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PART-I MIT/RR/ONR COMPUTATIONAL PROJECT "CUS S.

During the last reporting period most of the effort has a...

been directed to assembling the dedicated computer

facility, integrating its use with computational codes, /77 7

and developing the first version of the high resolution

two dimensional Navier-Stokes code. Secondary amounts

of effort have gone into algorithm development for the

three-dimensional viscous code and defining an improved

two dimensional code.

DEDICATED COMPUTER FACILITY

The dedicated computer facility has been completed, and consists of

a Perkin-Elmer 3242 host computer with 4 MBYTES main memory, a Floating

Point Systems Array Processor, model AP-120B, and a bulk memory system

supplied by DATARAM. A block diagram for the system is shown in Figure

1. The bulk memory system is the last hardware item purchased and

consists of 32 MBYTES of MOS semiconductor memory in a single unit.

This system will be used to store the solution matrix for the

three-dimensional viscous code and as a data buffer for the blowdown

turbine data acquisition system.

All system components are working as expected with concurrent

processing of finite difference solutions on the array processor,

turbulence modeling in the host processor, and bulk memory transfers.

The interface between the Perkin-Elmer host and the bulk memory device

has achieved a transfer rate of 4 MBYTES/sec which is adequate for the

computational and experimental projects. The system allows an average

computational rate of approximately 3 million floating point operations

per second to be achieved which is quite close to the expected

computation rate. At present the original reference grid of 50 x 50 x

.-. -"
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100 node points fits comfortably in the bulk memory. The maximum grid

size which can be run is nearly 350,000 node points, which is about 40%

larger than the reference grid. These possible extra node points will

be used to increase resolution in shear flow regions.
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TWO-DIMENSIONAL VISCOUS CODE DEVELOPMENT

Summary

The first version of the two dimensional, Reynolds averaged,

Navier-Stokes code has been completed. An algebraic turbulence model of

the Cebeci-Smith type is used for turbulence modeling. The present code

uses an unusual finite difference grid which is not simply connected.

The grid structure enforces periodicity through an interconnection table

rather than having grid lines running in the periodic direction. Use of

this grid structure allows a better physical space grid, but at the

expense of more complication in code structure, inflow/outflow boundary

conditions, and smoothing. While the code with simple sheared grids had

become reasonably robust, it is difficult to produce starting solutions

for the present code, and some convergence problems now exist when

running with large time steps.

Calculations for the T-7 and ACE turbine cascades and a

supercritical compressor cascade using the new grid are now being

evaluated. Approximately 500 iterations are required for convergence on

a 50 x 100 grid using full turbulence models, and this type case

requires about 3 hours to complete. When using the non-simply connected

grids only a portion of the calculations is presently implemented on the

AP (array processor). When coding for this grid type is completed, all

floating point calculations, except those in the turbulence model, will

be moved to the AP and run times should come down to about 1/2 hour.

Present results for the laminar, design incidence, T-7 case are

encouraging, but the off-design incidence case and the supercritical

compressor results are poor. The sources of these problems are felt to

be understood and a new version of the two-dimensional code is being

prepared.
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DESCRIPTION OF TWO-DIMENSIONAL VISCOUS CODE - FANSI

The present two-dimensional viscous code is a generalization of an

algorithm proposed by Beam and warming (1] for Reynolds averaged,

Navier-Stokes equations. The original algorithm has been modified to

increase accuracy of computed solutions and decrease total run time.

Major modifications are in the areas of inflow/outflow boundary

conditions and flux balance approximations. The present algorithm is

essentially a finite volume approximation to the steady state equations

coupled to a finite difference, time marching integration in time. Time

accurate solutions can be obtained, and acceleration to steady state is

possible through local time or pseudo-time calculations. If only steady

solutions need to be computed, considerable further reductions in run

time could be obtained through approximations to the time-marching

algorithm.

If we consider the Navier-Stokes equations to be expressed in vector

form as:

U't + Lh{U} Lv{U) (1)

where U = p,pu,pv,PE] is the state vector

Lh{U} = Lhx{U} + Lhy(U} (2)

represents the inviscid terms or the Euler equations

and

£VU vx(U} + Lvy(Ul (3)

represents the viscous terms
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If we define a Navier-Stokes operator,

Lns{U} = Lv{U} - Lh{U} (4)

we can write the equations as

U't " ns { U}  (5)

The present version of FANSI approximates these equations by either a

first order or a second order accurate, in time, approximation expressed

as:

[I-eAt Lnsx] [I-OAt 4sy {Un } -tLns{Un} (6)

where Lns is a finite difference operator approximating the

steady state equations

LAsx and LAsy are linearized approximations to the

x and y Navier-Stokes operators

0 = 1/2 for backward Euler and 1 for trapezoidal, implicit

and

AUln = un+1 Un

For steady state calculations, the backward Euler form is used, and for

time accurate calculations the trapezoidal form is recommended. Details

of the time marching algorithm, or the left hand side solution of

equation (4), are as described in reference [2). This approximation

does not use the explicit mixed derivative terms as suggested in
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reference [1], but these terms are easily added if cases in which they

are important are encountered.

The Lns finite difference operator uses the grid distribution

layout illustrated in Figure 2. The approximation at a node point j,k

uses information from the 8 adjacent nodes in a bi-linear approximation

for flux vectors at these points. These flux vectors are then summed

using trapezoidal integration in physical space. The time marching

algorithm uses only central differencing operations on the real node

points to compute the new state vector at node j,k. This type of

approximation in which the time marching algorithm has a different grid

star and approximation procedure than does the steady state solution

operator has proved very flexible and powerful.

ail
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GRID GENERATION EFFORTS AND RESULTS

Accurate prediction of the flow behavior in a turbomachinery blade

row depends both on the flowfield prediction program and the calculation

grids used. The accuracy of a good flowfield prediction program can be

significantly reduced if the grid generator does not give sufficient

grid resolution in regions where flow conditions change rapidly. These

regions include the leading and trailing edges of the profile, and the

profile boundary layer. This inter-dependency of flowfield prediction

programs and grid generators has required the development of a grid

generation routine capable of providing the required resolution. This

work is being carried out in parallel with the development of the two-

and three-dimensional flowfield prediction routines.

This section provides a brief history of the stages passed in

reaching the latest grid generator code. This latest code should not be

taken as the perfect solution to the problem, but as the best available

at the moment. Refinement and generation of new types of grid is

expected to continue well into the future.

Boundary Orthogonal Grid Generator (BOGG)

This grid generation routine was developed under the restrictions

that

a) One set of grid lines should be normal to the blade

surfaces. This was required first so that the thin shear layer

approximations in the 2-D flowfield prediction code were

correctly applied. These assumptions were basically the

standard boundary layer equation assumptions, and in order to be

valid the grid lines had to be normal to the boundary layer.

Secondly this normality at the wall is also important for

turbulent boundary layer modeling, where the turbulent



conditions inside the boundary layer must be related to those at

the edge of the boundary layer.

b) The grid lines had to be periodic along the cascade periodic

boundaries. If this were not so, some interpolation would have

to be undertaken to match the boundary values, and this could

lead to significant errors. This non-periodicity may also result

in reductions in the stability limit of the code used.

C) The grid had to be used in an implicit code whose structure

specified that any grid node had to be surrounded by four other

grid nodes.

A viscous grid for a compressor cascade is shown in Figure 3. It

can be seen that these goals have been achieved. This type of grid,

although satisfying the above criteria, did have disadvantages as

detailed below:

i) High rates of change of grid shear resulted in total

pressure errors in the inviscid free stream. The rapidly changing

shear of the grid is readily apparent in this figure.

ii) This type of grid could not be used for profiles with blunt

leading or trailing edges (e.g. turbine profiles) because it is

not possible to specify normality of the cross-passage grid

lines at the leading edge and still be able to produce

throughflow grid lines.

In order to provide good leading edge resolution for blunt leading

edge profiles, it was necessary to produce C-type grids. A typical

C-type grid is shown in Figure 4. Here the grid lines normal to the

v- -*4r".3~
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profile surface at the leading edge are extended upstream and around to

the other leading edge. If a blunt trailing edge were present, a similar

scheme would be used along the exit boundary. This scheme does provide

normality of grid lines at the leading edge but suffers from the

following disadvantages:

i) This type of grid still has high rates of change of grid

shear.

ii) C-type grids of this type result in poor inlet (and exit if

a blunt trailing edge is present) resolution. This is because

the spacing of the grid lines at the inlet is closely linked to

the spacing on the profile leading edge. If the inlet were to be

extended further forward, the distance between grid nodes would

increase. The inlet grid resolution cannot, therefore, be

controlled separately from the profile leading edge resolution.

Staggered Grids

The BOGG generated grids were suitable for the early compressor

cascade predictions, but the high total pressure losses occurring in

turbine predictions resulted in the need for a grid which reduced these

losses. It was found that simple staggered grids reduced inlet

stagnation pressure loss, which led to their use with inviscid and

laminar calculations. Staggered grids are those where the cross-passage

lines have the same X-location over the whole of their length. A typical

viscous staggered grid for a turbine geometry is shown in Figure 5.

The predicted flowfield behavior using this type of grid was

significantly better than that with the BOGG grids due to the reduction

in inviscid total pressure losses. This type of grid still had several

disadvantages:
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i) The grid lines are no longer normal to the profile surface.

This is shown well in Figure 6, which is an enlargement of the

leading edge region of the grid shown in Figure 5. The grid

lines are now inconsistent with the thin shear layer

approximations, but the 2-D code has been converted to full

Navier-Stokes form, which has removed the necessity for grid

normality to the profile surface for laminar calculations.

ii) At the trailing edge (shown enlarged in Figure 7), the major

problem is that the grid "wake" does not follow the real wake if

the trailing edge circle is fully defined (if a cusp were used

the grid wake could be put in the correct location, but the use

of a cusp would most probably result in incorrect modeling of

the flow in the vicinity of the trailing edge). This

disagreement of grid and real wake positions means that the wake

resolution is not where it is required.

iii) Non-normality of the grid lines at the profile surface makes

implementation of an accurate turbulence model more difficult,

as some interpolation may be necessary to determine the correct

edge conditions for any point in the boundary layer.

In order to predict turbulent boundary layer flows it was

therefore necessary to produce a new type of grid which would have grid

linr normal to the surface, but would also have all the good properties

of the two previous types of grid (i.e. low inviscid total pressure

losses).

Viscous Orthogonal Grids

Before discussing the new types of grid, the goals of the grid

generation project should be detailed. These were:
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i) Provide good boundary layer and wake resolution.

ii) Grid lines must be normal at the walls (for turbulence

modeling).

iii) Ability to provide good leading and trailing

edge resolution.

iv) Grid cells must be as close to rectangular as possible, with

no large rates of change of grid shear.

v) Flexible grid resolution upstream and downstream of the

profile.

vi) Periodicity of grid lines in the inlet and outlet regions.

vii) Grid must be used with an implicit algorithm.

The grid production routine starts with an X-Y array of profile

coordinates defined on the profile suction and pressure surfaces. Grid

inlet and exit angles are also defined. These should correspond closely

to the profile inlet and exit metal angles since the grids produced are

essentially quasi-streamlines, and hence want to follow the expected

flow directions.

These X-Y coordinates are then interpolated to 1000 points per

surface. The through passage lines, or level lines, are then generated.

The boundary layer level lines are generated using simple correlations

for laminar or turbulent boundary layers. The user may specify either

laminar or turbulent boundary layers on either of the surfaces. The

number of grid lines in the boundary layer is also user specified. The

profile wake is then merged into the surface boundary layers. Once the

specification of the boundary layer level lines is finished, the

2101
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"inviscid" level lines are generated by using the BOGG grid generator.

The number of inviscid level lines and their spacing distribution are

specified by the user. This technique produces smooth level lines which

follow the boundary layer edge.

The cross-passage grid lines are then generated using a

construction technique, marching from the mid passage level line

outwards towards both surfaces. It was necessary to relax orthogonality

of the grid lines in the vicinity of the leading and trailing edges.

Cross-passage grid lines are automatically generated to ensure

periodicity on the inlet and exit periodic boundaries, and the user may

manipulate the orthogonals so that they end at any specified location.

A sample of the type of grid initially produced with this grid

generator is shown in Figure 8. An enlargement of the leading edge of

this grid is presented in Figure 9. It is obvious in this figure that

close to the leading edge "grid" stagnation point, orthogonality of the

grid lines is relaxed. This was done to ensure that fine resolution

could be obtained in this region. Although this does not satisfy one of

the generation goals, the dropping of orthogonality is not important in

this region since the boundary layer is normally laminar, and the full

Navier-Stokes equations are solved.

An enlargement of the trailing edge is shown in Figure 10. Again,

the orthogonality condition has been dropped in this region. However,

although the grid lines are no longer normal to the surface, they are

close to normal to the separated boundary layer streamlines.

The above grids were produced for a turbine profile. This

generator can also be used for compressor profiles, and a sample grid is

shown for a supercritical compressor in Figure 11.

Although this grid satisfies the goals detailed earlier, it still

. ... .. .... . .. ~ ~.. f . .. . .. , , ,
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has some disadvantages:

i) The total number of grid nodes is greater than either the

BOGG or staggered grids.

ii) The resolution in the vicinity of the leading and trailing

edges results in resolution in regions across the passage where

it is not really needed.

iii) The upstream and downstream grid lines are no longer

periodic with themselves (as in the BOGG and staggered grids).

This results in the need for a grid end connection table. This

increases the complexity of the 2-D flowfield prediction

routine.

Turbulence Modeling Status

An algebraic turbulence model of the Cebeci-Smith, reference (31,

type is presently used for turbulence modeling. This model includes

sections for boundary layers, near wake regions and far wake regions.

The model is implemented using the vorticity formulation suggested in

reference [4].



DISCUSSION OF PRESENT RESULTS

Present results for the T-7 cascade, ACE cascade, and a

supercritical compressor cascade are of mixed quality. Design incidence

results for T-7 and ACE appear good while the supercritical stator

result is poor. The off-design results for T-7 show that a leading

edge, pressure surface separation is missed. On balance it appears that

the non-simply connected grids discussed earlier provide adequate

resolution of flow feature, but we must be much more sophisticated in

our use of the grids. Throughout the discussion of results, areas will

be examined where the grids, or our handling of the grids, has resulted

in problems.

An example of our good results is provided by the design incidence

T-7 cascade calculations for which the finite difference grid was shown
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DISCUSSION OF PRESENT RESULTS

Present results for the T-7 cascade, ACE cascade, and a

supercritical compressor cascade are of mixed quality. Design incidence

results for T-7 and ACE appear good while the supercritical stator

result is poor. The off-design results for T-7 show that a leading

edge, pressure surface separation is missed. On balance it appears that

the non-simply connected grids discussed earlier provide adequate

resolution of flow feature, but we must be much more sophisticated in

our use of the grids. Throughout the discussion of results, areas will

be examined where the grids, or our handling of the grids, has resulted

in problems.

An example of our good results is provided by the design incidence

T-7 cascade calculations for which the finite difference grid was shown

in Figure 8. The grid has 100 x 49 points and is nearly orthogonal at

each node point. Predicted results are quite sensitive to the grid

resolution. The turning is 126 degrees with an outflow Mach number of

0.75. The Reynolds number is 680000.

The computational results are presented in Figures 12 through 15.

The first figure compares predicted blade surface pressure to the

experimental values. Reasonably accurate surface pressures were

predicted everywhere including the stagnation point and the trailing

edge. We are as yet unable to explain the discrepancy at 70% chord on

the suction surface, although we believe it to be linked to an

overexpansion of the pressure surface flow around the trailing edge.

The predicted trailing edge flowfield is illustrated in Figure 13

in terms of velocity direction vectors. This calculation shows one small

separation zone comparable in size to the trailing edge radius and a

migration of suction surface boundary layer flow toward the pressure

surface. The velocity pattern here was found to be extremely sensitive

to grid resolution. While the predicted flowfield at the trailing edge

seems reasonable, we have no way to verify its accuracy.

One major concern when developing the present grids was the effect

of the closely spaced throughflow lines in the upstream region. Figures
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14 and 15 show the effect to be relatively small, but not necessarily

insignificant. Figure 14 is a Mach number contour plot, and Figure 15

is a stagnation pressure error contour plot for the upstream domain.

Mach number contours are quite reasonable, and the maximum stagnatiin

pressure error is about 1%. This error probably results from smoothing

algorithms and from difference cell definitions on the upstream boundary

edges.

The problems with the T-7 results show up quite clearly in the

off-design cases as illustrated in Figure 16, which is a blade surface

static pressure comparison with experimental results. The experimental

results clearly illustrate that the flow separates on the pressure

surface near the leading edge. The computation shows no separation and

appears to give nearly an inviscid pressure distribution here. This

separation might be predicted if more than 3 streamwise node points were

in the separation zone, but it proved quite difficult to provide

adequate grid resolution in this zone. We regard this result to be a

serious failure, and it is the prime driving force behind the major

coding changes to FANSI which are in progress.

The second serious problem encountered when implementing the new

grids is illustrated in Figures 17 and 18. These figures are a Mach

number contour plot and a stagnation pressure error contour plot for the

supercritical stator with full turbulence modeling. The predicted

suction surface boundary layer and wake are far too thick, and a

completely non-physical Mach disturbance occurs upstream which is linked

to a 8% stagnation pressure error along the upstream inflow boundary.

The non-simply connected grids require that the line A-B-C in

Figure 18 be treated as an inflow boundary and line D-E-F be treated as

an outflow boundary. Two problems arise in such a treatment. First, a

computational inflow or outflow boundary must actually be a physical

inflow or outflow boundary. In the supercritical case, it appears we

violated this fundamental constraint by generating the grid lines such

that line B-C is aligned with the far upstream flow angle. Locally this

boundary is then either an inflow or an outflow boundary depending on

- .. , . "
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the local flow angle. It appears as if a simple regridding will improve

the supercritical results.

A second more fundamental difficulty with the non-simply connected

grid in an implicit code is that A-B lies along a computational y

coordinate line and B-C lies along a computational x coordinate line.

The present version of FANSI uses explicit boundary conditions along

these boundaries rather than the implicit conditions which were used

with the original staggered grids. As a result, stability constraints

associated with boundary conditions have been reintroduced into FANSI.

Because of these problems, we have decided to produce an interim version

of FANSI for use with only staggered grids, but having the fully

implicit boundary condition capabilities restored. The interim version

will have consistent, characteristic inflow/outflow boundary conditions.

This version plus the algebraic turbulence model and test cases will

constitute the Ph.D. thesis for R. H. Bush, who expects to finish by

June 1983.

Anfis.J
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DEFINITION OF FANSI I

The current computational problems associated with T-7 and the

supercritical cascade have convinced us that we must be much more

sophisticated in our grid generation and handling. These changes

amount to a major rewrite of FANSI to produce FANSI-II. This new

version will contain new grid structures, new difference cell

definitions, new flux definitions, new smoothing, and proper

inflow/outflow boundary conditions.

The first step toward FANSI-II is the generation of mixed 0 type

and throughflow type grids. These grids contain most of the grid lines

to resolve the boundary layer near the body and eliminate the upstream

grid cluster problem. An example of this grid near the leading edge is

shown in Figure 19. These grids also allow more control over cell

shapes in physical space and better placement of grid lines near leading

edges. This last item is particularly important for the turbine

cascades.

Since we expect to use this same type grid in three-dimensional

problems, a internal grid block mapping technique is being developed.

This technique will organize the codes internal grid storage algorithm

to operate on blocks or groups of cells which will facilitate

development of the three-dimensional viscous code. This feature will be

transparent to the grid generation process. A second benefit of the new

structure is that local grid refinements and overlapping grid

definitions will be much easier to implement.

A change to the flux cell definitions in the 2-D viscous code is

to be implemented. The previous version stored the state vectors at the

grid nodes. This severely limited the grid choice options. The new

scheme has the state variables stored at the centers of the grid

"cells", and the grid cells are now to be the flux cells. This will

enable the grids to be changed from full throughflow type grids to a

mixture of C-type (or O-type) and throughflow grids. An enlargement of

the leading edge of this new type of grid was presented in Figure 19.

The boundary layer grid lines go fully around the leading edge, thereby
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removing the inlet "wake" present in the earlier versions of the grids.

This type of grid also ensures that the grid lines are normal to the

profile surface all the way around the leading edge. The cross in the

center of each grid cell is where the state variable is going to be

stored. It can be seen that although the grid nodes may have more than

four neighbors, the cells are all four-sided.

At the moment the trailing edge grid scheme is the same as shown

in Figure 19. However, this is in the process of being changed to give

an 0-type boundary layer grid on the profile surface. The use of an

0-type or throughflow type of grid at the trailing edge has not yet been

fully decided upon.

The new state vector positions are best thought of as cell centered

averages. With cell centered averages and better control over grid

shapes in physical space, new definitions of flux vectors are possible.

The flux vectors are illustrated in Figure 20 and are computed from

averages of the cell centered values in a way which minimizes the effect

of odd-even decoupling in a central difference scheme.

(PU)j±1/2 = A3{Pu} = (Pu] (7)

(P]j±1/2 = A ] P / = IT] (8)

[vlj±1/2 = [Pv) /[p] (10)

(Elj±1/2 = (E] /T-] (11)

2 2

[p1j±12( ) ([E]-(((u] + [v) )/2) (12)

Viscous flux terms will be defined in terms of the cell centered values

[TXY)j±1/2 = viscosity [6+k{Uj,k})] (13)

With these definitions the FANSI algorithm is to be viewed as a flux

.. ... . II I III I | I -dami



20

balance method on the cell faces using state vector approximations at

the cell centers. A converged steady state solution is obtained when

the flux balance becomes zero, and the final solution will be defined in

terms of average variables.

FANSI-11 will use artificial smoothing operators that are applied

to the cell centered values rather than the flux balance operators. The

sequence of steps becomes

IT- etLnsx]{u; } = Ls(U1} (14)

[I- eAtL S.XJ{AU;*1 AU! (15)

U* Uj + Uj (16)

Uj = (I + Sx]{Uj (17)

n+ I
Uj = [I + Sy](U}

(18)

where

Sx , Sy are the smoothing operators

SxU = aj+/2[Uj+l- UjI + aj-l/2 [Uj-l - UjI (19)

aj±1/2 - abs(gp)/(pj+1 
+ Pj-I + Pj) (20)

SyU = ak+1/2[Ok+l- Uk ! + ak-1/21Uk-1 - Uk ]  (21)

ak±1/2 = abs(vp)/(Pk+l + Pk-1 + Pk )  (22)

The split smoothing simulates both a second order and a fourth

order smoothing operator.

FANSI-II will also have a new smoothing operator, which smooths

along diagonals in computational space to eliminate an odd-even

decoupling mode in these directions which is not presently damped as

well as proper inflow/outflow boundary conditions on the non-simply

.-. r , _
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connected domain.
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SUMMARY

Efforts on the three-dimensional code development have centered on

selection of an efficient algorithm for the turbine blade row case. The

algorithm selected is a hybrid explicit-implicit algorithm which should

retain maximum speed and flexibility for both inviscid and viscous

calculations. Development of the inviscid section of this code is now

about 70% complete, and a first version of the inviscid operator should

be available about April 1983. Two or three months of work should then

be needed to add the viscous operators to this code. The viscous

operators are to be based on the two-dimensional viscous code.

DESCRIPTION OF PROPOSED ALGORITHM

The proposed algorithm relies on splitting the Navier-Stokes

equations in an inviscid operator and a viscous operator.

Ut + Lh{U } Lv{UI (24)

where

Lh is a finite difference operator which operates on the

state vector to produce the steady state flux balance for the

inviscid terms

Lv is a finite difference operator which approximates the

viscous steady state flux balance.

The proposed operator split is:

- .- - ,
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STEP I

* n n
U = u -AtLh{U } (25)

STEP 2 a)

[I-AtLv] { u
n  U*} = tLv{U } (26)

STEP 2 b)

I n1 * . {L n

(I-7_tLv I - U } = At[Lv{U + * AtLv{Lh{U ] (27)
2

where the linearized viscous operator is defined by

n+1 n+1 n n+_ n, (8LV (U I = Lv{U nI +Lv{U U} (28)

Step I and step 2 b) form a second order accurate time integration

scheme, while step I and step 2 a) form a first order accurate time

integration scheme.
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The single step version of either choice is:

t (n+l n n n,
I-AtLv{Un 1 

- Un }I = At[Lv{U ~ Lh{Un}] (29)

as desired.

This operator splitting, which is not the same as direction splitting,

has a number of important advantages:

An explicit, fully conservative form in the inviscid regions

which is similar to present Euler codes.

Viscous operator already developed as FANSI or FANSI-II.

Implicit viscous operator only need be performed in viscous

regions and not in core flow.

Steady state solution acceleration techniques applicable to

step 1 but with solutions independent of At.

Boundary conditions on intermediate steps are well defined.

STATUS

Coding of the 3-D split operator forms has begun and a "centered"

MacCormack operator developed. This operator is being tested against

transonic compressor solutions run in the past and a low speed turbine

test case. This testing is about 70% complete and it is expected that a

centered, second order Runga-Kutta time integration scheme like that of
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reference [5] will be developed. This scheme is compatible with the

expected FANSI-II developments. This work should be complete by June

1983. Future work might include a Ni type, reference [6], cell

structure and multi-grid procedure.

After the Euler operator is sufficiently well developed, work

will begin on updating FANSI for use as the viscous operator and the

turbulence model. This coding work should be complete by August 1983.

U .. 9
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SCHEDULES

INTERIM FANSI COMPUTER CODE APRIL 1 1983

STAGGERED GRIDS ONLY

FULL ALGEBPAIC TURBULENCE MODEL

CORRECTED INFLOW/OUTFLOW CONDITIONS

FANSI FINAL REPORT JUNE 1 1983

R.H. BUSH THESIS

FANSI - II COMPUTER CODE, FIRST VERSION JUNE 1 1983

3-D EULER OPERATOR COMPUTER CODE, FIRST VERSION APRIL 1 1983

3-D VISCOUS OPERATOR COMPUTER CODE, FIRST VERSION AUGUST 1 1983
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PAPERS AND REPORTS

During the past year a number of papers and reports associated

with this project have either been presented, scheduled as invited

papers or cleared for journal publication.

Thompkins, W.T., Tong, S.S., Bush, R.H., Usab, W.J, and Norton, R.J.G.,

"Solution Procedures for Accurate Numerical Simulations of Flow in

Turbomachinery Cascades," AIAA paper 83-0257, Jan. 1983.

Presented at AIAA Aerospace Sciences Meeting, Reno Nevada

Expanded version to appear as chapter 4 of "Recent Advances in

Numerical Mehods' in Fluids," Volume IV.

Compressed version submitted to AIAA Journal

Thompkins, W.T. and Haimes R., "A Minicomputer/Array Processor/Memory

System for Large-Scale Fluid Dynamic Calculations"

Invited paper for SYMPOSIUM ON IMPACT OF NEW COMPUTING SYSTEMS

ON COMPUTATIONAL MECHANICS, ASME Winter Annual Meeting, 1983

Lavante, E.V. and Thompkins, W.T., " An Implicit, Bi-Diagonal Numerical

Method for Solving the Navier-Stokes Equations,", AIAA paper 82-0063.

Cleared for publication AIAA Journal

Thompkins, W.T. and Bush, R.H., "Boundary Treatments for Implicit

Solutions to Euler and Navier-Stokes Equations"
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Published Journal of Computational Physics, Nov. 1982

*.. . .. .. .
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APPENDIX

Finite Difference Operator Definitions

o 1
Sj Uj,k = -f(uj+l,k - uj_1,k)

+ 1
Vj Uj,k = j(uj+1,k + uj, k )

- 1
"j uj,k = 2(uj, k + uj_1,k)

6j Uj,k = uj+1,k - uj,k

6j Uj,k = uj,k - uj_1,k

6 J/2 Uj,k = uj+1/2,k - uj_1/2,k

Note that all coordinate positions at non-integer

mesh spacings are to be defined by a simple average

+
Yj+1/2,k = "j Yj,k"

-. - - .. z. * '- ... ..-""",
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VISCOUS COMPRESSOR GRID Figure 3
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VISCOUS TURBINE GRID

Figure £4
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STAGGERED TURBINE CASCADE GRID

Figure 5
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T-7 TURBINE CASCADE
DIRECTION VECTOR PLOT

LAMINAR T.E., TURBINE ROTOR

Figure 1
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T-7 TURBINE CASCADE

TOTAL PRESSURE LOSS CONTOURS

Figure 15
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