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ABSIRBACI

The paper describes a completed and independent module of a
large~scale system, the Quasi-Optimizer (QQ). The QQ system has
three major objectives: (i) to observe and measure adversaries'
behavior in a competitive environment, to infer their strategies
and to construct a computer model, a desgcrinotiye thegrys of each?

(i) to identify strategy components, evaluate their
effectiveness and to select the most satisfactory ones from a set
of computed descriptive theories’ (iii) to combine these

components in 8 quasi-optimum strategy that represents a
nacoative thegey in the statistical sense,

The measurements on the input strategies can take place
either in a sequence of confrontations unperturbed by the g0 ors,
for efficiency's sake, in a series of environments specified
according to some exgerimental design. The module completed
first, QQ0=1, can perform the experiments either in an exhaustive
manner -~ when every level of a decision variable is combined
with every Llevel of the other decision variables == ors in
relying on the assumption of a monotonically changing response
surface, it uses the binary chopping technique.

The module discussed here, g0=3, does not assume monotonic
response surfaces and can deal also with multidimensional
responses., It starts with a (loosely) balanced incomplete block
desian for the experiments and computes dynamically the
specifications for each subsequent experiment. Accordingly, the
levels of the decision variables in any single experiment and the
length of the whole sequence of experiments depend on the
responses obtained in previous experiments. 1In general, 20-3 is
an on=line, dynamic generator of experimental design that
minimizes the total number of experiments performed for a
predetermined level of precision.
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1. INIRQRULTIION

§ TR

The Quasi-Optimizer (gQ) system (1, 2] observes and measures
adversaries' behavior in a competitive environment, infers their
strategies, and constructs a computer model (a "descriptive
theory”) of each, By evaluating the effectiveness of the
components of these strategies and selecting the most satisfying
ones (credit assignment), it generates a “normative theory” which :
is an optimum strategy in the statistical sense, The measurement
of the adversaries® behavior can take place either in 8 sequence
of unperturbed canfrontations or under “laboratory conditions”
when the envirgnment for each confrontation is specified
according to some experimental design, We shall be concerned
with the second mode of operation in this paper,

The first of six fairly independent modules of the gQ
system, Q0=1,» constructs a descriptive theory of static
strategies given as black-box programs impenetrable by go=1 (3).
It also identifies which of all possible decision variables are
relevant for the istrategy being modelled, The program can use
either an exhaustive search pattern or 8 binary <chopping
technique in the space of decision variables while carrying out a
sequence of controlled experiments on the strategy. As an
inductive discovery feature, it can also correlate certain
stochastic consequences of the strategy with subranges of values
of each decision variable. The strategy response surface is
assumed by Q=1 to, be weakly monotonic.

The present paper deals with a svgn1f1cant general1zat10n of
the g0=1 program., The module QQ=3 is designed to minimize the
total number of experiments while maintaining a user-specified
minimum level of precision in identifying the strategy resuonse.,
R over the whole space of decision variables, The response
surface need not be monotonic now, The design of each
experiment, after an exgloratory phase, depends on the results of
the experiments obtained up to that point,

The program Q0=-3 is completely general purpose. However,
because of the specific context of the 80 oproject, we shall use
the terms ‘decision variables' for the <control variables in -
experiments, and ‘strategy response’ for the scalar or vector
entity that is the outcome of the experiments,

L e s

2. ON SIBAIEGIES AND IHEIR CQMPUIER REPRESENIAIIQN

A strategy s considered at its simplest Llevel to be a
decision wmaking mechanism that observes and evaluates its
environment, and prescribes in response to it a single, oOne-step
action., We can extend this concept in various directions. The
single (that is, one-dimensional) action can be replaced by a get
gf (that is, multidimensional) agtions. The one-step (momentary)
action can be replaced by a geguence of actigps, unordered,
weakly or strongly ordereds, over time. Ffurthermore, the decision 4
variasbles defining, the environment may also include descriptors ’
characterizing relevant aspects of the bistory af 1the
soxirconmssnt. These ideas make our studies more realistic in ‘f




taking 1into account multidimensional strategy responses to
complex environments, tong-range planning, tactical and strategic
considerations (with reference to short-term and (long-term
objectives, respectively). We can study automatically generated
"methods", in which goals and current features of the environment
are associated with sequences of actions, and "blueprints”, in
which goals are presented as desired features of the environment,
We also distinquish between Static and dypasic sicategies. The
latter are either!controlled by a learpning mechapisa (to improve
performance or to'adapt to new environments), or exhibit periodic
or random fluyctualiops. (See [4) for a detailed discussion.)

We have selehted the degcisign tcee (DT) as an efficient and
effective represehtation of simple, single-action strategies (1],
(See Fig, 1.) Hb have also shown that ©0Ts are equivalent in
power to productlon systems but can be modified more easily and
their scope of representational validity can be extended as
needed, These extensions are as follows:

FIGURE 1 ABOUT HERE

«When the strategy response is a vector quantity, each of
its components c(equires a separate OT, (We are currently
studying techniques to eliminate any redundancy inherent in cases
in which the vectér components are correlated.)

«A time-sequence of actions can be attached to the
leaf-Llevel, insteid of one~step strategy responses, to describe
the result of strategic planning.

«Judiciously chosen decision variables can characterize the
relevant aspects - of the history of a confrontation or of the
development of anjenvironment.

«A Learning istrategy is represented by a sequence of DTs,
each being a "snapshot” taken of the strategy, with the learning
component frozen,, at different time points., We have devised an
algorithm, the g0=2 module {4), that computes the asymptotic form
of the sequence ¢f DTs, when the result is statistically valid,
This extrapolated DT is then used as one of the input strateqgies
in the computation of the normative strategy.

3. IME 20=3 BBOGRAM

{

We can explain the Q=3 best by going through its phases of
operation in a chronological order.
S.1. Ihe Usec loout

The whole program is highly interactive and relies on the
user's advice when feasible., As described belows the first,
exploratory phase of the program specifies decision variable
levels according to a loosely balanced incomplete block design, a
term to be explgined Llater, The user first has to input a
so-called zeduction fagtors f» which is the ratio between the
number of exploratory experiments and the number of all possible
experiments., The Llatter is the product of the number of
meaningfully distinct Llevels of every decision variable --
essentiaslly the gcacdioaligty of the experiment. The reduction
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factor provides the user with control over the usual trade-off in
experimentation between cost and precision,

The user is then asked to specify OB, the precision desired
(or error tolerated), This is then considered by the system as
the minimum discernible difference between the strategy responses
given at two adjacent experimental points in the decision
variable space., Therefore, if there is reason to assume » weakly
monotonic responsge surfacer, the Llatter s considered "flat"”
between adjacent .points whenever the response values at such

points differ by, no more than ag. (Our program repeats the
experiments at the two points once more and also checks the
response value in the midpoint because of possible

non-monotonicity of the surface and the usually stochastic nature
of the environment,)

Next, the wuser inputs information about each gdegcision
xaciable. This c¢onsists of its name, typer ranger, and the
initial estimate of the number of Llevels it assumes. There are
three types of variables:

i) uu.ggiggL in which case the range of values is
normalized to (0, 128). The wuser estimates how sensitive the
strategy response 1is to changes in the varjable 1in question,
Higher sensitivity, i.e. more rapid changes, would require more
levels in the vorjablc. The user must also specify the pazisus
seaniogful resolution (MMR), which is the smallest discernible
difference between the values of the variable. In other words
the grid size atoqg that dimension must be at Lleast as large as
MMR.

(i11) Qcrdered cagtegacical xaciables assume symbolic values
which are, by thein nature, ordered. Examples are rank numbers,
the days of the week, musical notes, even colors when their
respective wave lengths have some significance. The user may
enter, for example, ((COLOR (RED ORANGE YELLOW GREEN BLUE INDIGO
VIOLET)), The system again maps the range of the user-specified
values onto (0, 128). He also provides an MMR value to express
how "influential” the variable is with regard to changes in the
strategy response., , Wisely used, the user can control through MMR
the number of experiments wuntil more information becomes
available about the nature of the response surface. The highest
number of levels of 8 numerical or ordered cateqorical variable,
NL, is related to MMR as

‘ MMR = 128 /7 (NL = 1)

(1i1) Upordsred sagteaocical yariables, too, assume symbolic
values but these have no meaningful order. The user may, for
example, specify  ((ANSWER (YES NO)) (SPICES (SALT PEPPER
PAPRIKA))), There s no MMR specifiable here. Unordered
categorical variables are treated differently; all levels given
sre used exhaustively, as explained below.

We should point out that QQ0=3 is robust enough to rectify
user errors about the importance of individual decision
varfables. The program will trim and add Llevels as the
experimentation proceeds and the shape of the response surface
emerges. However, time and cost of experiments are saved when
the user's estimates are sound,

{
i
!
!




'
t

Finally, the 'system computes all acceptable basezupnit values
and, if there is wmore than ones, it asks the user to select one.
The base-unit is 'the greatest common divisor of the number of
levels of all numerical and ordered categorical variables, (The
unordered cateqorical variables are always exhaustively
searched,) An  ‘'acceptable' base-unit is usually a compromise
representina the smallest number of levels added to those
originally specified by the user, over all affected variables,
3.2. Block Reaigo for the Explocatory Bhase

The bhalapced ipscompiete block design (BIBD) is wused in
controlled experiments to reduce their total number while
maintaining the symmetry of effects of two individual and
potentially interacting independent variables on one dependent
varfiable (see [52 for details). Unfortunately, it 1is not
possible to constrpct a BIBD for any number of levels even in the
two~-dimensional caser, and the constraints employed have no
obvious counterparts in higher dimensions. These reasons have
led us to its :generalized concept, the lposely balapced
insompleste biogk desigp (LBIBD).

LBIBD ensures that a statistically reliable sample s
selected of all ‘possible combinations of the Levels of the
decision variables. The size of the sample is the fraction,
specified by the user as the reduction factors of the cardinality
of the experiment., The design must satisfy two constraints:

(i) Each Llevel of a variable appears (approximately) equal
number of times/ .

(ii) Each level of a variable is combined with each level of
another variable (approximately) equal number of times, for all
pairs of variables,

The term "loosely balanced”™ is due to the fact that another
rule concerning the symmetry between multiple co-occurrences of
levels, satisfiable only in certain instances of the
two~-dimensional oproblemsr has been relaxed and used only when
possible, The following concepts will be necessary in explaining
the other phases of g0=3:

Let the reduction factor be gqiven as a fraction of Lowest
terms, f=a/b; the size of the base-unit be p’ the number of
decision variables of the numerical and ordered cateqorical types
be d/ and the number of wunordered categorical variables be y.
Let us also define a few terms. A ‘chip®’ consists of (d=-1)
indices (or level ; numbers) where an index value falls in the
range (1, n) inclusively, A 'basic block® consists of fenes(d=1)
chips. An ‘extended block' is the result of ‘spawning® the
appropriate chips of a basic block, 'Spawning’ means repeating
the chip along the dimension of a decision variable whose number
of Llevels is & multiple of the base-unit. A ‘test vector' is
determined by (d¢u) indices and represents the specification of
one experiment., Finally, the 'initial test basis® consists of a
set of test vectors computed by the LBIBD-generator for the
exploratory phase of gQ=3.

Using number~theoretical arquments, it can be shown that if
% is an index of the f~th variable, then the indices of the

=) variables of & basic block must satisfy




(x + x * cecees *+ X ) mod b < a 1
1 2 d=-1

Inequality (1) defines stripes perpendicular to the
principal diagonal of the block. These stripes can be eliminated
and the experiments "randomized” (spread out) with

(pix ) 4+ p(x ) 4 .,.00 *+ pix 3] mod b < a (2)
1 -2 d-1

where g is a permutation operator on the values 0, 1, ... b-1,
We have chosen to use the multiplying factor (d-i) for x; as the
respective permutation operator, -

3.3. Sspsitizatiop as tbe Explorastory Bhasse

The process of sensitization is the exploratory phase of
20=3. Its task is to find out where the initial test basis has
to be refined along the dimension of every decision variable,
(Note that, under iideal conditions, the final grid is such that
the difference in response values at adjacent points is
identigcally equal to 4R over the whole domain of decision
variable space,) . We describe the process and the underlying
heuristic through an example. Suppose one of the g variables,
vi o was specified by the user to have five levels initiatly. 1Its
normalized values are (0 32 64 96 128)., Also, assume it has an
MMR of 8, The system first considers the levels (O and 32. The
extended block specifies sets of values of the other (d=1)’
decision variables :at which experiments are performed while the
value of v; is held at O and 32, respectively, Accordingly, two
groups of response values are obtained, one for v;:30 and the
other for v; 232, The program forms the average of each group of
values, If the difference between the two averages is less than
AR, the subrange (0, 32) is "monotonically sensitized”, i,e.
there is no need to refine it if the response surface is assumed
to be weakly monotonic. If this assumption is not held, the
midpoint v; 216 1is selected. The <corresponding average response
value is then compared with those for the two endpoints of the
subrange. If the respective differences are both less than AR,
the subrange is "completely sensitized”. Otherwise, the midpoint
is added to the values of v; as a Llevel to be used in the
completing phase of. experiméﬁ%ation. The subranges are halved
further whenever the results warrant it =-- as long as the Llength
of the subrange is no less than MMR, in our example 8. The same
procedure is followed by all subranges of Vie and then for each
of the other decision variables,

Finally, we note that the response values are naturally kept
after their averages are formed -- they are needed also in the
completing phase of experimentation,

3.4 JIbs Lomplesiong Bhase of Exosrisentation

When all decision variables have been sensitizeds the
experiments specified by all computed test vectors are performed.
(There 1is no saving possible for the wunordered categorical
variables. The whole process has to be repeated for each value
of every such variable,)
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Finally, 80=3 builds a pT of the results of computations.
The paths go through the 'subrange of the variables, and the
response value is attacled to the leaf level,

4. SQME BESULIS

As a final test run, we have defined a response surface as a
function of 2 numerical variables, 1 ordered and 1 unordered
categorical variables with the following conditions:

IF (state = solid)

THEN IF ted < 3000 THEN response = Jftesd

ELSE response = (d/30) fted.

If (state = liquid)

THEN IF t < 100 THEN response = ted

* ELSE response = (t/100)sted,

IF (state = gas) '
THEN IF (gas is radio-active) THEN response = Seted
: ELSE response = (5/2)e ted.

The user has specified the following values: ¢t = 2/5, AR= 2000,

Variable Name | Type | Range | MMR! Number of

' ) ) } Init. Levels
cememcccscecscnan |mcccnceccocs |cocncrcccncccaas |mece|cccecnccccnns
temperature (=t)|numer, 1¢0..200) ) 101 é
duration (=d) Inumer, 1(0..60) t 21 4
state lords cat, I1(solid..gas) 17°64"} 3
radio-active funord, cat.l(yessno)d ) == 2

¢
20=3, written in MACLISP, took 31 seconds on a Honeywell Level
68/80 processor to design a toial of 434 experiments (out of 3906
possible ones), The actual maximum difference in response values
st adjacent points was &R, = 1728,
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Figure 1
A decision tree with n decision variables,
ﬁ' .o .):n, and m responses (actions), il_' .o 'f'B
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