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ABST?XT 

We study the Cauchy problem 

with the piecewise linear constitutive function tC()· (+ a max(O,() and 

with smooth initial data f which satisfy 

(-CO) > O. We prove that the free boundary 

is of the form 

xf'(le) ;. 0, x e R, and 

+ s, given by uxCsCt) ,t) ~ 0, 

where the constant ~ - 0.9031 ••• 1s the (numerical) solution of a particular 

nonlinear aqua tion. Moreover, we show that for any <le (0,1/2), 

• 
2 

Id 2 f(sCt»! 
dt 

a-1 
Oft ), t + 0+ • 

The pt'oof involves the analysis of a non~ihear singular integral .~quation. 

~~s (MOS) Subject Classificatior.s: 35K55, 35K65, 45GOS 

ky ~lords: Cauchy problem, parabolic, nonlinear, free boundary regularity, 
nonlinear singular integral equation 
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"NONLINEAR INTEGRl.L EQUATrtJN OCCURRING IN A SINGtn.AR FREE BOUNDARY PROBLEM 

Klaus H3llig
1
,2 and John A. Nohel 1 

1. Introduction and Result. w~ study the Cauchy problem 

(1) { U t - t(u ) , 
x x 

u(o,O) - f 

(x,t) e R x R+ ' 

with the piecewisl!I linear constitutlve function • : R+ R+ given by 

+(t) - t+ - reax(~,O), the initial data f : R + It are assur.led smooth, 

f e c3 (It) with bounded derivatives, and satisfy the conditions 

(2 ) { xf' (x) ) 0, x e It , 

specifically 

One motivation for the study of the cauchy problem {1), (2) is its similarity with the 

veIL-known one phase Stefan problelll (.in one space dimension) [3,4,7,8) in which one wQuld 

ASSUMe f'(x) = -1 for x < 0, As well as f'(x> > 0 for ~ > 0, so that fO has a 

jump discontinuity at x'" O. The assumption (2) yields a differe'ht behavior of the 

solution u and of the resulting free boundary. Indeed, here (cd. the Theorem bfllow), 

the free-boundary s, given by + "x(s(t) ,t) = 0, - is of the form 

'(3 ) 
- 1/2+q 

sCt) • -Kit + OCt }, 
+ t + 0 .t 

where IC is a positive constant and 0 < a < 1/2. Thus, the function s is not 

(infinitely) differentiable at t = 0, contrary to the situation for 'the Stefan probl~ 

[7]. 

The result (3) is established by solving a nonlinear integral equation «15) below) 

with kernels which depend on the unknown function s and which are also singular in the 

1sponsored by the United States Anny under Contract No. DAAG29-80-C-0041. 

2This material is based upon work partially supported by tllC National Science FounJatlon 
under Grant No. MCS-7927062, ~lod. 2. 
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• ense that the integral on (O,t) of.· the kernel does not approach zero dS t ... 0+. One 

consequence \)f this is that the integral operator defined by (15) is not cC>tI\pact in a 

suitable Holder class. 

The pr.incipal mativation for the study of the Cauchy problem (1), (21 is ilia t it 

serves as a prototype. of nonlinear parabolic problems whleh arise as monotone "convexifica-

' . ..... ~ 

... - ... 
~ ." . 

.' ... 

" , ,- . 

...... 
" , 

tions" of nonlinear diffusion equations wi.th nonmonotone eonstitu.t.lve functions ~ (see ~< 

(5) and [6), in (6, section 4J the reader will also find the formulation and preliminary 

analysis of such a convexified pr.oblem, corresponding to 4 piecewise linear nonrnonotone '. T 

(specificailly, t'«--,a) V Cb,-» > 0, .'(a,b) < 0, 0 < a < b < c). The analysis in [51 

ohows the existence of infinitely many sOllltions u of the rionmonotone problem, each 

having ~ bounded, and Ux omitting the valu~s in [a,b); thus each solution u 

exhibits phase changes. NUlIlerical experiments furt.her suggest the conjecture that the 

·physically correct- solution of tne nonmonotone problem is the one which, as t + w, 

approaches the unique solution of the appropriately related convexi!,led monotone problem. 

However, for small t > 0 the behavior of the solution of (1), (2) is qualitatively 

different (see (3». The present study of (1), (2) is intended as a step towards the 

' .. 
4~ ••• ' 

-..... ;'4!i · ..... .... ". ~ 
," . 
· '. ,. .~ ..... : 
'~ .: .. ~. 

, , 

understanding of this intriguing phenomenon. The relation of the convexifled problem in " 

[6) to the Cauchy p~oblem (1), (2) is clear (the particular boundary condit,ions in (6) do 

not playa role in the analysis of the free boundary r.urve). 

It is simple to give a formal explanation for (3). We re',oIrite (n, (2) as the free 

boundary problem 

I U t .. ,Uxx ' ~( t) < x < tn, t e R+ 

C4a) uxCs(t),t) .. 0 

l uCe ,0) .. f • 

From the constitutive !unr.tion ~ one also has the equation 

{ u t 
EO 0, - < x< sCt), t e R+ 

(4b) 
u(-,C,\) = f 

Theref.ore, assuming the continuity of u across the free boundary s( ti und i'lsr;umlng 

that s is monotone decreasing (c.f. paragraph preceding the Theorem), we have 
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(5 ) { U(s(t},t) - f(s(t», 

0(0) ., ~ • 

Dlfferentiati~[g (5,) with respect to t an<l using + llx{s(t) ,t) .. 0, where "+" 'den9tes 

the limit !~0lI\ the right, we obtain 

(6) + f' (8(t»5' (t) ... Ilxx(s(t) ,t) • 

Since by the aosumption (2) 

Ixl +,0+ , 

a simple calculati9n fonna.lly yields (3) with It: .. li (provided one assumes c.ontinui~y 

froot the r igh t of anI! up to the free bouncary 

" 

" 

" " '. 

" 

" 

" . , .. , 
.' -'The rigorous treatment of the problem. consists of analyzing in Sec.tion 3 the nonlinear ~, 

integral equation (15) for tile free boundary x • set). Our analysis sho';fs that (;) holds, 

but that the constant Ie is the solution ot; the nonlinear equation (16'): its numerical 

value is It: .. 0.9037 ••• , and not 'Ie - /2 which WAS predicted by the. above, fonnal 

calculation. It also follows that u(t) is SIl100th for t > 0 thus justifying (5) aJ\d (6, 

for positive tl in particular one sees from (6) th~t s is as smooth as the initial 

function f is. We remark that for t) E: > 0 the prohlem (1), (2.) can also be viewed as 

a one phase Stefan prohl~~J consequently the results in Kinderlehrer and Nirenberg [71 

yield the regularity of the free boundary for t > O. 

The existence of a unique generalized continuous sollltion for problem (1), and hence 

of a unique free boundary, follows from nonlin~ar semigroup theory for m-accretive 

operators [1,21. Approximating (1) by the implicit Eul~r scheme one can also show the 

existence of the free boundary s which is Holder continuous on [O,~) with exponent 

1/2 and monotone decreasing. However, using such general methods, it is not possible to 

analyze the precise be~avior of 8 at t - O. 

Our main result is: 

THEORF..M. 

(7 ) r(t) ., i_ f(s(t)) • 
dt 

Then for any a. e (0,1/2) there exists T > 0 such thtlt r is continuous on [O,T] I'\n,; 

satisfies 
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(8) O<t(.'I', 

~ eCf) > 0 is a constant which depends en the data f. Mereover, (3) helds ""ith 

Ie :. 
rlQ.L 1/2 

(2 ~.(O») - 0.9037 ••• 

The censtant ~ is the (numerical) selution ef equation (16) in Section 3. 

By the definition of Ie, the resu1t (3) fellews from (7) and the assertien (8). To 
t 

see this, we solve (7) for s. Let, R(t) - f r(T)dT and integrate (7) obtaining 
o 

Ret) u f(sCt» - fCO) • 

Define the function q implicitly by 

q(-sign(x) (f(x) ... fCO )') x. 

Since we assume that 

(9) 

(13
2 

.. f"CO)/2), g is well defined for small Ixl and 

(10) 
-1 2 qCx) - -8 x + o(/xl ), I I + 0+ •. x 

For a small interval (0,'1'], the monotone decreasing solutien of (7) is given by 

( 11) o < t < '1' , 

and (3) follows from (8) and (10). 

The 'l'beorem describes the regularity of the free bowldary at t:: O. It is sharp in 

the sense that, unless f'"(O) q 0, the estimate (8) does not hold for a > 1/2 (c.f. L~e 

Remark at the end of the paper in Section 3). 

It sho"ld also. be observed that the second derivatives of the solution u are not 

continuous at the point (x,t) D (0,0), because using (6), (7) and the definition of K 

one has 

+ 
~x(s(t) ,t) m reO) 

2 
Ie: .. -
2 

flO (0) t. lim 
+ x+O 

~x(x,O) = f"(O) • 

However, on the set {t: f'(set» < O} the free boundary s is as smooth as the 

function f. This can be shown by a bootstrap argument, using standard res~larity results 

for the heat equation on a domain with curved boundaries. We believe thai.: t.'1e Theorem can 
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I De extended to a general monotone -:::onstitutive function .. with 9' Co) disco'ntinuous at 

o ,.nd with .' (t) > c > 0, t e Jt+, the corresponding value ofK will depend on 

+'(0+). 

The Theorem is proved in Section 3. by solving an integral equation for the function 

r derived in Section 2. 

We are gr&teful for helpful discussions with our colleagues Tom Beale, Carl de Boor I 

Michael Crandall and Emm~~uel DiBenedetto, we also thank Fred Sauer for the n~erical 

computations. 

2. Th~ Integral Equation for the Free Boundatt. Let 

denote the fu.~damental solution of the heat equation. Let v:"" U x be the sol\ltion ot the 

problem 

{ 
v t .. vxx' (x, t) e °T 

:- {(x, t) x > sCt), t e (O,T)} , 

(4a' ) vCsCt),t) m 0 

v(·,O) ... f' 

and assume that the free boundary s satisfies s e C[O,T] n C'(O,T]. Integrating Green's 

identity 

a - if (r(x - ~,t - .)v(t,.» = 0 

over the domain 0t we obtain, for x ).s(t), the reprl:!selltati.:ms 

.. t 
v(x,t) '" f rex - ~,t)f'(~)d~ - f rex - S('),t - T)V~(SCT),T)dT , 

0 0 
(12) 

co t 
(13) vx(x,t) .. f rex - t,t)f"(~)d~ - f fx(:r. - s(t),t - T)V~(S(.),T}dT • 

0 0 
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Passing to the limit x + sCt)+ in (13) yie1ds 

(14) ret) • 2 f resell - ~~t)f"(~)d; 
o 

- 2 f 
o 

t 
r (s(t) - S(T),t - T)r(T}dT , 
l( 

where (see (6) and (7» 
d 

rCt) =d"t f(s(t» = V'X. }(t,),t). The justification for this 

passage to the limit is contained. in the following result. 

LEMMA 1. 1! seC«(O,T])()C'«O,T]) ~ reC«(O,"l']), we have for t<T 

t 
lim f 

x\s(t) 0 

1 
[r (sCt) - SeT) t - T) - r (x - set) t - T»)r(T)dt = -2' ret) x ' x I 

~. We write 

t 
I [ .. ·]r dT ... 
o 

-L ft sCt) - seT) [exp(- (x - 5(T)\2) (s(t) -, S('r»:)]r(T)dT 
;- ~)3/2 4(t - ,) - exp - 4(t - T) 

4t1l' 0 (t - • 

t 5( t) {x -
2 2 

+ -'- f Yo - [ e.xp( - S(TP ) exp(- (x - s('.:n )] ( )d 

4';; 0 (t - T )3/2 4(t - T) 4(t _ T) r T l' 

t 
s( t) (x -

' 2 3 t 
+ 1_ f x - exp(- ~(~r )r(T)dT L f Iv 3/2 4(t 

=: 
4{~ 0 (t - T) v=1 0 

In view of the assumptions on sand r it is easy to see that, for v = 1,2, 

which implies that 

t t ~5 

If I I (If I I + If Iv! (0(/6) + c~o(!x - sCt)!) 
o v t-5 v 0 v 

t 

lim J Iv" 0, 
x" a( t) 0 
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i Finally, 
1 It v (y2, --= 3/2 exp - 4(t _ 'OldT 

4';. -- (t -T) 

t 
lim I 

x "s( t) 0 

..... 

1 --2 
implies that 

3. Proof of the rhe"rem. We write the integral equation (14) in the form 

(15 ) r( t) ,.. .!.. f 
lio 

-
1 

+ LI A{s~ 2 ,- 1 _. exp(-A{s,t,.) )r(tT)d. =: (Fr)(t) + (Kr)(t) , 
YlI' 0 

where 

:'" s(t) - s(t.) 

2(t _ t.) 1/2 

It will be convenient to introduce the class of functions 
a . 

H (O,'l'}, 0 < a < 1, 

defined by 

a II CO,T} .. {p (O,T} + R 
1-a 

sup t Ip'et)1 < ~} • 
O<t<'!, 

ex 
, ~e class II is obviously contained in the Holder-class wit~ exponent c. 

The Theorem is a consequence of: 

PROPOSITION. For any a e (0,1/2), the integral e~ation (15), with s related to r EY 

(11), has. a soluti2l!. 
a 

r e II (O,T]. for ~~ T > O. The c.onstant K := {reO )/S 

(1J2 .. t £"(0» does not depend on f and is implicitly determined ·by the equation 

... 
(16) 

_4 I K 2 exp( - ('2 + ~) ) d~ = 
.fio 

the numerical value of K is 0.9037 ••• 

REMARK. The Proposition does not assert uniqueness of the function r (hence of the free 
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...... ~. 

boundary s) which could be established by showing that the operato.r F + K in (15) is a 

strict contraction 1 this is technically even more complicated than cur proof. However, th<' 

uniqueness of r is a cC:lsequence of the uniqueness of solutions of the original problem 

(1) discussed in the Introduction. 

We prove the Proposition by itera~ng the integral equation (15) in the form 

(17) 

with 
'2 2 

r(O) - rO - ~ a , ',there 

n eN, 

~ is the solution of (16) and 
2 1 

B ='2£"(0). 

We shall show as a consequence of Lemmas 2 and 1 below that, for r e HCl with 

2 2 r(O) .. ~ a , 

... 
lim (Fr}(t) .. '_ J exp(-

1 (~ + F;)2)28 ZdF; 
4 

, (18) 

t.O+ .,tTl 0 

, 
2 1 Ie 

(19) - '_ J it) 282 lim (Kr)(t) - exp(- ~ K d1' 
.,tTl 0 2 -- + if) 4 1 + ii t+O+ .,t 1 - l' (1 

Since II: is the solution of (16), this implies, that rnCO) = 1(
2

8
2 

for n e Ii. 

Moreover, we shall establish the a priori estimates. for 
a 

r e H [0, T], 0 < ex < 1/2, 

(20 ) IFrI < c(T) + (e,Ca) + e(T»)lrl , a a 

where 
K-' 1 2 

.. --- exp(- 4' I( ), 

.,tw(1 + a) 
and 

(21) 1Krla < (cz(a) + c(T»lr l a ' 

where c
2

(a) = e
2l

(a) + c
22

(a) with 

II: (1 + 2 + 2(1) 1 
1 

1/2+a 
.,', - ~) J - T (1 c

22 
(a) = - - I( 

-I:; (2 + 4a) 0 ( 1 _ T )3/2 1 + It 
x 

and where efT) is a constant such thnt c(T) .. 0 as T • 0+, 
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;, 

r e {p I Ip(OH + Ipla < canst.}. 

we first use the estimates (20), (21) to complete the proof of the Proposition. 

IComhininq the estimates (20) and (21) one has 

(22) Irn+1la < c(T) + (c, (a) + c2 (a) + c('l'» Irn"a • 

Crucial for the fO'llowing argume.;t is the fact that 

Set 
- ,1+1&) 
I&) :- --2- < 1 and choose a e (0,1/2) close to 1/2 and '1' > 0 

all 
a 2 2 r e H with reO) - K 6 and Irl <:--. a 1 _ CI) 

-c , (a) + c
2

(a) + c(T) < CI) • 

such that for 

It should be observed that if one chooses a )1/2 then we cannot prove the crucial 

i est..imate (20), ct. e.g. (24). By (22), we have 

1 
Irnl(l < -' n e 11 • 

1 - CI) 

Hence we can select a subsequence of rn which converges in. C(O,'!'] to a function 

. a 
r .. e H [O,TJ . with 

2 2 
r .. (O) .. K 13 • Set 

that by Lemmas 2 and 3 !Jelow the expressions 

g(iR). To pass to the limit in (17) note 
n 1 s (t) 2 

exp(- 4 (~ ~ ~) ) and 
it A(Bn,t,T) 2 

---'~---T-- ~Xp(-A(Sn,t,T) ) converge pointwise (for n + .. ) and are majorized by 

...... . . . 
".:.1 

" 

'. 

" 

.. 

",' 
~. 

", 

" 

" 
.' 

integrable functions, uniformly in n e N. This cc~pletes the proof of the Proposition an~ ~' 

of the Theorem. 

!t remains to establish the assertions (18)- (21). Ne require two auxilia=y resul ts. 

We denote by c a generic constant which may depend on a, Irl and '1', 
Il 

and we assmne 

throughout that '1''' TClr!a,a) io sufficiently small. 

a ~l..th reO} a _20 2 Me' have LEMMA 2. For r e H , a e (0,1/2), w ~ V n 

Is(t) + Kit I .. ct
'
/2+a. 

a 1+a 
~. ~ote that Ir(t) - r(O)! .. ct and therefore IR(t) - r(O)tl <: ct Using (10], 

(") and this inequality one has 

- -- - -1 - - 1/2+0 Is(t) + Kitl - Ig{iR(t» + Kit! .. 1-6 iR(t) + Kit\ + ct .. ct + ct • 
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-f 

2 2 
rCO) - K 6 we have 

~. Using f'(5)5' B r, (9) and ~, 2, we obtain 

t t 

f rea) f Is (t) - s ( t't) I - If' (s «1) ') dO' I .; c 
2 - l/2 .... a -1 --(26 KIa - cCJ ) d<.T'; c(/t - lu) , 

t~ t't 

this establishes the claim by the definit;ion of A(s,t,r). 

Lemma 3 shows that the kernel corresponding to the oper'lter K in (15) is 

integrable. Moreover, we see from Lemma 2 that 

(23) A(s,t,'t) .. - 1<:"1-/t" 
'2 --= 11 - 't 

Using this and Lemma 2, we can pass to the limit in (15), thUg estabHshi!tg (18) and (1~). 

Proof of (20). To astimate the norm of Fr, use ~1e definition in (15) to form 

d(Fr) (t) 
dt 

[1_ f 
If( 0 

1_ f 
hr 0 

.. 

... 

rlB t ~ 0, the term in square brackets tends (use (9» to 

Therefore, 

(24 ) 

1_ J 
{n 0 

at 
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'. It remains to estimate 
d s( t) ---. 
dt It Using (1), Lemma 2, (9) and (10) ~~ have 

-3/2 . 1. 1 
t I f '(s(t»" t rCt) - 2 s(t)f'(s(t»1 

A simple calculation shows that 

(25) 

and .. ..his y!t:lds 

(26) t~ (s(tt)1 < a-11 -2 ~1 - 1 -
dt it t. (2 fl Ie: + c(t» (~ + c( t» Irl a .• 

Caahining (24) and (26) proves (20). 

We nex.t turn to the proof of (21). We writ:. (cf. (15» 

~ , 11 1 2 
dt (Kr) (t) .. -= ,-::-:;. A exp(-A )Tr' (tT)dT 

{., 0 

and estimate each term separately. 

(J.) Since 

(21) 

(ii) 

a-1 
Ir'(tT)1 < (tT) 11.'1 

Ct 
it follows from (23) t~at 

a-1 
I(K,r)(t)1 < (c21 + c(t»t Irla 

d 
we first consider the term dt A(s,t,T). Using the definition of 

A and (1), we obtain 

i.e. 

1/2 d (1 s ( t) - s ( tT ») , 1 
2(t - tTl t - - >2 ts'(t) - (tT)s'(tTl - -2 set) + -2 sCtT) = 

dt 2 tTl 1/2 
(t -

t d l' I da (as' (a) - 2 s(a»da 
tT 

I t (' d ( r(CJ) )) 2 B' (a) + a do f 1 ( s (0) ) do 
tT 
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(28 ) 

with 

t 
~ - ! t-1(t - tT)-1/2 I (Q (~) + Q ( »d dt 2 ' 1 v' 2 a a 

tT 

rl (a) 
Q,(o) , .. a fl (s(a» 

;- sl(a}(t - a r(a)f"c~(a») 
f' (s(a»2 • 

We estimate each term separately. By Lemma 2 and (9) , we have 

t t 
(29) f I Q 1 «(f )1 do < f 

t't' t't 

We write Q2 in the form 

02(a) - rCa) {1 (f'(g(r'R(a»»2 - ar(a)f"Cs(O») • 
f'(sCa»3 2 

. Since by (9), (10) and Lemma 2, 

1 -- 2 2 } Ii (f'Cg(r'R(a»» - 2B R(a>1 . ' 

lar(a)f"(s(a» - 2B2ar(a)I 

< 3/2 
cO , 

we obtain, using also (25), 

(30) 

Combining (29) and (30) with, (28), it follo~IS that 

(31) I( )(t)1 < 1_.J_ a-2 K- 1 (1 1 1 )(1 (» a-1 1 I 
K2 r 4 1/2 + a ~ + 2 ~ +c t t r a 

1 1 1 _ T 1/2 +a 2 
)( -' J A (,)exp(-A (T) ) (1 + c(t}}r(O)dT • 

./ii 0 (1 _ T) 3/2 0 0 ' 
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/ 

Adding the esti~ates (27) and (31) p~oves (21). 

Remark. We conjectur'e that, for smooth ini.tial data f, the function r(t2 ) is smooth, 

i.e. 

(32) 
2 2. -

ret) - K a + r 1/2't + r 1 t + •••• 

Assuming an expansion of the f;'rnI (32), we can calcula te the coe f f lcients r 1 /2' r l' ••• 

from the integral equation (15). In particula~ f'''(O) 'I 0 implies that r1/2 t- O. This 

shows that (8) is, in general, not valid for a > 1/2. 
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