I.

Therefore,

vI L(. vjL(~ k 11 L.(I .) I T.

: , k J ')iL

L 2 ( 1 (

If we normalize the Legendre polynomials in such a way that x 1, then

II = 1, and .I
!IL Qi ii1iL (I 2i+12 h

and hence, <Iil Ll(I.) !h. II!!HL2(I ) Thus,
1 1 h 1j ll 2 (T Ths

k* 2 I < 1:i '/2 11 lCk~

i=O " (I j i=o

So

I v'i Ll ( i. G< C VL L(1val ILI( - k1'l' (I )

4 3
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and consequently,

Iv Ii" Ll(1) < CkliV;Ij11(1).

The lemma now follows from the triangle inequality.

l etI v ( k ) b u h t a
Lemma 5.2. Let w C Sr' For each vL c , let v C s"k be such that

V= k L r. Assume a c Ik+l(), and bj1* C Ck(j) for j = 1,...,N.
k L

Then
ThenIBA(W,VLV )I

sup -< Cmaxh. a I

VLCSL iivLIH,,A 3 1

+ 11ib(k-r)I 1H r(I w (I

for I < q <a

Proof. Since v (x) = VL (x) for j = 0,...,N, we can rewrite the bilinear form as

N x
BA(WVL- ) = ;1 f w'-aw- (b-a')wdt (v -v')dx

1j IX j -1

Because of (5.3) and the fact that r < k, we have

BA (W,VL-V ) = [ f -aw- (b-a')wdt - p(X (v-v')dx,
E~ I, fj_ 1j= [ j-

4 where p(x) is any piecewise polynomial of degree <k. Consequently,

(5.5) B A tw'v L - .)

4 < max(IjawpI~x)JII(I + x (b-a')wdt-p2(X)11L"'(Il

"1 L - LlI

44
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th
Let pl(x) be the k interpolant of aw on each Ij.

That is,

PijXi-+ih i/k) =(aw)(x. ,+ih 1,k)

for i=O,... ,k, and j1l,...,N.

Then,
k+ 1

* From Leibnitz' rule, we have

(k+1) =kl k+1 (k+1-i) (I)
(aw) (j a w

i=0

r
(k+l) (k+l-i) (1), since k > r

a w
i=O

Hence,

I (aw) (k~l1 IL (I~ < (r+l)(k+l)!'j (k+l-r)1 I r I iiwI~

< C(k+1)!Ila (k+l-r)IIr(I )h- rwIL(I

* the last inequality following from the inverse theorem. From this and (5.6) it

follows that

(5.7) < h k rI la (k+1-r) I Irj lw1I'
(5.7) ~~ Iaw - Pi (X)l1 ~

Similarly, if p (x) Is the k th interpolant of f (b-a')w on TV, then

*(5.8) IIf(b-a')wdt - T)2(Wx.) (
f j-l
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< Ch. k Il-r1(b-a r) 1Hr

From (5.5), (5.7), (5.8), Lemma 5.1, and the embedding result (2.18), it

tollows that

IBA(w'VL-vc) < C max h k+l-r fIa k+ 1 r)I rs u p -n I I L 1 1)v L €vLIIHL
V L C SL H E, A

I + I bk-r I Hr(I.) ILw L (I.)'

We are now ready to prove the main result of this chapter.

Theorem 5.3. Suppose that assumptions Al - A4 hold, and that S is defined

by (5.2a, b, c) with k > r.

Then there exist an h independent of E, such that for all h < h o, there0

exists a unique solution u C S tor

(5.9a) B(uav a F(v ) for each v cs (k)

Also, let u LCS r be the unique solution to

(5.9b) B (uLvL) F(vL) for each vL CS

Then, for I < p <
_ h~k+1 f(k),iLol

I u Ho max I
p,1 < I H o 'L(I)

+ C max hk+l-r fj (k+l-r)Ir r 11b(k-r)II r
2 m Hr(l

with C1 and C2 independent of E and A.
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Proof. The existence and uniqueness of u will be established if the homogeneous

problem,
(k)

(5.10) BA(WV ) = 0 for each v C S(k)

has onlv the zero solution in S
r

Suppose (5.10) holds. Let vL C S(I) be s.t. v(x) v (x) =0. N.

Then v' = Pk(v)-  From (5.10) it follows that

5̂ (ri) a v (k)

BA(W,VL) = BA(w,vL-V ) for each vL SL ,and v aCS

and hence

(5.11) 
IBA(W,VL)I _ BA(W,VL-V )I

II-1 jIvLHj2

(1V1)l(k21,E:,AIE,6

(k)for each vL C S IadL k

Because the inf-sup condition holds for B (.,.) over the spaces S x S for h. r L

sufficiently small (Theorem 3.2 & Theorem 4.3), there exists a vL C SO@) such
L

that the left hand side of (5.11) is larger than C 'wf IHO The right hand

side of (5.11) can be bounded by Lemma 5.2, and hence it follows that

(5.12) Cl ljwf HO < C2hk+l-r IW o
,A o,A

where C and C are independent of h and c. Since k > r, there exists an h such
1 2 0

that for h < ho, the only way that (5.12) can be satisfied is if I IwI HO = 0,
oA

which implies w = 0.

Since

BA(Ucz,vL) = BA(UV ) + BA(u( ,vL-vQ),
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it follows from (5.9a,b) that

BA(uL- uVL) = F (v-v) - BA(U~vL-v)'

From Theorem 3.2 it follows that

(5.13) fluL - u I H < C I  sup LF (v L-V )L

p,A CS(n) I ULI 2
L L H

+ c2  sup IBA(uavL-v)!

VLCSL n N VLIIH12
q ,C,A

for each v C S(k) and 1 < p < o, where-- +_ .
_ p q

First, consider the term sup F (VL-VL)J Let F (x) fo(s)dx
(r') I lVLl1 IH2  j-1

vLCS L p,,A

for each x C I.. Let F. be the polynomial of degree k on I. such that

FI(xj+ih./k) 'F (x.+ih./k) for I = 0,1,...,k. Then

(5.14) F_ _o_) Lt

4(k+l)!

As before, let v C S(k) be such that v (x.) = vL (x, j = O,...,N. Then,

(Y

,F (v - v  f f f(X)(VL,-V 7)(x)dx

j=l

N 1

48 F (x(v-v )(xdx
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= f (F- )(V'-v') dx,

j=1 T. *1 L

*the last equality following from (5.3). Thus,

N
(5.15) v <i)~-~ LjI)'L-v

j=l I . '

From (5.15), (5.14), Lemma 5.1, inequality (2.18), and the fact that

1lvI 2 <,I, jV 2  1 < q < it follows that

(5.16) sup I F (VL- v < C max k+l If (k) 11

v Cs (' )  I IvLI 2 J . j

L T, 15 "i'.q,E.A

Using Lemma 5.2, and inequality (5.16) it follows from (5.13) that

-uma k+1 1 1f (k),1
(5.17) I! uu !I < C1 max h. (i.)Sc * Ho - • 1 !

pA I

+ c _ max h k+l-r{l a(k+l-r) Hr(J )

+ IIb(k-r)ll r ( I u ()

B' hypothesis, lul L is bounded independentlv of E. Since u1 is a quasi-

optimal approximation to u, it follows that Ju1 ILi, is bounded independently of

E. From (5.17) it follows that if h is sifficientlv small, then ul is also

bounded independently of c. That Hu11 is bounded independently of c, and A

(provided h is sufficiently small), combined with (5.17), proves the theorem.

This theorem shows that if we project the space SL  onto k upwinded

polynomials in S(k), then the finite element solution wirn S (k) as the te,.t space

will have an error composed of two parts:
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t - L o '1 1 H0

iH

pA

P fi rnt part u it i" qu: fi-ontimal and hence the be,t ord-r of this
HkA

term that can be expected is O(h r+). If k = ?r + 1, te theorem savs that the

second tera I!u. - u = O(),r which is o,,, higher order than the
D 0

optimal error.

Corollary 5.4. Suppose that all the- as-um-t ion- f Theorem 5.3 hold with k=2r+l

Then there exists an h o independent of P su-h that for all h < h o

u -u o< C1 inf Hu -wH 1  + C, 11r+ 2

p ,A wCS pA
r

We remark that when using a polvnomiallv upwinded test space the term Cih r + 2

is unadvoidable. It was proven in [ 31 and [341 that quasi-optimalitV is

unobtainable when a test space containing basis functions of the form . with

gi(x) independent of C and h,is used. However, if local smoothness on i, 1, 1,1d

f is assumed-a condition always sotisfied is practice, we can obtain an additionfll

error of O(h r+2). This error can in general be neglected because the he;t

approximation from a function wC has; order O(hr)
r

-I
Because of the second part of this work - the a-posteriori error estimates,

it is important to keep th., projection error of one higher order than the optimal

error. This should also be true of t he numerical quadrature errors. A

quadrature rule, which is exact when a(x) i a piecewise polynomial of degree r+2,

and b and f are piecewise polynomials of degree r+l, is derived in [34], and shown)

to produce an error of order O(h r + 2 ) as well.
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In this paper it has been shou-n that qumsi-o~timalitv is obtaina-le for a

finite element solution when the test space is composed of functions which are

"nearly" L* splines. The norm used to measure the errors is very close to an

Lp norm which is important particularly if the location and shape of the boundary

laver are important. Furthermore, although it was showrn in [ 3] and [34] that

quasi-optimality is unobtainable when using a polvnomiallv upwinded test space,

we have shown that a "nearly" quasi-optimal result is possible if the input

functions a(x), b(x) and f(x) are piecewise smooth. This "nearly" quasi-optimal

result is sufficient for finding a-posteriori error estimates and proving that the

error estimate converges to the true error as h = h(A) - 0. This result is proven

and an adaptive mesh refinement procedure and numerical results are presented

in the second part of this paper [35].

Many of the results of this paper (particularly the embedding result) used

bounds on the Green's function. For turning point problems, in which there Is a

point xo C I such that a(xo) = 0, the Green's function is not bounded independently

of :. However, in [ 6 ] sharp bounds are given for the Green's functions of

turning point problems. The numerical results for a turning point problem art,

given in Part II, [351 and suggest that analogous results hold for tlis case

as well.

Upwinding can easily be implemented in two dimensional problems. OnT a

rectangular mesh, upwinding can be done by simply upwindrn.g in each direction
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separately. This is done in [19] [21] for quadratic upwinding, in [23] for

upwinding the integration point, and in [21] for upwinded elements which are local

asymptotic expansions of the solution.

In [7], Brooks and Hughes describe a method in which upwinding is donl eniv

in the direction of the flow (streamline diffusion method). A mathematical analv-

sis of this method was performed by Navert [31]. Interior error estimates were

proven to decrease with rate hk+ !, in I2 which is ', of a nower lower than the

optimal rate. However, the optimal rate was observed in the numerical results.

The polynomial upwinding presented in this p,,per can also be implemented In

two dimensions. Nevertheless, major theoretical questions still remain unsolved.
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