
-A127 939 BIVARIRTE CARDINAL INTERPOLATION-BY SPLINES ON A i/I
THREE-DIRECTION MESH(U) WISCONSIN UNIV-MADISON
MATHEMATICS RESEARCH CENTER C D BOOR ET AL. MAR 83

UNCLASSIFIED MRC-TSR-2485 DAAG29-90-C-894i F/O 12/1 N

-Ehhsomommoli
mhhhhhhhhhhhhIl



1111 11120

11111125 11111J'.4 111.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A



MRC Technical Summary Report #2485

17BIVARIATE CARDINAL INTERPOLATION BY

SPLINES ON A THREE-DIRECTION MESH

Carl de Boor, Klaus H6llig and

Sherman Riemenschneider

Mathematics Research Center

University of Wisconsin-Madison

610 Walnut Street
Madison, Wisconsin 53706

March 198"

(Received February 23, 1983)

Approved for public release E CDTI

Distribution unlimited CTE
i 0 b 19M

Sponsored by E
U. S. Army Research Office National Science Foundation

P. 0. Box 12211 Washington, D. C. 20550

Research Triangle Park
North Carolina 27709

83 051



UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS PESEARCH CENTER

BIVARIATE CARDINAL INTERPOLATION BY SPLINES ON A THREE-DIRECTION MESH

Carl de Boor1 , Klaus H811ig1 '2 and Sherman Riemenschneider
3

Technical Summary Report #2485
March 1983

ABSTRACT
For a sequence Z - ,Z ) in Z, the box spline Mz is the

distribution given by the rule

Mz f *(z Xjz.) d.
ikx

We show that Pz(x) ke 2 M z(k) e > 0 iff AZ C ((1,0), (0,1), (1,1)1 forkez2  -- ,

some linear map A which is 1-1 on Z2 . This implies that, for such a Z , there

exists, for any bounded continuous function f , a unique bounded spline

Izf e span(Mz(*-k) : keZ2 } which agrees with f on Z2 . We give sufficient

conditions in terms of the Fourier transform of f for the convergence of Iz f as the

degree JZJ-2 tends to infinity. E.g., we show, for the case that Z contains each

of the vectors (1,0), (0,1), (1,1) exactly n times, that If - Ifi -> 0 ifn .,R2 n -

supp f CC 1 :- conv{(z,z), -(z,z), (-z,2z), -(-z,2z), (-2z,z), -(-2z,z)} , with

2w
z : - • The converse of this result holds with "CC" replaced by "C"
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SIGNIFICANCE AND EXPLANATION

In a series of monographs-(cf. MRC Technical Summary Reports #852, #1104,

#1113, #1150, #1153, #1180,#1184, #1219, #1222, #1326, #1330, #1360, #1423,

#1546) I. J. Schoenberg developed a comprehensive theory of univariate I
cardinal splines. His results strongly influenced the analysis of totally

positive matrices.
/7,

In this report M4extend two of his basic results on cardinal

Interpolation to bivariate box-splines.which have been introduced in MRC
)

Technical Summary Reports #2320, #2415. r show that, for functions of

exponential type, cardinal interpolation is a rapidly convergent approximation

process as the degree tends to infinity. Being not restricted to a tensor

product mesh gives a greater flexibility, and because of the exponential decay

of the Lagrange functions, spline interpolation is suitable, e.g., for data

smoothing. )F9 also expect that bivariate cardinal splines have a similar

significance for theoretical questions as in the univariate case.
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BIVARIATE CARDINAL INTERPOLATION BY SPLINES ON A THREE-DIRECTION MESH

by

Carl de Boor
1 , Klaus H8llig

I'2 and Sherman Riemenschneider
3

Dedicated to I.J. Schoenberg

to whose insight and sense of beauty we are all indebted

1. Introdaction. In this paper, we carry Schoenberg's beautiful cardinal spline

theory S2, 3] over to a two-dimensional context which is not just the tensor product of the

univariate situation. We find that we must work harder, yet must be satisfied with less

precise results.

We are after a bounded cardinal interpolant to bounded data. This means that we are

looking for a function of the form

If = 2 aM(.-j)
jez

with a e 1.(22) which agrees with a given bounded function f on Z2 . Here, M is a

fixed function of compact support. In Section 2, we follow Schoenberg (SI1 in describing

necessary and sufficient conditions on the Fourier transform of M to insure the

correctness of the interpolation problem, i.e., the existence and uniqueness of solutions.

We are particularly interested in using for M a box spline , i.e., the two-

dimensional "shadow" of an m-dimensional cube, as given explicitly in (1.1) below. We find

it convenient to change the definition [BHil

M : f,] # ( E X(C)C) dA
(0,1] cez

of the box spline M = mZ to include an appropriate shift which makes the origin the

center of the support of M . This means that we use the definition

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
2 This material is based upon work partially supported by the National Science

5oundation under Grant No. MCS-7927062, Mod. 2.
Supported by NSERC Canada through Grant #A 7687.



M* : f *( E ACC)4) dA.(1)
1J 2 1/2] cez

This gives the Fourier transform M' of M the symmetric form

*

!4(x) = n S(C x) (1.2)

cez

with

Si sin t/2 (.3)
t/2

It is obvious from this formula that M = Z is unchanged if one or more of the c e

Z are replaced by their negative, i.e.,

MAZ = MZ (1.4)

If A = diag(±1,...,t1) . Further, if A is any matrix, then
*

M;z(X) - M(A x) and AZ (Ax) Mz (x)/det A (1.5)

This allows one to deduce symmetries in M in case AZ equals Z after, possibly, some

elements of AZ have been multiplied by -1

The set Z of directions can, of course, be chosen arbitrarily. But since we are

interested in having

s : span ((.-j)).T- je 2

be a simple piecewise polynomial space, we choose Z from Z2 . It is shown in [BH1 ] that

the integer translates M(.-J) , j e z2 of the box spline are linearly dependent (when

allowing for infinite linear combinations) in case the direction set Z contains two

vectors which span a proper sublattice of Z
2 

. Linear independence is an obvious necessary

condition for the cardinal interpolation problem to be correct. Thus, up to obvious

symmetries, this leaves the three vectors (1,0), (0,1) and (1,1) as the only candidates

for the directions C in Z

With this restriction, S is a space of piecewise polynomial functions, of polynomial

degree IZI-2 or less, and with possible discontinuities only across the three types

x(1) = k , x(2) - k , x(1) - x(2) = k , k e S

of mesh lines. The overall smoothness of the elements of S depends on the multiplicities

of the directions in Z . Such details, as well as the relationship of S to the space of

all piecewise polynomial functions on such a three-direction mesh, of degree IZI-2 and of

specified smoothness, are all discussed in [BH 2 ].

1.2



In Section 3, we supply certain detail concerning symmetries of such a three-direction

box spline and its Fourier transform. we prove the correctness of cardinal interpolation

with such a box spline in Section 4. We spend the major effort of this paper in Section 5

where we prove that, under reasonable conditions, the cardinal interpolant If of any

suitably smooth function f converges to f as IZI -> * . Specifically, we prove such

convergence under the condition that f is the Fourier transform of some compactly

supported measure, following entirely the path established by Schoenberg IS) in the

univariate case who showed that such converqence could be had whenever supp f^ C (-w,w).

We find, though, that, in our bivariate setup, there are many different sets playing the

role of this interval, and which of these sets is relevant depends on the manner in which

IZI goes to infinity.

The final section is devoted to the many detailed estimates on which the arguments in

Section 5 are based.

-1.3-
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2. Cardinal interpolation. Let M:R 2 
-> be a continuous function with compact

support, and denote by

S : s : span {m(. - j) j e2

the space generated by its integer translates. Cardinal interpolation with N concerns

inversion of the linear map

S L -> Jt.:fI-> f (2.1)

We say that cardinal interpolation with M is correct if this map is 1-1 and onto, hence

boundedly invertible, and denote its inverse by IM  or I • In other words, cardinal

interpolation with M is correct iff there exists, for every bounded sequence f e 1.(z 2

a bounded function If e S which agrees with f on Z2 . The interpolation problem,

i.e., the determination of If , is equivalent to the algebraic problem of determining the

coefficient sequence a for

If = E a .-j)

so that

a e . and aM(.-j) f on Z2

Hence the correctness of cardinal interpolation is equivalent to the Invertibility of the

matrix

A := (M(J-k)) Z2 (2.2)
j,kez

as a map on i • Since A is a banded (biveriate) Toeplitz matrix, we have the following

necessary and sufficient condition for the correctness of cardinal interpolation.

-' Eb1eorem 2. Cardinal interpolation with M is correct iff

P(x) :- PM(x) := E M(J) e
i
'
x  

(2.3)

does not vanish.

Proof. If P(x) - 0 , then (eii 2 e ker Arlh. , and this contradicts the
.. jez2

assumption that A is 1-1. On the other hand, if P does not vanish, then the inverse

.of A can be expressed as a Toeplitz matrix,

-i(j-k)x
(A-

1
) = f dx/2w (2.4)
. f , 2 P(x)"

-2.1-



In view of the geometric decay of the Fourier series for 1/P , we have

j(A1 Jkl const Xli-kI (2.5)

2
for some = AP) e (0,) . Therefore, A-1  is bounded on Ip (z) for any p e

[1,-1 .,II

It is convenient to write the cardinal interpolant in Lagrange form:

If = E f. L(*-j)
)

with

L : LM  :- 16 (A- )0j M(--j) (2.6)

the funiamatal function of the interpolation process. The Fourier transform L^ of L is

particularly simple. Combining (4) with (6), we obtain

L- - M/P . (2.7)

we will also make use of the identity

P(x) Z M^(2uj - x) (2.8)

which follows from applying the Poisson summation formula Ef(j) = Ef^(21j) to (3).

r
F'" -2.2-
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3. Cardinal Interpolation with a box spline. In this section, we develop in some

detail facts about cardinal interpolation with the box spline MZ  Recall from Section I

::..that [((--J)) is linearly dependent if Z contains two vectors which span a proper

sublattice of Z . Linear independence of (M(-j)) is an obvious necessary condition for

cardinal interpolation with M. to be correct. Thus, up to obvious symmetries, the only

relevant case to consider is the case when the only directions in Z are

d, :- (1,0), d2 := (0,1) , and d3  (1,1)

We show in Section 4 that, with this restriction, cardinal interpolation with Mz is

always correct.

Assume from now on that

Z = (d1 :r, d2 :s, d3 :t)

In this case, Z is characterized by the vector

n := (nI , n2, n3 ) (r,s,t)

of direction multiplicities, and we will freely write n instead of Z whenever it is

necessary to indicate by subscript the dependence on Z of some quantity. Further, the

general formulae given in Section I simplify. For example,

M^(u,v) _ S(u)r S(v) s S(u+v)t (3.1)
n

with

S(t) := sin(t/2)
S.-. t/2

Further, the characteristic polynomial P Pn and the Fourier transform L^ of the

fundamental spline L = Ln have the representations
()rk+st+t(k+L)

P(2wu,21v) = w"nlsin(wu) r sin(wv))(sin(r(u+v)))a (3.2)
(u+k) r(v+L)s (u+v+k+ ) t

and r:;i sod
I/L^(2wu,2wv) rk+s+t(k+ut) V Us v(i 3.3)

k,tez i- +J l

Let A m denote the transpose of A .The relation

M^ (x) = M(A x) (1.5)
AZ Z

valid for any matrix A together with the fact that

MAZ = Mz (1.4)

in case A . diag{( 1 ,...,€ 1n) wit), e {-1,i} , all i , implies certain symmetries of

,31
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M and M^ if the matrix A leaves the set

Z d= dd 2 ,d3 , -dl,-d 2 ,-d3 }

invariant. Denote by A the group of all such invertible matrices A . Each A e A is

associated with a permutation oA e $3 (:= symmetric group on 3 elements) by the condition

Ad e (d 0 (l),-dA) , 1=1,2,3

Prom the two matrices corresponding to a given a e $3 ,we choose one, A., in such a way

that the six matrices form a group and we call this group A+ . Thus,

Ad 1 efd0 l1 l. -doli)} , all o e 3 (3.4)

and one choice for the group generators are the three matrices

corresponding to the transpositions (12), (13), and (23) . With the definition

o(n) " 1no(1 1, n0 (2 ), no(3 ))

it follows from (1.5) and from (4) that

Sn(x) = M1 (l Ax) 3
n a~) 0 35

M;(n) (Y) M ( .Ay)

This implies

P n(tA:x) - PU(nllx) (3.6)

and

Ln(x) - L ln) (lAOx) 3.7)

L' (y) - L^(IA
c(n) n Oa

Of particular interest is the case

r-s-t

i.e., when the direction multiplicities are all equal. In this case, o(n) = n , all a

i.e., 151-171 hold with o(n) replaced by n • For example, writing out in detail the

relations (6) for P - P(ess' , we get

P(u,v) = P(-u,-v) = P(v,u) = P(u+v,-v) = P(-u,u+v) ( (3.6'1)

The relations for M , P^ and L will be used frequently in the sequel. Since they

are given in terms of the transposes of the matrices in A , we consider now

-22
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A* f*:Ae )

in more detail. Set

0~ 1
d' d

Since d' d - 0 , we see from (4) that A* leaves Z! invariant. To further illustrate

the action of the group A ,we divide R2 into the six cones R a a e $ 3 as

indicated in Figure 3.1.

R

(132)

R ~ R ( 13)

R1 23 )

Figure 3.1.

It is easily checked that

A aR =R aall a e 3 (3.8)

-3.3-
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4. 2he correctness of cardinal interpolation with n  In this section, we show that

3
cardinal interpolation with Mn is correct for all choices of n e Z+

-heorm 4. For all n 8 , Pn is strictly positive.

Since P is 2w-periodic, this amounts to the claim that

2
Pn(x) > 0 for all x e [-w,w]

This is the bivariate analogue of Schoenberg's well known result for univariate cardinal

spline intirpolation. To recall this result, denote by

Nr

the univariate cardinal B-splIne of degree r , and by Qr the corresponding

characteristic polynomial given by

i jx
QrCx) E N r (j) e

Schoenberg showed in (S1] that

r+1 v(r+l)
minx Qrlx) Qr(w) 2.w T. r+1 (4.1)

x r~x) Qr") W E:.o 2V+1 )r

The fact that, for any r , the minimum is attained at x = w is a consequence of the

total positivity of the matrix (N r (ik))Jkez ' In view of this result, one might think

that, in the above theorem, minu,v P(u,v) = P(w,w) . This is trivially true in the tensor

product case, i.e., when n - (r,r,0) . However, in general, the point at which Pn

attains its minimum depends on n . It would be interesting to determine its location for

special choices of n . The nicest conjecture in this context (cf. Section 5) is that

min P(u,v) = P(2w/3, 2w/3) in case n = (r,r,r) . (4.2)

In the proof of the theorem, we make use of (3.6). This allows us to assume without

loss of generality that

r )o s >t

We first consider two cases which reduce to Schoenberg's result.

The tensor product case n - (rsO) . Here, we have Mn(u,v) = Nr(U)Ns(v) , and this

implies that

Pn(u,v) = Qr(u)QsCv)

- 4.1 -



The case n = (r,1,1) . Since the open support of Mn intersects exactly one mesh

line of the form (-,) , viz. the meshline (*,0) , it follows that, in this case,

N(k) =0
t.-• MkL) r r

0 1 e z\0

This means that cardinal interpolation with Mn reduces to univariate interpolation with

Nr on each of the lines (*,x) , £ e z . In particular, P(u,v) - Qr(u) •

For the proof of Theorem 3, it remains to consider the cases where the multiplicities

are all at least I , with equality for at most one. We make this assumption for the

remainder of this section.

To prove the positivity of P , we use the representation (2.10) in the form

P(2wx) M t(x+J) , (4.3)

with

M (x) M(2Wx)

Recall from (3.1) that, for x (u,v) and j (k,l)

'i"Inl wur4.4)~~kJt

M (x+j) ( ilnsin (ursin wv)5 (sin w(u+v))t r s (4.4

(u+k)r (v+L)(u+v+k+
t l

It is sufficient to show the positivity of P2N.) on [0,1/212 for arbitrary n

This follows from (3.6) since, by (3.8),

(-1/2,1/212 C LJA*[0,1/2]
2

For x e [0,1/2]2 , we now show that the three positive terms

M (x) , M(x - d ) , and M (x - d ) (4.5)

dominate the sum in (3). To this end, we associate each of the other terms with one of

these (even to the point of splitting one of the other terms between two of these) and show

that the resulting three sums, when divided by their respective dominant term, each is less

- than I • For ease of argument, we actually split the sum into altogether ten parts, as

. indicated in part by the figure below.

-4.2 -
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Figure 4.1

To simplify notation, we set

b V(J) :b V(J,x) IM ,XJ 1 1, 2,3 *(4.6)
V ~ ~ Vf (x+J

withV

- -d

J1 0 J2  -d1  j3 2

We now prove that

E PJU4b I (J) + E E b 1 (1-1) < 1 (4.7)

EZjj b 2()+ E1>0b 2 (- 1, ) 1 b2(4.8)/2<

E b ()+E (,I + b ((L ,-1) / <1(49

Since each of the summands (divided by its appropriate dominant term) other than the three

dominant terms (S) occurs in (7-9) exactly once, we conclude from (7-9) the positivity of

.p

-.
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The estimation of the various sums in (7-9) is straightforward. In each case, we find

a majorant which is independent of x e (0, 1/232 and n . For this, recall that we are

assuming that r,s,t 1 with at most one equality.

We begin with the sum EJ b1 (j) . By (3.1,4.6), we have for x = (u,v) and j

= (k,I) ,

r s t
b11J) u v I I l I u I

1 u+k v+L1 u+v+k+t

Since k, t > 0 for j = (k,t) e J1 and we are assuming that u, v e [0,1/21 , this

quotient is largest when u - v = 1/2 i.e.,
S1/2 r(1/2 )(1)

bl(J) 4 1 /2- +k / 2+ I--

This bound is largest when the exponents r , , t are as small as possible , i.e.,

when n = (1,2,2), (2,1,2) or (2,2,1) . Since

E / 2 i r 1 / 2 s 73t

k,J0 (1/2+k) (1/2+1 1+k+) .1723...

(k, )*O

for these values of n , we conclude that

Sb l(J) < .18 . (4.10)

Similarly, one verifies that, for j = (-k,-I) e J4 and x e [0,1/2]2

b 1/2 it /2 1

bI k _1/2 -1/2 k+_1

and so obtains that

E b (j) < .02 (4.11)

since

-r -13 -tE (2k-1) (21-1) (k+1-1) - .0101...
k,Jt>1

for (r,s,t) = (1,2,2), (2,1,2), or (2,2,1).

Finally, for j (-I,t) and £ 0 , we have

r1/2 
)r( 1/2".. 1+112 1-112

'.'. i(-111) 4 S1/2 r( 1/2 is

and so obtain

2 2
E Et*O b (LIt-) r W(£+1/2 t-1/2 + 't1/2 ) -1/2] = .5 (4.12)

-4.4-
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Combining (10-12) establishes (7).

The other inequalities are proved in a similar fashion and we only list the estimates

involved.

Proof of (a):
. U1 r v s9 u+v-1 i t

b2 (j) - I '- I I
2u+k v;I +L uv+k+ it

j (-k,D.) e j

b2 (j 11/2 (s) (

and .25... (2,2,1)

k- r 112 = .23... for (rs,t) = (2,1,2)

Therefore .30... (1,2,2)

E b2 (J) < .35

,() j .(k.-L.) 2 8 e
2 k rE /2 k-L

and
t .027... (2,2,1)

-k-1 1r /2 is t

Ek-3 =2 k .-1/2) _Z = .081... for (rst) = (2,1,2)

.010... (1,2,2)

E ib 2 (j) < .1

5

b2-j)(-1, -- 2, I- 2.i >I ( -

2 2

S1/2 )S(l)

W ~ /2 ' 11 J > 1

i 2lJ 1/2 )( 1 i
t

<

i:; r. b (J )  r( 1/2 I 2 I 2

E b (J) 1 E1> 1 1'(+ 1 2  ) + "L '2).i '"]= .329...
2L 1>1I+

~j = (-1,-i):

b2 (-1-1) 41-v 2-u-v i 1/3 (at (u,v) (0,1/2)).

Proof of (9) Since

M. (uv) =M (vu)
(r,s,t)(srt

and therefore

b ((u,v),(k,L)) = b3(lvul,(L,k))
2,(r,s,t) 3, (s,r,t)

-4.5-



the inequality (9) follows from (8) by interchanging the roles of u and v as well as

those of k and I

This completes the proof of Theorem 3. III

I.

-4.6 -



S. Ocmvergene of Cardinal Interpolation. This section is devoted to the main goal of

our paper, a study of the convergence of the cardinal interpolant to smooth functions as

the degree tends to infinity. We prove the analogue of I.J. Schoenberg's basic result:

heorm 182i. If f is the Fourier transform of a measure with support in (-w,w)

then its cardinal spline interpolant Irf of degree r converges to f as the degree

tends to infinity, i.e.,

If- Ifl > 0

r

This theorem is a consequence of the fact that the Fourier transform L of the
r

fundamental spline converges to the characteristic function of the interval (-w,T)

The bivariate situation is more complicated. Here, the limit of L^ depends on just
n

how n goes to infinity. Recall from (3.3) that

1/LC(2wx) = 1 + Z C .x) a n, (x) , (5.1)'.-. jez \0o

with e (x) e (-1,1) and
r s t+

a (u,v) : uk v+D. u+v+k4L " (5.2)
n, (k.D.) uII v+9 Iv +

Define the "middle component" P(n) of n by the requirement that it equal the middle or

second number in any ordering of the three numbers r, s, t , and set

': ~ n r,'t) = n/u(n )•

Then, the typical summand in the right hand side of (1) is, up to sign,

an, (x) - (an, jlx)(n)

This shows that L'(2wx) is close to 1 for large u(n) provided ant '(x) < 1 for

all J 0 0

The set

2
(x :an,,J(x) < 1 for all j e z \O

depends on n' * In particular, we cannot expect it to converge as In -> - unless n'

n/u(n) converges, to some 3-vector m , say. Here, we are willing to allow m to have

infinite components. For example, if n = (1,8,92) , then Ij(n) s and n' =

3
(1/s,1,s) -) (0,1,-) as s -> - . But not every m e E0,-] is a possible limit. By

- 5.1 -



construction of P(n) , n' n/(n) has exactly one component equal to I and, among the

other two, one must be 4 1 and the other must be ) I . Thus the set

3N :- (n e (0,-] : n a 1 = (3 for some a e $ 3a 1,)n012) no(3)3

makes up the collection of all possible limits. On this set, we set up a topology of sorts

by defining the open ball of radius r around m e N by

(In -m I m<
i i

m)r : {n 1 /ni , m }
We extend the definition (2) of an,j to all n e N , by pointwise limit if necessary.

Figure 5.1

In what is to follow, the sets

Om ( X a M,(x) <(1 for j e 31,

with

05.2 -



play a major role. Note that

n n

A qualitatively correct picture of 0 is given in Figure 5.1 which shows the roughly

hexagonal shape of 01n and also shows the six curves

r : (x c a (x) - 1) , j e J
nej j n~j

which contribute to the boundary, 30 " Here, C_ is the union of the two cones R
n -

which contain -j

- eorm 5.1. For . e N , let X be the characteristic function of 0 . Then, for

any d > 0 , there exists C > 0 so that

IL (2wx) - )(x)I IC C(1 + C dist(x,30 ))-"(n) (5.3)
n n 1m

for all x with diut(x, 0 ) ;0 d and all n e (O,-) 3 with n' := n/i(n) e (m) , and

with the positive constants C1 and C independent of I , n, d, or x

Proof. The proof is based on a series of propositions which we merely state as needed

and prove at leisure later. We begin with the following

.l Iro liem 5.1. An depends continuously on n in the Hausdorff topology.

which is part of the Corollary to Lemma 6.4 below. This implies , given d > 0 , the

existence of C > 0 so that

dist(O Am ) C d/2

for all n e B (m) . Consequently,

dist(x,30 ) 4 2dist(x.30 ,n)

for all x with dist(x,DA ) • d and for all n, e (i (m) • It is therefore sufficient to

prove (3) with m replaced by n'

For its proof, we use (1) and we consider two cases.

(i) x 6 an. a We need

- 5.3 -
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Propoeitiom 5.2. Let
3' :=~~~~~~J A*(1,1) =((,) (,1, -,)

For n e N and xe a =
n' I

(I + C dist(x,30) 1  j JuJ
a In,x { + c J2\1 ,( 2 • ((5OU.')

with the positive constant C independent of n , j , or x

This, together with (1), implies that

I1/L^ (2wx) - 41 E E,*0(aj(x))(n)

4 12(1 + C dist(x, 3 ))-o(n) + E (I + CI '(n) (5.5)

0. (1 + C dist(x, 30n))
"
I
(
n)In

and so proves (3) for this case.

(ii) x 0 a, For this case, we need

Proposition 5.3. The integer translates of 0 form, up to a set of measure zero, a

partition of ,i

- 2 . +, n  a n c + n )- for j,0.!:.+.-jes

V conclude that there is j 0 0 so that x = x' + j with x e a . With this, we use
n

the periodicity of the characteristic polynomial P to write for such x
L(2wx) - L^(2I(x'+J)) - M'x'+i) 'x'

1  
L(2wx') M~x+j)

-C2. Pl2w(x'+j) ) M~lx, ) NCx' )

Therefore

IL^(2wx)l- !L,'C2Wx')l a n:Cx')- lL(2x')I(an,Innn,j n nl,jx

By (5),

IL(2wx')l < C

since x' 6 0, . Thus (3) is proved for this case once we show
In

5.4



Proposltion 5.4. Let x x' + j with j e n\0 and x e f.* ,adwith ne 3

Then

an Ax') ( (1 + C dist(x,30n.))- (5.6)

for some positive constant C independent of n and x

This finishes the proof of Theorem 5.1. III

Teorem 5.2. Let f he the Fourier transform of a measure with support strictly

inside 2s10 for some m e N i.e..

d :- dist(supp f^,8(210) ) > 0

Then there exists C > 0 so that, for all n e B (M)

If - Infl 4 1C1 + Cd)'P(n)*f-
1 ,

with Ifl1 the total variation of f^* The positive constants C , C 1 do not depend

on m , d * or n

Proof. Fix d > 0 and choose C > 0 so that supp f^ C (21Qn) n nd

dist(supp f^, 3(2W n,)) ; d/2 for all n' e B (m) . We have to estimate

f(x) - E f(j) L (x-j) - f(x) - E(2w)
"  

2 f(j)e-iJYL(y) e'xydy
n f

Since 
2
'an, is a fumdmosal domaim, i.e., its integer translates form a partition of

unity (by Proposition 5.3), and supp f^ C . , (f(j)) 2 are the Fourier coefficients

of the periodic extension f^ of the measure f . Using the weak convergence of theP

Fourier series of a measure, we obtain

f(x) - (If)(x) - (21)'22 [f(y) - f'(y) L4(y)] eix
y 

dy.

Applying Theorem 5.1 yields, for n' e B (M)
£

if- Infl 4 (2w)-2 C(+Cd )'o(n)If-i I + Er_ (+wJI, I^
I E n(."+2 j) I If" 1

f JO n supp f^

4 [C (+Cd)'U(n) + E (l+CljI) - (n)] If-ntje \ 0WJLO'

C1 (l+Cd) U fl1 . III

- 5.5 -
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We now discuss briefly the particularly symmmetric and special case

, (r,rr)

Figure 5.2 shows the level lines for Pr := P (r,r,r) for r = 3 • Note that its minimum

seems to occurs at (2w/3,2w/3) , and this can be verified analytically for r < 4 . We

conjecture that this is no accident, but is the case for all r

Figure S.3 shows Lr - L(r,r,r) for r = 3 (?) . The fast decay is quite striking,

making plain that cardinal interpolation with this L would be strongly essentially local.

If we assume that fV L. with supp f^ C 9 ,then the convergence of I f can be

stated in a particularly nice way. e define a bivariate "Whittaker" operator

" '-> L :f I-> E 2 f(j)x^('-J)
*-2 2

with 21 2w 2w

""9 cog -(u+v) cos j-(2u-v) cos (v-2u)

X (uv) 9 3 [ + +1

2 2  (u-2v)(v-2u) (u+v)(u-2v) (u+v)(v-2u)

the Fourier transform of X := X( 1 1 1  Note that the translates of X' are orthogonal

in L2 . As in the univariate case [S2) , the *Whittaker" series provides the limiting

operator for cardinal interpolation I(r,r,r) as r+4 . More precisely, we have

IW - I :L2 ->L-I -Y 0 . (5.7)

If f e % and supp f^ C 0( 1 1 1  , we have W((f(j)) 2) - f and hence (7) is an

-
°L2 -version of Theorem 5.2.

To prov (7), we first show that the cardinal interpolation maps Ir :- l(r,r,r) are

bounded a2 maps from t to 2 uniformly in r : For f e 2  we have

1I fi Ilf(j)e'j L'I 4 M( IL'-C.+2wj)I 2 ,rf2 "r 2 1f12 (E r ) ) 2 C f1 2

By the uniform boundedness principle, it is therefore sufficient to check the convergence

(7) for the unit vector ej e Z2 • But this is an obvious consequence of (3). mIm

In the univariate setting (R] proved the convergence in Lp for all p e (1,.) , but we

leave the corresponding bivariate problem to a later paper.

(MRRI extend Schoenberg's univariate result to include the possibility that f has

support at *X. This requires the realization that L (tv) 1-> /2. Theorem 5.1 says
b,: r

7'
- 5.7 -
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nothing about the limit of L^(x) in case x e 3Q For the special choice n (r,r,r)
r in

such a statement is relatively easy to make.

Corollary . For the special choice n (r,r,r)

1/3 ,x e Az (5.8)

lim L^(x)
r-n 1/2, x e n\ Az

with z : (2w/3,2w/3)

Clearly, our result concerning the convergence of In still holds if f is a

measure, absolutely continuous in a neighborhood of 3M and supported in A . Our

M in

result is best possible in the following sense. If supp f() 3S1 30 0 , then, in general,

i f does not converge to f . For example, if f(x) - cos(z x) , then

irf(x) -> E eri(Az) x -(u+v) + cos -(2u-v) + cos -(2v-u)

r r* Aea 5 (: cos 1w ML2 u3 3 3

This follows from the Corollary. However, it requires slightly more precise information

about the convergence asserted in (8). The heuristic argument is that

(I f) = f L (2w)2 E +2L(z+2j)n
n p n 2 z+2vj

and therefore

Inf- E (6A. 1/3)n..,.. n> EA6A A

Here, 5 denotes the Dirac measure at

;':' - 5.8 -



6. Detailed eastimates. In this section, we prove Propositions 5.1 - 5.4 and various

lemmas needed in the proofs. This amounts to a detailed study of the functions an,j  and

the set 0 and how they depend on n e N . In particular, we need to study the boundary
n

of 0 • This boundary Is made up of pieces of curves given Implicitly by the equation
n

an, (x) 1

for some je J

We use the symmetries of the given situation. Recall the notation

o(n) - l( 1 ), na(2) n.( 3 ))

We conclude from (3.5) or directly from (2) that

a (x) -a *(A(x)(61n,j a(n),AIx a 16.1)

This Implies that

*AaOan a o(n) (6.2)

and therefore

A:C nR) " nn Ro ' (6.3)

(an (n) a

where, to recall from Section 4,

R_ R+2

Next, we consider the boundary of 0 (cf. Figure 5.1). Each -j e J lies in two
n

cones With Cj their union, we define the curve

r : ( x e c- a (xl = 11 . (6.4)
n,j -f n,j

The boundary of An is made up of segments of these curves. It follows from (1) that

A rn, j r,(n),A-j (6.5)

KImmm 6.1. For j e J , denote by J0 , J, the vectors spanning the union Cj of the

3
two cones R containing j . For n e (o,-) 3

, the curve rn,j passes through the

point -jo0 , -J/2, -J1  and is symmetric with respect to the point -j/2 . Moreover, it is

monotone (in an appropriate coordinate system) and is Lipschitz continuous, uniformly in

n.

-6.1-
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Proof. The symmetry with respect to the point -j/2 follows from the relations

a n,j(x-j) = 1/a n._(x) = 1/a n,j(-x)

which are immediate consequences of the definition (5.2) of a n, For the rest, it is, in

view of (5), sufficient to consider j = (-1,0) . In this case, the curve r is given

by the equation
l -Ilrl u+v t
_- u---I = 1I (6.6)

Using the fact that u > 0 , u+v > 0 , and solving for v , we obtain

v = -u + 41 + u 0 .uC 1 (6.7)

where a := r/t . This shows that, for any e e (0,-) , the points -j0 = (1,-I), -j/2

(1/2,0), and -Jl = (0,1) lie on the curve. Moreover we have

dv/du = -1 - [1 + ( u u a 1a l-u) -2 (6.8)

which shows that

dv/du 4 -1 , (6.9)

with equality only if u " t . is proves the remaining assertions of the Lemma. III

3Ia 6.2. Let j0 , jI be the two vectors which span the cone R .For n e (0,-)

the curves r,,_, and Fn,j intersect at a unique point zn,y e R , The boundary of
nj 0  - n- 1 na

a. n consists of the segments of the curves F connecting the points in J/2 anda.,:n n, j

n,o 3

Proof. In view of (3) and (5), it is sufficient to consider the case a = (), RO =

R and j0 = (1,0), Jl = (0,1) . By (9), r( 1 0 ) has slope 4 -1 , with equality only

at the point (0,1) . Similarly, a direct computation shows that r n,(0,_) has slope

between -1 and 0 . Since F and F pass through the points (0,1),
n,C-1,0) n,(0, -1) thogtepins (1)

(1/2,0) and (0,1/2), (1,0) respectively, they intersect at a unique point z e
n, (1)

* ."(0,1/2)2 . To show that the boundary of 0 intersected with R consists of the segments
n

connecting (0,1/2) with Zn,(1) and Zn,() with (1/2,0) , we prove that, for x

(u,v) e R

an,(_1, 0 )(x), an,(0 ,_1)(x) < I implies that a n,j(x) < 1 for all j e J

-6.2-
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Indeed,
r t,U U+V

a u u+v <
n,(-1,0) u- I 'I < 1

implies u < 1/2 , and, from an,(O,_l)(x) < 1 , it follows that v < 1/2 This implies

r t
u V"-:.an,_11(x) = 

1 
Ui v+-1' < 1

and the other cases can be checked just as easily. III

•.in- 6.3. For all m e N r - rn n e (0,-)3nN • Hence Lemma I is

valid for all n e N

Proof. Without loss of generality, we consider only the case j = (-1,0) . We claim

that, {BL((0,11,10,1/21,(1/2,01,11,-1/21,1,-11) if mi. 0 and/or m3. -

r r=,j " BL((0,1),(1/2,1/2),(1/2,0),(1/2,-1/2),(1,-1)) 
if m1 . - and/or m3 0

where BL(xi,...,%) denotes the broken line with vertices xl, ..., x. . Consider, e.g.,

the first case. By (9) and the symmetry of the curves r and r , we have for
n,j mj

3
n e (0,-) that

dist(T'3 J , r n,j) u n  with un  s.t. an,j (un ,1/2) = 1

From (6), we obtain

Y :- t/r ln(1-u ) - u n

ln(u +1/2) - ln(1/2-Un}
n n

If n ->r m with mi = 0 and/or m3 = * ,we must have y-> * and, by the above

equation, this implies that u -> 0 • The second case can be handled similarly. III:/. n

Lemma 3 is a particular case of the next lemma which states that r depends
n~j

continuously on n

1d.lms 6.4. For n, m e N, dist(r n,jr )- 0 as n-> m

3
Proof. In view of Lemma 3, we may assume that m e (0, ) . Moreover, it is sufficient

to consider j = (-1,0) • In this case, it follows from (7) that r -> r pointwise,
n~j ,nm

-6.3 -
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both curves being viewed as functions of u By the uniform Lipschitz continuity of the

curves, this implies the assertion of the learns. I

Lemmas 1-4 give a qualitative description of the boundary of 9 We summarize the

main features in the following

Crollary. i) ag n consists of segT!ents of the curves r njconnecting the points

In J/2 with the intersection points z n, a e8

(11) 311 is piecewise monotone and is Lipschitz continuous, uniformly in n

(iii) n depends continuously on n in the Hausdorff topology.

Note that this provides the proof of Proposition 5.1.

To give a few examples, we list below all cases for which aU has a piecewise linear

boundary.

Figure 6.1: n (1,1.1)

-6.4-



Figure 6.2: n =(1,1,0), (1,001), (0,1,1)

Figure 6.3: n-(1,.,(,1)(*,)

-6.5-



Moreover, we have

(101 iA 1 10- (6.10)

We take the occasion to prove the following observation which stresses the underlying

* hexaqonal structure.

Prpstofl - n int cony J/2 2 U n A[012 2
n n Aea+

{(~): ,v?0, u( /1 C Rf5 1/2,) .(.1

k 

ni

This follows from Lemma 1, in particular from the fact that the curves r n(..10 ) and

r pass through the points (1/2,0) and (0,1/2) and, as functions of u , have

slopes 4 -1 and A -1 respectively. To complete the proof, note that n =(0,1,1)

4 - 6.6-



gives equality in the first inclusion of (11) while n = (1,1,0) gives equality in the

second. III

We are now also ready for the

7. Proof of Proposltion 5.3. Because of the continuity of 0 as a function of n , it

3
is sufficient to consider n e (0,-) . In this situation, Figure 5.1 gives a qualitatively

correct description of Sn . Because of the geometry of Sn and the symmetry relations
n n

(2), it is sufficient to establish the following claims:

(i) j + r = n for all j e o
n,j n,-j

(ii) The curve (1,0) + Fn,(1 ,_) passes through the point Zn,(1)

The first assertion follows from the relation

Sn,j(xJ)= I/an,-j(x)

alluded to earlier and directly derivable from the definition (5.2) of an,j . As to (ii),

note that

,...an,(.1,0l(Zn,(111 a 1 an, lO,_lllzn,(111

implies that

1 an,(1,_l)/an,(.1,O)(zn,1))

= a n,(,_,)(zn,(,) (1.0))

. ~*I.e., zn,(1) e (1,0) + rn,(1 ,_l) IIl

The next three lemmas state various estimates for the functions an,j needed for the

proof of Proposition 5.2.

3
1.mms 6.S. For n e [o,) with at most one comronent less than 1 , we have

a n,j(X) ' [ + c dist(x, r n g )I-' , x e , j e 3 , (6.12)

with c a positive constant which does not depend on x , n , or j

Proof. we may assume tnat x = (u.v) e R , in particular that u, v e [0,1/2] . We

consider each j e 3 separately and suppress all references to n

r t

(i) J = (1,0) . We have aj(x) = uTL u+v C 1/2 . This proves (12) since
1+u 1+u+V

-6.7-



dist(x, r r~j r) For the estimate, we have used the fact that min {r,t) 1

I The case j =(0,1) is similar.

(ii) j =(-1,0) .The following figure may be of help in following the argument.

I(-1,0

Figure 6.5

Let i:(0,-I) and let z :(u 0 1v,) :=z( ) be the intersection of the two curves

and r .We consider two case.

For v 4 v. , there exists c o dist.(x, rj 0lf) such that (u+e,v) e r. i.e.,

aj(u+g~v) -I *It follows that

a (u,v) =a (u~v/ uEv

u r (! u E~rcuuv) t (!1u~vC)t

~ u+v )max(r~t} ( + C)1

-6.8-



where we have used the fact that s, t ; 1 and the last inequality is easily checked.

Since

Iu-uol ( lul + lu 0 1 2ul,

this proves (15) for this case.

(b) x e r (0 _I)rl , i.e., 0 4 u 4 uI = U1 . We assume first that

vo 0 112 1 luo0l/3 .(6.18)

Since z0 e eFj , we have

a (x) - a (z )/a (x) 
(u + l /u I  (1-v)/v s

Sj 0 1(u o+1)/u 0  (1-v )/vo0

(V o-Vl/lw
O )  (0 1 0)/ 0 0• (lVo-)/V 0 ) I • 1 + (Vo-V)

In view of

lu - u01 C 21uol 4 6(v0 -1/2) 4 6(vo-v)

this proves (15) under the assumption (18).

Next, suppose that

v - 1/2 4 lu0 1/3 . (6.19)

We claim that

I(u0+1)/u 0 r ) + clu 0  , (6.20)

and this finishes the proof of (15) for this case, in view of (16) and the inequalities
r u+1r

1/a (x) -U+ 1-1 i I 1 + cluol ) 1 + (c/2)lu- ul
j u u 0 00

To prove (20), we use the fact that z0  = r - j , therefore

I (uo+1)/u 0 1rN 0+v)/(l-uo-Vo)lt = 1

Solving this for r , we obtain

ln Itu 0+v0 )/(1-U O-V0 )1 1/2 - (2/3)Iu 0
r t In (u+1)/Uo - ln 1/2 + (2/3)111 / ln 0U+1)/uo 0

Here we used the assumption (19) and that t > 1 . Therefore, we have

I + (4/3)Iu 01
r in I(uo+1)/UoI ) ln >1 - 14/3)1u 01

1  l ln I1 + (4/3)1u0 11

- 6.11 -
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. -i* - -. , -.- = --' - . . -" .: "-. . -*

which establishes (20). This completes the came j - (1,-I)

The case J - (-1,1) is treated similarly. Ill

From the statement of Proposition 5.2, recall the definition

lma 6.6. For n e [0,-) 3nN, x e And j e '

an,j(x) 4 [1 C distlx, -J/2)] " ,

with C a positive constant which does not depend on n , x , or j

Proof. Assume without loss that x - (u,v) e R

we consider first j - (-1,-1) . Assume, e.g., that 1/2 - u - dist.(x, (1,1)/2)

-s C . Then we have
r ( t 2.C r -C t

U 1v 4 1/2-c 1--c 1/11+ ) .
I u Iv' 2-u-v 1/2+9 1+:

In the remaining cases j e 3' \ (-1,-11 , we have diset*-J/2,R) 4 2 and therefore it

is sufficient to bound a1 (x) by an absolute constant less than I . This is

straightforward, using the fact that a(.l,0 )(x) a(0,.1 )(x) ( I We list only the

estimatest

I-(101)
r s t

u v u~v 193-r-3s-tlI-, I-I I.--I 3 3r"2 "  •
u+1 v+1 u+v+2

r tu 1-u-v -r t( (2,-1) W a(2,-1)(x)/a(0,-1)lx)" 12-ul 2 -u-

I-(-2,1)
a t

- 1-u-v • s2
"t

-1,2)x • -1,2)1 -,0)x 12+v 2-u-v

The remaining two cases , j - (-2,1) , (1,-2) are similar. III

Iin 6.7. For n e, x e A- and j e 2 (OUjj').

nf

an,jx) [ + CiJi] " 1

with C a positive constant which does not depend on n , x , or j

- 6.12 -
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Proof. Let J = Ckt) and x = (uv) and, without loss of generality, x e R

hence u, v e [0,1/2) . We consider several cases.

i) k, 1 10 0, -1 , and k+t 0, -1, -2 z Then

U'-1 v | u+v
I,-1 4 (1 + Ikl) "1  I-1 4 (1 + Iii) ., 1 (1 + Ik+tl/3)

Using the fact that (I+p)'
1 (i+q) "1 

C (l+p+q)
"1  

for pq ) 0 and that Ipl + Ip+ql

) max (Ipl,lql) , we see that the prodluct of any two of the above lefthand terms is

bounded by (I + IJI./3) "  • Since at most one of r , 9, t is less than I , this yields

a n,j(x) (I+Ik,) r(]+,£I)aCi+,k+L,/3)
- 

-C (I + IJI./3) -

(ii) j - (0,-2) , Since x e a . we have

an,(Oi)(x) v u+v
[

and therefore

1-v 1-u-v -2-t 1 (1n,.j n.(x)/<n,CO,.1)(x) l - - 2-2 4 1/2 = (1 + lj

(iii) k -0 1 0 -2,-l,0 Here

v aU+V -s-t-
an, jx) - I- 'u+v+' ( (+1l1)'(l+ll/3) "t  4 (I + I11./3)

(iv) k =-1 , £ *-1, 0, 1, 2 • Here
" 1  ", u v -si -t -.rIi _ I I C-l, 1.11+lll)'8ll+l1-ll/31 - t  4 (1 + l,5-

(v) k - 0, -1 and I - 0, -1 : Treated in analogy to cases (ii) - (iv)

(vi) A - -k , k 10 -1, 0, 1 t Here

r a

an,j(x) - I I IvI C (C+Ikl)'r(l+lkl)"s C (1 + ll)-1

(vii) I -k-1 , k P-2, -1, 0, 1 : Here

a(x x/ x) 'C IL I I v I r Ik-s IIl2
njW < an,jlxl/an,(-i,0) u+k ' ll -r1+Ik 1l' C 11+k[/21

(+ IiI/3)-1

(viii) L -k-2 , k P -2,-1,0 Here
.r s . t -1

~ x) 4 a ( /a W lUCxl I v uI U vCl I+Ik /3)

n, n,j n,(-I,0) u+ v-k-2 uv-2

( CI + IjI/j9) .

This covers all Je x2\ (OuLJ') . II

Proof of Proposition 5.2. Lemmas S - 7 prove (5.4) for n e N o,- 3) 3 with the

constants independent of n . Since A depends continuously on n e N (by Proposition
n

- 6.13 -
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5.1), this proves (5.4) for all n e N. i

Proof of Proposition 5.4. To prove (5.6), we consider three cases.

i) je i : From the geometry of the set Ai n - S n (cf. Figure 5.1 which gives a

qualitatively accurate description of the general situation) and, in particular, from the

estimates of the slopes of the curves r .,we can see that in this case

diat (x, 3lI di st(x',r .n Q
n n,3 n

Therefore, (5.6) is a consequence of Lemma 6.5 in this case.

(ii) j e 3' Assume, e.g., that x' e RCrA n Then, for j 3'\ (1-),we have

dist,(x',-J/2) )o 1/2 and (5.6) follows from Lemma 6.6 since dist.(x,3l n C

It remains to consider the case j =(-1,-i) .From the bounds on the slopes of the

curves,1 r, we see that 11 lies in the half space
curves) rOi n

{y y *(1,1) -(u0 ,v 0 )(1,1)1

where (u0,v0 ) :- z(1 ) is the point of intersection of the curves r and
n, (10

r *Since Qi fR C [0,1/2]2 ,it follows that, for x, e a n
n,(O,-1) n -n

diet (x,32i dist1 (x-, -Z +(111) (6.21)
n(1) 11)

Here, dist, denotes the I -distance. Moreover, we have, in view of E-z(1 ) + (1,1)]

(1/2,1/2) =(1/2,1/2) - Z(1 ) , that

dist (x, -Z (1) +(1,1)) =diet 1 (x',z ( 1 ) ) + 2dist I(z (1 ), (1/2,1/2)) (.2

(2dist 1 (xl,-j/2)

This* tcgether with (21) and Lemma 6, proves (5.6) for this case.

(iii) j e Z2 \ (OUJJ') In this case, (5.6) follows from Lemma 7 since, for any

P 0,

dist(x, 3$1 ) (ClII
n

This completes the proof of Proposition 5.4. 111
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