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ABSTRACT

We study precise conditions under which the cyclic regenerative
confidence intervals of Sargent and Shantihikumar are asymptotically valid.
We also obtain an optimal way of implementing the cyclic regenerative variance
reduction technique, and obtain a sufficient condition under which the
procedure yields a lower variance than that of the standard regenerative

method.
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N SIGNIFICANCE AND EXPLANATION

;)si-nlation is a commonly used method of analysis for studying complex
stochastic systems. Often, the parameter of interest to the simulator can be
estinppted by more than one quantity. Wwhen more than one estimator exists, it

is desirable to use the more stable estimate, namely the one with the lessger

variance.
t‘/\\ P “’; L

" In this paper, ye consider a class of stochastic processes which enjoy

cyclic regenerative structure - such systems often arise, for example, in

-

I‘:)‘
analysis of queues. U« study a family of estimators. recently introduced by

Sargent and shantihikumar and determine precise conditions under which the

RS

estimators are asymptotically valid. WwWe also obtain a closed-form solution

for the minimum variance estimate in the family, and prove that this estimator
will often be superior to the standard regenerative estimator for the

simulation. L
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ON CONRFIDENCE INTERVALS FOR CYCLIC REGENERATIVE PROCESSES

Peter W. Glynn

1. Introduction
Recently, Sargent and Shantihikumar [S] developed an interesting new

variance reduction technique designed to exploit the stochastic structure

‘z associated with a cyclic regenerative process. Our purpose here is to study
precise conditions under which the confidence intervals proposed in [5) are
agsymptotically valid. This analysis will provide us with the side benefit of
obtaining an optimal way of implementing the variance reduction procedures
introduced there. To be precise, we will obtain the minimum variance estimate
in the clags of estimates proposed in [5]. We will also determine conditions
under which the minimum variance estimate achieves a lower variance than that
of the standard regenerative method (see Crane and Lemoine {4] for a
description of the standard procedure).

We will use the convention that assumptions in force throughout the
entire paper will be prefixed by A (eg. A1) whereas all others will be
prefixed by B. We can now state our basic assumptions for the problem:
al. {xn : n > 0} 4is a regenerative process with regenerative times

0= Tg ¢ Ty < «.. satisfying 811 < ®», where L TS - Tn_1
A2. £ 1is a real-valued function such that EYn(Ifl) 2 E{If(XT )1
n1
+oeet If(xTn-‘)” < -,

A3. There exist random times {a :n>0, 0<i<t} such that

n,i

T = q <a €ive€ @ = T and for which {(Y ) s

n-1 n,0 n,1 n,t n n,i'tn,i
n > 1} are independent and identically distributed (i.i.d.) random

Sponsored by the United States Army under Contract No. DAAG29-80-C=0041.




L -
vectors (r.v.'s) for 1 < i < t, where Tl ™ %1 " %, and
Y ., =f£(x ) +eoot £(X )e
n,d %, 1-1 %, 17"

Assumptions A1 and A3 basically define the notion of a t-phase cyclic
regenerative process. We will also suppose that the simulator possesses the
following knowledge:

Ad. “‘l,i' ET , are known for 41 € D.

AS. The simulator can sample independently from each of the distributions

{ ), ier 4 {1,eee,tN\D.

%,1' Y1,1

n
Under A1 and A2, 2 !(Xk)/n +r= 811(1)/!1'1 a.s. (see [4]) for a proof).
k=0

The goal of the simulator is to obtain confidence intervals for r.




2. A Central Limit Theorem

In the setting of a cyclic regenerative process, the practitioner must
decide on a sampling order before initiating the simulation. To be precise,

the simulator must assign, for each n > 1, an integer m, from

G=rV {(0}). The practitioner then simulates the sequence of independent

r.v.'s {(wn,xn) t n> 1}, where (W, ,x ) is sampled from the distribution

of (!1'.h,11.-n) if m er and from that of (Y1(f),t1) ir m, =0
{independent sampling is possible on account of A5). Put 0 ;"
L4

{§ ¢<n: -j = i} and let kn,i be the cardinality of LI for i € G. The
natural point estimate for r is given by

r = () Y .+ JoEx, 0L T .+ ] ET )

n 16G n,i iep 1,1 160 n,i 1ep 1,4
where Yn,i - 2 "j/kn,i' 1n,1 = { xj/kn,i' The a.s. convergence

jew jew

n,i n,i

of r to r is ensured by:

A6. either 1. ) k

n,d +o {f 1 er, k

20 or 11.) kﬂ +w» {f {1 eaG.

n'o '1

To obtain a confidence interval for r, we need a central limit theorem (CLT)

- such behaviour is guaranteed by:

24 2
Bl. 0 < o1 = 0 (Y1,1 rt1'1) <o for L1er,
0 < cz 442 ’

g (21‘f) - rt1) < =,
Theorem 1: Under B, there exist constants a, such that H
an(rn - r) s=> N(0,1), where N(0,1) is a unit normal r.v.

Proof: We shall prove the result under A6 i.), the proof under A6 ii.) being

similar., we view the problem in terms of a triangular array of r.v.'s by

setting




un.j = (wj - rxj + 31’/kn,1

it By = i, where 81 = rET - EY, ;o Set U = Z ) and observe that

1,1 jen n,3

1,1

2

s oz(u ) = 12’ o WP

Then, the triangular array {Un j/sn} satisfies Lindeberg's condition since
’

for any € > 0,

2 !{U /0:1 U: 12 e’s 2
I=1 !
2 2 222
I !{z n 1%n’ z1,1 > € 'nkn,i}
< {s{z1i/o,zfi>e2 11}oo
ier e
as n + ®; here Z4,4"Yy,1" B {(in the inequality, we used

2 2 .
s, > °1/kn,1)' Since EUn'j = 0, it follows by Lindeberg's theorea (see

Chung [3]), p. 205) that Un/-n ==> N(0,1). Hence,

) Yo0 = T, * 8)/8, == NGO .

{ BY ~- rET e Thus, using the fact that

Bt ] B, = 1,1 1,1

ier iep

X T + X BT + ET, a.s. and the converging-together lemna
I3 i€p 1.4 1

(Billingsley (2], p.25) proves that
a (r, - r) ==> N(0,1)

where a = 811/.n. 11

In a simulation application, one needs to estimate the constants a,.

For the estimation; we need to add an additional hypothesis:

B2. =(y?

2 2
1,4 + T ’1) <o for 1 eFr, E(v‘(f) + 11) < »,

. 2
Notice that if 11'1 - r‘th1 + 0i where 311'1 ® and 0 < nei < », then

Bl is satisfied but not B2.




Corollary 1: Under B1-B2, there exist estimates an such that
an(tn - r) ==> N(0,1).

Proof: By the converging together lemma, this follows from Theorem 1 if we

* obtain estimates a, such that an/asn + 1 a.s. Under A6 i.) an appropriate
A ~ -~ A2 A2
\ candidate for a is r“/sn where s 12? °n, i/kn, i and

~2 2 2
o = ¥ M, -rx)/x - b owoerxsx ).
n,i jeu 3 nj n,i jew b nj n,i

n;i n,i
But |1~ az/a2| < Y- R /'rzazl + 0 a.s. A similar proof works under
nn jop 1 n,i" n'i

A6 ii1.) ||
The CLT of Corollary 1 can be used to construct confidence intervals
for r. The half-width of a 100(1-8)% confidence interval for r, based on

a sample of size n, will be =2 G/an' vwhere 2z s solves

P{N(0,1) € ’6} = 1« §/2.

P

T A £ Tt T AEARIAIMEAL o AT 5 - S e
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3. Another Central Limit Theores

To analyse the d‘gro_o of variance roductl:ion of a method, one needs to
compare the half-width of competing intervals generated in a given amount of
simulation time. In our context, this is accomplished by constructing
intervals based on (W, .x‘)....,(w“m,xum). wvhere A(N) =
max{k @ x +o.ot % < N}

To base a CIT on a random number £(N} of independent r.v.'s requires
control on the growth of the "n,i"‘

Bl. if X, 4 * then kn,:l/n *c,. If ¢y, cy are both zero, then

'k“"j/k“,1 * ¥y 0.

Theorem 2: Under B1 and B3, ‘!.(N)(r!.(u) = r) ==> N(0,1) where the a_ 's
are the constants of Theorem 1.
Proof:s We assume we are dealing with A6 i.), the proof for A6 ii.) being

similar. Suppose then that c¢; is minimal for i = 's. Then, by B1 and B3,

; 1/2,— - 2
(3.1) »kn"(zn'l 11 ep) > N

where ﬁ is a multivariate normal r.v. with {(possibly) singular components

(z - Z 2 J/k_ ,) - in fact, it is easy to obtain a weak invariance
n,i j ew n,i
n,i

n,)

principle version of (3.1)

Put sn = Xy Feoot X, and observe that

s/n= § I x, /n
n ter jev 3

= ¢ I x/x ) ek ./n
1er jeu ¥4t e

* 2 ¢, BT ReBe
Lep i 71,4

by B3. But 8, . CN<CS, ... %o




/2 (N) S N/LIN) < 8y ), \/R(N)

Sen
and thus, by “"squeezing” N/L(N), we obtain the result that
B/AN) » ] c, Bt

ier 14
and the random time change results of (2], p. 146, we have that

a.s. Then, using the weak invariance version of (3.1)

x172

Ky(N),» /g ==> W(0,1)

1 2
ieF L(N), 1=

where c = 12! c o /c (1f Cqg =y = 0, set cs/c1 = Yis" Another

application of the converging together lemma shows that

(r - r) ==> N(0,1)

2900 Ty

2 2 2
where a, kn,.n t1[g « But B3 guarantees that a_ln/an + 1, yielding the

theoream. ]

Again, in terms of the confidence interval problem, one needs to estimate
a‘(u). The following corollary follows immediately from Theorem 2, and the
fuct that an/an + 1 a.s.

Corollary 2: Under B1-B3, ;z(N)(rl(“) - r) ==> N(0,1) where the ;“'a are
the estimators of Corollary 1.

Finally, we can often re-write the CLT of Theorem 2 in another form.

If c, is positive, then kn"/ncs + 1, 8o that we obtain the following
result.
Corollary 3: Assume B3 holds with all ci's positive. The, under B1, there

exists '5 such that fi(r -r)/; =u> N(0,1). Also, under B1-B2, there

A(N)

exist estimators °N such that /ﬁ(rz(u)

Proof: The result is obvious, upon identifying ;?, ;ﬁ. Under A6 i.),

'éz-wznr)-(i o BT

--r)/?iN =a> N(0,1).

-2
'1/ ) and %

nz 02
(] o0 /e’ * (L STt

s t),1 /eg)e 11

ier ier




g

i
2

Lemsa 3: Suppose B1-B3 hold with all ci'l positive. Then,

4. Optimal Confidence Intervals

We now wish to investigate the amount of variance reduction over the
standard regenerative method that is accoupliohod by using the intervals
proposed in Section 3. Let V(N), W&,N) be the half-widths of 100(1~§)s
confidence intervals based on simulating N time units and using the standard
regenerative interval and the interval of Corollary 2, respectively (we write
v(E,N) to reflect dependence on ¢ = (ci)). The following result may be
found in [4]. ‘

Lemma 1: Under B1-B2, N"zv(u) + 260/(!t )V2 A o a.8.

In view of Lemma 1, the next lemma shows that it is never optimal to
allow kn,i to tend to @« in such a way that kn,i/“ + 0,
Lemma 2: Suppose B1-B3 hold and k + o with c¢_ = 0, Then

n,s s
1/2

N/%WN,3) + @ a.s.

Proof: The assertion is equivalent to proving that N/a2

L) + @, But
N/a> /7
am) " uu) 2(N)
~2 ~2
> N9y iy, 8% en), s Tew)
= /L) - (AN/ky o0 ) (o““)'s/tum) + oa.s. ||

Thus, in our search for optimal intervals, we need only consider the case
where all ci'l are positive. This allows Corollary 3 to be applied to
obtain a second cyclic regenerative interval with half-length KTN,E)

(say). The following result follows from the proofs of Theorem 2 and

Corollary 3.

v(N,z)/:(N,s) + 1 a.s. Purthermore, under A6 i.),

820w, » zg( ] o /c 172 ) c1!T1'1)1/2/!T1 a.s. 1

i

ier ier




Theorem 3: Assume B1-B2 hold. If &" < ( | o, (BT, )
’

and under A6 ii.)

2 1/2
+ ) o/c,) "FlegT, + § c.ET
ier i 01 ier i

/

1/
)

N1 2v(N,Z) > zs(oz/c 2/2211 a.s8.

0

We are now in a position to determine the optimal constants é.
2 1/2)2, then no
ier

variance reduction is possible via the cyclic intervals of Section 3.
Otherwise, the maximal reduction is obtained via the cyclic interval of

/n * ¢ for i € F, where

section 3 in which k g4

n,i

1/2

g, = 01/(211'1)

(4.1) .

1/2 -1
a= (] o/(ET, ) '
iep i tod

The percentage variance reduction achieved is then
100(1 - J o, (ET, i)'/2/0)2)\.
ieF !

Proof: By lemma 3, it ig clear that the optimal interval possible via a
cyclic method of type A6 i.) is obtained by choosing kn i/n *c for 1 eF,
’

where g solves the optimization problem

minimize ( Y ui/ci)( Z BT )/3211

ier ieF 1ed

(4.2)

subject to Z c;, = 1, c; >0 .
ier

Application of the method of Lagrange multipliers to this problem (see Avriel

[1], p. 48) show that a minimal ¢ must satisfy

2
(4.3) - o] cET

(] /e +a=o0
ier

)/ci + Et N
ier

1.4 1,1

for each i € F and some constant A. Multiplying the i'th equation of (4.3)
by cy and adding all the resulting equations proves that ) = 0. Eguation

(4.3) shows that




for some n. The proportionality factor n is determined by I Pl 1. It
ier
is easily checked that ¢, as given, is the minimum desired, with minimal

value

-] o, (ET

ier

1/2.2,.2
1'1) )°/E T, .

A similar analysis for cyclic intervals of type A6 ii.) shows that the minimal
possible value for the analog of (4.2) is given by

1/2 1/2)2/4221

(0(311) :

+ ) o, (BT

)
iep 1,4

= (572 + /% > min(F, %)
‘"which shows that intervals of type A6 ii.) can never achieve lower asymptotic

half-width than the better of the standard or cyclic (of type A6 i.))

regenerative intervals. The other assertions of the theorem are trivial. ||
This theorem suggests that the practitioner should execute a small "pilot

run” to obtain approximate values for ¢ If the "pilot run" suggests a

~1'

variance reduction over the standard method, the simulator should construct a

sampling order which ensures that kn i/n +c for i € F, and then employ

¢ ~i
the cyclic regenerative method.

We conclude with a sufficient condition that guarantees that the cyclic

regenerative method achieves a variance reduction over the standard procedure.

Lesma 4: If B1-B3 holds, then g° € o if

A - rr1'i, Y1,j - r11,j) >0 for 1< 4, j €¢t,

Proof: Since g? is minimal for (4.2),

cov(‘l1

2 2 2
g < (] o0 Er, /E%c
ier 1 ier .4 !
2 2 ~2
< (15?01)/311 <0 (1£p Y,y rt1,1)/811 < ¢




the last two inequalities by the covariance condition.

We caution that 22 > ;2 is possible if the Y1 i
s

negatively correlated.

rT

1,1

are

deid,
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