
-'--'--'~,oc=~ 

AEDC-TR-82-28 

Characteristic Boundary Conditions for ARO-1 

Karl R. Kneile and Donald C. Todd 
Sverdrup Technology, Inc. 

and 

James L. Jacocks 

Calspan Field Services, Inc. 

May 1983 

Final Report for Period October 1981 - September 1982 

r Approved for public release; destribut=on unlimited I 

ARNOLD ENGINEERING DEVELOPMENT CENTER 
ARNOLD AIR FORCE STATION, TENNESSEE 

AIR FORCE SYSTEMS COMMAND 
UNITED STATES AIR FORCE 



N O T I C E S  

When U. S. Government drawings, specifications, or other data are used for any purpose other than a 
definitely related Government procurement operation, the Government thereby incurs no responsibility 
nor any obligation whatsoever, and the fact that the government may have formulated, furnished, or in 
any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or 
otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any 
rights or permission to manufacture, use, or sell any patented invention that may in any way be related 
thereto. 

Qualified users may obtain copies of  this report from the Defense Technical Information Center. 

References to named commercial products in this report are not to be considered in any sense as an 
endorsement of the product by the United States Air Force or the Government. 

This report has been reviewed by the Office of  Public Affairs (PA) and is releasable to the National 
Technical Information Service (NTIS). At NTIS, it will be available to the general public, including 

foreign nations. 

APPROVAL STATEMENT 

This report has been reviewed and approved. 

KEITH L. KUSHMAN 
Directorate of Technology 
Deputy for Operations 

Approved for publication: 

FOR THE COMMANDER 

MARION L. LASTER 
Director of Technology 
Deputy for Operations 



UNCLASSIFIED 
S E C U R I T Y  C L A S S I F I C A T I O N  O= Tt - IS  PAGE (When D e r a i F n l e r e d ) ,  

REPORT DOCUMENTATION PAGE I 
i 

I R E P O R T  NUMBER 12 GOVT ACCESSION NO. 3 

I AEDC-TR-82-28 
4. T I T L E  (and Subtitle:, 

CHARACTERISTIC BOU~DARY CONDITIONS FOR ARO-I 

7. AU TMORrs)  

Karl R. Kneile and Donald C. Todd, Sverdrup 
Technology, Inc./AEDC Group, and James L. Jacocks, 
Calspan Field Services, Inc./AEDC Division 

9 P E R F O R M I N G  DRGANIZAT=DN NAME AND ADDRESS 

Arnold Engineering Development Center/DOT 
Air Force Systems Command 
Arnold Air Force Station, TN 37389 

t I C O N T R O L L I N G  O c F I C E  NAME AND ADDRESS 

Arnold Engineering Development Center/DOS 
Air Force Systems Co.~mand 
Arnold Air Force Station, TN 37389 

14 MONITORI 'NG AGENCY NAME & A~ORESS(r l  drfferent  from ConrroIttniJ Ofhce )  

READINSTRUCTIONS 
BEFORE COMPLETING FORM 

R E C I P I E N T ' S C A T A L C G  NUMBER 

5 T v R E  O F  R E P E N T  & P E R I O D  C O V E R E D  

Final Report, October 1981 - 
September 1982 

6 PERFORMING ORG. RERORT NUMBER 

S C O N T R A C T  OR G R A N T  NUMBER(s )  

%0 PROGRAM ELEMENT,  RRO~EC T,  TASK 
AREA S WOR< JNI  ~ NUMBERS 

Program Element 65807F 

12. REPOR ~ D A T E  

May 1983 
13 NUMBER OF PAGES 

30 
i 1= S E C J q l T Y  CLASS. (o f  this  reRort; 
I 

UNCLASSIFIED 

I 15a. D E C L A S S l F I C A T I O N , ' D O W N G R A O I N G  
1 SCHEDULE ~ / A  

16 D I S T R I B L T I O N  S T A T E M E N T  ( e l  this  Report )  

Approved for public release; distribution unlimited. 

17. D I S T R I B U T I O N  S T A T E M E N T  (o f  the abstract  entered ,n B lock  20, * f  di f ferent  from Repor! )  

18. S U P P L E M E N T A R Y  NOTES 

Available in Defense Technical Information Center (DTIC). 

IS.  KEY WORDS ( C ~ t l n u e  on reverse side I I  n e c e s e a ~  and i d e n t t ~  by b lock  numbe~  

boundary conditions 
Euler equations 
ARO-I program 

20. A B S T R A C T  ( C ~ t i n ~  ~ reverme side tf  n e c o s e a ~  and I d e n t l ~  ~ b lock  n u m b o ~  

Characteristic boundary condition relations are derived in generalized 
coordinates for application to the unsteady Euler equations. Procedures 
are given for inclusion of these boundary condition routines in the 
computer program designated AR0-1. 

FORM 1473 DD , J A. 73 

"F 

E D I T I O N  OF I NOV 65 IS O B S O L E T E  
UNCLAS S IF I ED 

S E C U R I T Y  C L A S S I F I C A T I O N  OF THIS PAGE , ~ e n  Data  Sneered) 



AEDC-TR-82-28 

PREFACE 

The work reported herein was conducted by the Arnold Engineering Development 
Center (AEDC), Air Force Systems Command (AFSC). The Air Force project manager was 
Dr. Keith Kushman, AEDC/DOT. The results of the research were jointly obtained by 
Sverdrup Technology, Inc./AEDC Group, operating contractor for Propulsion Testing, 
and Calspan Field Services, Inc./AEDC Division, operating contractor for the Aerospace 
Flight Dynamics effort at the AEDC, AFSC, Arnold Air Force Station, Tennessee, under 
AEDC Project Number D205PW (Calspan Project Number P32A-C7). The manuscript was 
submitted for publication on November 22, 1982. 

The authors acknowledge the support of Peter Hoffman, graduate assistant at the 
University of Tennessee Space Institute, in rigorous validation of the theoretical equations. 
The authors apologize for the tutorial style but saw no alternative that would convey all of 
the necessary information in one document. 



AEDC-TR-82-28 

CONTENTS 

Page 

1.0 I N T R O D U C T I O N  ........................................................ 5 

2.0 C O O R D I N A T E  S Y S T E M S  A N D  N O T A T I O N  . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . .  5 

3.0 C H A R A C T E R I S T I C S  O F  T H E  E U L E R  E Q U A T I O N S  . . . . . . . . . . . . . . . . . . . . . . . .  9 

4.0 A N A L Y T I C  S I M P L I F I C A T I O N S  .......................................... 12 

5.0 F I N I T E - D I F F E R E N C E  A P P R O X I M A T I O N S  ............................... 15 

6.0 B O U N D A R Y  C O N D I T I O N  M E T H O D O L O G Y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

6.1 Subsonic  In f low ....................................................... 19 

6.2 Subsonic  Ou t f l ow  ..................................................... 22 

6.3 Solid Wall  B o u n d a r y  ................................................... 24 

7.0 C O N C L U D I N G  R E M A R K S  . . . . . . . . . . . . . . . . . . .  • . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 

R E F E R E N C E S  ........................................................... 27 

ILLUSTRATIONS 

Figure  

1. The  Bar red  Basis Vectors  .................................................... 6 

2. Types  o f  B o u n d a r y  Cond i t ions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - . . . . . . . . . . . . . . . . . .  18 

3. N o m e n c l a t u r e  for  the Subsonic  In f low Case . . . . . . . . . . . . . . . . . . . . . .  • . . . . . . . . . . . . . .  20 ,  

4. Nomenc l a tu r e  for  the Subsonic  O u t f l o w  Case .................................. 23 

5. N o m e n c l a t u r e  for  Solid Wall  B o u n d a r y  Cond i t ions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 

N O M E N C L A T U R E  ....................................................... 27 



AEDC-TR-82-28 

1.0 INTRODUCTION 

The computer program designated ARO-I (Ref. 1) is an effective tool for the solution of 
problems definable in terms of the three-dimensional, unsteady Euler equations. 
Unprecedented flexibility and applicability of the code to a broad spectrum of aerodynamic 
flows was achieved through use of a finite volume approach in Cartesian coordinates. The 
explicit MacCormack algorithm expressed in fine-tuned, CRAY-vectorized coding yielded a 
very fast solver. Unfortunately, these specific attributes which make the code so useful have 
delayed correction of an error in the boundary condition routine. 

Proper specification of boundary conditions is a difficult problem in computational fluid 
dynamics, increasingly so with added dimensions and dependent variables. There are 
actually two fundamental problems associated with boundary conditions: (1) over- or under- 
specification of boundary information can create an unstable numerical system, and (2) 
incorrect specification will yield invalid results, often without warning. Cline (Ref. 2), 
among others, has demonstrated that the theory of characteristics.can be used to deduce 
what information is defined in the interior flow and thus what information remains to be 
specified at the boundary. In principle, this solves the first problem. The second problem 
requires solution through experience and induction. 

Application of characteristics theory to ARO-I is not straightforward because of the 
Cartesian frame of reference. This report presents the derivation of characteristic relations 
in generalized coordinates and discusses the specialization necessary for inclusion in ARO-I. 

2.0 COORDINATE SYSTEMS AND NOTATION 

The body-fitted computational grid is presumed given in Cartesian coordinates (x I, x 2, 
x3), referenced as the unbarred system. A new system, termed barred, is defined locally at a 
boundary point as sketched in Fig. 1. The basis vectors in the linear barred system are 
constructed in the following manner. Choose el to be directed from a boundary point 
towards the associated interior point such that 

~ l . f f = l  

where ~'is the inward unit normal to the boundary. Select ~2 as 

(1) 

~2 = el xK 
I~ × ~'1 (2) 
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~I=~ 

. ~  ~o°Untrt ndary 

~ n t  

Boundary 

~3 

Figure 1. The barred basis vectors. 



~jo~k = 8k 
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and should C'I × -~ = 0, then select ~2 as a unit vector in an arbitrary direction perpendicular 
to'~. Finally, designate e3 orthogonal to "~ and e2: 

~3 = ~ × ~2 (3) 

The barred system is linear but not necessarily Cartesian. In general, ~] is not orthogonal to 
e3. The ~l axis is directed through the interior point, and the ~2 and ~3 axes lie in the tangent 

plane. 

From Eqs. (1) through (3) it follows that 

~ ! . ~ 2  × ~3 = 1 (4) 

and the reciprocal basis vectors are given by 

~1 =~2xe3f f i f f  (5) 

It should be noted that ~l, el, ~ ,  and e3 lie in the same plane; that ~1, e2, and e3 are 
orthonormal; that ~1 and ~3 are of the same magnitude; and that 

(s) 

Since both the barred and unbarred systems are linear, the transformation between them 
is expressible as a matrix of constants, 

consistent with 

~_._L M~= a~J (9) 

~j = M ~  (1o) 

where M k is the kth component of ~j when expressed in terms of the unbarred basis vectors. 

The inverse transformation 

is obtained consistent with 

Wj  k = BX k . 

ax) (11) 

7 
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The metric tensors are given by 

where 

gjk ---- ej • ek (13) 

~jk = ~. e-k (14) 

~ja i ak = ~ (15) 

Note that the definition of the basic vectors implies that ~11 _- I. Contravariant and 
covariant components are related by 

Uj ---- gjk ~k (16) 

and vectors can be expressed in either fashion; for example, 

m ~j ~j = Uj ~ (17) 

The magnitude of the velocity vector is given by 

q = N/g jk uj Uk = N/r~jk uJ ~k = ~ (18) 

For subsequent reference, frequently used expressions and their associated inverses are 

grouped below: 

8xk 8~k (19) 

ej = Mkek ej = Wkek (20) 

e k -- MkeJ e -'k -- WjkeJ (21) 

X k -- X k _-- Mk~j ~k _~ w j k ( x J -  XJo) (22) 

U k = Mk~J ~k = Wku  j (23) 

~j = M~Uk Uj -~- Wkuk (24.) 
Q 

The " o "  subscripts in Eq. (22) refer to the specific boundary point which is the origin of the 
barred system. Since the unbarred system is Cartesian, ej = eJ. Scalars, such as Q and p, 
are the same in both systems and are not barred. 
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Since the barred system is linear, the metric tensors are constant throughout space. Thus, 
the Christoffel symbols are zero, and covariant differentiation is simply partial 
differentiation, such as 

UJ,k = c)uJ (2J) 
8i k 

In spite of the barred system's having been completely defined here, actual 
implementation of characteristic boundary conditions does not require computation of the 
second and third basis vectors or components. 

3.0 CHARACTERISTICS OF THE EULER EQUATIONS 

The Euler equations can he written as 

G t + Fk,k ---- 0 ( 2 6 )  

where 

= i (27) 

and 

and i and k assume values 1, 2, and 3. The equation of state is taken to be 

p = (~, - l ) ( E  - Q q 2 / 2 )  ( 2 9 )  

These equations can be put in the form 

A Qt + Bk Qik = 0 (30) 

where 
t 

Q = (31) 



AEDC-TR-82-28 

and 

§k= 

m 

A =  

m 

1 0 0 

fii ~]0 0 

I q2 I 
_~- O~J v -- 1_ 

J 

I q2 fik 6~(E + p) + OUjU k 3' 
~- . "/--I 

(32) 

(33) 

with i and j assuming values 1, 2, and 3. Equation (30) is further rearranged to yield 

AQt + BQxl = ~ 

where 

and 

(34) 

§ = §' (35) 

= -B2  Q~2 - B3 Qi3 (36) 

Thus, the derivatives with respect to t and R1 are kept on the left-hand side, defining a 

reference plane that can be easily treated by the theory of characteristics; everything else is 
transposed to the right-hand side. 

Let ~ and I" be an eigenvalue and eigenvector defined by 

m m 

(kA* - B*)T = 0 

Then, multiplying Eq. (34) by T* and using Eq. (37), one obtains 

B m 

T*A(Qt + )~ Qxl) = T*C 

Along the characteristic direction given by 

d~ l = ~ dt 

dx  2 = 0 

dx 3 = 0 

(37) 

(38) 

(39) 

10 



the total time derivative becomes 

and Eq. (38) becomes 
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d Q  ~ m i 

dt = Qt + kQp  (40) 

T * A ~  = T*C (41) 

Equation (41) is termed the compatibility equation and gives a relation among the total time 
derivatives in a characteristic direction. 

Equation (37) has five eigenvalues, only three being distinct since one of them is triply 
repeated. Appearing in the solution of Eq. (37) is the speed of sound, given by 

a = ~/'3'p/Q (42) 

The eigenvalues and eigenvectors of Eq. (37) are as follows: 

~'! = ~' - a (43) 

(44) 

T~ = ( 7 - 1 ) ( l q 2 _  

~2 = fil + a (45) 

a 5 , , _  5~ + 6 ~ _ ~ ,  I )  
7" I  

(46) 

= ~ (47) 

B,, l )  (48) T~ = ( 3 ' - 1 ) ( l q 2  a 2 
• 7 - 1 '  

~,4 = ~! 

! 

T~ = - ~ - ( -  u2, gi2, O )  

(49) 

(50) 

~5 = ~I (51) 

11 
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~; = ~ ( -  a3, ii3,0) (52) 

4.0 ANALYTIC SIMPLIFICATIONS 

The left-hand side of Eq. (41) involves total time derivatives in a characteristic direction, 

whereas the right-hand side involves spatial partial derivatives. The two sides will be 
simplified separately. Two of the factors on the left-hand side can be multiplied to yield 

m 

dt 

m 

dQ 
dt 

d 

dE 

_ d t  

(53) 

The left-hand sides corresponding to the five eigenvectors are 

dO dp da~ 
T~A dt - d t  a0 dt (54) 

T I A  dQ = dp + aQ dfi----~-I 
dt ' dt dt 

]~ .  d__~Q = dp _ a2d--~Q 
dt dt dt 

(55) 
8 

(56) 

~; 7, d0  _ da2 
dt dt (57) 

m 

T; A dQ _ d63 
dt dt (58) 

Now the right-hand side, Eq. (36), can be written as 

= - (6~ - M~W~)M~ WJB k Q~j 

Using Eqs. (11), (23), and (31), one obtains 

(59) 

12 
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ax a 

au m (6o) 
w J ~ j  = w ;  axo 

apE_ 
8x a 

Another pair of products can be reduced using Eqs. (12), (14), (21), (23), (24), and (33) to 
yield 

Mf §k = 

- ua M~ Q 0 - 

i n u 8 " M] ~ Qu a M~ Win Qu a W n WnU W[ + i gn~ 

l q2u~ Mf(E+p) + Mro U n U a 'F U B 
T v-1 

(61) 

Let ii be the components of ~" 

-T = (~i) (62) 

then, from Eqs. (12), (IS), (29), (59), (60), and (61) 

1{ a (Qua) 
T*C = -- ( ~  -- M I W  B) ~1 8x"" a 

+ ~i+l w i  a ( o u n u a  + gnBp) 
8x a 

(63) 

Define 

then Eq. (63) can be written 

~" = [~,, ~+, w,., ~,] (64) 

(65) 

The significant simplification here is that the local coordinate system dependence is removed 
and the equations are expressed in a global Cartesian system consistent with ARO-I. The 

13 
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overbars are essentially gone. Listed below are the five I" vectors for each of the 
corresponding characteristic directions. 

T~ = (~  = 1) q2 

~'; = (3' - 1 ) [ 2 q 2  a2 
~ - I '  

1 M~ I--Uk, gki, 01 "r;= 

"" l M~ [ Uk) O] T ;  = T - gki, 

+ av - l  ~1, _Ui _ Wl ~-i '-  1 l a  , ] 

W 1 a 1 a . i l l ,  _ u i  + 1 ~t-1 i ~ - l '  

Ui, 11 

(66) 

(67) 

(68) 

(69) 

(7o) 

The first three compatibility equations do not involve fi2 or fi3. It is desirable to eliminate 
these components from the fourth and fifth equations as well. Combining Eqs. (24), (41), 
(57), (58), (65), (69), and (70), the last two compatibility equations can be written 

Ms k duk 
dt 

with s = 2 and 3. Define 

= - (8~ - M~W~)) 1 Msk(_Uk, gki, 0)F,~ 
0 

~.;_ 1 u 0) k = ~ ( - -  k, gki, 

for k = 1, 2, and 3; then Eq. (71) can be written 

From differentiation of Eq. (23) one obtains 

(71) 

(72) 

(73) 

du k dl~ I 
w [  - (74) 

dt dt 

Consider the system of three equations, Eq. (74) and Eq. (73) with s = 2 and 3. Note that 
since the unbarred system is Cartesian, Uk = U k, and the system can be written 

14 
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m m 

wl wl 

Mi M] 

M~ M] M] 

"dill - 
dt 

du 2 
dt 

du 3 
_ dt _ 

m 

dil I 
dt 

(75) 

The rows of the coefficient matrix are the components with respect to the unbarred 
coordinates of [i, [2, and ~3, which are orthonormal. Therefore, the coefficient matrix is 
orthogonal and its inverse is its transpose. Thus, one can directly solve Eq. (75) to obtain 

3 
duk il a~=t W~(T]+aC) (76) - w[ d/- + T;+k~ - wl, 

The fourth and fifth compatibility equations can therefore be replaced with Eq. (76) with 
k = 1, 2, and 3, which does not involve fi2 or fi3 or the components of [2 or [3. This 
represents a significant reduction in computational burden. Knowledge of the tangent-plane 
variable dependence is not required for implementing characteristic boundary conditions 
out of the plane. 

5.0 FINITE-DIFFERENCE APPROXIMATIONS 

All of the right-hand sides of the compatibility equations involve the quantity 

(~ = -(8~- M~W~)Ffl.~ (77) 

For purposes of constructing finite differences of Eq. (77), three pairs of points are chosen. 
Led d ~  be the k'th component with respect to the unbarred system of a vector from the 
boundary point to one of the chosen points, c~ indicating the pair (1, 2, or 3), and fl 
indicating which point in the pair (1 or 2). Let dr. be the vector from the first point of the 
~,-pair to the second, and let d k be its components with respect to the unbarred system; then 

d~ = d k -  dk I (78) 

The three pairs of points are chosen so that the vector d-~ is in the same direction as [! and the 
vectors d-~, d'~, and d'~ are not coplanar. Since d-~ and it  are parallel, let c be their constant of 

proportionality; then by Eq. (9), 
| 

= c (79) 

15 
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Multiplying by W~ yields 

c = d,~ wL (8o) 

The finite-difference formula is derived from 

FJ~ = FJ o + FJo,ed t~ + 0(2) (81) 

where the c~/~ subscript on FI indicates its evaluation at that point, and the o subscript 

indicates its value at the boundary point. It is assumed that all the chosen points are in a 

neighborhood of the boundary point where the second-order terms are negligible. Define 

(82) FL = F~2- F J, 

Neglecting second-order terms, Eqs. (78), (81), and (82) yield 

FJ a = FJo.,d 5 

Multiplying by D~ (defined below), one obtains 

FL D; F! ~ '  ----" o,c-a D~  

Since it is desired to obtain an approximation to Eq. (77), D~ is defined to assure that 

(83) 

(84) 

t Dj d~ = ~ -  M~W~ (85) 

Selecting the three pairs of points such that the d~ vectors are not coplanar ensures the 

existence of the inverse, ~, such that 

d5 ~ - -  ~5 (86) 

Multiplication of Eq. (85) by d~and using Eqs. (79) and (80) yields 

,gk 
V k = ~k Wj 

d r W~ (87) 

By using Eqs. (84) and (85), an approximation to Eq. (77) is finally given as 

A 

C = -F~D~ (88) 

16 
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This approximation is valid in a small region, limited to the neighborhood where the second- 
order terms of Eq. (81) are negligible. 

The procedure for computing (~ is summarized as follows: (1) calculate d k and their 
inverse from Eqs. (78) and (86); (2) evaluate D k from Eq. (87) in which W~ are the 

components o f t  expressed in the unbarred system; (3) compute F~ with Eq. (82), in which 

Eq. (28) is employed in the unbarred sense; thence (4) (~ is given by Eq. (88). 
i 

6.0 BOUNDARY CONDITION METHODOLOGY 

The solution is known at time t = t~, and it is desired to update the variables on the 
boundary (~l = 0) at t = t2. Three characteristic lines are constructed in the (t, ~I) plane 
intersecting the boundary as sketched in Fig. 2. The analysis can be divided into five cases: 

a. subsonic inflow 
b. supersonic inflow 
c. subsonic outflow 
d. supersonic outflow 
e. solid wall 

For boundary condition considerations, the terms subsonic and supersonic refer to the 
normal component of the velocity. At the solid wall the normal component is zero, and only 
one case is needed. In Fig. 2, the flow is known at the points marked with circles since these 
points are inside the computational region at t = t]. The time step 

At = t2 -- tl (89) 

as determined by the Courant-Friedrich-Lewy stability criterion in ARO-I is such that the 
circled points are on the ~] axis between the boundary point and the associated interior 
point. Therefore, the values at points designated by circles can be obtained by interpolation 
rather than extrapolation. The flow is undefined at the points marked with triangles since 
these points are outside the computational region at t = tl; thus the compatibility equations 
along the characteristic lines passing through the triangles cannot be used and must be 
replaced with user-specified boundary conditions. For supersonic inflow, none of the 
characteristic lines can be used, which means that at such boundary points all flow variables 
must be specified. For supersonic outflow, all of the characteristic lines are used, which 
means that nothing can be specified; the flow at the boundary must be a result of the flow 
calculations. The remaining three cases will be treated separately. 

17 
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(i 1 [] 0) 
J 

) 

il 
i 1 = (51+ a) t 

~L~ i 1 = olt 
= t  

~ t  _." ' "~ i 1 = (~t-a) t 

t2 
t= t  I 

(i 1 = 0) 
J 

i l  
i l  = (~1+ a) t 

T~ i 1 = 01 t 
i l  = (~1_ a) t 

=, = t  

/ 
t = t  2 

=t 1 

(i I = O) 

a. Subsonic inflow 

~ ~1= ( ~ l + a l t  

t t 1 I " ~ l = ( O l _ a l t  

t .=t  2 

c. Subsonic outflow 

(~1 __ O) 

b. Supersonic inflow 

- t  

t - t 1 i l  __ ~1 t 
t R1 = (~1 _ a) t 

d. Supersonic outflow 

(i 1 = 0) - - - - -4  

t = t  1 

~1 = (~1+ a) t 

/ ~1 = ~lt ~t 

~i I -- {0 l-a) t 
--t 2 

e. Solid wall (iil = 0) 

Figure 2. Types of  boundary conditions. 
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6.1 SUBSONIC INFLOW 

For subsonic inflow (Fig. 2a), the flow transmits information to the boundary by way of 
only the first characteristic line 

~l = (il l  _ a)t  (90) 

with compatibility equation 

d__p _ aQ dill = T~(~ (91) 
dt "~" 

This equation supplies only one of the five relations needed to specify the boundary 
conditions. For subsonic inflow, the stagnation pressure and temperature are usually 
known, and the assumption of isentropic flow is generally reasonable. The remaining two 
conditions are a constraint on the direction of the flow 

uJ = qe j (92) 

where the direction cosines, e j, are specified at the boundary; alternately, a zero derivative 
could be specified which requires the flow direction at the boundary to be the same as at the 
associated interior point. 

Reference 3 gives isentropic relations for pressure-velocity dependence as 

P = P T  1 ~ / - 1  q 2 
~T (93) 

and sound speed-velocity as 

(94) 

Rigorous evaluation of these expressions would require expensive iteration at each boundary 
point to achieve consistency among the variables. However, linearization in time avoids that 
iteration and yields consistency in the following fashion. Differentiating Eq. (93) and 
simplifying with Eqs. (94) and (42), one obtains 

Ap = ~PT APT-- QqAq +,-~-0q z ~ (95) 
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Finite differencing Eq. (91) gives 

A p  - aQA~ I = ('F; (~)At (96) 

Using Eqs. (23) and (92), differentiation yields 

A51 = W~ t~Aq + qW~ A~ (97) 

Combining Eqs. (95), (96), and (97) results in 

0 rq + aW~t~ Aq P 1 Aa 2 Wl (T~C)At = - -  AP T + ~ -- a o q  A ~ '  - PT 2 oq2 a 2 a (98) L ..I 

As shown in Fig. 3, the point designated II is the interior point that was used to define 
the barred coordinate system, evaluated at time t=. All finite differences in Eqs. (95) through 
(98) are taken between the points 02, the boundary at time t2, and CI, the characteristic 
point in the interior at time tl. Equation (91) is valid only along this characteristic direction. 

i 1 

C1 

t = t 2  
= t 1 i l  = ( 5 1 _ a )  t 

Figure 3. 

~ t  

Nomenclature for the subsonic inflow case. 

In summary, the procedure for updating the dependent variables Q at the subsonic 
inflow boundary point 02 is as follows: from Eq. (23), 

= u;l  (99) 

where W~ are the components of ~'in the unbarred Cartesian coordinate system. 

From Fig. 3, to first-order accuracy, the characteristic slope at 02 is approximated by 
that at 01 to yield 
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From Eq. (22) 

~ 1  = -a t (U~ l  - 8Ol) 

~h = w l  (x~l - x~,) 

and interpolation yields the dependent variables at the characteristic point, CI ,  as 

The local Mach number 

(1oo) 

(lOl) 

Q o  = Q o l +  ~-'-'~ ( Q n -  Qol) (102) 

Mc I _ qcl acl (103) 

is used to evaluate total conditions from the isentropic relations given in Ref. 3. 

[ ( )21  aTCl = acI 1 + "Y - 1 McI (104) 
2 

I ')' -- I 21 7/(').- 1) 
p ¢x = x + (105) 

Since total conditions are prescribed at the boundary (possibly as a function of time), the 
differences required in Eq. (98) are given by 

aaT = aT02 - ate! (106) 

APT = PT02 -- PTcl (107) 

Direction cosines are computed at C ! using 

(1o8) U~l 
eel = qcl 

(lO9) 

(110) 

If the flow direction is specified at the boundary (possibly as a function of time), then 

ae~ = eg2- e~l 

or, alternatively, if zero derivatives are specified, then 

a l  ~ = 0 
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and 

f~2 = e~:l (111) 

The velocity difference, Aq, along the characteristic is then computed from Eq. (98) and the 
velocity on the boundary is given by 

qo2 = qcI + Aq (112) 

with the Cartesian components expressed as 

ug2 = q02 f~ (113) 

State variables, Po2 and ao2, are computed using the isentropic relations, Eqs. (93) and (94), 
of Ref. 3 and density evaluated from 

~/P02 (114) 
Q02 = (a02)2 

6.2 SUBSONIC OUTFLOW 

For subsonic outflow (Fig. 4), the interior flow transmits information via the first 
characteristic line 

~1 = (fit _ a)t (115) 

with compatibility equation 

d__~p - a ~  d i l l  - "F~(~ (116) 
dt dt 

and along the coincident third, fourth, and fifth characteristic lines 

~1 = fil t (117) 

with compatibility equations 

dp (a)2 d_.~ = ~;(~ (118) 
dt dt 

and from Eq. (76), written as 
3 

d u  k W I d u  I ,- ~ i^* ^ = - W~T5 + ~C ~'~ k--~--- + T;+kC W~ =t 
(119) 
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with k = 1, 2, and 3. Although Eq. (l l9) provides three equations, considering the 
dependence of ~l [see Eqs. (73) and (74)], they are of rank two; therefore, one further 
condition remains to be specified. It will be taken as a specified static pressure, p. For 
practical applications, pressure is specified at one isolated boundary point and zero gradient 
in the outflow direction applied at all other boundary points. 

Referring to Fig. 4, the solution is known at time tl at the points 01 and I1 and, through 
interpolation, at the characteristic points Bl and Cl.  The procedure for updating the 
dependent variables Q at the subsonic outflow boundary point 02 is, from Eqs. (22) and 
(23): 

~11 -- -At~t~  1 

~ h  = - A t  (u~, - ~0,) 

uh = w~ u~ (121) 

where W~ are the components of ~" in the unbarred system. From Fig. 4, with first-order 
accuracy, the characteristic slopes are evaluated at 01 to yield 

(122) 

(123) 

,x• I1 

, C 1  

~01 

t = t 1 

02 

~ ~1 : ~1 t 

i l : (~ l_a )  t " 

: t 2 

.~t  

Figure 4. Nomenc la ture  for  the subsonic  o u t f l o w  case. 
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Interpolation yields 

Qm --- Qol + ~I------LI (QII 
X~l 

QcI = Qol + ~II (Qn 

- Qol )  (124)  

- Qol )  

and from Eq. (23) 

= WaUBI 

fi l  I I Ot WaUcl 

A finite-difference representation of Eq. (116) is written as 

which yields 72  where P02 = PII except at one select point where 1302 is user-specified. 

A finite-difference representation of Eq. (118) is written as 

(P02- PBI) -- (aBl)2({~02- ~Bl) = AI[ ' r ; c~B,  

which yields Q02. Finally, differencing of Eq. (119) can be constructed as 

(125) 

(126) 

(127) 

(128)  

(129) 

i - l  030) (U~2 . . . .  U~l ) W a(u02 fi11) +~At ;+a(~ W 1 = WkTs+k ~ 1  * BI 

which is solved to yield u~2 which then completes calculation of Q02 at the subsonic outflow 
boundary. 

6.3 SOLID WALL BOUNDARY 

Information from the flow is transmitted to a solid wall boundary (see Fig. 2d) via the 
same characteristic lines as in the subsonic outflow case, Eqs. (115) through (ll9).  The 
additional condition needed to determine the flow at the wall is 

q .  ~ = 0 (131) 
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which can be analyzed 

resulting in 

• £ = fi~e:. ~] = fi-5~ = 0 (132) 

~ -- 0 (133) 

Referring to Fig. 5, the procedure for computing Q at 02 is [from Eq. (22)]: 

I a = W (xn- (134) 

\ 

t = 

I1 

t = t 2 

O~ i I -- 0 ,...- 
i 1 - -a t 

-~t 

Figure 5. Nomenclature for solid wall boundary conditions. 

From Fig. 5, assuming the characteristic slope at 02 is approximately that at Ol (first-order 
accuracy), 

X~I = At aol (135) 

then interpolation yields 

~Cl 
Ocl = O01 + - - - 2 " - - ( O i l  - Q01) (136) 

Xll 

and from Eq. (23) 

U~I ~liTl U a = " a  c l  ( 1 3 7 )  
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A finite-difference representation of Eq. (116) is written as 

(p0  - p o )  - - = A t  c ,  (138) 

to allow calculation of P02 where u~2 = 0 from Eq. (133). The density at point 02 is obtained 
from a finite-difference representation of Eq. (118) in the form 

(139) (P02 - P01) - (aol) 2 (Q02 - Qol) = At[T~C]ol 

and the Cartesian velocity components evaluated from 

3 

E -- k ~ w~'r~ + kC~ = + At (14o)  

It should be recognized that Eq. (131) can be relaxed to permit a specified surface- 
normal velocity to allow imposition of an auxiliary wall boundary condition. For example, 
viscous boundary-layer effects on the inviscid Euler solution can be included using the 
concepts developed in Ref. 4. 

7.0 CONCLUDING REMARKS 

Characteristic boundary conditions as described herein have been implemented in the 
three=dimensional, time=dependent Euler solver known as ARO-I, Experience with the 

modified code to date indicates improved accuracy of the solutions, particularly for internal 
duct flow computations with subsonic inflow/outflow conditions, However, the accuracy 
improvement relative to the solid wall boundary conditions using zero normal pressure 
gradient is significantly less than expected. Vorticity is generated at curved surfaces and 
manifested as total pressure losses which are convected streamwise. Characteristic boundary 
conditions reduce the magnitude of these losses by only a few percent. Computational grid 
refinement appears to be necessary to minimize the total pressure loss, but, since ARO-1 is 
an explicit code, the associated increase in computer time is generally prohibitive. 

The ARO-1 code is routinely used to enhance the ground test capabilities of the wind 
tunnels and engine test facilities at AEDC. The assumption of zero normal pressure gradient 
as a wall boundary condition has proven to yield sufficiently accurate solutions for most 

engineering applications. Whenever increased precision is deemed necessary, both grid 
refinement and characteristic wall boundary conditions must be employed. 
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NOMENCLATURE 

A See Eq. (32) 

a Speed of sound, Eq. (42) 

See Eq. (35) 

~k See Eq. (33) 

A 

C See Eq. (77) 

C See Eq. (36) 

c Proportionality constant between dl and ~ 

D k See Eq. (87) 

d~ Vector from the first point of the ~-palr to the second point 

d~ kth component of d~; see Eq. (78) 
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E 

el ,  e2, and  
~3 

~l  N, and 
~3 

#k 

Fk. 

F~B 

G 

gjk and ~jk 

e~ 

M 

n 

P 

Q 

q 

kth component of a vector from the boundary point to the/3-point of the 
.-pair 

The inverse of d~, Eq. (86) 

Specific energy 

The basis vectors for the barred system, Eqs. (1) through (3) 

The reciprocal base vectors for the barred system, Eqs. (S) through (7) 

See Eq. (28) 

The value of F k at the boundary point 

" See Eq. (82) 

The value of F k at the E-point of the ,-pair 

See Eq. (27) 

Metric tensors, Eqs. (13) and (14) 

Direction cosines of ~,, Eq. (92) 

Mach number, Eq. (103) 

Transformation between barred and unbarred systems, Eq. (9) 

Unit normal at the given boundary point 

Static pressure, Eq. (29) 

See Eq. (3 l) 

Flow speed, Eq. (18) 
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q 

tk 

A 

Tk 

t 

fij and 5i 

w.R 
J 

xJ 

Ot 

7 

A 

~k 

0 

SUBSCRIPTS 

01,02, BI, 
CI, and II 

AEDC-TR-82-28 

Velocity vector 

An eigenvector 

The kth eigenvector 

See Eq. (64) 

See Eqs. (66) through (70), and Eq. (72) 

Time 

Covariant and contravariant components with respect to the barred system 

Transformation between the barred and unbarred systems, Eq. (11) 

Barred coordinates 

Dummy repeated index 

Ratio of specific heats 

Finite difference 

Kronecker delta 

An eigenvalue 

The kth eigenvalue 

Density 

Components of T, Eq. (62) 

Points shown in Figs. 3, 4, and 5 
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T Total conditions 

o Given boundary point 

SUPERSCRIPTS 

( - )  

An asterisk indicates the transpose 

Overbar indicates association with the local boundary coordinate system 
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