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. ABSTRACT

CE MMt ot am.:a_

For a sequence 2 := (z,, ceey zlzl) in 22 + the box spline M, is the
distribution given by the rule ¥

M := T Az,) dar .

29 [ oz 2z))

We show that P,(x) = L , M (k) e 5> o iff azc {(1,00, (0,1), (1,1)} for
kez

some linear map A which is 1-1 on z2. This implies that, for such a Z , there

exists, for any bounded continuous function f , a unique bounded spline

I,f e span{Mz(O-k) : kelz} which agrees with £ on 22 . We give sufficient

conditions in terms of the Fourier transform of f for the convergence of sz as the
. degree |Z|-2 tends to infinity. E.g., we show, for the case that Z contains each

of the vectors (1,0), (0,1), (1,1) exactly n times, that (@f - Infl 2 ;::? 0 if
“,R

cc @ := conv{(z,z), ~(z,2z), (-z,22), =-(-2,22), (-2z,2z), -(-2z,2)} , with

h >

supp

N
wl¥

. The converse of this result holds with "CC" replaced by "C"

-
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SIGNIFICANCE AND EXPLANATION
“In a series of monographs. (cf. MRC Technical Summary Reports #852, #1104,

#1113, #1150, #1153, #1180, ' #1184, #1219, #1222, #1326, #1330, #1360, #1423,

—

#1546) 1. J. 8choenbé;§_aeveloped a comprehensive theory of univariate

cardinal splines. His results strongly influenced the analysis of totally
positive matrices. L 4777,‘

In this feport/ué’éxtend two of his basic results on cardinal
interpolation to bivariate box-splines,rhich have beep introduced in MRC
Technical Summary Reports #2320, #2415;ﬁ3i{show that, for functions of
exponential type, cardinal interpolation is a rapidly convergent approximation
process as the degree tends to infinity. Being not restricted to a tensor
product mesh giv?a a greater flexibility, and because of the exponential decay
of the Laqrfgge functions, spline interpolation is suitable, e.g., for data

Hy

smoothing. /ﬂi’also expect that bivariate cardinal splines have a similar

i significance for theoretical questions as in the univariate case.
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BIVARIATE CARDINAL INTERPOLATION BY SPLINES ON A THREE-DIRECTION MESH
by

1,2 and Sherman Riemenschneider3

Carl de Boor’, Klaus H8llig
Dedicated to I.J. Schoenberg

to whose insight and sense of beauty we are all indebted

1. Introduction. In this paper, we carry Schoenberg's beautiful cardinal spline
theory [82’3] over to a two-dimensional context which is not just the tensor product of the
univariate situation. We find that we must work harder, yet must be satisfied with less
precise results.

We are after a bounded cardinal interpolant to bounded data. This means that we are
looking for a function of the form

T e Y
with a e l.(lz) which agrees with a given bounded function £ on z2 « Here, M i3 a
fixed function of compact support. In Section 2, we follow Schoenberg [51] in describing
necessary and sufficient conditions on the Fourier transform of M to insure the
correctness of the interpolation problem, i.e., the existence and uniqueness of solutions.

We are particularly interested in using for M a box spline , i.e., the two-
dimensional "shadow" of an m-dimensional cube, as given explicitly in (1.1) below. We find
it convenient to change the definition [BH,]

Mé = [ zo( I AE)g) ar
[0,1] ez
of the box spline M = M, to include an appropriate shift which makes the origin the

center of the support of M . This means that we use the definition

! Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based upon work partially supported by the National Science
goundation under Grant No. MCS~7927062, Mod. 2.
Supported by NSERC Canada through Grant #A 7687.
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Mp = J ¢o( T Ao)g) axr . (1.1
(L) gez
This gives the Fourier transform M* of M the symmetric form

*
M*(x) =1 sS(g x) {(1.2)
gez
with
= sin t/2
s(t) —t/z . (1.3)

It is obvious from this formula that M = M, is unchanged if one or more of the [ €
Z are replaced by their negative, i.e.,
Mpg = My (1.4)
if A = diag(z1,...,t1) . Further, if A is any matrix, then
-
HAz(x) = HZ(A x) and MAZ(Ax) = Mz(x)/det A . (1.5)
This allows one to deduce symmetries in M" in case AZ equals Z after, possibly, some
elements of AZ have been multiplied by -1 .

The set 2 of directions can, of course, be chosen arbitrarily. But since we are

interested in having

S := span (M(°-j)) 2
jex

Ibe a simple piecewise polynomial space, we choose Z from 82 . It is shown in [BH1] that

the integer translates M(*-j) , j € 32 of the box spline are linearly dependent (when
allowing for infinite linear combinations) in case the direction set 2Z contains two
vectors which span a proper sublattice of 22 . Linear independence is an obvious necessary
condition for the cardinal interpolation problem to be correct. Thus, up to obvious
symmetries, this leaves the three vectors (1,0), (0,1) and (1,1) as the only candidates
for the directions [ in 2z .

with this restriction, S is a space of piecewise polynomial functions, of polynomial
degree |Z|-2 or less, and with possible discontinuities only across the three types

x(1) =k , x(2) =k, x(1) -x(2) =k, ke

of mesh lines. The overall smoothness of the elements of S depends on the multiplicities
of the directions in 2 . Such details, as well as the relationship of S to the space of
all piecewise polynomial functions on such a three-direction mesh, of degree [Z|-2 and of

specified smoothness, are all discussed in [BHZJ.

- 1.2 -




3 e

T

In Section 3, we supply certain detail concerning symmetries of such a three~direction
box spline and its Fourier transform. We prove the correctness of cardinal interpolation
with such a box spline in Section 4. We spend the major effort of this paper in Section 5
where we prove that, under reasonable conditions, the cardinal interpolant If of any
suitably smooth function f converges to f as |2| —> = , Specifically, we prove such
convergence under the condition that f is the Fourier transform of some compactly
supported measure, following entirely the path established by Schoenberg [S] in the
univariate cage who showed that such convergence could be had whenever supp £f° C (~-¥,%) .
We find, though, that, in our bivariate setup, there are many different sets playing the
role of this interval, and which of these sets is relevant depends on the mannér in which
12| goes to infinity.

The final gection is devoted to the many detajled egtimates on which the arguments in

Section 5 are based.

- 1.3 -




)
ot

N

R
s at

cle

.

k(SRR

:

. it}
O
s

e

28

R T T T T 5 T T i A e S A et e AP S St et e e -8
~ . < . DR AN RN R R . B - . R -
[N - .

2. Cardinal interpolation. let M:Rz —> R be a continuous function with compact
support, and denote by
S = S5, := span {M(* - 3j) : je 82}
the space generated by its integer translates. Cardinal interpolation with M concerns
inversion of the linear map

s L, —> !._:fl—> £ (2.1)

5 ¢
We say that cardinal interpolation with M is eorrect|ff this map is 1-1 and onto, hence
boundedly invertible, and denote its inverse by Iy or 1 . In other words, cardinal
interpolation with M is correct iff there exists, for every bounded sequence £ € l_(zz)
, a bounded function If € S which agrees with f on z2 . The interpolation problem,
i.e., the determination of If , is equivalent to the algebraic problem of determining the
coefficient sequence a for

If = § ajM('-j)

so that

2
aez, and b ajM('-j) =f on 2.

Hence the correctness of cardinal interpolation is equivalent to the invertibility of the
matrix

A := (M(j-k))j’ke’z (2.2)
as amap on £_ . Since A is a banded (bivariate) Toeplitz matrix, we have the following

necessary and sufficient condition for the correctness of cardinal interpolation.

Theorem 2. Cardinal interpolation with M is correct iff
ijx

P(x) 3= Pylx) = I M(j) e (2.3)

does not vanish.

Proof. If P(x) = 0 , then (e-ijx) 2 e ker Af\l~ , and this contradicts the
jex
assumption that A 1is 1-1. On the other hand, if P does not vanish, then the inverse
of A can be expressed as a Toeplitz matrix,
e—i(j-k)x

T dx/2n ., (2.4)

-1
A"y =
3 (-n,m)3

- 2.1 -
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In view of the geometric decay of the Fourier series for 1/P , we have

1a"h gl < const A3kl (2.5)
for some X = A(P) @ (0,1) . Therefore, a~' is bounded on lp(zz) for any p €

(1= .11

It is convenient to write the cardinal interpolant in Lagrange form:

If = !:fj L{*-j)

with
-1 .
L = Ly := 1§ = T (A )Oj M(*-j) (2.6)

. the fundamental fumction of the interpolation process. The Fourjer transform L* of L is
particularly simple. Combining (4) with (6), we obtain

'23 L = MR . (2.7)
;‘ We will also make use of the identity

::f_:v P(x) = I M*(2%j - x) . (2.8)
:-".-‘. which follows from applying the Poisson summation formula Ef(3) = ZIf*(2%j) to (3).
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3. Cardinal interpolation with a box spline. In this section, we develop in some
detail facts about cardinal interpolation with the box spline M, . Recall from Section 1

that (M(’-j)) is linearly dependent if Z contains two vectors which span a proper

jel2
sublattice of 82 « Linear independence of (H('-j)) is an obvious necessary condition for
cardinal interpolation with M, to be correct. Thus, up to obvious symmetries, the only
relevant case to consider is the case when the only directions in 2 are
dy == (1,0), dy = (0,1) , and dy := (1,1) .
We show in Section 4 that, with this restriction, cardinal interpolation with "z is
always correct.
Assume from now on that
Z = (d1:r, dy:s, d3:t) .
In this case, Z is characterized by the vector
n = (n,, ny, ny) = (r,s,t)
of direction multiplicities, and we will freely write n instead of 2 whenever it is

necessary to indicate by subscript the dependence on 2Z of some quantity. Further, the

general formulae given in Section 1 simplify. For example,

Mi(u,v) = S(w)F s(v)® stusv)t , (3.1)
with
e sin(t/2)
s(r) o= 2REEE

Further, the characteristic polynomial P = P, and the Pourier transform L*® of the

fundamental spline L = L, have the representations
) rk+st+t(k+R)

pzru,20v) = %" (sin(rw) ) (sintav) ) (sincuuevn) )t 5, —2 = (3.2)
7 (utk) (v4L) (utvek+t)
and
- - _ rks+t(k+L) u L v ® u+v,
1/L% (2%u, 2%v) . iez( ) (;:;) (;:i (G:;:;:i) . (3.3)
r
Let A'm denote the transpose of A .The relation
*
MA (x) = MZ(A x) (1.5)

valid for any matrix A together with the fact that

M,, = M (1.4)

AZ Z

in case A = diag(c1,...,e'n|) with ei e {-1,1} , all i , implies certain symmetries of

- 3.1 -
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M and M* if the matrix A leaves the set

d.}

2, = {d1,d2,d -d‘,-dz,-3

S 3’

invariant. Denote by A the group of all such invertible matrices A . Each A € A is

associated with a permutation %, e $3 (:= symmetric group on 3 elements) by the condition

Ad, e {4 Y}, i=1,2,3 .

-da
’
i GA(i) al(i)
From the two matrices corresponding to a given o € t3 . we choose one, Ao ¢+ in such a way
that the six matrices form a group and we call this group A, . Thus,

A4, e fdo(“, =d5(i)

and one choice for the group generators are the three matrices

}, a1l aes3 ’ (3.4)

0 -1 1 0 -
Az = (G o) e Ay (g L) Ry i Gy
corresponding to the transpositions (12), (13), and (23) . With the definition

oln) = (ng4)e Pg(2)’ Po3)’ ¢

it follows from (1.5) and from (4) that

Mn(x) = Ho(n)(tlox) ¢ (3.5)
*

Ho(n)(y) = "n(tlcy) ‘

This implies
-*
Pn(thcx) = Po(n)(x) (3.6)

and

Ln(x) Lo(n)(ton) ' (3.7)

-*
La(")(y) = Ln(tAdy) .
Of particular interest is the case
r=s=¢t,
i.e., when the direction multiplicities are all equal. In this case, o(n) =n, all g,
i.e., (5)=(7) hold with o(n) replaced by n . For example, writing out in detail the
relations (6) for P = P(s,s,s) s we get
P(u,v) = P(-u,-v) = P(v,u) = P(utv,-v) = P(=u,utv) . (3.6)
The relations for M* , P and L" will be used frequently in the sequel. Since they

are given in termg of the transposes of the matrices in A , we consider now

-12-
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»
A := (A : A €A}

in more detail. Set

0o 1
Ly o)a

zi = (d': ae zt} i {(011)1 ('100)1 (-111)1 (01-1)1 (1'0)1 (1:-1)} .

4 =

Since a’a = 0 , we see from (4) that A' leaves Z; invariant. To further illustrate

the action of the group A' , we divide R2 into the six cones Ra , o€ $3 , as

indicated in Figure 3.1.

R(23)
R
R(132)
R
Ry | (13)
(123)
Figure 3.1.

It is easily checked that

*
AOR = Ro ,all oce$. . (3.8)

- 3.3 -
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4. The correctness of cardinal interpolation with M, - In this section, we show that

b cardinal interpolation with M is correct for all choices of n € l+3 .
(-
'{k' Theorem 4. For all n € 8+3 ¢ B, is strictly positive.

Since P is 2w-periodic, this amounts tc the claim that

Po(x) > 0 for 211 x € [-w,u]2 .
‘fi This is the bivariate analogue of Schoenberg's well known result for univariate cardinal
spline intarpolation. To recall this result, denote by

{0 N

(2v+1)
The fact that, for any r , the minimum is attained at x = % is a consequence of the

- r
:f: the univariate cardinal B-spline of degree r , and by Qr the corresponding

:2 characteristic polynomial given by

. o () = Tw () ¥,

:J{ Schoenberg showed in [S,] that

v(r+1)

. I 12 R R

T min, Q.(x) = Q () = 2(%) %m0 =7 ° (4.1)

total positivity of the matrix (Nr(j-k))j,kel « In view of this result, one might think
that, in the above theorem, luin“'v P(u,v) = P(w,x) . This is trivially true in the tensor
.: product case, i.e., when n = (r,r,0) . However, in general, the point at which P,
attains its minimum depends on' n . It would be interesting to determine its location for

special choices of n . The nicest conjecture in this context (cf. Section 5) is that

min P(u,v) = P(28/3, 2%/3) in case n = (r,r,r) . (4.2)

In the proof of the theorem, we make use of (3.6). This allows us to assume without
loss of generality that
r>s >t .

We first consider two cases which reduce to Schoenberg's result.

ki N G

P Y SR

The tensor product case n = (r,s8,0) . Here, we have Mn(u,v) = Nr(u)Ns(v) ., and this

implies that

:;- Pn(u,v) = Qr(u)Qs(v) .

- 4.1 -




The case n = (r,1,1) . Since the open support of M,  intersects exactly one mesh
line of the form (°¢,L) , viz. the meshline (+,0) , it follows that, in this case,

Nr(k) . =0
M(k,L) = .

0 ., Lezxz\o
This means that cardinal interpolation with M reduces to univariate interpolation with
N, on each of the lines (¢+,2) , t €% . In particular, P(u,v) = Q (u) .

For the proof of Theorem 3, it remains to consider the cases where the multiplicities
are all at least 1 , with equality for at most one. We make this assumption for the
remainder of this section.

To prove the positivity of P , we use the representation (2.10) in the form

P(2xx) = LM (x+3) , (4.3)
with
M (x) = M°(27%x) .
Recall from (3.1) that, for x = (u,v) and j = (k,2) ,
rk+sl+t(k+L)

M (x+3) = w'nl(sin xu)"(sin 7v)®(sin w(u+v))* (=) - i (4.4)
(utk) (v+2)  (utvek+ L)

1t is sufficient to show the positivity of P{2%°¢) on [0,1/2]2 for arbitrary n .

b This follows from (3.6) since, by (3.8),

-172,17212 ¢ Ua'to, 17212 .
- AEA

For x € [0,1/2]2 , we now show that the three positive terms

M(x), M(x=-d),and M(x-d,) (4.5)
dominate the sum in (3). To this end, we associate each of the other terms with one of
these (even to the point of splitting one of the other terms between two of these) and show

that the resulting three sums, when divided by their respective dominant term, each is less

than 1 . For ease of argument, we actually split the sum into altogether ten parts, as

o indicated in part by the figure below.

- 4.2 -




. I
=
=
L':.
s
Ts I3
Figure 4.1
To simplify notation, we set
b (3) = b. (o) = AMOED] g5, (4.6)
v v,n ~
M (x+jv)
with
3y =0, 3y = -dy, j3 = =dy .
We now prove that
( zjeJ#JJ4 bi(j) + zl*o b,(l,-l) < 1 (4.7)
. . - - -
f tjleJJs bz(j) + t'l|>° bz( 1,0 + bz( 1,-1)/2 < 1 (4.8)
szJ£UJ6 bJ(j) + z|l|>1 b3(l,-1) + b3(-1.-1)/2 < 1 (4.9)

Since each of the summands (divided by its appropriate dominant term) other than the three

dominant terms (5) occurs in (7-9) exactly once, we conclude from (7-9) the positivity of

.”TII;F:f?1‘1>._‘

P .

- 4,3 ~
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The estimation of the various sums in (7-9) is straightforward. In each case, we find
a majorant which is independent of x € [0,1/2]2 and n . For this, recall that we are
assuming that r,s,t > 1 with at most one equality.

We begin with the sum EJ b1(j) » By (3.1,4.6), we have for x = (u,v) and j
1

= (k,2) ,
u £ \J s u+ v t
210 LI breerd B ey | B brrerrerry U

Since k, £ » 0 for j = (k,L) € J, and we are assuming that wu, v € [0,1/2] , this

quotient is largest when u=v= 1/2, i.e.,

1/2 \rr 1/2 \s 1 t
by(3) < (1/2+k) (1/z+z) Crorr ) M

This bound is largest when the exponents r , s , t are as small as possible , i.e.,

when n = (1,2,2), (2,1,2) or (2,2,1) . Since

) (122 ]r( 1/2

1
o Gy G50 Geed) = 1723
(k,2)*0
for these values of n , we conclude that
tJ b1(j) < .18 . (4.10)

1
Similarly, one verifies that, for 3J = (-k,-%) € J, and x € [0,1/2]2 B

2 \F o2 1yt
b, (3) < (k-1/2] (1-1/2) (1)

and so obtains that

EJ4 bi(j) < .02 , (4.11)

since
I o(2k-1)"F20-1) "% (k+t-1"F = Lot01...
k,2>1
for (r,s,t) = (1,2,2), (2,1,2), or (2,2,1).
Finally, for j = (~£,L) and { # 0 , we have

T 8

1/2 1/2
(7+373) (=773) . 220
by (-2,2) < , .
1/2 1/2
(-1-1/2) (7))« rco
and so obtain
2 2
_ - 1/2 1/2 1/2 /2 11 .
Ly Dy(80-t) € I [(1’1/2)(1_1/2) + (1*1/2) (2_1/2)] .5 . (4.12)
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Combining (10-12) establishes (7).
The other inequalities are proved in a similar fashion and we only list the estimates
involved.

Proof of (8):

r -] t
u-1 v utv=1
l== Il

bZ(j) = Iu+kl v+l u+vik+t

J = (-k,2) e Jy ¢

r k- § t
. 1 1/2 1
bt < () (773 G=)
and .25... (2,2,1)
- k-~ 1/2 _ =
DR A ) (ln/z) (k-,) =  .23... for (r,s,t) (2,1,2) .
Therefore .30... (1,2,2)
b,(3) < .35 .
j = (k,-L) e Jg ¢
; _‘LZ_.
bZ(J) < ( (1-1/2 (k‘l)
and .027... (2,2,1)
I, ok ) (243 )s(—]t = .081 £ (r,s,t) = (2,1,2)
=3tz G (55772) G PRl for o ixes vlesd .
Pherefore .010... (1,2,2)

bz(j) < .1 .

J= (=1, , 18] > 1:

172 &, 1,
(—,,{,2) (=) AR

b, (3) ¢
2 t
1/2

(-2_1/2) (-l*1) e L <=1

2

_1/2 ye 1 1/2 v 1 ~
Ilt|>’ bz(j) < :l>1[(l’1/2)(l"1) + (1-1/2)(&..1) ] = «329...
j o= (~1,-1):
bz“""’) < % _;:::: < 1/3 (at  {u,v) = (0,1/2)).

Proof of (9): Since

(u,v) (v,u)

M(r,s,t) M(s,r,t)

and therefore

((u,v),(k,L)) = b ((v,u),(2L,k)) ,

2, (x,8,t) 3,(s,r,t)

- 4.5 -
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the inequality (9) follows from (8) by interchanging the roles of

those of k

and £ .

This completes the proof of Theorem 3.

u and v as well as

-
P

.l

)

P

i

Lo

L

»

[

3
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5. Convergence of Cardinal Interpolatiom. This section is devoted to the main goal of
our paper, a study of the convergence of the cardinal interpolant to smooth functions as

the degree tends to infinity. We prove the analogue of 1.J. Schoenberg's basic result:

Theorem [S,]. If f is the Fourier transform of a measure with support in (-¥,¥) ,

then its cardinal spline interpolant Itf of degree r converges to f as the degree

tends to infinity, i.e.,

If - Irf|. r—“> o .

This theorem is a consequence of the fact that the Fourier transform L; of the
fundamental spline converges to the characteristic function of the interval (-w,¥) .

The bivariate situation is more complicated. Here, the limit of L; depends on just
how n goes to infinity. Recall from (3.3) that

1/L%(28x) = 1+ E  e,(x) a_ _(x), (5.1)
je:z\o b n,j

with ej(x) e {~-1,1} and

urvsu+vt
vl B v { Bl Prvvercorer

tu,v) = ITKD ISR et

A (k.0 . (5.2)
Define the "middle component” u(n) of n by the requirement that it equal the middle or
second number in any ordering of the three numbers r, s, t , and set
n' = (r',s8',t') := n/u(n) .
Then, the typical summand in the right hand side of (1) is, up to sign,
an'j(x) - (an,'j(x))"(n)

This shows that L"(2%x) is close to 1 for large u(n) provided an.'j(x) < 1 for
all j#0.

The set

{x :a, {x) <1 for all j e z°\o} .

n',3
depends on n' . In particular, we cannot expect it to converge as |[n| —> ® unless n' =
n/u(n) converges, to some 3-vector m , say. Here, we are willing to allow m to have

infinite components. For example, if n = (1,8,82) , then u(n) = s and n' =

(1/8,1,8) —> (0,1,») as s —> @ , But not every m € [0,-]3 is a possible limit. By

- 5.1 -
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construction of u(n) , n' = n/pu{n) has exactly one component equal to 1 and, among the
other two, one must be < 1 and the other must be » 1 . Thus the set
3
H H < =
N := {(ne (0,») LIV 1 Ny(2) < N3y for some o € $3}
makes up the collection of all possible limits. On this set, we set up a topology of sorts
by defining the open ball of radius r around m € N by
In1 - mi' . m <o

Br(m) :z= {nenwN: max < r} .

1/n1 ’ mi=.

We extend the definition (2) of 3.3 to all n € N, by pointwise limit if necessary.

Figure 5.1

In what is to follow, the sets

Q = {x:

n am’j(x)<1 for j e J},

with

- 5.2 -




J =z = {(1,0),(0,1),(=1,1),(=1,0),(0,-1),(1,=-1}

play a major role. Note that

a = 9, .

n n
A qualitatively correct picture of ﬂn is given in Figure 5.1 which shows the roughly
hexagonal shape of nn and also shows the six curves

rn,j = {x ec_j : .n,j(x’ =1}, jeJ

which contribute to the boundary, ann + Here, c_j is the union of the two cones Ro

which contain -j .

Theorem S.1. For m € N , let Xy be the characteristic function of ﬂm . Then, for
any 4 > 0 , there exists ¢ > 0 so that
-~ - 'H(n)
ILa(2ex) = x (x)] < c,(1+¢c dist(x,20 )) (5.3)

for all x with dist(x, 30 ) >d andail ne (0, with n' := n/u(n) € B(m) , and

with the positive constants C, and C independent of m , n, 4, or x .

Proof. The proof is based on a series of propositions which we merely state as needed

and prove at leisure later. We begin with the following

.
.

Proposition 5.1. nn. depends continuously on n in the Hausdorff topology.

, “
L " P

+ WA P

.""- ‘e [

which is part of the Corollary to Lemma 6.4 helow. This implies , given 4 > 0 , the

R ]

t-z: existence of € > 0 so that

ks

b dist(nn,,nm) < &2

- for all n' e Bt(m) . Congequently,

b dist(x,30) < 2aist(x,20 ,)
e

for all x with dut(x,anm) »>d and for all n' e Bt(n) . It is therefore sufficient to

DA
et

prove (3) with m replaced by n' .

Por its proof, we use (1) and we consider two cases.

A&

(i) x e nn, « We need

T
T

- 5.3 -
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Proposition 5.2. let
3 = A", = (2(1,1), £(2,-1), 2(-1,2)} .

For n€e€N and x€Q , =0 ,
=0 anc n n

-1
1 + C dist(x,30 ) jegug
(x) < ( W , (5.4)

ne (1+c ljl]-’ ' je:z\(ouaua')

with the positive constant C independent of n, j , or x .

This, together with (1), implies that

- H{(n)
/Ly (2mx) = 11 < T (e, (x))

< 12(1 + c ast(x, ann.))'"("’ + 0z (1 +ci3p™™
je \ U

) (s.5)

< :1(1 + C dist(x, ann,))"‘"‘)
and so proves (3) for this case.

(i1) x ¢ ﬂn, . For this case, we need

Proposition S.3. The integer translates of nn form, up to a set of measure zero, a

partition of 22 ¢ 1.0,

2 - }_&zj+n; , RN +8)=p for 340 .

We conclude that there is j ¥ 0 so that x = x' + j with x' e 9;, « With this, we use

the periodicity of the characteristic polynomial P ¢to write for such x
L) ' ~ . ~ '
L (2¥x) = L°(28(x'4j)) = P(;—':ﬁ% M) o pegawge) x4
M (x') M (x')
Therefore

- - - 0y YH(n)
ILi(2ex)| = r2(2ex')| a (x') = ILn(th')I(an (x")) .

o3 'ed

By (5),
IL;(wa')I < C

- since x' e Q;, « Thus (3) is proved for this case once we show

- 5.4 -
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Proposition 5.4. Let x = x' + j with j e %2\0 and x' € 9, , and with ne .

Then
\ -1
ap. 5(x*) < (r+c dist(x,ann,)) (5.6)

for some positive constant C independent of n and x .

This finishes the proof of Theorem S.1. |||

Theorem 5.2. Let f bhe the Fourier transform of a measure with support strictly

inside 2tﬂn for some me N , i.e.,
d := Jdist(supp f*,a(zanm) )y >0 .

Then there exists € >0 so that, for all n e Bc(") '

=u(n) .
1t-1 0 < c(1+ca) 3

with If"l1 the total variation of f£° . The positive constants C , Cqy do_not depend

on m,d, or n .

Proof. Fix d > 0 and choose ¢ > 0 8o that supp £° C (ZIQn,) and

dist(supp £°, 3(219n,)) » d/2 for all n' e Bc(m) . We have to estimate

£x) - T £ L (x-3) = £0x) = L2072 [, f(1e” Tr(y) o' Vay .
R

Since 2-nn, is a fundamental domain, i.e., its integer translates form a partition of

jex?

of the periodic extension f“p of the meagure f” . Using the weak convergence of the

unity (by Proposition 5.3), and supp f* C Qn, . (f(j)) are the Fourier coefficients

Fourier series of a measure, we obtain

-2 . . . i
£(x) = (I £)(x) = (27) {2 [e2ty) - £ o) Liy)] VY ay .

Applying Theorem 5.1 yields, for n' € Be(n) .

- -2 =u(n) . afe -
1£ -1 £l < (2m) “c (1+ca) a8 +j§°|Ln( 200, o £V
¢ [eouca™™ w5 (™™ aen
je \ ouJus’

. 0. GEEE B~ o

< C‘(1+Cd)-u(n)lf‘l1 . 1

CRpILIN Auiint e 4
« -

= 5.5 -

R . CIDWNLRALELE o 44

P Uy O T W S LU WO S e S SR S S S a Bt 2 et b i j

f;
3
o
.
}
>
b
b




Figure 5.2

~
©

@ " 7
o )

o

\\‘\‘\\‘\\\“l“l‘|(
L

Figure 5.3
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We now discuss briefly the particularly symmmetric and special case
n = (r,r,r) .

Figure 5.2 shows the level lines for P for r = 3 . Note that its minimum

= Py,r,r)
seems to occurs at (2w/3,2%/3) , and this can be verified analytically for r < 4 . We

conjecture that this is no accident, but is the case for all r .

Figure 5.3 shows L_ :=

v for r = 3 (?) . The fast decay is quite striking,

I‘(r,r,r)
making plain that cardinal interpolation with this L would be strongly essentially local.

If we assume that f" e 52 with supp £° c nm , then the convergence of Irf can be
stated in a particularly nice way. We define a bivariate "Whittaker" operator

Wil,—> L,:f |l— ¢ s £ (*=3) ,

2 jes
with
° cos gl(u*v) cos %1(2u-v) cos gl(v-Zu)
X“(u,v) := —5[ + +
2% (u=2v) (v-2u) (u+v) (u=-2v) (utv)(ve=2u)

the Pourier transform of X : . Note that the translates of X“ are orthogonal

® X(1,1,1)
in L, . As in the univariate case [szl + the "Whittaker" series provides the limiting

operator for cardinal interpolation I(r,r.r) as r+» ., More precisely, we have

iw - Ir:lz—-) Lzl t—O? 0. (5.7)

iIf feL, and supp £ CQ

(1,1,1) ' ¥ have w((f(j))’z) = £ and hence (7) is an

Lz-veruion of Theorem 5.2.

To prove (7), we first show that the cardinal interpolation maps I are

r ™ Lr,r,n)
bounded as maps from lz to L, uniformly in r : For f € l2 + we have

- -ije . . 2
e, 1If(e T L, < s, (T aL(es2mn] < cufr,

.9)
By the uniform boundedness principle, it is therefore sufficient to check the convergence

(7) for the unit vector ey e 12 « But this is an obvious consequence of (3). |||

In the univariate setting [R] proved the convergence in lb for all p e (1,=) , but we
leave the corresponding bivariate problem to a later paper.

{MRR] extend Schoenberg's univariate result to include the possibility that f has

support at i¥%. This requires the realization that Lt(tl) ~—> 1/2. Theorem 5.1 says
e

- 5.7 -
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nothing about the limit of L;(x) in case x € aqﬂ . For the special choice n = (r,r,r) ,

such a statement is relatively easy to make.

Corollary . For the special choice n = (r,r,r) ,

/3 , x € Az (5.8)
lim L°(x) =
e 172 , x e 30\ Az

with 2z := (2n/3,2%/3) .

Clearly, our result concerning the convergence of I still holds if f is a

measure, absolutely continuous in a neighborhood of a&m and supported in nm . Our
result is best possible in the following sense. If supp £°N3IQ ¥ @ , then, in general,
I.f does not converge to f . For example, if f(x) = cos(z.x) s, then

*
i(Az) x 2% 2% 2%
I _£(x) > erA e [ cos 3 (utv) + cos 3 (2u-v) + cos 3=(2v-u) ].
This follows from the Corollary. However, it requires slightly more precise information

about the convergence asserted in (8). The heuristic argument is that

- _ “age o 1 2 -
(Inf) = fp Ln 2 (2w)" L 6:+2!jLn(z*2'j)
and therefore
IEf 2 Lone (su- 1/3) .

Here, § denotes the Dirac measure at £ .

11
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6. Detailed estimates. 1In this section, we prove Propositions 5.1 - 5.4 and various
lemmas needed in the proofs. This amounts to a detailed study of the functions ’n,j and
the set ﬂn and how they depend on n € N . In particular, we need to study the boundary
of Rn « This boundary is made up of pieces of curves given implicitly by the equation

an'_j(x) = 1
for some j € J .
We use the symmetries of the given situation. Recall the notation
o(n) =

Moy’ Pa2)’ M)’
We conclude from (3.5) or directly from (2) that

an'j(x) no(n),Aaj(ALX) . (6.1)
This implies that
*
tAqnn = ao(n) (6.2)
and therefore
A(a NR) = @ AR , (6.3)
o'’ n o(n) o

where, to recall from Section 4,
- = 2
R R“) R+ .
Next, we consider the boundary of ﬂn (cf. Pigure 5.1). Each -j € J lies in two

cones Fb s+ With C_j their union, we define the curve

. = (o310 | = 1} . .
LI {xe 3% %4,3'%) } (6.4)
The boundary of “n is made up of gsegments of these curves. It follows from (1) that
»
Ao rn,j = ro(n),A;j . (6.5)
Lemma 6.1. For j € J , denote by 3, Jy the vectors spanning the union Cj of the

two cones R° containing j . For n € (0,-)3 , the curve Pn passes through the
’

3
points -jo, ~j/2, -3' and is symmetric with respect to the point -3j/2 . Moreover, it is

monotone (in an appropriate coordinate system) and is Lipschitz continuous, uniformly in

n .

-~ 6.1 -
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Proof. The symmetry with respect to the point =3j/2 follows from the relations

an,j(x-j) = 1/a Axy = 1/ {(-x)

n,-j an,j

which are immediate consequences of the definition (5.2) of a j° For the rest, it is, in
’

view of (5), sufficient to consider j = (-1,0) . In this case, the curve Pn 3 is given
’

by the equation
u tl u+tv |t

l | utv-1

a1 =1 . (6.6)

Using the fact that u > 0 , utv » 0 , and solving for v , we obtain
u_\a
voeomuos /1 (35)% 0 o<, (6.7)
where a := r/t . This shows that, for any a € (0,®) , the points =-j, = (1,-1), =-j/2 =

(1/2,0), and <-j, = (0,1) 1lie on the curve. Moreover we have

av/an = -1 - [1+ (35)°]7% a (2" -w? (6.8)
which shows that
av/au < -1 , (6.9)

with equality only if u = u . This proves the remaining assertions of the Lemma. |||

Lemma 6.2. let Jgr 34 be the two vectors which span the cone R° « For n € (0,-)3 ,

the curves T and T intersect at a unique point =z € R_ . The boundary of
- M3y T iy n,c ¢
Qn congists of the segments of the curves rn 3 connecting the points in J/2 and
’

zn,o ,0€ $3 .

Proof. In view of (3) and (5), it is sufficient to consider the case o = (1), Ro =

R and j, = (1,0), j, = (0,1) . By (9, T has slope < -1 , with equality only
nl(_1:0)
at the point (0,1) . similarly, a direct computation shows that Pn (0,-1) has slope
’ ’
between -1 and 0 . Since [ and T pass through the points (0,1),

n,(-1,0) n,(0,-1)

(1/2,0) and (0,1/2), (1,0) respectively, they intersect at a unique point z e

n, (1)
(0,1/2)2 . To show that the boundary of ﬂn intersected with R consists of the segments
connecting (0,1/2) with zn’(1) , and zn,(1) with (1/2,0) , we prove that, for x =
(u,v) € R,

an'(_1’o)(X), an'(0'_1)(x) < 1 implies that an’j(x) <1 for all jeJ.

- 6.2 -

Bt ot ctodiattedibotee st oS P S S S i ¢ D i - s s

RN




Indeed,

r t
u Iu*v'

& (=1,00® rver | B peremny
implies u < 1/2 , and, from an'(o'_1)(x) < 1, it follows that v < 1/2 . This implies
r t
u v
an, -1, = ISR <
and the other cases can be checked just as easily. |||
b -
. 3
"L - . n . 11
. Lemma 6.3. For all me N, rm,j lim {rn'j. n e (0,#)°'NN} . Hence Lemma s

e valid for all neN .

Proof. Without loss of generality, we congider only the case j = (-1,0) . We claim
that,

BL((0,1),(0,1/2),(1/2,0),(1,=1/2),(1,=1)) if m = 0 and/or m,= =

=3 BL((0,1),(1/2,1/2),(1/2,0),(1/2,-1/2) ,(1,-1} ) if m = ® and/or m = 0

where BL(x,,...,xm) denotes the broken line with vertices Xqs ooey Xy o Consgider, e.g.,

the first case. By (9) and the symmetry of the curves T and rm , we have for
’

n,J j

ne (0,23 that

dist(rm . Pn ) € L with u, g.t. a

.3 (un,1/2) =1.

o) n,J

Prom (6), we obtain
1n(1-un) - 1ln u

ln(un+1/2) - 1n(1/2-un)
If n—> m with my =0 and/or my = ® , we must have Y —> » and, by the above

Y = t/r

equation, this implies that u—> 0 . The gsecond case can be handled similarly. |||

Lemma 3 is a particular case of the next lemma which states that Pn depends
’

]

continuously on n .

Iesma 6.4. For n, me@ N , dist(Tl

n,j'rm,j)_>o as n—>m.

Proof. In view of Lemma 3, we may assume that m € (0,-)3 « Moreover, it is sufficient

to consider j = (-1,0) . In this case, it follows from (7) that Pn -

.3 Pm’j pointwise,

- 6.3 -
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both curves being viewed as functions of u . By the uniform Lipschitz continuity of the

curves, this implies the assertion of the lemma. |||

Lemmas 1-4 give a qualitative description of the boundary of Qn . We summarize the

main features in the following

Corollary. (i) ann congists of segments of the curves rn 3 connecting the points

in J/2 with the intersection points z 5 ce $3 .
’

(13) ann is piecewise monotone and is Lipschitz continuous, uniformly in n .

(1id) ﬂn depends continuously on n in_the Hausdorff topology .
Note that this provides the proof of Proposition S.1.

To give a few examples, we list below all cases for which nn has a piecewise linear

boundary.

(1/3,1/3)

(1/2,0)

Figure 6.1: n = (1,1,1)
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(-172,1)

\ (1/2,1/2) ]

- (-1/2,1)

Pigure 6.2: n = (1,1,0), (1,0,1), (0,1,1)

L
oA

_ (1/4,172)
-\ (1/2,1/4)

(3/4,-1/4)

Mgure 6.3: n = (1'1,.)' (1'-01)1 (.1111)
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Moreover, we have

81,1,00 = R0 T fr,@,0)

= = 6.10

9(1,0,1) s"(-,0,1) 0(1,0.'-) ( )
0,1, = Yo,en T %o, 1,

We take the occasion to prove the following observation which stresses the underlying

hexaqgonal structure.

*
Proposition 6. 8, := 18 = intconvasz , 8, :=Ug = U a 0, 1/2)2 .
ACA

0 n n
+

Q
o (1/2,1/2)

\(1/2.0) !

Figure 6.4
Proof. We claim that, for any n ,
() s u, v20, wve1/2 ¢ RNR ¢ (0,727 . (6.11)
This follows from Lemma 1, in particular from the fact that the curves T and

n,(=1,0)

Pn (0,-1) pass through the points (1/2,0) and (0,1/2) and, as functions of u , have
, ’

slopes € -1 and > -1, respectively. To complete the proof, note that n = (0,1,1)

- 6.6 =




gives equality in the first inclusion of (11) while n = (1,1,0) gives equality in the

second. |||

We are now also ready for the

Proof of Proposition $5.3. Because of the continuity of Qn as a2 function of n , it
is sufficient to consider n € (0,-)3 .« In this situation, Figure 5.1 gives a qualitatively
correct description of nn . Because of the geometry of nn and the symmetry relations
(2), it is sufficient to establish the following claims:

(i) 5+ T = T for all jeJ .

n,J n,-j

(ii) The curve (1,0) + T passes through the point z .
n, nl(‘)

(1,-1)
The first assertion follows from the relation
ﬂn'j(K'j) = 1/an'-j(x)
alluded to earlier and directly derivable from the definition (5.2) of an,j . As to (ii),
note that
4, (=1,00{%, (1)) = 1 = 3y (0,-1) (%0, (1))
implies that

' = 3, 00,-1)/2n,(-1,0)Zn, (1))
- an'(1'_1)(zn'(1) - (110’) ’

i.e., Z0,(1) e (1,0) + T . I

n,(1,-1)

The next three lemmas state various estimates for the functions ‘n,j needed for the

proof of Proposition 5.2.

3
lemma 6.5, For n € [0,w) with at most one comnonent less than 1 , we have

-1 -
a,, 4(x) < [v+ c atst(x, T r\nn)] , o xea , jeds, (6.12)

n,j

with ¢ a positive constant which does not depend on x , n, or j .

Proof. we may assume that x 3= (u,v) € R, in particular that u, v € [0,1/2] . We

consider each j € J separately and suppress all references to n .

r t
= = (U (BRv
(1) 3 (1,0) . We have aj(x) '1*u |1+u+v| < 1/2 . This proves (12) since

- 6.7 -




dist(x, I nnn) < 1 . Por the estimate, we have used the fact that min {r,t} > 1 .

n,J
The case j = (0,1) is similar.

.

(ii) 3 = (-1,0) . The following figure may be of help in following the argument.

,

.wie s ase

Figure 6.5

Let i := (0,-1) and let 2z =: (uo,vo) = Z0q) be the intersection of the two curves Pj

and Pi . We consider two cases.

For v € Vo ¢ there exists € > dist_(x, Pj N 1) such that (u+e,v) € rj , i.e.,

aj(u+¢.V) = 1 , It follows that

aj(u,v) = aj(u,v)/aj(u+s.v)
U \Z71-U=€\T/ UtV 1t t-u-v-g,t
;IE) ( 1-u ) (u#v+e) ( 1-u=-v )
utv ymax{r,t} -1
(m) 4 € (1 + ¢€) .
- 6.8 ~




where we have used the fact that s, t » 1 and the last inequality is easily checked.

Since

.

'u-uol < lul + |u°| < 2ful ,

RS

P

this proves (15) for this case.

K
s ‘2 la"s

(b) xeTl ng , i.e., 0 <€ u<€u = |u | . We assume first that
(0,-1) 1 0

v, - /2 > |u0|/3 . (6.18)

0

Since zq e rj , we have

r -]
) . (ut1)/u (1=-v)/v
a (x) a,(z,)/a,(x) '(u0+1)/u°' I(1-v0)/vo'
(vo-V)/(VVO)

In view of
lu - uol < 2Iu0| < 6(vo-1/2) € 6(vo-v)
this proves (15) under the assumption (18),

Next, suppose that

Vo T /2 < |u°|/3 . (6.19)
We claim that
ugtn/m 1™ > 1+ clugl , (6.20)
and this finishes the proof of (15) for this case, in view of (16) and the inequalities
r u +t r
1/aj(x) >. |2§l| > | :o | > 1+ C|“°| > 1+ (c/2)|u - uol .
- To prove (20), we use the fact that z, @T = r(_1'0) - 3 + therefore

r t
|(u0+1)/uo| I(u0+vo)/(1-uo-vo)| = 1.

Solving this for r , we obtain

1n |(uo+vo)/(1-uo-vo)| 172 - (2/3)|u0|

r = t > =1n
1n I(uo+1)/u°| 1/2 + (2/3)|u0|

/ 1n |(u0+1)/u0| .

Here we used the assumption (19) and that t » 1 . Therefore, we have

1+ (4/3)|uo|

+ » —_—
r In I(u0 1)/u0l in T (4/3)|Uo|

> 1n [1 + (4/3)|uoll

- 6,11 =«
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which establishes (20). This completes the case Jj = (1,-1) .

The case 3 = (-1,1) 1is treated similarly. |||

From the statement of Proposition 5.2, recall the definition

I g A"(1,1) = (£01,1), £(2,-1), $(-1,2)) .

lemms 6.6. For ne (0,)°NN, x€Q , and jeJ
o,y € [1+c ateex, -],

with C a positive constant which does not depend on n , x , or § .

Proof. Assume without loss that x = (u,v) € R .
We consider first 3 = (-1,-1) . Assume, e.g., that 1/2 - u = dist_(x, (1,1)/2)

=3 € . Then we have

r r t
u v utv 1/2-¢ 1-€
.(-1'-”(") |—"_“' '_1_"' l_—Z-u-VI < |1/2"| I_H'tl < 1/(1+e) .

In the remaining cases j € J'\ (-1,-1) , we have dist_(-3/2,R) € 2 and therefore it
is sufficient to bound aj(x) by an absolute constant less than 1 . This is

straightforward, using the fact that a,_ (x) , a _qy(x) € 1 . Wwe list only the
(=1,0) (0,=-1)

estimates:
] = (1,1) s
4 [ ] t
u v udv -r. =8, ~t
7! Ioa7! lgeeez! € 33 27 .
= (2,-1) ¢
a (x) € a (x)/a (x) = |L|’r|"""’|t < 527,
(2,-1) (2,-1) (0,-1) 2+u’ ' 2-y-v
= (-2,1) :
v s 1=u~=-v t -8 ~t
Qa1 2)f®) € Ay )XV ¥ = IES) IR ¢ s 2

The remaining two cases , 3J = (-2,1) , (1,-2) are similar. |||

Lemsa 6.7. For ne€N, xe€Q ,and je %\ (W),

3,40 < [1ecn]',

with C a positive constant which does not depend on n , x , or J .

- 6.12 -
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Proof. let j = (k,2) and x = (u,v) and, without loss of generality, x € R,
hence u, v @ [0,1/2] . We consider several cases.

(1) k, £t #0, -t , and k+L ¥ 0, ~1, -2 ;: Then

u -1 v -1 u+v -1
|;;;| < (1 + Ix]) ' Iv+l' < (1 + |2 ’ |u+v+k*£| < (1 + |k+2]/3) .

Using the fact that (1+p)-'(1+q)-‘ < (1+pﬂ';)'1 for p,g » 0 and that |p| + |p+ql
> max {Ipl,Iql} , we see that the product of any two of the above lefthand terms is

bounded by (1 + |j|../3)"1 « Since at most one of r , 8, t is less than 1 , this yielads

a4 € (WIRDTTOHAD 0 etl/H7E ¢ e 31T
L4

(i) 3J = (0,-2) : Since x € Qn + we have

v % usv
“n,(O,-‘l)(X) - '1-v| I1-u—v|

and therefore

1

1-v, 8 1-u-v t -8, -t -
an'j(x) <an'j(x)/an'(°'_1,(x) = '3-_v' lml <€ 272 < 12 = (1 + {3 /) .

(i14) x = 0, 2 # -2,-1,0 : Here

1

SRR CIR N FTIZ TRl

8 t
v utv -8 -
a, 4(x) = 'v+l| |u+v+l| < (1+]2]) TO+gl/)

(iv) k==1, L # «1, 0, 1, 2 . Here
l—‘-'-lrlLl'l-—““'—lt ¢ 1O+ (=107 < (s 13157t
1=u' ‘w2’ ‘ubves-1 N/ °

(v) k=0, -1 and & = 0, -1 : Treated in analogy to cases (ii) - (iv) .

(vi) 2 =<k, k¥ =1, 0, 1 : Here

1

T g,

r 8
u v -r -
a, 4000 = IS IS € O+kDTTO+IKD

(vii) & = k=1, k # =2, -1, 0, 1 ;: Here

r s
1=u v -r -8 -1
‘n,j(x) < 'n,j‘“)/‘n,(-I,O)(x) < I;:;' lv—k-il < |kl " (1+)k=-1]) < (1+|x|/2)

< (s gnTt.

(viji) £ = ~k=-2 , k # -2,-1,0 : Here
u-1,F v B usver t -1
o,y %) < 4y y00/ay 0™ = il Kol Ravg! ¢ Ol

< (engm.

This covers all j € 2\ (oura') . (It

Proof of Proposition 5.2. Lemmas S - 7 prove (5.4) for ne N n[o,-)3 , with the

constants independent of n . Since ﬂn depends continuously on n € N (by Proposition

- 6.13 -
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5.1), this proves (5.4) for all ne N . |]]

Proof of Proposition 5.4. To prove (5.6), we consider three cases.

(i) j @ J : From the geometry of the set Qn = ﬂn, (cf., Figure 5.1 which gives a
qualitatively accurate description of the general situation) and, in particular, from the
egstimates of the slopes of the curves rn,j + we can see that in this case

dist(x,aﬂn) = dist(x',Pn'jrﬁﬂn) .
Therefore, (5.6) is a consequence of Lemma 6.5 in this case.

(i1) j e J' : Assume, e.g., that x' € wann . Then, for j € J'\ (-1,-1) , we have

dist_(x',-j/2) » 1/2 and (5.6) follows from Lemma 6.6 since dist.(x,aﬂn) <C.

It remains to consider the case j = (~-1,-1) , From the bounds on the slopes of the

curves T y ! we see that Qn lies in the half space

n,(1,0)’ rn,(o,1
* »
{y:y (1,1) > -(uo,vo) (1,1}

where (uo,vo) = z(1) is the point of intersection of the curves Pn'(-1'0) and
2 '
rn,(O,-1) « Since nnrwn c [0,1/2])° , it follows that, for x' € nnr\R ’
= ] - -
dist, (x,30 ) aist (x', 2(1)+(1,1)) . (6.21)

Here, dist, denotes the 11-distance. Moreover, we have, in view of [-2(1) + (1,1)) -
(1/2,1/2) = (1/2,1/2) - Z(q) o that

dist1(x', -2(1)+(1,1)) = dist1(x',z ) + 2dist1(z(1),(1/2,1/2))

(1)
< 2dist1(x',-j/2) .

(6.22)

This, tcgether with (21) and Lemma 6, proves (5.6) for this case.
(iid) j e =2 \ (OURUT') : In this case, (5.6) follows from Lemma 7 since, for any
j#0,
dist(x, ann) < clil .

This completes the proof of Proposition 5.4. |]]
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