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Abstract

N

A detailed analysis is performed for a finite element method applied to

the general one-dimensional convection diffusion problem. Piecewise poly-
nomials are used for the trial space. The test space is formed by locally
projecting L-spline basis functions onto "upwinded'" polynomials. The error
is measured in the Lp mesh dependent norm. The method is proven to be
quasi-optimal (yielding nearly the best approximation from the trial space),
provided that the input data is piecewise smooth. This assumption is usually
observed in practice. These results are used to establish a posteriori error
;i estimates and an adaptive mesh refinement strategy in Part II of this series

(35).
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CHAPTER 1
INTRODUCTION

Reliable numerical solutions to singularly perturbed boundaryvy value problems
are of great importance in engineering. Because of the degenerative nature of
these problems, conventional numerical methods produce approximations whose
optimality degenerates as well.

In this paper we consider the model problem
(1.1) -eu"” + a(x)u’' + b(x)u = f(x), in o,1),

u(0) =a,
Byu' (1) + Byu(l) = B,

where
u = u(x) is the solution and may measure, for example, temperature or concentration,
€ > 0 is the diffusivity of u(x), a(x) > a > 0 is the velocity of the medium
carrying u(x), b(x) is the coefficient for u(x) used to represent a "loss" if
b(x) > 0, or a "source'" if b(x) < 0, and f(x) is the external source term. The
order of this problem degenerates from two to one as € - 0, and particular
interest will be focused on the case when € is small.

1f a(x).z_g > 0 and the ratio a/e is large-in practice this ratio may be as
large as 108, the solution to (1.1) will often exhibit boundary layer behavior.
A boundary layer can be loosely defined as a small region near the boundary where
the solution changes rapidly. If the function f is "rough'", the solution may
also have interior layers where the solution changes rapidly near some points
{x4} € (0,1). 1In cases when a, b and f are smooth, the solution will generally

a(l)(x-1)/¢

behave like e near x = 1 (see e.g. [10], [15] or [36]).

1
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Much attention has recently been focused on the application of finite element
methods to problems of this type. Because conventional finite element methods
employ piecewise polynomial trial and test spaces, one problem is the ability of
these polynomials to approximate the exact solution well, particularly in the
boundary layer region. However, the most serious problem by far is the loss of
stability or quasi-optimality with these conventional methods.

A finite element solution u, is called quasi-optimal in the norm Ibllif there

exists a C, independent of € and the mesh, such that

1.2) | u-u " < C 1inf Ilu—w!l,
lu-upi | < e

where 8, is the trial space from which the approximation up to the exact solution
u is taken. Whenever (l1.2) holds we are guaranteed to have nearly the best
approximation from the trial space S;. With conventional methods, however, the
constant C in (1.2) becomes unbounded as € - 0.

This loss of quasi-optimality can be seen numerically by considering the

following problem:

-eu" +u' = f in (0,1)
(1.3a)

u(0) u(l) = 0,

with

1 if 0 < x < 1/3,

0 if 1/3 <x<1, x # 2/3,
§(x-2/3) if x = 2/3,

(1.3b) f(x) =

where §(x-2/3) is the Dirac delta function representing a point source at x = 2/3.
Besides having a boundary layer at x = 1, this problem has an interior layer at

x = 2/3. The exact and conventional piecewise linear finite element solutions are
shown in Figure 1.1 with € = .0001, and N = 24 elements. The loss of quasi-
optimality expresses itself in the form of spurious oscillations of the finite

element approximation.

2
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The most common way to alleviate the problem of oscillations is to "upwind"
the test space. In the case of linear elements this is done by adding a
quadratic term, multiplied bv some parameter a, to each linear basis function of
the test space (see [ 8], [ 9], [17]-[21], [30), or , [37]). This procedure

will be referred to as a-quadratic upwinding throughout this paper. A typical

basis function w; upwinded in this way is displayed in Figure 1.2.

In all of the papers mentioned in the preceding paragraph, the criteria used
‘ for the selection of a was either to eliminate oscillations, or to produce exact
b nodal solutions for the model problem (1.3a). For example, Christie, et. al. [ 8],

Heinrich, et. al. [19]-[21], Mitchell, et. al. [30] and Zienkiewicz, et. al. [37]

have displayed the "optimal" a which produces the exact nodal values for problem
(1.3a), when f(x) = 1.

It is pointed out by Gresho and Lee [16] that "ad hoc" upwinding can be
deceptive to the analyst by smoothing out the results, and any solution obtained
by upwinding does not represent a solution to the original problem. Instead of
upyinding, they advocate the use of conventional finite element methods, and
propose to use the information given by the oscillations to refine and/or relocate
the mesh points in the areas where any "wiggles" occur.

Although we agree that the upwinding criteria of damping the oscillations

is incorrect, the oscillatjons themselves may be misleading in determining how

the mesh refinement should proceed. The approximation to problem (1.3a,b)
displayed in Figure 1.1 would mislead one into refining the mesh everywhere.

The criteria for o-quadratic upwinding should not be to eliminate

&

f’ cscillations but should be to obtain quasi-optimality as in (1.2) with the

E constant C independent of ¢, and the mesh spacing h. 1In [18], Griffiths and

i. Lorenz attempted to select n in a way to minimize this constant C. Unfortunately,
ff even with o chosen in this way, if € << h their value of C increased with rate

% 4
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h! as h » 0.

In { 3], we have proven that quasi-optimality is attainable for problem (1.3a)
(in a norm different from the one studied by Griffiths) with o—quadratic
upwinding if and only if the input data f is piecewise smooth - a reasonable
assumption in practice.

Upwinding can also be done with the use of L-spline basis functions. Methods
using these spaces have been studied by Hemker and De Groen ([11], [12], [22])

who prove a-priori estimates of the error at the nodes and in the norm

2 2 2
(1.4) Huoll7 ¢ = €l lu'||L2 + ||ul|L2

In this norm, however, the error arising from any piecewise linear approximation

cannot be made small unless h < €. They also propose to upwind the trial space

in order to get a better fit to the exact solution in the boundary layer region.

However, this upwinding can introduce spurious internal layers in the approximation.
Also, whenever the norm (1.4) is used, the assumption a(x) > a > 0 and the

additional assumptions

(1.5) () > 0, and b(x) - 3 a'(x) > ¥ > 0,

are needed to prove coercivity of the bilinear form used to pose (1.1)

variationally. When a(x) > a > 0, a much weaker additional assumption, namely -

(1.6) if b(x) >b then a’ + 4€b > Y > 0,

is sufficient to guarantee that zero is not an eigenvalue for (1.1) and hence the
solution will be unique. This assumption together with some smoothness of a, b
and f, are sufficient for the results inthis paper. Note that in (1.6) b and
hence b(x) may be negative. Furthermore, no condition on the expression

b(x) —-% a'(x) is required.

Since the L-spline basis functions are exponential and have boundary lavers
themselves, a special quadrature rule must be devised in order to perform the 1
5 J
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integrations necded to assemble the matrix equations with sufficient accuracy.
Diaz-Munio and Wellford [ 13| use exponentiallv upwinded basis functions which are
local asymptotic expansions of the solution, and describe a special numerical
quadrature rule which is exact for integrands of the form tPedt,

Kellogg and Han |[27] present a scheme in which they add one singular function

of boundary laver type to both the test and trial spaces. Using this method thev

were able to prove the error estimate

. (1.7) Hlu - uyl

‘1,¢€ Zch

where C is bounded independently of € and h, and !‘.1!1,5 is defined in (1.4).
This method presumes a-priori knowledge of the location of the boundarv layer.
For example, in order to solve problem (1.3) which also has an interior laver at
x = 2/3, some modifications must be made in their algorithm.

In this paper we develeop a finite element method which produces a quasi-optimal
approximation to (1.1) for all values of € €(0,11. The norm used to measure
the error is closely related to the L, norm. An L, (and in particular an Lj)
type norm is appropriate especially when the location of the boundarv or interior
layers are of importance. 1In the second paper of this series: Part I1 -
A-Posteriori Error Estimates and Adaptivity, the numerical results presented arc

based on the L, tvpe norm.

1
The norms, spaces, and bilinear form used to pose (1.1) variationally are
presented in Chavter 2. Chapters 3 and 4 show that a basis for an exponentiallv
upwinded test space can be found, which produces a quasi-optimal approximation.
In Chapter 5 these exponential basis functions are projected onto a polvnomiallv
upwinded test space. This tvpe of upwinding is a generalization of a-quadratic

upwinding. Finally, in Chapter 6 some remarks are made on the extension of these

results to more general problems.

6
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CHAPTER 2
MATHEMATICAL FRAMEWORK

This chapter sets up the mathematical framework in which the convection-
diffusion problem (1.1) will be studied. First, two theorems are presented which
are used to prove existence for variationally posed problems, and quasi-optimalitv
for finite dimensional approximations. Next some results conc -aing the Green's
function to (1.1) are preven. After the norms and spaces nee ' to pose (1.1)
variationally are provided, the Green's function results are - 1 to prove some
important embedding theorems.
SOME ABSTRACT RESULTS

Two crucial results concerning variationally formulated boundaryxvalue
problems and finite element approximations are given in this section.

Theorem 2.1, Let Kl A and Kz A be two reflexive Banach spaces, indexed by a

parameter A with A varying over some index set, with norms ||-]] and ||-]]

1A 2,4

respectively, and let B, be a bilirear form on K1 A X K2 A We suppose the
following are satisfied:
(2.1) IBA(u,v)| < CIIIUIII,AIIV]IZ,A for all u€ Kl,A’ v CZKZ,A’
(2.2) inf sup |B,(u,v)| > ¢y >0,

UCKI,A VCKZ,A

||UH1’A=1 ||VH2’A=1
and
2.3 sup |B (u,v)l > 0, for each 0 # v€ K ,

A 2,4
uCKlA

7
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where ¢y and Cp are positive constants, pussibly depending on 4. Then if

f € (KZ,A)" there exists a unique solution u € KI,A to the problem
B&(u.v) = f(v) for cach v € sz\.
Moreover, v satisfies
Hally 2 &M

If the bilinear form B,(.,.) satisfies the assumptions (2.1), (2.2) and (Z.3),

BA is said to be a (Cl, C,)-proper bilinear form over the space Kl . X K It

Y 2,4 °

should be noted that (2.2) and (2.3) can be shown to be equivalent tc

*

(2.2)= inf sup }BA(U,V)[ > C2 > 0,
ALV BEK) 4
:' P =1 H | =1
VIIZ,_:\‘ u.ll’A
and
(2.3)% sup IBA(U,V) > 0, 0#ug K18
vEK)

This observation will be specifically used in tuis paper.
Since we will be studving finite element approximations ‘o u, we let S1 A and
’

and K

1.0 2,0 respectively. Clearly,

52 A be finite dimensional subspaces of K

conditicn (2.1) holds on S with the same constant Cl. We will be

1,5 * 52

invoking the following theorem concerning the finite element solution uy -

i s Y - . . .
Theorem 2.2, Suppose BA is (C1 C2) proper over Sl,A X SZ,A furnished with norms

}I']ll,A and !}.IIZ,A’ respectivelv. Let u CZKI,A’ and let up C:Sl,A be the

unique solution to BA(uh,v) = BA(U,V) for all v €:SZ,A .

Then

C
Hu - lly y < Qrgp _tnof Jlu-ully,

2w ‘l,A
8
UNCLASSIFIED
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For the proof of Theorems 2.1 and 2.2, see e.g. [ 1].

i’ We remark that the reflexivity of the space Kl.A is not necessary for

: Theorem 2.2 to be valid - the reflexivity is needed only on the spaces SI,A and
SZ,A , which is guaranteed since thev are finite dimensional. However,

i! Theorem 2.1 will not imply the existence of a solution ug Kl,A’ if Kl,A and KZ.A

' are not reflexive. Therefore, if K and K are not reflexive, the solution

1,4 2,A

3 u must be assumed or shown to exist in Kl A by some other method, in order to
b

. apply Theorem 2.2.

THE GREEN'S FUNCTION

Consider the operator L defined by Lu = -gu" + a(x)u' + b(x) u, for
u€C2[O,1], where CK[0,1] denotes the space of functions with k continuous
derivatives on [0,1]. Let G(xly) denote the classical Green's function for the
operator L with boundary conditions:

G(Ol'}) =0

(2.4)
T(G(x]v)) = B16 (11y) + By G(1jy) = 0

The following lemma will be used to establish the existence of this function.

Lemma 2.3. Assume a(xXECl[O,l] and b(x)€C®[0,1]. If there exists a positive

function w€£2[0,1] which satisfies

(2.5) w(0) > 0,
w >0,
then the Green's function G(x]y) to L exists, 1s unique, and is non-negative.

Proof: This lemma follows from the maximum principle (sce e. g. [32], Chapter 1,

Theorem 1.1), and standard results concerning the Green's function (see e.g. [33],
Sections 1.3 and 1.5). A detailed proof of this lemma can be found in [34],

(Lemma 2.5).

9
UNCLASSIFIED




P ','"f.‘Hw'( Vlr‘i .

UNCLASSIFIED

In order to find a function w satisfving (2.5) we make the following

assumption for the operator L.
Al: a(x)C:L][O,l], a(x) >a >0
b(x) € c°[0,1], b(x) >b and

b is such that 32 + 4eb =Y > 0.
For the boundary operator ' we assume

A2: By» By 20, B +8, > 0.

The following is a corollary to Lemma 2.3.

Corollary 2.4. Suppose assumptions Al and A2 hold. Then the Green's function

to L, satisfying (2.4), exists, is unique, and is non-negative.

1L
Proof: Let 0 = f%'(é,+ (32 + 462)2) >0 and w(x) = e%%, Then w satisfies (2.5).

An important fact used in this paper is that the Green's function is bounded
independently of €. The proof of the following theorem which establishes this
fact is similar to one found in Lorenz [29].

Theorem 2.5. Suppose assumptions Al and A2 hold. Then the Green's function
G(xly) for L, which satisfies (2.4), is bounded by a constant which is
independent of x, y and €.

Proof: Let a(XIY) be the Green's function for i where

A

Lw = -ew'" 4+ a(x)w',
with boundary conditions
w(0) =0

Blw'(l) + Bzw(l) = 0.

Then a(xly) is given by

10
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1
Byp(1) + BzfvP(L)dt

ep(v)y ﬁ p(t)dt, x <y,

(2.6) a(X’,\') =

B fopcrar B, [lpoer . .
ep(y)X ep(v)X fxpt £ X2V

t 1
where p(t) = exp(-i-f a(s)ds), and x = Blp(l) + 82f p(t)dt. By assumption A2,
)
o

Bl’ 82 > 0, and 81 + 82 > 0, and hence Y > 0. Therefore, from (2.6) we have

Y v
R . s p(t)dt > Y
G(x|y) < G(y|v) iL—e'pTy—)__ = %fo exp(—%_-ft a(s)ds)dt

1 - e_é/s)/g < 1/a.

I A

1 (t-v)ale
efo e dt

I A

If b= 0 then b (x) > 0. Let wv(:\') = G(x]_\') - a(x|y).

Then

iwy(x) = —b(x)C(x!y) for each x € (0,1),

Hence, wy(x) = - fl a(xlg)b(ﬁ) G(Ely)dg. Since both G and G are non-negative
o
by Corollary 2.4, wy(x) < 0. Thus, G(xly) < 6(x|y) < 1/a.

If b <0, let 0 = -=(a - (a? + sep)?) > 0, and Lw = & L) = —eu +

(a(x) - 2e0)w' + (-ECJ2 + a(x)o + b(x))w. Since —802 + a(x)o + b(x) > -802 + |

/2 _ 112

ac +b =0, and a(x) - 2¢0 > a - 2eCc = (32 + Ae_b_)l > 0, we are in the

case when b = 0 for the operator L. Let Gc(xly) be the Green's function for Ly

satisfying the boundary conditions GO(OIV) = 0,

- 8GO
T Gs By (LIy) + (B, + 08)) G (1]y) = 0.

11
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Since 0 > 0, the boundary operator T satis¢fies the analogous assumption as

A2 was to the boundary operator [, and therefore, Go(xly) f_l/Yl/z.
CO(x]y) is related to G(x y) through the identity G(x[v) = eo(x—y)c”(xly).
o,.1/2 a 2, 4 ‘ >
Therefore, G(x|v) < e /y . Now, 0 = EE(I - (1 + 4eb/a™) ") j_;z'(l - 1+ 4eb/a™)) =

- 2
-2b/a. Thus, G(x|y) <e 2-ll/é/Yl/‘--

NOTATIONS, BILINEAR FORMS, SPACES, AND NORMS
We now define the various norms, spaces, and bilinear forms used throughout
this paper. The norms introduced here are analogous to those defined in [2].
The space H;(I), k =0,1,..., 1< p <=is the usual Sobolev space on the
interval I = [0,1] consisting of functions with k derivatives in Lp(I). On this

space we have the usual norms given by

k . 1/p
[ Z / Iu(J)(x)lpde , 1<p<e
j=0 J 1

IlullHk(I)
P k (1)

Z ess. sup. IUJ l, p =®

3=0

o
The space H;(I) denotes the subspace of Hg(I) of functions which vanish at the

endpoints of I. This has sense because Hé(}Co(T). Note that Hg = Lp.

Let A = {0 = X <xp <.l < Xg = 1}, where N = N(A), be an arbitrary mesh

1
on the interval I = [0,1]. Let hj = Xj - Xj—l’ Ij = (xj-l’xj)’ j=1,...,N,
pj = (hj + hj+1)/2’ j=1,..., N-1, oy = hN’ and h = m?x h,.
We seek a variational setting for the problem
2.7) Lu = -eu" + a(x)u' + b(x)u =f in (0,1),

u(0) = a,

Tu = 81U'(1) + BZU(I) = B,

12
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where the functions a(x), b(x) satisfv assumption Al, and By, By satisfy
assumption A2. These assumptions Al and A2 will be assumed to hold throughout
the entire paper, and will not be repeated before each theorem.

Let L* denote the formal adjoint operator to L, i.e.,

2
= —e95 _ 4w d—dx- + (b-a')(x).

o
"

(2.8)
dx2

The boundary operator adjoint to I' is I'*, where for u sufficientlv smooth

8
(% Eg + a(l)) u(l) + eu' (1), if 81 # 0,
(2.9) Thu = 1

u(l), if 81 = 0.

We must associate a bilinear form to L, and describe the spaces over which this
form is defined.

First, we define the space H° 1 <p< o, to be the completion of

p,4’
H) = {u CH;(I): u(0) =0, u(@) =0 if B, = 0},

with respect to the norm

1 N1 1/p

j} lulPdx + T p-'u(x-)lp sy 1 <p <o,

) jop 30 -

(2.10) Hul!Ho =
P,A
Hu”Loo(I)’ p = o,

N-1, if 81 =0
where Ny =
Ng if Bl # 0.
) cro s i Ny
The space Hp A can be easily identified with Lp ® R 4, that is,
b

= (U,dq,..eady) € Hg p=1L,® RN, and

13
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(2.11) ||u”
He,A

In consistency with our definition, we sav u C.Hg

3

Note that the norm ]l'HHo

N

3=1

is continuous and di

Linllullo = 2Pl

h~+o p,A

d, = G(xi) for i = 1,....

= U(Xj) .

~ 1 1/p
[laf? + p
L (1 b d, s < < »,
o (D L ol 1M 1<p
max[”ﬁ” |dil]9
j Lm(Ij)’ ) p =

N uwl R 1
A Hp(I) if u C:HP(I) and

N -

is verv close to the Lp norm. The term

p,A

T pj|dj|p is the trapezoid quadrature rule for the function |u(x)|P, when u(x)

Therefore, for anv continuous function u

Because of the boundarv layer behavior of the
p

solutions, an Lp (particularly L;) type norm is appropriate for measuring the

errors. The quality of our approximations is measured in the Hg A norm. In
L]

particular, the computational results and adaptivity presented in [35] are based

o
on the Hl,A norm.

Let us also define

vlp €1, 3=1,.

J

2 1,... _ _ _
HqA—{vCHq(I).v(O) =0, v(1) =0 if B, = 0, and

1

..,N}, for 1 < q < », WYe will equip this space with a

norm to be defined later.

o
On Hp,A x H
B (+5°) by
2 =
(2.12) BA(u,v) 3

where J(v'(xj)) = v'(xj+0) - v'(x

i’A, where % +‘% =1,

1 <p <> we define a bilinear form

N N-1
L uL* -z
29 II ulL*vdx j=1

j edJ. J(v! (xj)) + d T*(v),

40 for 1 < j <N -1, and dg = 0 1f ) = 0.

14
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5
The limits v'(xiiO) are well defined because v[Ii € H;(Ti) for each j. Now we

will furnish the space Hi A with the norm |||-]||, defined by
IB (u,v){
(2.13) Vil = s e
UCHg,A H,D,A
In order to verify that |”'|H is indeed a norm, we must show positive

definiteness - linearityv and the triangle inequalitv are evident. To prove

positive definiteness we will use the identity
N-1

N
(2.14) v(y) = j§1 [Ij G(x|v) (L*v) (x)dx - jEI LI (x4))6 (x| 9)
+ G(1]y)T#*v.

That (2.14) holds for VGZm[O,l] follows from the properties of the Green's
function. Bv a density argument, and using the fact that Hi is continuously
embedded in L, and Hi'together with the fact that L* is a continuous mapping from
Hg into Ly, it follows that (2.14) also holds for each VE:Hz,A. Again, see [34]

for a more detailed proof.

2 o
< =
For V€:Hq.$ , 1 <q <=, select U, CZHp,A , 1/p + 1/q 1, where
u = (uo, dl""’dN ) and
1
Y = * i =
uOII. sgn(L v)|Ij, for j 1,..., N,
]
dj = -sgn(J(v'(x§)), for § =1,..., N-1,
and dy = sgn T'*(v) if Bl # 0.
Then
N N-1
|B,(u_ ,v)| = z f |Lxv]dx + L €] J(v' (x))| + |T*(v) ]
Ao =1 1y j=1 3 '

15
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If BA(uo,v) = 0, then L*v|1j =0 a.e., J(v'(xj)) =0, j=1,...,N-1 and

I*(v) = 0. By (2.14), v = 0. Thus, |||-||| is a norm on chl.A y for 1 < q <=,

N Let us conclude this section by introducing another norm. For any
9 VCHZ A’ define “”HZ by
‘. b q,€,4
3
N f N-1 1
T % |G % q ' q.l-q
10T, |L*v|9dx + o1 € EICARCINY Py
. (2.15)
1/q
vz = + bt q|T*(v)|q] ,l<qg<o |,
N =
q,€,4
max| max | Lavll o max e]Iev G lert
1<j<N LR e 1<j<N-1

|I‘*(V)h;]1], q=.

EQUALITY OF NORMS

" We shall now prove that the norms H ||_H2 and H[ ||| are equal.
q,€,4

Lemma 2.6. Let v CHi A then

(2.16) Nvilg2 = vl 1<qze.
q,€,4
Proof: That ” v|| H2 < HIVHI follows from Holder's inequalitv. For the
q,€,4

inequality in the other direction, for a given v, u = u, is selected such that

L], Pa®D] gy,
H

- ll“vllH;’A a,€,4

vl = sup_

u€H [ull.0
p,a HoA

16
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If 1 <q < = this is done by selecting u = (u, d

],....,dN)such that
1
GII = fL*v,qclsgn(L*v)!I . 1 <j <N
i i
4 = - cq—l‘J(v'(xi))lq_lqu—lsgn(J(v'(xj))), 1 <j <N-1
and
dy = IT*) | TYsen (TR 4f o £ 0.
i i
If q = =, first assume l}vllHZ = I]L*v]lL (1) Let 7 > 0 be given and define
*,e,4 o

E. = €, [(Lav) ()| > [L#v] | n

Lm(IJ)
Then m(En)7>O, where m(A) is the Lebesgue measure of A. Select u, = (u,0,...,0)
such that u = —Xg (m(En))-lsgn(L*v), where EN denotes the characteristic function
4

of the set A. Then I[lv]!] 3'IIVI|H2 -, and since " was arbitrary,

o e A

NI

o, e,
If ||v]],2 = g|J(v'(x ))Ip-1 or ||v|],2 = ]T*(v)lh-l the selection of u
H J J H N v
o, g,4 °°,€,A

is obvious.

. 4] 2

2 -
Note that Lemma 2.6 implies that BA is 1-1 proper over HPaA X Hq,E,A for

1 <p< o, when 1/p + 1/q = 1.

EMBEDDING RESULTS

The following lemma which is a slight modification of a result from [28] is
used to prove the embedding result. All constants, C, C;, Cp,... appearing
in Lemma 2.7 and Theorem 2.8 are independent of p, q, v, € and A.

Lemma 2.7. Let E(X/i) be as defined in (2.6). Then

17
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4
[
1
4
4
]
4
[
1

3G (x/v) j'l e_gy/E +C, for 0 < y<x,
EP €
and

>

C - -
(x/v) j?l Jalv/e Cy» for x < v <1,

G
v

Proof: See [28] or [34].

Theorem 2.8. (Embedding result). If v € HS et then v €:Lw(1)r\ H;(I) with
(2.17) ol g <Gllvll2 < ollvile o 1<q<a
© 1€, q,€,A
and
] l/q—l
(2.18) v']] <C.e vll.2 1<qc< =,
Lq(I)— 2 Hq,s,A B S

where C; and C2 are independent of v, q, € and A.
Proof. Inequalitv (2.17) follows directly from (2.14), (2.15) and Theorem 2.5.

In order to prove (2.18), let a(x]y) be as defined in (2.6). Then, for

v € H2

a,e, ) we have
1 1,
v(v) = f G(x|v) K, (x) dx - f G(x|v) c(x)v(x)dx
0 0
N-l -~ ~
- 2 eIV (x)IG(x, V) + G(L,VIT*(v),
a j 3
where Kv(x) C.Lq(I). Kle = L*le , 1 <3 <N, and c(x) = (b-a"(x). So,
J i
1 . 1 A
(2.19) v (¥) =/ L(.;iLV—) K (x)dx - 3Gy lvye (x)v(x)dx
0 y v 0 9
N-1 - A
. 3G 3G
- 1Z=:1 eI (x)) 57 Gl v) + 50 (LT

18 |
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wl(y) + WQ(Y) + w3(y) + wa(y).

First consider wy (v), where

(2,200 w ()

. 1 .4
lﬁiiil— k Godx = [ BE ¢ oax s AOE e
o oy v y

z () + 2, (v).

Using Lemma 2.7, we have

lz (0] < = SR (x) |dx + C v[|L1

1
1 -
- Clj(;?é(x—;l):Kv(x) lax + ¢, HKVHLl,

where ax
e ,» if x <0,

0, if x >0.

BN
Extend ’Kv! bv 0 to all of Rl. Then through Young's inequalitv, we have

(2.21) Hag UL 1y <611 b( )IlL L L e + CzHKvHLl(I)
q
= C1lKv|iLq(I), for 1 <q <<,
Again, using Lemma 2.7, we have
1/q-1
(2.22) JE '|L (y < ¢TI |I11(I)'
1 ~
Also, from (2.19) we have wz(y) = —-/F g% (x|y)c(x)v(x)dx. Using a
0 .

similar agrument to the one used to bound wl(y), together with inequalitv (2.17),

we have

-

Young's inequality states that for 1 < q <, if s¢ Lq(Rn), and g Ele(Rn),
then h = sxg exists a.e., belongs tolh(Rn), and Ilh\[L < ||s||L Hg||I .
q q 1

19




1/a-1 1/q-1
(2.23) I I NI AN e M ,
q q q.€,4
for 1 < q < @,
Next,
N-1 36 N-1
wa(v) == 2 eI (x)) 3T (xlv) = Xz (v),
1 i v i o
h i
and

! q T T(y! 1d %5 136 q
0 lzj(.")l dv < e (v (Xj))‘ f() 5—\7 (Xj"v)!

1 o
+f 125 (x,
R v ]

X

y)lq}, for 1 <q < ®

i
By Lemma 2.7,
1/q-1 .
: !!Zjl,Lq(I)-f cet ' (e] I(v (xj))l], for 1 <q < o=,
: Therefore,
b : N-1 1/q-1 34
b (2.24) [wgily < 5 [z, 11, <ce S et ],
_ it vt j
i for 1 <q < =,

Finally,
wa(\) = T\' (1.\').1(\7),
and Lemma 2.7 implies that

1/0-1,.,
(2.25) 'Iwal'l.q<1> e T eyt

)
v - 1/"’1’-][lv'!

[ < N i < < s

.[v "L < Ce H2 R for 1 <q < .
y q,. €,

4

-

. 20
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Expressions (2.19), (2.20)-(2.25), and the triangle inequalitv implv that
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EXLSTLRCE OF SOLUTITONS

I adcred o the gasumps ions Al and A2, we make the following assumption

on the inpat data. \
! N-1

'rfr’-'<.7d

A: 1) F s o the form 7= 0+ f with f"(‘C L] (1) and fl = Z Ci ‘(x~xi)

. 1
. - . . . . . i=1 .
whore te-x 0 is the Divae Joelta function at the mesh point Xy Further-
N
more, E Vi = K i< [ndevcndent of N oand f is independent of «.
: =

‘,C: N
ii) » is bounded independently of . If - # 0, then ?— is bounded
' 1
independently of -, and if T 0, then - 1is bounded independently of <.

(3R]

Under this assumption, we have the following representation for the

sclution ulx). (see e.g., [33]):
N-1 1

u(x) = j{: CiG(xki) + fO(y) C(xiy)dy

i=] ¢}

Fup(x) + oyua(x)

+ =
L(Ul) us (0)
where uy and u, are non-trivial solutions to Luj = 0, uy(0) = 0, and
Lu, = 0, Tur = 0, vespectively., From the maximum principle and assumption
2u

A3ii), it can be shown that and are bounded independently of «.

. — aup
Tuy) u (0)
This fact, tovether with Theorem 2.5 and assumption A3i), implies that u(x)
is bounded independentlv of .

For the varjiational formulation, first assume that the essential boundarv

conditions are homopenecus, that is + = 0 and ¢ = 0 if 51 = 0. Let

F(v) = fove = [0 if 2y = 0

sEv(l) if . # 0.
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Using assumption A3 and Thecrem 2.8, it follows that F is a bounded linear

a}

functional on H: . for 1 ©q - ~. FEquatien 2.13, Lemma 2.6 and a simple
0]
verification or (2.3) implv that B.(u,v) is (1-1) proper on HO ~x HY .
. P qy vy -
1 1 o 2
for 1 < p <=, where =+ — = 1. For | < p - « the spaces H_, and H \

are retlexive. In this case, we may applv Theorem 2.1 which leads to the

. . Q .
existence of a unique w E_H‘ solving
P
2
(2.26) F.(w,v) = F(v) for each v ¢ H .o, .

1f #0 or =#01if Ejzo we proceed Iin the standard way writing u=wHu_
<
where U is a pilecewise linear function on ° which satisfies the essential

o o . .
boundarv conditions, and w € H_ ,. We remark that since u is bounded

9.

independently of -, w & HY , and ‘:w:!qo is bounded independently of r.
J,M T

o .AA

Bv treatin. the boundarv conditions in this wav we can restrict the theory
te the case of homogeneous essential boundarv conditions without any loss of
generality. Therefore, this restriction is made for the remainder of the
theorems in this paver. These restrictions are not imposed in the numerical
examples (see [35]).

Another assumption which will be used later is

as: a0/ € CkH(Ti),
j

b/, € ¢y,
j Nl

k
fo(x)/IJ€: C (Ij), and

a(x) and b(x) are independent of .. The specific value of k will depend on

the finite element trial space.

PPy — P a i P PP PP S WY P




CHAPTFER 13
L*-SPLINE TEST FUNCTIONS AND THE INF-SUP CONDITION
In order to obtain a finite dimensional approximation to the solution of
(2.26), the finite dimensional spaces Sl,A and SZ, must be specified. To obtain
quasi-optimalitv, these spaces must have the property that the inf-sup constant,

Cz, of Theorem 2.2 is bounded awav from zeroc independently of € and A. When

both S1 A and S, A are the conventional piecewise polynomial spaces, this

condition is violated.

For the trial space, , we take the space Sr = {u €:COIW Hg A:u!I is a
’ i
polvnomial of degree < r}, that is. the usual space of piecewise polvnomials of

Si.a

degree r. For the test cpace, 52 A first consider the space of L* splines:
)

2
= . Xxr 1 H - 1
(3.1) SL {v €:Hq.E,A' L \‘I is a polynomial of degree r-2 if r > 1,

L*le =0, ifr=1}.
i

It would be ideal if we could use the test space S, - not onlv would quasi-

L
optimality result (Theorem 3.3), but also the nodal errors would be zero

(Theorem 3.4). Unforturately, since the functions a(x) and b(x) are not constant,
it is in general impossible to determine the basis functions for SL exactlv.
However, it will be shown (Theorem 3.3) that quasi-ontimality is preserved if

basis functions can be found which are sufficientlv accurate approximations to

the "ideal" basis tunctions of SL'

(n)

Suppose we can find basis functions {wg i} 3= 1,00.,N; €= -1,...r - 2,

satisfying

o A henalin Stk Py Banith, . I vy
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» (XD,
(r) -1,] on Ti and Ij+1'
(3.2a) L*w-l,ﬁ =
0. elsewhere,
(m
m_l’i(xl) = 51’], for i,j =1,...,N
£
\(-—\’
(—hl-—l) +n, ,(x), onT,,
() j ’ )
(3.2b) L*y, ., =
Y]
0, elsewhere,
D) _ as s L .
W i(xi) = 0, for &£ =20,...,r-2, i,j = 1,...,N.
Let 1, = max [In (x) ! and n = max(n,). Denote bv S(n) the space
j 2=-1,...r=-2 A L’ 5 i - 7L
spanned bv these basis functions. Note that S{O) = SL'

THE INF-SUP CONDITION OVER S_ x si‘)

We will now show that the inf-sup constant C7, is bounded away from zero

=S, and S = S(n)
T

independently of € and A when S, 2 A L

A and n is sufficiently
small (independently of ).
Before proving this result, we need to define some additional norms over

the space of polvnomials of degree r. These norms, as well as the basic idea of

the proof of the inf-sup condition, are taken from [2].

On the space of polvnomials of degree r over the interval [%,%+h],

[ eial

f(x) = bi(x—i)i, we define the following norms:

i=0




(e d E‘. Dl TR

ey "ﬂ'. Y.
KRR

r . 1/p
[.E: o, | ¥ h1p+1] : 1

i=0

|

l - -
L e .
’ max I'b.h | . P
0<i<yr
- . 1/p
x+h ~-.1 p ’
. L/ﬁi f(x) (x-x) dx’
i=H ppite-i
1
I
‘lf!‘L [R,%+h] = w+h i
P ,./;c F(x) (x-%) dx[
max ’ ’
0<i<r i+l
and

r-2 J/f+hf(x)(x—§)idx|p
X

(p < oo

1
8

1/p

([F@® [P+{f(x+n) [P) h + ¢
h

HEN (x,540] = 3
p

§+hf(x)(x-i)idx|

i=0 pi+p-

i

—E o W we v .

1<p < o,

- X _ _
Kb max [If(x)],|f(z+n)], e , i=20,...r-2],
p = o0
Lemma 3.1. |i-|]", !l-11" | and ['l-]1"" are norms over S,» and there exists
a constant C = C(r), independent of h, f, and X, such that
-1 | ' | '
(3.3a) ¢ llf'le[§,§+h] ||f|ILp[ﬁ,ﬁ+h] = CI-'fHL %,%+h]
-1 . '" ‘ | ' 1
(3.3b) I 5,50 R T A L Ty
b p p
and
25
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(3.3c) c’lllf}} L T < i[fIIL [x,x+h] < Ci|f!] L [x,x+h],
p p p

The proof of this result can be found in [2].

We will now prove the main result of this section. All constants C,

C

C
1* -2

D , D, appearing in the theorem or the proof are independent of =, ‘., p, v, and n.

o) 1
Theorem 3.2. Let n be sufficiently small and % + % = 1.
Then
, D _
1nf(h) sup IBL(u,v)lz_ O(1 Dln)
VGZSL uCSr
I;VIIHZ = } ||u[[Ho - 1 for 1 < p < =,
q,744 Dy
Proof. Let v€ZS£n) be given. 1In terms of the basis functions
N N r-2 2
vix) =% V(xj)u_l,j(X) + 3 > bz’jhju*z’j(x)-
ji=1 j=1 £=0
Then, by (3.2a, b)
r-2 ] r-2 .
(3.4) L¥v | = b, .(x-x, s . .hin,
‘Ij izo 1,] J‘l) i=0 1.3 3 1,3
+ .
+ (v(xi_l)n 1,31 V(XJ)”—l,J)IIj
Hence,
11 ke ||
(3.5) (L vily (1.)
r-2 r-2
t i 1
R b, ,{x-x, ) . + 1] 2: b, .h,n, "'L I
ion 1 j-1 Lq(Ij) 120 i, 41,3 q( j)

26
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Since,

-2 1/
e}
i+1
lpmo 2 |bi1-7th1’ » 1 <q <
3 i =0 ' -
z: bi’J(x-x _1) <
| {=0 I L (1)
- i _
(r—l)m?x‘bi,j]hj, q
r-2
1/q
no |2 b, Ll1andit , 1 <q <
‘ r=2 . ! I li=0 13
i
: b, .h.n.
! i:o iaJ ] 1,] IL (I:l) i
and
1/q
HV(Xj-l)n*l,j—l + V(Xj)n_l,jl qu(I-']): znijHLm(Ij)hj )
1<q <o
it follows from (3.5) that
N N r-2
q q q, qi+1
(3.6a) ;Ilr*v]IL (152 (14m)9 Z_: Z lbi,j! hy
j=1 q i ji=1 i=0
I 1<q<w,
o0
and
(3.6b) maxHL*vI!I (1 ).f (14n) (r-1) max max Ibi 1.Ih;
j w0 I<j<N  0<i<r-2 "
+2n||VHL s q = «.

©

From (3.6a,b) and the embedding resuit (2.17), it follows that if n is

sufficiently small
27
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/ il S g, qi+l N 1-
ol Ih, AR e B ICANC I DA
i=1 1=0 1 J i=1 L
1/q
gl |q‘1—q - e
(3.7) vl ]2 < TR hy o bla
H J
q,€,A
Locigeer -1 re(yy Ino L
o I L RICHCIOD I NP A (A0 ) Ny B
P-
. q = ®,
where 1. and J are the indices such that
E‘ .
s L i
[ (3.8) |bL thT = max max !bi .Ihy,
¢ T 1<ien o<ie-2 00
i
r‘ and K is the index such that
' | -1 - ] -1
(3.9) e|J(v () I = max elJ(v (xj))lo.
1<§<N-1 ]
With v € S{n) given, select u, = fbl + <b2 in the following wav. Select
A
% € Sr such that
- ¢)1(x1.) = 0, i=0,....,N, and if r > 1,
- (3.10) . ,
= _ i - q-1, qi+l
f(x xj—l) ¢, dx lbi,j' b sgn bi,]‘ ,
g I,
S ]
‘ for 1 = 0, vr_zs } = 1\ 1N1 1 < q < o
l. Select ¢>2C Sr such that
X g-1
o) = y - -
’ (3.11) WB(Xj) € jJ(v'()(1.))|q 10? q sgn(](v'(xi))),
¢
o 1 < j<N,
< 28
L
[
‘A
S T S
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QE(XN) = IT*(V)|q_1sgn(T*V), 1 <q <o,

and if r > 1

i
¢£ = 0, for 1i=0,....,r-2 and j =1,....,N.

j}j(x_xj-l)

That él, and ¢, are uniquelv determined follows from Lemma 3.1.

Recall,
- N

N-1
P" . (3.12) By(u,v) = —jgl ij T(L*v)dx - jgl €J(v'(xj))dj

+ dNF“(v).

Bv (3.4), (3.10) and (3.11), we have

N r-2 : N-1
-7 b, (17 nIH €] Jv' (x,0) |8 i
51 i i i 2 3 i

+

= N r-2
. c(v) 19 p17a 2%_ z i
Ireen by 7+ 42 flj (i=0 bi,jhj”i.j) (0 * 5

N
D! j;j (O PN_g,q +vng () +8))dx, 1 cq < =

Therefore,

F SNODOANDE S

& (3.13) By (2, + 6,,v)

3 N -2 ) N-1

¢ b, TR T e e | el

b —  3=1 1i=0 ’ 1 j=1 ] ]

7 .

- * ’q

S N r=2 1/q

.. ' q ,qi+l

& 2 >-:6 by 517 b sallvll e+ epll o
¥ j=1 1= Ho A
— ’
g

- 1 <q< =

¢
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- .
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From the definitions of . and 3, ((3.10), (3.11)), (3.3¢c), and (2.11)

"1
we have
N r-2
| + o+ D p ' q qi+]
| p g!lHo < ¢ & 5 ,11,1| hi
(3.14) 0.4
N-1 - .
+ Z: Cq!J(V'(Xi))’qp. q + !I‘*(v)!q h‘\: q ,
i=1 1 A
1 < p < o,
Inequalities (3.13), (3.14) and (3.7) vield
Ba(t +': ’V)
TT4 1+ A %r > Cllle?Hg _ CZWIIV"
1 20 o - . L
H
p.a
2 Dl(l-Dzﬂ)!lvHﬂz , 1 <q <o,

q,€,A

with the last inequality following from the embedding result (2.17).

Next, consider the case when p = 1 and q = ©». In this case, we modify the

definition of ¢, in (3.10) such that

1
0, if §4J,
i
j. (x-xj_l) ¢1dx =

I. L .
3 Si,LhJ sgn(bL,J), if § =173,

where L and J are defined in (3.8) and 61 J is the Kronocker delta. The

definition of @2 in (3.11) is also modified such that ¢2(xj) = 61 K o;lsgn J(v'(xK)),

for 1 < i < N-1, and ¢2(xN) = h;l sgn T'*(v), where K is defined in (3.9). By

(3.3¢) ||ol+¢2|| o < C. From the modified definitions of ¢, and 9,, (3.12)
o —
1,4
and (3.7) it follows that

By (9 + $50)

< D (1-D,m) | |v]],2 ,
-1 2 H
o, + ®2HH0 6,4

1,4

as desired.
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When p = @ and q = 1 the formulas for ﬁl and ¢, given in (3.10) and (3.11) are
still valid, and from (3.3c) we have ]1&1 + ¢, ‘lHO = ]|¢1 + ¢2]]L < C. The
w9 A *®

desired result then follows from this fact, and inequalities (3.13), (3.7) and
(2.17)

Theorems 3.2 and 2.2 yield the following result.

.

2
Theorem 3.3, Let u €ng be the solution to BA(u,v) = F(v),v v QZH;

WA

c A

- gid
1 < p <o % + % = 1. Furthermore, assume u € Hg Al Then, for n sufficiently
small, there exists a unique solution up € Sr to the problem BA(uL.v) =
F(v),V v € s(”), and ||u - uLH n <C inf |Ju-w]|],0 , 1 <p < «, withC
L H —_ ,€~ H — —
p,A  wkS. p,4

independent of u, p, €, and A.
The next theorem shows that if n = 0, then (u - uL)(xj) =0, for 1 = 1,...,N.

Theorem 3.4, Let u € HO

a1 2p <= andu €5, CH o, with

(3.15) By v) = By(uw), v vcsio)

Then uL(xi) - di =0, 1= l,...,Nl, where u = (u,dl,....,le).

Proof., Let 1 < q <o, By Theorem 2.1 there exists vy C.Hg e.A such that
’ ’

0
(3.16) BA(U’Vi) = di vV u C;Hp’

3 |—=

1 _
A S + q 1.

From (3.16) and the definition of BA (3.12), it follows that L*(v) = 0 on every Ii.

1 .
z Gi,j for i, = 1,....,N-1,

J(v;._(xj))

and

L[}

T*(vi) S, i=1,...,N.

i,N

Because vi(x) is continuous, and L*(v) = 0, on (O,xi) and (xi,l), vy is the

2 (0)

t
3 s f on a =
Green uncti t x X o, ¢, A L

Thus, vy € H and also vy €S This implies

e
that (3.16) holds for 1 < q <%, and

31




BA(uL-u,vi) =0 = uL(xi) - di’
which finishes the proof.

Theorem 3.4 is a restatement of the well known fact that when the Green's
function at x = Xys X4 € A, belong to the test space, then the error at the

nodal points is zero.

As pointed out earlier, the space S

£O) is in general unobtainable. However,

in light of Thecrem 3.3 it will be satisfactory if we can generate the basis

m
L

functions for the space S , (3.2a,b), provided n is sufficientlyv small. This

will be done in the following chapter.
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CHAPTER 4

EXPLICIT REPRESENTATION OF THE TEST SPACE—SEH)

In this chapter, we will determine the basis functiens (3.2a,b) for S(n)

k

explicitlv, with the condition that n, = max !!”i ',,l (1.) < Ch,. The
A E D I ety A

constant C will depend on 1/min a(x)

xF_ 1,
]

on Ii’ but will be independent of g and €.

, and the local smoothness of a(x) and b(x)

In order to determine the basis functions for S(n)

L in Ij, we first rescale the

interval Ij to I =

{0,1], and then drop the index j for simplicitv. A "tilda"

will be used to denote this rescaling, for example, if g(x) is defined for
x € I3, 2(y) is the function defined for v € I such that g(y) = g(yhy + x._

1)'
Recall that c(x) = b(x) - a'(x).

After rescaling, our goal is to seek approximations to the solutions of

(4.1a) L*v - J%' v - E%FL v' + ?ky)v =0, in I,
h-'_

v(0) =1, v(QQ) =0,

(4.1b) I*¥v = 0, in I,
v{d) =0, v(l) = 1,
and
(4.1c) L#*vy = yl. in I, £ =0, ,T=2

33
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Because of our requirement on the space Sf:) in (3.2a,b), we must estimate

IS TS
i,ji i, Lm(Ij).

Moy 3 . £ .
Notice that the rescaled operator has the cocfficient - -5 in front of the

he
highest order derivative. If a standard asvmptotic expansion in powers of ¢ is
used (see e.g. [10], [15], [36]), then the errors .an be shown to be no hetter
.k . . . .
than 0((E) ). This is undesirable because one of our goeals is to use adaptive
mesh refinements which will quickly lead to intervals having size h, with h < ¢,
Although the asvmptotic expansion in € will fail as h becomes small., it will
be shown that an asvmptotic expansion in h will produce errors of size ﬂ(hk)
independently of €. 1In order to validate our asvmptotic expansicn the following

lemmas are needed.

Lemma 4.1. Let v solve

- £ " 5(\') '
= & ary’ =
Hv 5 + N v g in I,

with a(v) > a > 0 and g bounded.

Then

!Ivlle < min (h/a, 2h2/€)|!g|‘LOD .

Procf. From the maximum principle ([32] Chapter, 1, Theorem 11), it follows that
lv vy < lwl(y)! where wy(v) = l|g!!L h(l-v)/a, and [v(y)! f_lwz(y)l where

ir) = 12 gl /.

Lemma_4.2. Let w solve

- W %o w=g in I
12 h
w(0) = 0,
34
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, ) . -a h/c
where a, > 0 is constant and g is bounded. Then I!w!IL < h(l-. 0! )[‘g!!T /ao.
= sy

Y8

Proof. This result follows immediatelv from the identity

" v
h~

-a, . h(s=-v € .
= f e Ol(% v)/ g (=)ds
- 0

w(v) = -

. : ( . . :
We seek an approximation v’n) to the function v, where v is the solution to

3 (5.73), (4.1%) or (4.1c¢). Assuming sufficient smeoothness of the coefficients

a(v) and ¢(v), we mav expand bv the Tavlor series around v = 0 to obtain

[‘ ] ° )

B
e

L*v = -

v' + S(v)v

12 h
: __E o a®m o,
] STV T Ty
# h
¢
4 va'(o) ., c(0)
+
{ + h[ T - v]
a
b ? ~

=
+
jl=a
r
T
"2
=3
+
=

: (k-1

- Kk a®) ) k-1 ()
b . + hk[__ Y a v' + y - < V]
P k! h (k=-1)! h ’
t. where Ea. EC € (0,1). Therefore, we can write

L

L (4.2) =1 +he, +--- +07 L +n™r
Fe -2 o 1 0-1 0

3

b

S where

9 -

L € d- a(O) d N

s (4.3a) L= - = - —

E‘ [¢] h2 de h dv
r

i 1 3y, d RIS

. S B, AN O a ., r -

1 (4.3b) L= l-372a 77O g+ 777 © 1

:

Et

X 1 = l, .y 2-1 s

S

3 -~

t b

b UNCLASSIFIED
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.
b and
1 i ,?71 1 -1 /??\71
; 2 2 s Loy v
hc (3.3¢) N [ X a ( 1) dv G-y c (EC)] ,
-
2
4 D=1, k
[
We seek v(n) in the fornm
(n) 2 k-1
IR = +
(4.4) v vO + hv1 h v, + + h Vi1
From (4.2) and (4.4) it follows that
(4.5) T UL
oo
+hlL vy + Ly ]
+h2[1 v, + L,v, + L,v ]
o 0 2 171 20
+ .
k-1
+ h [Iovk—] + lek—Z + Ik-lvo]
+ hk[R v + R v + -0+ Rov ]
V-1 T RoVio Vo
Based on this formula, the functions Voo vl,... should be defined recursivelv as
follows:
(4.6a) Lov0 =0, if a->roximating
4 - the solutirn to
Vm(ﬂ) = 1, Vo(l) = (), (4.1a),
“‘
(L. FAh - _ . i mat i
) LV, 0, if approximating
the solution to
Vo (M =0, v (1) =1, (4.1b),
¥
Ih
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(4.6¢) Lv =v, 2 =0,...,r-2,

if approximating

the solution to

(4.1c),
i
L v, = - :E: L.vi_.,
=1 i
4. 7)
vi(O) = vj(l) = 0, i=1,...,k-1.
From (4.7) and (4.5) it follows that
(m k k
% =
(4.8) L*v Ly, *+ h [Egi RV, ;]

This leads us to the following theorem which is the main result in this chapter.

1

Theorem 4.3. Assume that a €:Ck(I), and B €:Ck_ (I). Let v be defined by

either (4.€a), (4.6b) or (4.6¢), and Vis i=1,...k-1, defined recursively by

\ -
(4.7). Let v(n - v, + hv1 + ...+ hk 1v . Then

k-1

sy (M| L < chkl

if vy is defined by (4.6a) or (4.6b), and

(n) k

| 1*v —LOVOHL < Ch

@

if v, is defined by (4.6¢c), and in each case C is independent of € and h.

Proof. First assume v, is defined bv (4.6a). Because of equation (4.8) it must

K

be shown that h|] 2: R,v. ,]lh < C. Ve prove this by induction on k.
ot ik-1''L —
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UNCLASSIFIED

P S P W R el e B S




Chdi agl 20 2t 4N 2o

T -

.?71:':-3y~r
AL

-~ v e e T T T 0 e B T ~—w >—r —r—— ——— e " v = — = =

UNCLASSIFIED

1 = A ri = = —-va' ' P
First, take k=1. From (4,3c) (with £=1), we have thvO va (ﬁa)vo + c(EC)vO.
From (4.6a) and the maximum principle, It follows that

(4.9) 0 f_vn(v) < 1.

r 3 ? ! — -
Let w(v) v/ (vO 1). Then

£, a(0) w = a(0)

T2V h " h (vo - b, j
h
and w(0) = 0. By Lemma 4.2 and &.9) we obtain !lw[lL < 1. Hence,
[{yvé[[Lm = [|w + (vo~1)|1Loo < 2, which impljes that
IRy ] < 2l 311+ 1Ell, <

with C independent of € and h. Thus, our assertion is true for k = 1.

Next, assume that

Ilvi]le_S c, i=0,1,...,k-1 and
(4.10)
[lyvilly ¢, i=0,1,... k1
o0

This is actuallv our induction assumption because from (4.10) it follows that

llth_ivil{ <C, for i=1,...,k-1. We must show

and

| [yv < C.

i

From the induction assumption, (4.10), the definition of v (4.7) and (4.3b)

k’

we have

=l o]

(4.11) Higvelly =

and so by lemma 4.1

ks
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(4.12) HkaLmiC.
As before, let w = YV T Vi Then
IR SR RUREE D LA
h

and

w(0)

[}
o

Inequalities (4.11), (4.12) and Lemma 4.2 imply that IlwllL < C. Therefore,

[s o]

]]yvél]L < C which, with (4.12) implies that ||hR1v < C. This, together
[20]

WL
o«
with the induction assumption, proves the result when v, is defined bv (4.6a).

When v, is defined bv (4.6b) the proof is almost identical.

When v, is defined by (4.6c) we use Lemma 4.1 and deduce that |]v0||L < Ch.
[o o]
If we set w = yvé - v, and use Lemma 4.2 it will follow that ||yvé||L < Ch.
o |
Induction on the assertions

[vglly < ch,

and

IEIR:
[+
yields the desired result.

(m in

This theorem proves that it is possible to choose the basis function Wi i
9.

such a way that

(o) (n) k-1 |
Ly " = 1xY) " = . . < Ch . ;
II 1,] 1:,1,(1-‘00(11) HnloJI[Lm(Ij) - j
where C = C(a|I , b|I » k) is independent of €, and hj. Recall that by Theorem
i 3

3.3 a small value of n will guarantee a quasi-optimal finite element solution.
Since we are approximating the exact solution with a piecewise polvnomial of

degree r, the accuracy of the merhod will not increase in order as we increase

39
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L
1
b
3

4
the order of n. Therefore, it is sufficient to take k = 2, in which case

n = 0(h).

(n}

These basis functions Ti are easily derivable and their expliclt formulas

are given in [34]. In general, they have the form Pl(y) + Pz(y)e_ly, where Pl
and P2 are polynomials, and X = aoh/e is often referred to as the local or cell
Peclet number. For large values of A these basis functions themselves exhibit

boundarv laver behavior. When the value of X is small these functions are close

to polvnomials.

A
However, the nodal errors will decrease as n decreases.

b

-
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CHAPTER 5
PROJECTION ONTO UPWINDED POLYNOMIALS
When the space SL(n)is used as the test space for the finite element method
Theorems 3.3 and 4.3 vield quasi-optimality for the approximate solution in Se-

(m Av

However, since the basis functions of Sp are of the form Py(v) + Pz(y) e -

b4
2o

with A = - the bilinear form requires the integration of functions with
boundarv lavers and smooth functions as well. Unless a special quadrature rule is
used, which integrate terms of the form v" e_>‘y exactly, large quadrature errors
will result whenever X\ is large. Standard quadrature is alse needed for the smooth
terms.

In order to avoid this inconvenience we propose to project these "exponentially

upwinded" basis functions of SL(h)onto a space of polynomially upwinded functions.

These projected basis functions will have the form

M
(5.1) Y. (x) = ¢,(x) + Z a,g, (x) for x€1,
J =1 11 J

3

where ¢j(x) is the standard piecewise linear "hat" function and ai = ai(e,} Y are
the upwind parameters. This is a direct generalization of the commonly used
a-quadratic upwinding in which case M=1 and gl(x) is quadratic on Ij. In
particular, it was shown in [ 3] that when b(x) = 0, and a(x) is constar - the
value 2, computed from projecting the space Sy is identical to the so called
"optimal" value of a presented in (([8], [9], [17]-[21], [30], and [37]), which
yields the exact nodal solutions when f(x; is constant.

let w;T; be as defined in (3.2a,b) and as constructed in (4.6a,b,c).

Define ka) by

41
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b_ (k) — 3 = Ve P== -
(5.2a) s, = Span{xl’j} §=1, ..., N; f=-1, ..., r-2,
where (m KoL)
2 ! = ' = A
(Sol—b) xg,j Pk((wl,i) ) i;o ‘Yi ‘bi’

with P} denoting the L2 projection operator onto the first k Legendre polvnomials

¢0,....,¢k on each interval Ii' Also, we take the convention

x (n)
. (5.2¢) Xg,j(X) = f XQ,,j(t) + vz,j(xj_l),
X,
j-1

and hence

_ (M
and
(m
X = .
2,305 7 Y5 0y)

From the results of Chapter 4 these upwind coefficients A= w', ¢i)1 can be
1 ]

computed exactly, since onlv integrations of the form j' ymexydy, or integrations
0

with polynomial integrands are required. Once these coefficients ai, i=1,...,k

are computed on each interval Ij’ all integrations remaining will be of the form
1

J; P(y)g(v)dy, where g(v) is smooth independently of €.

Let vy C:Sén). Then Pk(vi) = v; is a piecewise polvnomial of degree k with
the property that

C' v T

: (5.3) (g,vlwvl) = 0, for each g(x) €:Sk,

.

|

,‘ a piecewise polynomial of degree < k. Note, that since vu(O) = vL(O) =0, it
] follows from (5.3) that

s (5.4) w(x) = valx)s 3= 000N

47
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Before proving the main result of this section, we first prove two lemmas.

Lemma 5.1. Let v Q_S(n). Let Pk(vi) = vf where Pk is the local Lz projection

operator onto piecewise polvnomials of degree k. Then
]
v I
{

< (1+Ck)l!v£||

L, (D L (D"

k
where Ck = I v2i+l,
1=

Proof. Let ¢i’ i = 0,...,k denote the Legendre polvnomials of degree i on the

interval Ij' Then

(v]:,d‘.)
R |
(¢ ¢ i

]
g x

where (',')Ij denotes the L2 inner product on Ij.

Therefore,

o, e, 1]
L (I Ll(Ij)

ity < il 38

If we normalize the Legendre polvnomials in such a way that ¢1(xi) = 1, then

and hence, 1/2

H‘bIIL (I) Hd)“L (]') Thus,

So

43
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and consequentlyv,

H"&HLI(I) =%

The lemma now follows from the triangle inequality.

Lemma 5.2. Let w¢ S,.. For each v € Slfn), let vy c Sp(k) be such that
1 ' k+1 k .
v' =P (v]), with k > r. Assume a], € C " (I,), and b] € C*(1j) for j = 1,...,N.
! Then
r‘ ’ IB, (w,v,-v )|
. sup | IA | ' IZJ o < C max hl.(+1—r(] |a<k+1-r) | iHr(I )
: (m |lv, |IH 3 ]
- VLCSL L''"q,e,A
& (k-1)
. + )
T“ Hb HH:)(IJ)HWH ]_m(Ij)’

o

R

for 1 < q <«

Proof. Since vu(xj) = VL(Xj) for § = 0,...,N, we can rewrite the bilinear form as

N X
BA(W’VL—VOL) = Z f ew' ~aw- f (b~-a')wdt (vl"-vr':)dx .
=1 1 X

: ] j-1
Because of (5.3) and the fact that r < k, we have
X

BA(W’VL-VOL) = % f ~aw ~ f (b-a'")wdt - p(x) (v["-voz)dx,
J=1 Ii x]-_l

-

where p(x) is any piecewise polvnomisl of degree <k. Consequently,

(5.5) |B,(w,v, v )|

< max[||aw-pl(x)||L (1) + ll fx (b-a')wdt-p, (x) iL (I-)]
3 R | xj—l @]

| ‘Vi - V&‘ 1L1(I)
44
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Let pl(x) be the kth interpolant of aw on each I;.

]

That is,

pl(xj-—1+ihj/k) = (aw) (xj—l+1hj/k)

for i=0,...,k, and j=1,...,N.
Then,

hk+l
_ j o (k+1)

(5.6) | | aw Py (x)‘le(Ii) 5—4(k+1)! [l (aw) ||Lw(1j)

From Leibnitz' rule, we have

k+1

% () (FD 55 (kb (k=) ()
i=0
&
- r
- Z (k;fl) S (k¥1-1) (i), since k > r .
i i=0

Hence,

| ’ (aw) (k+1) l | (k+1-1) I I

A

(r+1) (k+1) ! ] |a

repyHullpr

v '-'....-—.*'.;.~n 2 -vaﬁ L
A

(k+1-r) -r
+1)! h,
< e[S e T
J
# the last inequality following from the inverse theorem. From this and (5.6) it
; . follows that
k+1-r (k+1-r)
- [ , : !
(5.7) [aw - py GOl (py < ony ] ]a ey oy,
a0 J [ad) h) o 1

tf . th ¢ [

Similarlv, if p,(x) is the k interpolant of j. (b-a')w on I,, then
. 2 X5 1 i
- 8 I! X [
b (5. ) ’i (b—a )Wdt - UZ(X) L,(T )
: = -
£
y
A 45
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k+1 -r

< oS omay T e

H (1 )H“’HL (1)
From (5.5), (5.7), (5.8), Lemma 5.1, and the embedding result (2.18), it

tollows that

|B (w, VL Vu\ . C max h_k+1—r{,| k+1- I‘)||

sup - . j ut (I )

v Il 2 J
vL €:SL L q,s A

+ & e

BLINCSY L.(1)°

We are now ready to prove the main result of this chapter.

Theorem 5.3. Suppose that assumptions Al - A4 hold, and that Sq is defined

by (5.2a, b, ¢) with k > r.
Then there exist an ho independent of ¢, such that for all h < ho, there

exists a unique solution uu€:Sr to

. - (k)
(5.9a) BL(ua,va) = F(va) for each vq€:Sa
Also, let uLCSr be the unique solution to
(5.9b) B,(u.v,)) = F(v) for each v €5{".
‘ AYVLYL
Then, for 1 < p < =,
1 _ k+1, (k), J
[,uL u l, < C1 max hJ If ’L (I.)

p A ] 3 ‘

k+1- 1- k-
* G max by T[T (I)+'|b( r)|1H ‘)]

with Cl and C2 independent of ¢ and A.
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Proof. The existence and uniqueness of u will be established if the homogeneous
problem,

(k)
j] = <
(5.10) BA(W’V(x) 0 for each V(XC 9& .

has onlv the zero solution in Sr.

- jGncacen~|

Suppose (5.10) holds. Let vy < Sén) be s.t. Vi (xj) = vu(xi), j = 0,...,N.

oy

Then v& = Pk(vi). From (5.10) it follows that

2 ) (n) (x)
E‘! . BA(w,vL) = BA(w,vL—va) for each VLC SL , and vy qu .
f; and hence
(5.11) IBA(w,vL)I _ IBA(W’VL-VQ)I
T 1"l 12
l,e,A 1,e,A
for each vy (- SI(Jn) and Vo CSCSk).

(n)

L for h

Because the inf-sup condition holds for BA("') over the spaces Sr X S

sufficiently small (Theorem 3.2 & Theorem 4.3), there exists a v € S{n) such

that the left hand side of (5.11) is larger than C||w] IHo . The right hand
oo’A
side of (5.11) can be bounded by Lemma 5.2, and hence it follows that

_ k+1-
(5.12) Syl lellye < e el

. L}

where Cl and C2 are independent of h and €. Since k > r, there exists an h0 such

that for h < h_, the only way that (5.12) can be satisfied is if IlwIIHo = 0,
®, A
r ;]

which implies w = 0.

Since

= 3y -
BA(“a’VL) BA(”a’Va’ + BA(“a’VL v,
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it follows from (5.9a,b) that

BA(u

— = F T =7 - -
L uq,vL) (\L \a) BA(Uu’VL VQ).

From Theorem 3.2 it follows that

< C]. sup | F (VL‘"V“)]

(5.13) o - u
5] o -
Ho,A vLesén) HVLHHZ
d,e,A
+ C2 sup 'BA(UOL’VL-VO,)!
M) v
vES; L2
q,€,A
for each v, € ka), and 1 < p < o, where 1 +_1. =1
p3 184 — —_ P q
. . ’ F (v 'er)l
First, consider the term sup L L . Let F,(x) = X f (s)dx
e : -1
VLEZSL Hp’{;,A

for each x € I1.. Let ;']. be the polynomial of degree k on Ij such that

F,(x,+ih,/k) = F (x,+ih,/k) for i = 0,1,...,k. Then
3773 i i3 i

(k) k+1
ot

4(k+1)!

(5.14) HF

~/
37 Rl ay =

(k)

As before, let v(XC S(x

be such that VOL(Xj) = VL(xj)' j=0,...,N. Then,

1l

F (VI, _vq)

N
z _/; (%) (v, ~v_) (x)dx
J:

]

N
= - Z f F ,(x)(v'—\")(x)dx
s i 1. «

j I.

3
N
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- D '/I'(Fj-pj)(vi-v;)dx,

=1
] i

the last equalitv following from (5.3). Thus,

N ~
(5.15) k‘(vL—Vx) l f_;ga !|Fj - Fj!‘Lw(Ii)I‘VL - Val!Ll(Ij)

From (5.15), (5.14), Lemma 5.1, inequality (2.18), and the fact that

Hvllye  <Iivile , 1<gq<®, it follows that
IZE’A q,E,A
(5.16) sup lF(VL Vq)l < ¢ max h<*1 ]!f(k)|| .
"y v . T i ] o Lo (T
vies; L2 | :
’ q,€.4

Using Lemma 5.2, and inequality (5.16) it follows from (5.13) that

[ | k+1 (k)
(5.17) ],uL u3:| o 2 G max hj |]f0 l‘L (1.)
H i ®" ]
p,4

k+l-r k+1-

+C, max hj {f,a( r)llHr(I')

] © ]

(k-1)
+11b e 3 1
Hw(Ij) o Lm(Ij)
Bv hvpothesis, ||u|]L is bounded indenendentlv of €. Since Yy is a quasi-

[o o]

optimal approximation to u, it follows that IIUI[[L is bounded independentlv of
"] 00

€. From (5.17) it follows that if h is sifficientlv small, then l‘“x“L is also

bounded independently of €. That [lua||L is bounded independently of €, and A
[o.o]

(provided h is sufficientlv small), combined with (5.17), proves the theorem.

m

This theorem shows that if we project the space SL onto k upwinded

ék), then the finice element solution with Sék)

polvynomials in S as the test space

will have an error composed of two parts:
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r,u—v. Aa aaae 2 "r‘rf',"'

A Fla - [ Al
1 u < 3 u + u, - u
end o, | o b rx|' o
DL H H A
p,A p,a

TV . first part ' 'u - "y : "H“ is quasi-optimal and hence the best order of this

p,4

, r+1 . .
term that can be expected is O(h Y. If k =2r + 1, the theorem savs that the

1 [ r+? . : .
second tera ['UI - u J[ o = 0(h ), which is one higher order than the
. 0
p,d

oprtimal error.

Corollarv 5.4. Suppose that all the assumntions of Theorem 5.3 hold with k=2r+l.

Then there exists an hg independent of ¢ such that for all h < hy

r+2

o < C1 inf [Iu - wl’Hp + Oy h .

B M
& HP,A WESI_ }‘9«5

. : . N Y
We remark that when using a polvnomiallv upwinded test space the term (,h

is unadvoidable. 1t was proven in [ 3] and [34] that quasi-optimalitv i«

unobtainable when a test space containing basis functions of the form /5.1) with

gi(x) independent of € and h, is used. However, if local smoothness on a4, h» nd

f is assumed-a condition alwavs sctisfied is practice, we can obtain an additional
r+2 . .

error of 0O(h Y. This error can in general be neglected because the hest

, . . r+1
approximation from a function w€3r has order N(h ).

Because of the second part of this work - the a-posteriori error estimates,
it is important to keep the projection error of one higher order than the optimal
error. This should also be true of the numerical quadrature errors. A
quadrature rule, which is e¢xact when a(x) ix a piecewise polvnomial of degree r+2,
and b and f are piecewise polvnomials of degree r+l, is derived in [34], and shown

+2
to produce an error of order 0(h" ) as well.

)
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CHAPTER A
CIONCLUSTION
In this paper it has heen shown that quasi-optimalitv is obtainale for a

finite element solution when the test space is composed of functions which are
"nearly" L* splines. The norm used to measure the errors is veryv close to an
Lp norm which is important particularlv if the location and shape of the boundarv
; layer are important. Furthermore, although it was shown in [ 3] and [34] that
. quasi-optimality is unobtainable when using a polvnomiallv upwinded test space,
f* we have shown that a ''mearly" quasi-optimal result is possible if the input
3 functions a(x), b(x) and f(x) are piecewise smooth. This 'mearly" quasi-optimal
result is sufficient for finding a-posteriori error estimates and proving that the
error estimate converges to the true error as h = h(A) - 0. This result is proven
and an adaptive mesh refinement procedure and numerical results are presented

3 in the second part of this paper {35].

Many of the results of this paper (particularlv the embedding result) used

p - bounds on the Green's function. For turning point problems, in which there is a

#; point Xo € I such that a(x,) = 0, the Green's function is not bounded independentlv
of €. However, in [ 6] sharp bounds are given for the Green's functions of

turning point problems. The numerical results for a turning point problem are

! given in Part II, [35] and suggest that analogous results hold for this cise

1 as well.

. Upwinding can easily be implemented in two dimensional preblems. ©On a

rectangular mesh, upwinding can be done bv simply upwinding in each direction

51
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separately. This is done in [19] - [21] for .- quadratic upwinding, in [23] for

upwinding the integration point, and in [21] for upwinded elements which are local

asymptotic expansions of the solution.

In [7], Brooks and Hughes describe a method in which upwinding is done oniv

in the direction of the flow (streamline diffusion method). A mathematical analv-

sis of this method was performed bv Navert [31]. Interior error vstimates were

. +,
proven to decrease with rate hk < in 1 !

9 which is !, of a rower lower than the

optimal rate. However, the optimal rate was observed in the numerical results.

The polynomial upwinding presented in this puper can also be implemented in

two dimensions. Nevertheless, major theoretical questions still remain unsolved.

I
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