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ABSTPACT
We studyrthe Cauchy problem
u, = ¢(ux)x, (x,t) e R x R,
af+,0) = ¢ ‘

with the plecewise linear congtitutive function ¢$(£) = E+ = max(0,f) and
with smooth initial data f which satisfy xf'(x) » 0, x € R, and
£*(0) > 0. We prove that the free boundary s, given by ux(s(t)+,t) =0,
is of the form
s(t) = -x/t + o(/e), £+ o0,
"where the constant x = 0,9037... s the (numeric;l) solution of a particular

nenlinear equatlon. Moreover, we show that for any a € (0,1/2),

2
. 'd
L]
dt2

£(s(t))]| = o(ta‘1), t+o0%,

The proof involves the analysis of a noniinear singular inteqral squation.
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A NONLINEAR INTEGRAL EQUATIUN. OCCURRING IN A SINGULAR FREE BOUNDARY PROBLEM

1
Klaus H3llig *2 and John A. the11

1. Introduction and Result. Ws study the Cauchy problem

u, = @(ux)x, (x,t) € RXx R,
(1)

u(+,0) = ¢
with the piecewlsgvllnear constitutive function ¢ : R+ R, given by

$(8) = § = xax(E,0); the initial data f : R+ R are assumed smooth, specifically
£e c3<n) with bounded derivatives, and satisfy the conditions
xf'(x) >0, xenmn,

2) .
£4(0)y >0 .

One motivation for the study of the Cauchy problem (1), (2) iz 1tg similarity with the

" well=known one phasa Stefan problem (in one space dimension) [3,4,7,8] in which one would
asgume f£'(x) = -1 for x <0, aswell as f'(x) >0 for x>0, so that f' has a
jump disccntlnuiiy at x = 0. The assumption (2) ylelds a different behavior of the

jsﬁluﬁion u ahd‘of the resulting free boﬁndary. Indeed, here (c.f. the Theorem below)},
the free -boundary s, given by ux(s(t)+,t) =.0,7 is of the form

1/2+
/2 a), £+ 0+.'

(3) : s(t) = -/t + Ot
where « i3 a positive constant and 0 < @ < 1/2. Thus, the function s ig not
(infinitely) differentiable at t = 0, contrary to the situation for "the Stefan problem
{71.

fhe result (3). is established by solving a nonlinear integral equation ({15) below)

with kexrnels which depend on the unknown function s and which are also singular in the

:’Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

2This materlial is based upon work partially supported by the National Science Foundatlion
under Grant No. MC5-7927062, Mod. 2.
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sense that the integral on (0,t) of the kernel does not approach zero as t + 0. Ome
consequence of this ié that the lnteg;al ope;ator defined by (15) lis ﬁot compact in a
suitable Holder class.

The principal motivation for the study of the Cauchy problem (1), (2) is that it
serves as a prototype of nonlinear parabolic problems which arise as monotone "convexifica-
tions™ of nonlinear diffus;on equations with nonmonotone constitutive functions ¢ (see
{5] and [6]); in (6, section 4] the reader will alsc find the formulation and preliminary
analysis of sﬁch a convexified problem, corresponding to a piecewise linear nonmonotone ¢
(specificallly, ¢'((-=,a) W (b,®)) > 0, é'(a,b) < 0, 0 < & < b < =), The analysis in (S}
nh§ws the existence of Infinitely many solutions u of the rionmonotone problem, each

having u, bounded, and u omitting the values in [a,b]l; thus each solution u

x
exhibits phase changes. Numerical experiments further suggest the cenjecture that the
*physically correct® solution of the nonmonotone problem is the one which, as ¢ + =,
approaches the unique solution of the appropriately related convexifled monrotone problem.
ﬁovever, for small ¢ > 0 the behavior of the solution of (1), (2) is qualitatively
different (see (3)). The present study of (1), (2) 1z Intended as a step towards the
understanding of this intriquing phenomenon. The relation of the convexified éroblem in
[6] to the Cauchy problem (1), (2) is clear (the particﬁlat boundary conditions in (6] do
not play a role in the analysis of the free boundary éurve).

It is eimple to give a formal explanation for (3). We rewrite (1), (2) as the free
boundary problem

=
ut u

st a{t) ¢ x < ®, teRr,,

(42) u (s(t),t) = 0
u({*,0) = £ .
From the constitutive function ¢ one also has the equation

u, = 0, -» ¢ x < glt), teRr,

(4b) : v
U('lo) = £ .

Therefore, assuming the continuity of u acrces the free boundary s{t} and assumling

that s Is monotone decreasing {(c.f. paraqraph preceding the Theorem), we have
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. “(E(t)'t’ = f(ﬂ(t))' t e R+ ¢
1 {5) .
s(0) = 0 ,
Differentiating (S5) with respect to t and using ux(s(t)*,t) = 0, where "+" "~denotes
the limit from the right, we obtain '
(6) . £ (s(t)a' (t) = u (s(a)’,e) .
_ &ince by the‘assumption (2)
' . 2 +

£1(x) = £%(0)x + o(Ix]%), Ix| +. 07,
a simple calculation formally yields (3) with x = 72 {provided one assumes qontinuiﬁy
from the right of ut‘ and u,,  up to the free boundary s).

The rigorous treatment of the problem consists of analyzing in Section 3 the nonlinear
1nteg:al equation (15) for the free boundary .x = s(t). Our analysis shows that (3) holds,
: but that the conatant x is the solution of the nonlinear equation (f&)r its numerical
' value is Kk = 0,9037..., and not x = Y2 which was predicted by the above formal

"calculatiorn. It also follows that sg(t) is smooth for ¢t > 0 thus justifying (5) and (6,

for positive ¢t; in particular one sees from (6) that & is as smooth as the initial

function £ is, We recmark that for t » € > 0 the probhlem (1}, (2) can also be viewed as

a one phase Stefan problem: consequently the results in Kinderlehrer and Nirenberg (7]
;ield the regularity of the free boundary for t > 0. |

The existence of a unique generalized continuous solution for problem (1), and hence
of a unique free boundary, follows from nonlinear semigroup theory for m-accretive
operators [1,2]. Approximating (1) by the implicit Euler scheme one can also show the
existence of the free boundary s which is K3lder continuous on {0,®) with exponent
1/2, and monotone decreasing. However, using auchAgeneral methods, it is not possible to
analyze the precise behavior of 8 at t = 0;

Our main result is:
THEOREM. Define

4 -
(7 () = ar f{s(t)) .

Then for any a € (0,1/2) there exists T > 0 such that xr ia continuous on (0,T] and

satigfies
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®) et can, tctcr,

where co(f) > 0 is a_constant which depends on the data £. Moreover, (3) holds with

| 172
v o ZE00 -
k1= (2 (07 0.9037...

" The constant & is the (numetical) solution of equation (16) in Section 3,

By the definition of x, the result (3) follows from (7) and the assertion (8). To
t

see this, we solve (7) for s. Let R(t) = f r(t)dt and integrate (7) ohtaining -

0

R{t) = £(s(t)) - £(0) .

Define the function g implicitly by

| gl=sign{x} /;TET—I_ETE?) =X .
Since we assume that
() £(x) = £00) = 827 + otix1®), x| +» 0%,

(62 = £"(0)/2), g is well defined for small |x| and
(10) glx) = =8 'x + otlxl®), Ixl » 0¥ .-
For a small interval [0,T1, the monotone decreasing solution of (7} is given by
(11) ; s(t) = gUR(ED, oO<t<T,
and (3) follows from (8) and (10).
‘ The Theorem describes the regularity of the free boundary at t = 0. It is sharp in
the sense that, unless £'°(0) = 0, the estimate‘(s) does not hold for @ > 1/2 (c.f. the
Remark at the end of the paper in Section 3).
It shorld also be~observed that the second derivatives of the solution u are not

_continuous at thg point (x,t) = (0,0), because using (6), (7) and the definition of X
one has

2
Lin  u(s(8),8) = £(0) = 2= £(0) # Lin e (x,0) = £710) -

+
t+0 . x+0

However, on the set {& : £'(s(t)) < 0} the free boundary s is as smooth as the
function €. This can be shown by a bootstrap argument, using standard regularity results

for the heat equation on a domain with curved boundaries. We believe that the Theorem can
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i pe extended to a éeneral monotone constitutive function ¢ with &'(¢) discontinuous at
0 snd with ¢'(E) > c >0, § ey the corresponding value of x will depend on
$r oMy,
‘The Theorem‘is proved in Section 3 by solv;ng an integral equation for the function
r derived in Section 2.
ﬁe arébgr&teful for helpful discussions with our colléagues Tom Beale, Carl de Boor,.
Michael Crﬁndall and Pmmanuel DiBenede;tox we also thank Fred Sauer for the numerical

~ computations.

2. The Integral Fquation for the Free Boundary. let

. : 1 .
. | Fx,t) = ——= ¢ exp(- f;):

2¥x

denote the fundamental solution of the heat equation. Let Vv := u be the sointion of the

x
problen
- Ve = Ve (x,t) € QT 1= {(x,t) ¢+ x > s(t), t e (06,T)} ,
(4a') vis(t),t) = 0
v{*,0) = £*

and zgsume that the free boundary s satisfies s e c[0,TI N C‘(O,T]. Integrating Green's
identity

(E,1) = %= D(x = E,& = T)v(E,T))

3
T3 (M'(x = §,t -~ O)v Y

£

- %; (Flx = &t - iv(g,)) =0

over the demain Qt we obtain, for x > s(t), the representations

«© t
(123 wix,t) = [ T(x - E,0)€'(§)aE - [ Tix - s(1),t - v (s(r),Thar
0 0
- . t
I (13) veix,£) = [ Tlx - §,0)e"(Eraf - | T x = s(T),t - v (s(T),T)dr .
0 ]
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Passine to the limit x + s(t)+ in (13) yields

.

. o ’ t ,
(14) - r(t) = 2 [ Ts(t) = E,00E°(E)3 = 2 [ T (s(x) = s(1),t - Dix(r)ar ,
0 0 .

. -a .
where (see (6) and (7)) x(t) = ac £ls(t)) = v ' 3(t),t). The justification for this
_ passage to the limit is contained in the following result.

LEMMA 1. If s e c((0,T]) N c'((0,T]) and r & C((0,T]), we have for t < T

t

m [ T_(s(t) = s(T),t = T) = T_(x = s(1),t = DIr(D)dt = = r(t) .
x 2
x\s(t) O , ‘
Proof. We write
t
I [eee]r 4T =
-0

t ' o 2 ' oo 2
L prattl sl fop(- LTl L (- Ll el )]0y a

aTo (v -7

1 x = slt) L£x = s(1)) {x = s(2))

T e . ) = exp(- 2 Jlr(r)ar
a0 (& -1 e - o CAlem o

t : 2 ' 3 0t

1 x = s(t) (x ~ s(t))

+— [ S exp(- - Je(vyar == 1 [ 1 .
a0 (¢ -1 4 -7 v=10 "

In view of the assumptions on s and r it 1s easy to see that, for Vv = 1,2,

ft ft [t—G - v
I I+ I ] €0(¥8) + colfx = s(t)])
0 v =6 v 0 v §

which implies that

, t : , 4
lim [ 1 =0, v=1,2.
Xx\¥s(t) O
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t : ’ 2 .
: 1 —_— — 1 .
i Finally, —— / exp(- = ]dr = —~ implies that
o/ e (e - )32 4t - 1) 2
t 1
lim f I, =3 ri{t) .
x\yslt) 0 '

3. Proof of the Theorem. We write the integral equation (14) in the form

. r 1 s(t) 2y -
(15) r(t) = — [ exp(- ¢ (3=F - £) )e"te/erae
, Yx 0 4R

1
sl AE8D neats, b, D r(enar = (PR (E) + (Ko (e)

Yz 0 1-x
where : »
() - .
Als,t,T) := sl S(:;; .
2(t - t1)

It will be conven‘ient‘; to Introduce the class of functions Hu[OV,T}, 0 <a <1,
éefined by |
He0,T1 = {p & 10,71 + R+ Ipl_ 1= sup t' Clpt(e)] ¢ =} .
0<tey
» Te class Ha ig obviously contained in the HSlder-class with exponent a.
The Theorem is a consequence of:

PROPOSITION. For any « € (0,1/2), the integral equation (15), with s 1related to r by

a . —_—
(11), has a solution r e H (0,7] for some T > 0. The constant K := Vx(0)/B

1
(52 =3 £"(0)) does not depend on f‘ and is implicitly determined by the equation

o

4 ' K 2
(16) == [ exp(-(Z + £))aE =
/v 0 2
1 . 2 -
2 1 K 1 1 - /1
“(1+—=[ = — exp(~ = ———)ar) ;
/To VT30 + /D) 4y e vT

the numerical value of X is 0.9037... .

REMARK. The Proposition does not assert uniqueness of the function x (hence of the free
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boundary s) which could be established by showing that the operator F + K in (15) is a

strict contraction; this is technically even more complicated than cur proof. However, the

uniqueness of r 1is a ccasequence ofkthe’uniqueness of solutions of the original problem

(1) discussed in the Introduction.
We prove the Proposition by iterating the integral equation (15) in the form
(17) Toey " Fr, + Koy, new, |
v 2,2 : . 2 1
with r(0) = ry = x"87, where x is the solution of (16) and B~ = E_f'(O).
We shall gshow as a consequence of Lemmas 2 and 3 below that, for. r € Ha with

r(O) = ':282’

(18) l1im (Fr)(t) -—-J’ exp(- 3 I e+ y%2%a
w0t YT 0
1 1 k2 1 - /Ty 2.2
(19) lim (Rr)(t) = - *: f = exp(= ;= ———Jx“g%ar .
+ 7’z 0 /1 = t(1 +¥71) 1 + vt

t+0

2
since X is the solution of (16), this implies that: Tn (0) = x 62 for n € EK.

a
Moreover, we shall establlish the a priori estimates: for r € H [0,T], 0 < a < 1/2,

(20) |Frla € c(T) + (c1(a) +.c(T))|r|a ’
-1 1 2
where c1(a) = - exp(= i ), and
Yw(1 + a)
(21) Iera < (czta) + c(T))lr!a '
where cz(a) = c21(0) + c22(0) with
(3 J'1 'Ta ( KZ § - /Tr-)
(a) = —— exp(= — ———)ar ,
21 270 YT =11 +¢1) 4443
1 .
k(1 + 5= 1 . JW/24a T 2 =
¢, (a) = 7 + oa 1= (1=« T2 enp(- - ARCE e
' VT2 + 4a) 0 (1 ~ 1)/ 1+ /T 1 +7/71

+
and where c¢(T) is a constant such that <(T) +0 as T + 0, uniformly for

319

e YT e T I I R R TR IE> 3 [ R I I S R

“« 4o,

RS- B

PR 3K I A



rredp s [oto)] + ol < const.}.
We first use the estimates (20), (21) to complete the proof of the Propasiticn.
jCombining the estimates (20) and (21) one has

- (22) ) Ir | < e(r) + (c1(a) + Cz(a) + c(T))lrn1a .

n+l'a
Crucizl for the following argume.t is the fact that
1 1 . -
c1(2) + cz(z) = 0.339,,. + 0.4534,, =1 0w < 1,

- 1+
Set @ :=

< 1 and choose o € (0,1/2) close to 1/2 and T > 0 such that for
1

1 -~ o

a1l re#® with (o) = <’8% ana Ir|_<

e (a) + cyla) + c(T) <o .
It should be observed that if one chooses a » 1/2 then we cannot prove. the crucial

| estimate (20), cf. e.g. (24}. By (22), we have

] :
I= 1, < = new.
1 -w

Hence we can select a subsequence of rn' which conveiges in ¢{0,T] to a functien

. 2 2 : —
r, e HQIO,T] ‘with r _(6) = x B8 . Set 5, = g(/Rn). To pasg to the limit in (17) note
. 2 -
that by Lemmas 2 and 3 below the expressions exp(- % (= -§) ) ana
Az ,t,T) ’

P exp(-A(sn,t,t)z) converge pointwise (for n * ®) and are majorized by

integrable functions, uniformly in n € B. This completes the proof of the Propcsit;on and
of the Theorem. ' -

It remains to establish the assertioya (18)~(21). We require two auxiliary results.
Ve denote by ¢ a generi& constant which may depend on  a, 'rla and T, 4and we assuﬁe
throughout that T = T(irlc,a) is sufficiently small.
Lea 2. For r e HY, @ e (0,1/2), with r(0) = k28> we have

Is(t) + wE] < ct'/2*®

. ; a 1+a
Proof. Kote that |r(t) = r(0)] < ct and therefore |[R(t) = r£(0)t] < ct' . Using (10),

(11) and this iﬁequalitonne has

ls(t) « x/El = 1gt/R(D)) + &/E] ¢ |-87/R(e) + x/t| + ct < Vo
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LEMMA 3. For re Hn with r(0) -x282 we have

1~ /1 Y1 =
lals,t,1)] < c——‘-—-'/—v c 1= L,
T-1 1+ 4/t

Proof. Using £'(s)s' = xr, (9) and Lemma 2, we obtain -
t r G) t 2 - 1/2"“(! - — —
Is(t) - s(tr}} = |f = acl € ¢ [ (28%xfo - co )7 de € clft = /tr) ¢
£f'(s(0)) .
t tT .
this establishes the claim by the definition of A(s,t,T). ‘:

Lemma 3 shows that the kernel corresponding to the operstor K. in (15) is

integrable. Moreover, we see from Lemma 2 that

(23) ' AglT) = lim Als,t,0) ~ - § 1=
: : ' - /1 -1
=0 .
Using this and Lemma 2, we can pass to the limit in (15), thus establishing (18) and (19). :jt
Proof of (20). To estimate the norm of Fr,. use the definition in (15) to form :“
a
aA(Fr)(t) _ 1 1 8(t) 201 -1 -
~5% - '-:_-f cxp(-z(—*:‘~ £).) st EEYW(E/£)dE o
Y7 0 ‘t ;
11 (t) (&) 2 - 4 alt) Em‘
- [=J Y (==~ E)EXPr‘ = (F=- ) Jemervrag] x Friapenll o
’x 0 't T t -
=
As t ¥ 0, the temm in s~quare brackets tends (use (S)) to . » ;‘:Z
B
1 2...2 -
l:f -3: (-k = Elexp(~ 7 (-« = £)7)28%ag o
'ﬂ 0 .:<
-t Bzexp(.- 1) =200 + ayepie () . e
/T ¢ !
Therefore, 't'?‘
- a s
(24) 'Ml < ct 12 (2(1 + C!)KB < (a) + C(t))l""‘ (ELL) (t)H .
at : Y




d
. It remains to estimate —— ELEL. Using (7), Lemma 2, (9) and (10) we have

dt v

g'(t) _ 1 s(t)

| 2 ety L 32
/; 2 3/2

. T
lerace! 18508 = 5 s(OE (s(e))]

=322 1 2 -1 - 2
223 5T s St - BRse?] + 3

< t.1(% 87271 L S (leete) - rR(v)] + 372

A simple calculation shows that

1 1+a
1 +a t ‘rla '

(25) Jtx(t) - R(t)] <

and this yields

4 ste) a-11 =2 =1 =
Idt ( = st (58 T+ el))(y

(26) — & SNzl

'Combinlnq (24) and (26) proves (20).

We next turn to the proof of (21). We writ: (cf. (15)}

1
& rey(e) = = [ —I— 1 exp(-a®)tr! (trrar
t T 0 1 -1

-Az) g% r(t0)at =: (¥Xyri(e) + (Kzr)(t)

+ L f
)

and estimate each term separately.

a-1
(3) Since [x'(tt)] < (t1) lrlq , it follows from (23) that

=1
(27) | LRy ()] € (o, + c(t})t“ el -

d
(11) To estimate Kor  we first conslider the term Ez'h(s,t,T). Using the definition of

A and (7), we obtain
172, & (1 s{t) - 3(tr))

1 1
2(t - ¢T) = (3 2 " ts'lE) - (en)s' (kT - g s(e) + g os(tT) =
(t - t1) :
t . 3
a 21 - 1 a r{o)
{T 95 (9s'(a) = 7 s(0))do {t (380 + 0 3 (f,(s(o))))do .

f.2.
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L

(28) R S e !t + 0. (a))d : : =
) at ~ 2% (¢t T (Q (e} + Q, (a))da : -
tt - ) e
with o o - :T
- A ' _ -

24(6) = T FE(0)) | . =
QZ(G) o= 8'(0)(;— - r(O‘)f"(s(O‘))) : '-:j

£'(s(a))? -

We estimate_each term separately. By lLemma 2 and (9}, we have

a=1 E;
ft ! qg lrla Bk
(29) IQ (a)]da < a - do <
tr _ tt 28%x/5 ~ co'/2%C
1 1 -2 -1 ‘ 1/2+a, _ /24 R
72 +a8 * *ct te))e (1 - Hrly - P
" We write @, in the form : 52
0,t0) = —HU— L (o1 (g(/RTENN? - arirenae)) L o
: A o
£'(s(0)) :
, £
"Since by (9), (10) and Lemma 2, - A
12 (e tgt/RTaN N = 28%R00)| ) =
. e, e
2 - Joiid
lor(o)£"(s(o)) - 28°ar(o)]| o
we obtain, uging also (25), E:
(30) I la,(a) a0 < ] —-—’—f—l—— (1 + clo))(28? - la o x| pao < a2
tT tr (28%k/a)> , ~,
1 1 : -2 =1 LWt 1/24a
G 0+ (172 = @) 8 "x  + clt))t (1-= )Irla
. Combining (29) and (30) with (28), it follows that
. 1 -2 -1 1 a=1
(31) ) ()] < A itTa BTk TV + 5 T a)(1 * ettt Irl,
. [
1 1/2+a . . s
1 R 2 b
x — [ A (Tlexp(-A (T)7)(1 + c(t))r(0)ar . : <
o1 -0 e ‘ . R
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- Adding tha estimates (27) and (31) proves (21).

;.e.

(32)

Remark. We conjecture that, for smooth initial data £, the functlon r(tz) is smooth,

2.2 -
r(t) =x'8 +r1/2/t+r1t+-" .

Assuming an expansion of the firm (32), we can calculate the coefflcients r1/2,r1,...

from the integral equation (15). 1In particular £'"(0) # 0 implies that ry, # 0. This

shows that (8) is, in general, not valid for a > 1/2.

‘.

2,

3.

5.

6.

7.

8.
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