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ABSTRACT
We prove that the upper and lower values defined by Elliot-Kalton {9] for
a two-person, zero~sum differential game are the viscosity solutions of the
upper and lower Isaacs equations, respectively. As an application we obtain
fairly simple representation formulas for the viscosity solutions of certain
Hamilton-Jacobi PDE. We also employ these formulas to study a problem from

geometric optics.
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\ SIGNIFICANCE AND EXPLANATION

Recent work by the authors and others has demonstrated the connections

between the dynamic progtaqping approach for two-person, zero-sum differential

o

games and the new notion ot\‘V1scosity')t;1utions of Hamilton-Jacobi PDE; "‘L‘_i.{(”'
introduced by M. G. Crandall and P. L. Lions.\ufﬁe basic idea is that the
dynamic programming optimality conditions imply that thé<‘valuel’9of a two-
person, zero-sum differential game are viscosity solutions of appropriate

PDE. This paper proves the above, when the values of the differential games
are defined following Elliott-Kalton. This results in a great simplification
in the statements and proofs, as the definitions are explicit and do not
entail any kind of approximations. Moreover, as an application of the above
results, the paper contains a representation formula for the solution of a
fully nonlinear first-order PDE. This is then used to prove results about the
level sets of solutions of Hamilton-Jacobi equations with homogeneous
Hamiltonians. These results are also related to the theory of Huygen's

principle and geometric optics.
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DIFFERENTIAL GAMES AND REPRESENTATION FORMULAS FOR
SOLUTIONS OF HAMILTON~-JACOBI-ISAACS EQUATIONS

L. C. Evans1 and P. E. Souganidis2

1. Introduction

Recent work by the authors and others has demonstrated
the connections between the dynamic programming approach to
two-person, zero-sum differential games and the new notion of
"viscosity" solutions of Hamilton-Jacobi PDE, introduced in
Crandall-Lions [8]. The formal relationships here were ob-
served by Isaacs in the early 1950's (cf. [18)): he showed
that if the values of various differential games are regular
enough, then they solve certain first order PDE with "max-min"
or "min-max" type nonlinearity (the Isaacs equations). The
problem here is that usually the value functions are not
sufficiently smooth to make sense of these PDE in any obvious
way. Many later papers in the subject have worked around
this difficulty: see especially Fleming [13], [14], Friedman
[15], [16], Elliott-Kalton [9]-[11], Krassovski-Subbotin (20],
Subbotin [26], etc., etc. and the references therein.

Recently, however, M. Crandall and P.L. Lions [8] have
discovered a new notion of weak or so-called "viscosity"
solution for Hamilton-Jacobi equations, and, most importantly,
have proved uniqueness of such a solution in a wide variety of
circumstances. This concept was reconsidered and simplified
in part by Crandall, Evans, Lions [7], whose approach we follow
below. Additionally, Lions in his new book [21] has made the

fundamental observation that the dynamic programming optimality

lbepartment of Mathematics, University of Maryland, College
Park, MD 20742. Supported in part by National Science
Foundation Grant MCS-81-02846 and the Alfred P. Sloan Foundation.

2Sponsored by the United States Army under Contract No.
DAAG29-80-C~0041.




condition for the value in differential control theory problems

‘ implies that this value function is the viscosity solution of
the associated Hamilton-Jacobi-Bellman PDE: see (21, p. 53-54]

| for more explanation. Some related papers are Lions [23],

H Lions-Nisio ([24]), Capuzzo Dolcetta-Evans [5]), Barles (2],

Capuzzo Dolcetta [4], Capuzzo Dolcetta-~Ishii [6], etc.

The foregoing considerations turn out to extend to dif-
ferential game theory, where additional complications arise even
as to the definition of the value functions. Nevertheless
the basic idea is still valid, that the dynamic programming
optimality conditions imply that the values are viscosity

solutions of appropriate PDE. See Sougnidis [27] for a demon-

stration of this based on both the Fleming and the Friedman
definitions of upper and lower values for a differential game,
and Barron-Evans-~Jensen [3] for a different proof for the
Friedman definition. Some similar results are to be found in
P.L. Lions [22].

The present paper represents a simplication of this pre-
vious work. The new approach here is to define the values of
the differential game following Elliott-Kalton [9]-[11] (cf.
Roxin [25]) rather than Fleming or Friedman. This results in
a great simplification in the statements and proofs, as the
definitions are explicit and do not entail any kind of
approximations.

The appropriate terminology is introduced in §2. In §3
we reproduce (and simplify a bit) Elliott and Kalton's proof
of the optimality conditions and of the Lipschitz continuity of
the upper and lower value functions. Then in §4 we prove #

that the value functions are the (unique) viscosity solutions




of the appropriate Isaacs equations; our demonstration of
this owes a lot to previous papers (especially [37 and (271]),
but is essentially simpler in many ways.

The remainder of the paper is devoted to some applications.
First, in §5 we discuss: (cf. Fleming‘[lu]) how to write a
fairly arbitrary Hamilton-Jacobi equation as the upper Isaacs
equation for some differential game, so that the viscosity
solution is this upper value. The consequence is a kind
of representation formula for the solution of the origin-
al, fully nonlinear first-order PDE. We thereafter in §7
employ this representation formula to prove results about the
level sets of solutions to Hamilton-Jacobi equations with
homogeneous Hamiltonians; these questions we motivate in §6
with a discussion of geometric optics and Huygen's principle.
Part of the point of this application is to show that the
game theory methcds provide mathematically rigorous and rela-
tively simple procedures for justifying various formal calcula-
tions concerning Hamilton-Jacobi equations. Roughly speaking,
the trajectories for the differential game serve as "peneralized
characteristics" existing in the large.

We should note also that our hypotheses throughout are
almost always stronger than is really necessary, since we wish
to display the methods in the clearest setting. The interested
reader should consult Ishii [19] for some extensions of our
results to differential game problems under much weaker hypotheses.

We conclude by recording here the relevant definition

of viscosity solutions, from [7], (8], [3].
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Assume H: [0,T] xR™ xR" + R is continuous, and
g: R®+R™ is bounded, uniformly continuous. A bounded,
uniformly continuous function u: [0,T] x R™+ ®R™ is

called a viscosity solution of the Hamilton-Jacobi equation

.

(1.1) u, + H(t,x,Du) 0 in (0,T) x R"

1) ¢
(1.2) u(T,x) = g(x) in ®’™

.
provided (1.2) holds and for each ¢ € CY((0,T) x R™)

(a) if u-¢ attains a local maximum at

(tgsxg) € (0,T) x R®, then

and
(b) if wu-¢ attains a local minimum at
(tgsxg) € (0,T) x R™, then
(1.4) Ot(to,xo) + H(to,xo,DO(tO,xo)) < 0.

See [7], [8] for a proof that if u is a viscosity solution of
(HJ) and if u is differentiable at some point (t4,.x4),

then

“t(tO’xO) + H(to,xo,Du(to,xO)) = 0.




Remark. We have described here the apprupriate¢ - nltlion for
the terminal value problem (1.1), (1.2); this is, as we shall
see, the kind of PDE arising in game theory applications. A

viscosity solution of the initial value problem (1.1),

(1.2)’ u(x,0) = g(x) in R,

is defined by reversing the inequalities in (1.3), (1.u).




2. Terminology
We mostly adopt here the notation of Elliott-Kalton [9].

(a) Definition of the differential game

Fix T>t20, x € R™ and consider the differential

equation
r‘
x(s) = f(x,x(s),y(s),z(s)) t<s<T T

(ODE) {

x(t) = x.
\

Here q

y: [t,T] -~ Y
and

z: [t,T] -~ 2

are given measurable functions (called the controls employed

by players I and II, respectively) and Y ¢ ]Rk, yANS IR‘e

are given compact sets. We assume

£: (0,7} x R™"x Y x Z » R”

is uniform. . continuous, with

r
|€¢t,x,y,2)| = C;

(2.1) {

|£(t,x,y,2) - £(t,%,y,2)| = C;|x-x|
\

for some constant C1 and all 0sts<T, x,iCRm, yeY, 2¢€Z. 3
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The (unique) solution x(:) of (ODE) is the response of the

system to the controls y(-), 2(.).

Associated with (ODE) is the payoff functional

T
(P)  Ply,2) = B, (y(+),z(-D) ( hs,x(8),y(8),2(8))ds + g(x(T)),

where g: R® + R satisfies

r
lgtx)] = ¢,
(2.2) {
lg(x) - g(R)| = Czlx-;l s
\ o
and h: [0,T] x R® x ¥YxZ + R is uniformly continuous, with
' 4
. |h(t’xoy'2)| < Ca
(2.3 {
L'h(t,x,y,z’ - h(t’;’y’Z)' s Cslx-;l

for constants C2,03 and all 0s=t<T, x,QCRm, ye€Y, z€Z. The goal
"of plaver I is to maximize P and the goal of player II is to
minimize P.

(b) The upper and lower values

Set

M(t) s {y: [t,T) = Y| y measurable}
N(t) s (e2: [t,T] + Z| z measurable} :

these are the sets of all controls for I and II, respectively.

We will henceforth identify any two controls which agree a.e.

R SRSy v

vt s T R
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Following now Varaiva [29]. Roxin [25) and Elliott-Kalton [9] ]

we define any mapping
a: N(t) - M(t)

to be a strategy for I (beginning at time t) provided for each

t<s<T and Z,z€N(t):

z(t) = 2Z(t) for a.e. t < T < s

(2.4)

implies alz)(t) = alz](1) for a.e. t =T <s .
Similarly a mapping

B: M(t) =+ N(t)

is a gtrategy for II (beginning at time t) provided for each

t=<s<T and y,JeM(t):

y(t) = y(1) for a.e. t st <s
(2.5)
implies Blyl(t) = _B[§](T) for a.e. t < 1 <s

Denote by T(t) the set of all strategies for I and by A(t)
the set of all strategies for II, beginning at time t.
Finally define

V(t,x) = inf sup Py, 8lyD
Bea(t) yeM(t)

(2.6)

(T
= inf sup (J h(s,x(s),y(s),Rlyl(s))ds + g(x(T))},
pea(t) yeM(t) t

x(+) solving (ODE) for y(.) and 2(-:) = plyl(-).




Analogously set

rU(t,x) s sup inf P(a(2], 2)

a€l(t) zeN(t)

2.7) g T

' = sup inf (| h(s,x(s),alz1(s),z(s))ds + g(x(T))} ,
a€l(t) zeN(t) t

\
x(+) solving (ODE) with z(:) and y(:) = al2](:).

We call V the lower value and U the upper value of the

differential game (ODE), (P). Our goal is to show that V and

U solve certain nonlinear PDE (in the viscosity sense).




3. Properties of the upper and lower values

The results in this section are proved in Elliott-Kalton [10].
We reproduce and simplify slightly their arguments for the read-

er's convenience.

Theorem 3.1 For each O0<tct+o<T and x€R” A

tto
(3.1) V(t,x) = inf sup {I h(s,x(s),y(s),Blyl(s))ds + V(t+o,x(t+s))} ,
pea(t) yeM(t) &

and

ft+o
(3.2) U(t,x) = sup inf {J h(s,x(s),alz](s),z(s))ds + U(t+o,x(t+c))} .,

a€l(t) 2€N(t) t

These are the dynamic programming optimality conditions.

Remark. In (3.1) and (3.2), as elsewhere below, we implicitly
mean x(:) to solve (ODE) with the appropriate controls y(-.)

and * z(*).
Proof. We prove (3.1) only, as the proof of (3.2) is similar.

Set

t+o

(3.3) W(t,x) s inf sup { h(s,x(s),y(s),Blyl(s))ds + V(t+o,x(t+0))}
ﬂGA(t) yGM(t) t

and fix e>0. Then there exists &¢A(t) such that

t+o
(3.4) W(t,x) = sup {I h(s,x(s),y(s),8[yl(s))ds + V(t+to,x(t+0))} - € .
t

yeM(t)




Also, for each weR™

(T
V(tto,w) = inf sup {J h(s,x(s),y(s),8ly](s))ds + g(x(T))} ,
pea(t+o) yeM(two) te+
o
x(+) solving (ODE) on (t+0,T), with the initial condition

x(t+g) = w. Thus there exists éw € aA(t+g) for which

T
(3.5) V(tto W) = sup {I h(s.x(s),y(s),G"Iy](s))ds + g(x(TH} - ¢ .
yeM(t+q) teo .

Define pe€a(t) this way: for each yéM(t) set

4 .
&lyl(s) t =5 < téo

Blyl(s) =

LGX(t"U)[y:l(S) tto < s T .

Consequently for any yeéM(t), (3.4) and (3.5) imply

T
Wit,x) = J h(s,x(s),y(s),Blyl(s))ds + g(x(T)) - 2¢ :
t .

so that

T
sup {I his,x(s),y(s),B8lyl(s))ds + g(x(T))} = W(t,x) + 2¢ .
y€EM(t) &

Hence
(3.6) Vit,x) s W(t,x) + 2¢ .

On the other hand there exists B€a(t) for which




(T
(3.7) V(t,x) = sup {J h(s,x(s),y(s),Bly)(s))ds + g(x(T))} - € .
yeM(t) &

Thus

tto
W(t,x) < sup {I h(s,x(s),y(s),Blyl(s))ds + V(t+a,x(t+a))} ,
yeM(t) t ’

and consequently there exists y) €M(t) such that

t+a
(3.8) W(t,x) = { h(s,x(s),yl(s),nyIJ(s))ds + V(tt g x(t+c)) + € .

t

Now for each y€éM(t+o) define §FeM(t) by

yl(s) t < s < t+o
y(s) =

y(s) tto = s =T
and then define p€a(t+o) by
flyl(s) = BL¥] (s) (tto=s=T) .
Now

T
V(tto,x(t+0)) < sup {I h(s,x(s),y(s),8lyl(s))ds + g(x(T))}
yeM(t+o) t+o

and so there exists yzeM(t+o) for which

T
(3.9) V(tto,x(t+o)) < I h(s,x(s),y2(s),§[y2](s)ds + g(x(TH+ ¢

t+o 4
-12-
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Define ye¢M(t) by

yl(s') t <8 < t+o
y(s) s

yz(s) t¥40 = § < T

Then (3.8) and (3.9) yield

. |
(3.10)  W(t,x) = I h(s,x(s),y(s),8ly1(s))ds + g(x(T)) + 2¢ ,
t

and so (3.7) implies
W(t,x) = V(t,x) + 3¢ .
This and (3.6) complete the proof.
Next we examine the boundedness and continuity of the
value functions:

Theorem 3.2 There exists a constant Cu such that

(3.11) Iv(e,x)|, lu(t,x)] = Cy

(3.12) |V(t,x) - V(E,®) ], lutt,x) ~ uE, %] = ¢ (1t-F| + [x-x|)

for all 051:,?:5'1‘, x,;ee]Rm.

Proof
We give the proof for U only since similar arguments work

for V.




First, owing to (2.2) and (2.3) we have
|P(y,2)] = TC4 + C,

for all y(-)eM(t),z(-)€N(t). This at once implies estimate
(3.11) for V.
To prove (3.12) for V 1let us first choose xl,xzﬁmn,

Ostlstst. Pick ¢>0 and then select a€l'(t;) so that

(3.13) U(tl,xl) < inf P(alz],z) +¢
zéN(tl)

Pick some zy€Z, and then define for any zéN(t,)

z € N(tl)
by
z0 tl < 8 < t2
Z(s) =
z(s) ty s < T

Now define g€r(t,) by setting for each z&N(t,)

alzl « afZ] (t, s 5 =T).

Finally select zeN(tz) so that

According to (3.13)




(3.15) UCt,xy) < P(alZ1,Z) + ¢ .

Now let x1(~) solve

dxl(s) ~ ~
- rai £f(s,x (8),a[2](s),z(s)) (t; < s<T)
xl(tl) = X

and let xz(') solve

dxz(s)
35— ° f(s,x(s), alz)l(s),z(s)) (t, < s < T)
xz(tz) = X,

We have

l%, (t,) - x| = Clty - t,l

Furthermore, since z=z and galz] = alz]l on (t,,T),

Thus (3.14) and (3.15) imply




U(tl,xl) - U(tz;xz) < P(a[Z],Z) - P(alz],z) + 2,

t

2
- [ h(s,x,6),a[%1(s),%(s))ds
1

T .
(3.17) + I [h(s,xl(s),g[z](s).z(s)) ~ h(s,x, (s),alz](s),z(s))]ds

t,
¢ glxy(T)) - glxy(T)) + 2
< C('tl'tzl + {xi-le) + 2¢ ,

by (2.1)-(2.3) and (3.16).

On the other hand let us select aer(tz)

such that

(3.18) U(tz,xz) < inf P(alz],z) + ¢ .

z‘N(tz)

For each zeN(tl) define geN(tz) by

z2(s) = 2(s) (t, =8 =T) .

Fix any y,€Y and then define Eer(tl) by

-]
r~
N
d
o
~
[}
®
tA

Now choose zeN(tl) so that

(3.19) Uty %) 2 P(alz],z) -

-16-
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According to (3.18)

(3.20) U(tz,xz) < P(a[g],g) + €.

Let xl(-) solve

dxl(s) -
—5— ° f(s,xl(s),a[z](s),z(s)) (t1 < s < T)
xl(tl) = X
and let xz(') solve
rdxz(s)
IS = f(s,xz(s),a[g](s),g(s)) (t2 < s < T
w x2(t2) = X

As above le(tz)-xl| < Cl|t1~t2| ; and since z = z,

alz] = a[g] on (tQ,T),

(3.21) le(s)-x2(s)fs c|x1(t2)-x4 = C( Itl-t2| + %%, 1) (t,~ s < T).

Therefore (3.18) and (3.20) imply




U(tzgxz) - U(tlgxl) 5 P(c[‘é]’,\z‘) - P('E[z],Z) + 28
t2
2 -f h(s,xl(s),zlzl(s),z(s))ds

t

T
+ I [h(s,x,(s),alz](s),2(s)) - h(s,x,(s),alz)(s),z(s))ds

t
+ g(xz(T)) - g(xl(T)) + 2

< C(ltl-t2| + |x1-xil) + 2¢

This and (3.17) prove estimate (3.12) for U.

-18-




4. Viscosity solutions of Isaacs' equations

Next is the observation that the dynamic programming
optimality conditions imply U and V to be viscosity solu-

tions of certain PDE.

Theorem 4.1 (a) U is the viscosity solution of the upper

Isaacs equation

4 + m
Ut+a(t,x,DU) = 0 (0<t=T, x € R")
a* ({

UCT,x) = g(x) (x ¢ R™),

\
where

H’(t,x,p) = min max { £(t,x,y,2)p + h(t,x,y,2z)}
' 2€Z7 yeY :

is the upper Hamiltonian

(b) V is the viscosity solution of the lower Isaacs equation

th + H (t,x,DV) = 0 (0 =st<T, x € r™

S SN
V(T,x) = g(x) (x € RM,

where

H (t,x,p) = max min { £(t,x,y,2):p + h(t,x,y,z)}
ye€Y z€Z

is the lower Hemiltoﬁian.

e -‘"-
’ ~ . ~




Corollary 4.2 (i) v =vu (0=t<T, x€R™)

(ii) If for all 0 =<t =T, X,p € R"

H*(t,x,p) = H (t,x,p) , (minimax condition)
then
U s V

The Corollary follows from the standard comparison and uniqueness

theorems for viscosity solutions: see [7], [8], [21], T27].

Proof of Theorem 4.1

We prove assertion (a) only.
Let ¢ € Cl((O,T) x R") and suppose U - ¢ attains a

local maximum at (fo,xo) € (0,T) x R®, We must prove
+
(4.1) ¢t(to,x0) + H (to,xo,D¢(t0.x0)) > 0
Should this fail, there would exist some 6>0 so that
+
(4.2) ¢t(t0,x0) + H (to,xo,D¢(t0,xo)) < -8 < 0.

According to Lemma 4.3 (a) (stated and proved below) this im-

plies that for each sufficiently small o>0 and all a€l(ty)

toto

(4.3) I [h(s,x(s),alz](s),2(s)) + £(s.x(s),a[z](s),2(s)) - DPH(5,x(s))
t

0
+ 8 (s,x(s)ds s 2 !

.. n
e L W 8
2 ’ . N Lo L
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for some zeNv(tO). Thus
'tous

(4.4) sup inf ){} [h(s,x(s),a(z](s),z(s))
t

0

- 06

+ f(s,x(s),a[2)(s),z(s)) - Ddp(s,x(s)+ d»t(s,x(s))]ds} N

However Theorem 3.1 states

t0+0

r
(4.5) U(to,xo) = sup inf {] h(s,x(s),alz1(s),2(s))ds
0

.+ U(tow, x(t0+o))} .

Since U-¢ has a local maximum at (to,xo), we have for o

small enough that

('4.6)» U(to,xo) - ¢(t0,xo) > U(t0+c, x(tyto)) - ¢(t0+0, x(t0+c))

where x(-) solves (ODE) on (t4,tg*+0) for any y(-), z2(.),

with the initial condition x(to) = Xg- Now (4.5) and (4.6) give

+C
rtO

(4.7) inf {J h(s,x(s),alz](s),z(s))ds + ¢(t0+0, x(t0+o))

sup
aer‘(to) zéN(td to

But

f1:0‘0' g

(4.8) ¢(t0+¢,x(t0+o)) - ¢(t0,x0)) z J [f(s,x(s),n[21(s),z(s)) - Tp(s,x(::))

t

+ ¢,.(8,x(s))]lds ;

- Vo oy
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and so (4.7) contradicts (4.4). Thus (4.1) must in fact be valid.
Next, suppose U-¢ has a local minimum at (to.xo)e(O,T)rmm.

We must demonstrate

(4.9) . (tg,xg) + H (tg,%0,D0(tg,x)) = 0
and so will assume to the contrary that

for some constant 6>0. Then Lemma 4.3(b) asserts that there

exists for all sufficiently small o>0 some aer(to) such that

. tato
70
(4.11) J [h(s,x(s),a[z]1(s),z(s)) + f(s,x(s),alz](s),2(s))-Dé(s,x(s))
' t
0 of

+ ¢t(s,x(s))]ds 2 =

for all z(N(to). Consequently
t0+ ]

(4.12) sup inf { h(s,x(s),alz](s),z(s))
aer(to) zéN(to) t _

0
+ £(8,x(s),alz](s),2(s)) -Dd(s,x(s)) + 8, (s,x(s))ds} > ‘L;l i

But since U-¢ has a local minimum at (to,xo), we have for

small enough o>0 that

U(togxo) - O(tO’XO) -] U(to*O,X(to*O)) - O(to*ﬂ,*(to+0)) .

x(.) -solving (ODE) on (to,to+o) for any y(-:), z(:), with the

-22-
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initial condition x(to) = xg- This and (4.5) imply
to+o
inf { h(s,x(s),alz](s),2(s))ds + ¢(t *o,x(t +a))-0(t,,x,)} < O.

sup
aer(to) zGN(to) to

- Recalling now (4.8), we see that this contradicts (4.12), and thus

(4.9) must hold.
o

Lemma 4.3 Assume ¢ is cl.
(a) If ¢ satisfies (4.2), then for all sufficiently small
6>2 there exists z(N}tO) such that (4.3) holds for all a€T(ty).
(b) If ¢ satisfies (4.10), then for all sufficiently small

o>0 there exists aer(to) such that (4.11) holds for all z(N(tn).
Proof Set X
A(t,x,y,2) = ¢t(t,x) + f(t,x,y,2)-Dop(t, x> +h(t,x,y,2)

(a) According to (4.2)

min max A(to,xo,y,z) € -8 < 0.
z€Z ye€Y

Hence there exists some 2z*¢Z such that

yé€

Since A 1is uniformly continuous, we have also

max A(s,x(s),y,z*) < - g
yeY ‘

provided tgssst,to (for any small o0>0) and x(°<) solves

-23=-
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(ODE) on (to,to+c) for any y(.), z(:), with the initial

condition x(to) = X, Hence for z(-) z* and any aér(to)

Ot(s,x(s)) + £(s,x(s),alz](s),2(s)) -Dp(s,x(s)) + h(s,x(s),alz](s),z(s)) < 7%

for “tgSsstyto. Integrate this from ty to tyto to obtain

(4.3).
(b) Inequality (4.10) reads

min max A(to,xo,y,z) > 8 > 0,
Z€Z yeY

Hence for each z€Z there exists y=y(z)€Y such that
A(to,xo,y,z) > 9

Since A is uniformly continuous we have in fact

38
A(to,xo,y,&) S

for all ¢e€B(z,r)Z and some r = r(z)>0. Because 2Z is compact
there exist finitely many distinct points Zys.. 2 €7, vl,...ynGY, and

Ly5...0 >0 such that

n
Z c U B(zi,r-)

i=1 *
and
A(to,xo,yi,z) > %; for 7 € R(zi,ri)
Define
d Z-+Y
-24-
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by setting

¢o(z) = Yy

if

k-1

z € B(yk,rk) \ 'Ul B(yi,ri) (k = 1,...,n) .
1=

Thus

for all 2z€Z. Since A is uniformly continuous we therefore

have for each sufficiently small o0>0

(4.13) Als,x(s),9(2),2) = %

for all z€Z, t0§55t0+o, and any solution %(+) of (ODE)
on (to,t0+o) for any vy(°), 2(+), with initial condition
x(t0)= Xge

Finally define aEY(tO) this way:

alzl(s) = 6(z(s))

for each zéN(tO), tossz. Owing to (4.13)

~2] P

A(s,x(s),a(z](s),z(s))> (tg < s ° tato)

for each zéN(tO). Integrate this inequality from tg5 1o

t0+o to arrive at (u.11).




5. Representation of solutions of Hamilton-Jacobi equations

We next employ the theory from §2-4 to derive a represen-

tation formula for the viscosity solution of

u, + H(t,x,Du) = 0
(5.1) (x ¢ R™, 0<t<T)
u(0,x) = g(x).
Here g: rR™ + R
and. H: [0,T] x R™ x R™ + R
satisfy
[g(x)| = Cg
(5.2)
fg(x) - gtk)| = Cglx-xk|
and
r
|H(t,x,00] = Cg
(5.3) {
|HCt,x,p) - H(E,%,0)| < Cgllt-F] + |x-%X| + |p-p|)

for some constant Cg and all 0=t, €<T, X, X, P ﬁefmm .

Then results of Crandall-Lions (8], lions [21], and Souganidis
(271, [28] imply the existence of a unique viscosity solution

u of (5.1), with




. |uCt,x)| = Ce
(5.4)

lutt,x) - w2 = c (Jt-F] + |x-x])

for some constant Cs.

First we write H as the max-min of appropriate affine

functions:
Lemma 5.1 For each 0=t<T, x€R™  and constant ASD,
(5.5) H(t,x,p) = max min{ £f(y).p + h(t,x,y,z)}
Z€Z y€Y

if |p] s A, where

Y = B(0,1) ¢ R"

Z = B(O,A) ¢ R™
(5.6)

f(y) = C.py

h(t,x,y,z) = H(t,x,z) - Csy-z
Proof Since

H(t,x,z) - H(t,x,p) < Cq}p-zl (z ¢« ®™ ,
we have for |p| ~ A
H(t,x,p) = max{H(t,x,z) - Cslp-zl}

2€7

max min { H(*,x,2) + C . y.(p-2)}
2€7 V€Y v




Remark See Fleming [14, p. 996-1000] or Evans [12] for
other, more complicated ways of writing a nonlinear function

as the max-min (or min-max) of affine mappings.

8

As u satisfies (5.4) it follows from the theory in [8] that

u 1is also the unique viscosity solution of

u, + H(t,x,Du) = 0
(xE]Rm, D< t<T)
u(x,0) = g(x)
Hence
(5.7) v(it,x) = u(T-t,x)

is the viscosity solution of

(Vt + H+(t,x.Dv) = 0

vix,T) = g(x)

Note that f and h satisfy (2.1) and (2.3), respectivelv.

Now set
ﬁ(t,x,p) = max min{ £f(y).-p + h(t,x,y,z)} (p e R™
z€Z yeyY
for A = C6 from (5.4), Y, Z, £, h from (5.6). Then
H(t,x,p) = ﬁ(t,x,p) provided |p| = C

-
- \c"’kﬂ
: v ’ >




Recall now (5.7)

Theorem 5.2.

H+(t,x,p) =

We have for each

(5.8) u(t,x) = sup inf |
a€l (T-t) 2eN(T-t) 7 .
where for each z¢N(T-t) and y = alz] € M(T-t), x(.) solves
x(s) = -Csy(s) T-t<sc<T T
(5.9)
x(T-t) = x
4
-29-

min max { «f(y).p - h(T-t,x,y,z)} .

Z€Z yeY
Thus the developments in §2-4 imply
vit,x) = U(t,x)
T
= sup inf {-I h(T-s,x(s),alz)(s),z(s))ds + g(x(T))} ,
a€N(t) z€N{t)
where x(:) solves
x(s) = -f(y(s)) = -Ccy(s) (t<s<T)
x(t) = x
for y(.) = alz]; that is,
s
x(s) = x - Csj alz)(r)dr (t<s<T,

t

to complete the proof of

0st<T and x € nﬁ“,

T
-f h(T-s,x(s),alz1(s),z(s))ds + g(x(T)} ,




Remark A formula analogous to (5.8) obtains for any choices

of Y, %2, fand h for ghich (5.5) holds (even if f = f(t,x,y,z)).
The representation we have taken has particularly simple

dynamics: note that player II can affect only the running

cost h.
o

! An easy application is the following domain of dependence

assertion.

Corollary 5.3 (cf. [8]). Assume H satisfies (5.3) and that

g,8 : R *R

satisfy (5.2). Suppose also that u is the viscosity solution

of (5.1) and u is the viscosity solution of-

r .
Gt + H(t,x,D0) = O

(5.1)' < (x € Rm, 0<t<T)
40,%x) = gx) .
\

Fix xeR®, 0<t<T. Then if"

g * g on B(x,tCS)

we have
ulx,t) = ulx,t)
Proof By Theorem 5.2‘

(T -
ult,x) =  sup inf (--J h(T-s,x(s),a(2]1(s) ,2(s))ds + g(x(T)}
a€l(T-t) zeN(T-t) Tet




A"w_;m,,___-~“

where for T', N, h, etc. as above and for each z€éN(T-t),

y = a{z] € M(T-t), x solves (5.9). But then

[%(T) - x| = tCq

and so
g(x(T)) = g(x(T)).
Thus
R (T ‘
u(t,x) = inf -J h(T-s,x(s),alz](s),2(s))ds + g(x(T))}

Sup
a€l(T-t) zeN(T-t) /‘T-t

u{t,x), by Theorem 5.2 again.
) a

For an application in §6,7 we will require a modification
of (5.5), (5.6) in the case that H(t,x,-) is positively

homogeneous of degree one:
Lemma 5.4 Suppose in addition to (5.3) that
H(t,x,A\p) = AH(t,x,p) (0= t=<T, x, p.e'mm, x> 0)-

2m

Then there exist compact sets YC]Rzm, Z<R and

£: [0,T) x R xY x z » ®R"

satisfying (2.1) such that

H(t,x,p) = max min { f(t,x,y,z).p}
2€2 ye€Y




for all 0<ts<T, x,p¢R".

Proof If |n| = 1, then according to Lemma 5.1

H{(t,x,m)

max min {f(yl)-n + h(t,x,vl,zl)}
z,€2, y,€Y
17°1 7171

for
(” m
Y1 t Zl = B(0,1) ¢ TR
( fly)) = Ccvy
\h(t,x,yl,zl) = H(t,x,zl) - Csyl'zl

Thus for any p#0

H(t,x,p)

Ip| “‘t’X’T%T’

max min {f(yy).p + h(t,x,yl,zl)lpl} .
zlezl yleY1

Choose C7>0 such that

| nl

I
(@]

for all 0<t<T, x€¢R™, 2,€7,5 v,€Y;. Then

H(t,x,p) = max min { f(yl)-p + Coipl + (h(tyx,y742¢) - C7)|p?}
21621 ylé‘{l '

z max min max min. f(vi)'p + Cozyp (h(t,x.vl.zl)—cy)v7-p}

79¢79 Y1€Yq 257 VofY

= max min { £{t,x,y,2) D}
7€7 yEL




e —— .

where

(
y = z = B(0,1) x B(0,1) ¢ R

< z = (21’22)’ y = (yl,yz)

f(t,x,y,2) = f(yi) + Cqzy * (h(t,x,yl,zl) - C7)y2

L = Cg¥y + Cqz, + (H(t,x,zl) - Cgyyr2y - C7)y?

Note that the interchanging of min and max above 1is
yleY1 22621
valid.
o
-33-
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6. Propagation of disturbances and Huygen's principle

As an application of the representation formulas developed
in §5 we will discuss in the next section the level sets of
solutions of Hamilton-Jacobi eduations with Hamiltonians
positively homogeneous of degree one. The following considera-
tions- adapted directly from Gelfand-Fomin [17, p. 208-217]
and Arnold [1, p. 248-~258] - provide motivation.

Regard R® as a heterogeneous, nonisotropic medium,
comprised of points at each moment in either an "excited" or

a "rest" state. Once any given point x 1is excited by a dis-

turbance propagating in the medium, it thereafter remains ex-
cited and so itself serve as a source for further disturbances
emanating from it. We wish to describe mathematically the
evolution of the disturbances from a given excited set.
For this let L(x,z) denote the reciprocal of the
speed of the disturbance leaving x in the direction zesm'l.

Extend L to be positively homogeneous of degree one and set
I(x) = {2z € H¥R|L(x,z) = 1}

I(x) is the indicatrix of L at x. We will assume this to

be the smooth boundary of an open, strictly convex set. We

consider also the figuratrix

F(x)

{p = DZL(x,z) | z € I(x)}

-34-
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Next define the Hamiltonian H so that

Hi(x,p) = 1 if p € F(x)

H(x,:) is positively homogeneous of degree one.

This is the standard Hamiltonian for the parametric Lagrangian

L (see Young [30, p. 50-51]), and the reader should check

that

(6.1) H(x,p) = sup{z2-p|lz € I(x)}

Next suppose I'y denotes the set of points excited
initially and Iy 2Ty the set of points excited at time

+
t>0. We introduce a function u: R x R™+ R such that

(6.2) r, = {xju(t,x) > 0}
and
(6.3) e = (xjult,x) = 0} = ar,

for each t=0; here Zt is the wave front at time t. We
will show heuristically that u solves a Hamilton-~Jacobi

equation.

To see this, fix any t>0, xeit, and O<At<t. According

’ i to Huygen's principle Zt is the envelope of the wavefronts
; i ) emanating from points in Zt-At: see [1, p. 250]. Thus there
exists yéft_At such that y+AtI(y) 1is - up to error terms

of order o(4t) - tangent to Zt at x. So for some

z€I(y),




y + (4t)z 1is (approximately) equal to x

and

p = ~Du(t,x) 1is (approximately) normal to vy + AtI(y) at
Consequently
(6.4) H(x,p) = p-z + o(l) as At + 0

On the other hand

olat) = u(t-at, x-(At)z) - ult,x)
= (-At)(ut(t,x) + Du(t,x)-z) + o(at)
and so
ut(t,x) = p.z + o(l) as At + 0

This and (6.4) give

(6.5) u, + H(x,Du) = 0

t

for

H(x,p) = <-H(x,-p)

Note that the reasoning here works just as well on the sets

{u=a} for each real number a. “Thus (6.5) holds in all of

n

R" x(0,T).

In (6.5) we have derived the required Hamilton-Jacobi
equation for u; therefore, in principle, to find the excited

. ) . an ,
sets If we need only find some function ¢: W+ W such that

-36~
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(6.6) Iy = {x[g(x) > 0}

and then solve (6.5) subject to the initial condition

(6.7) ulx,0) = g(x) (x ¢ R™M.

The sets Pt are then given by (6.2).

However, in addition to the obvious objection that (6.5),
(6.7) will in general have no smooth solution for large time,
it is not immediately clear that our calculation of
Iy = {x|u(t,x) >0} 1is independent of the choice of g. As
we will see in §7 below a formal calculation using
characteristics indicates that T, does indeed only depend
upon g's satisfying (6.6) and not on the particular choice of
this function. Nevertheless a rigorous proof cannot use
characteristics (which need not exist in the large) and will

instead rely upon our game theoretic representation formulas

for the viscosity solution of (6.5), (6.7).

Remark For the case at hand H(x,:) 1is convex and so con-

trol theory, rather than game theory, techniques will work,

A point of the next section is therefore that the homogeneity

and not the convexity of H(x,*) 1is the crucial property.

The reader should also note in the above context that Huveen's
principle is a version of the optimality princirle in dynamic

programming.
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7. Level sets

Motivated by considerations in &6 we now prove

Theorem 7.1. Let H: R"xR™-R 5. . iformly Lipschitz and

positively homogeneous of degree 1 in its second argument.
Assume g, g are bounded,uniformly Lipschitz and are positive #

on the same set; that is,
(7.1) {x eR™ |g(x) > 0} = {x ¢ R™|g(x) > 0}.

Suppose u, U are the viscosity solutions of, respectively,

u, + H(x,Du) = 0 (t > 0, x € RM
(7.2)

u(0,x) = g(x)
and

a, + H(x,Du) = 0 (t -0, x € R™
(7.3)

0(0,x) = g(x)

Then for each T>0

(7.4)  {x € R"Ju(T,x) > 0} = {x € B™|4(T,x) - 0}

Note that we do not require H to be convex in p, and

that "0" in (7.1), (7.4%) can be replaced by any real number.




Formal proof

For heuristic purposes we begin with a formal proof of

(7.4). under the additional assumptions

2

1 for p#o, u, uec,

HeC
a.sﬂ Zg ® ;{g > 0} = afg> 0} is a smooth manifold ,

\Dg’ Dg # 0 on Ly -

Consider first (7.2),and for each xoﬁmm define the character-

istics x,p: [0,») +R® as follows:

| #(t) z Dpﬂ(x(t),p(t)), x(0) = X
(7.6)
p(t) = -D H(x(t),p(t)), p(0) = p,,

for pgy s Dg(xy). Since u is Cz, we have

p(t) = Du(t,x(t)) (t > 0)
and ‘

t
u(t,x(t)) = g(xo) + Ilﬂ(x(s),p(s)) - p(s)-DpH(x(s).p(s))]ds .

0
But
(7.7) H = p-DpH

since H is homogeneous of degree one; consequently

(7.8) ult,x(t)) = glx,) . (t > 0)

.




In particular

(7.9) u(t,x(t)) s 0 if Xy € Zg -

We next claim that

Py ng(xo)

(7.10) x(:) depends only on Xy and ngs = .
Ipgl  IDR(xy)|

To see this set

n(t) = Tg%%}r (t > 0)

and compute

s
]

(p-p)

Tor - Fofs®

-D*H(x,p) . (p-DxH(x,p))p
Ip| Ipl®

-Dxﬂ(x,'q) + (n-D H(%,m))n , (t > 0)

since H and therefore DxH are homogeneous of degree one.

On the other hand DPH is homogeneous of degree zero and so

x =z DpH(x,p) = DpH(x,n) .

Thus

H
n

Dpﬂ(x,n). x(0) = Xq

(7.11)

3
'

= -DxH(x,n) + (n-DxH(x,n))n. n(0) = ng ¢

-40-~
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this proves (7.10).

Finally let x,p: (0,=] + R™ be the characteristics

for u:
X = Dpﬁ(i,ﬁ), x(0) = xg
(7.12) .
P = -DH(X,p), P(O) = p, ,
where
50 = Dé(xo)
« . Pq D (x4)
As above x(.) depends only on Ny = =
Pl 1DE(xy) ]
Hence if xoezo, Ng=Ng 5 and thus
x(t) = x(t) . (t > 0)

~

Since therefore ﬁ(t,x(t)) = 0 and since both u and u

are constant along characteristics, we have
{x €R" Jult,x) = 0} = {x¢€R"|a(t,x) = 0} (t ~ 0).

This completes the formal proof of (7.4).
a

A rigorous proof along the lines above seems unlikelv,
as the solutions u, 4 are generally not even Cl, the
characteristics may cross, p or p may equal zero, etc.
Instead we use the game theoretic representation of the

solution afforded by Theorem 5.1. Here we regard the

(approximate) optimal trajectories as being (approximate)




generalized characteristics.

Proof of Theorem 7.1

According to Lemma 5.4

H(x,p) .= max min {f(x,y,z)-.p} (p, x e ’™

z€Z yeY

for appropriate compact sets Y, Z, and f satisfying (2.1).

Thus u 1is the viscosity solution of

u, * max min { f(x,y,z):Du} = 0
z2€Z yeY
(7.13)
u(x,0) = g(x)
Fix any T>0 and set
UCt,x) = u(T-t,x) (0<ts=T, x € R™,;

then U 1is the viscosity solution of

+ min max { ~f(x,y,2) DU}
2€1 yeY

Ue

U(T,x) = g(x)

Thus, by the uniqueness of viscosity solutions,

u(t,x) = sup inf {g(x(T))}
a€l{t) zeN(t)

where

]

T
RO S

< ah T
-




%(s) = -f(x(s),alz)(s),2(s)) (t - s« T)
(7.14)
x(t) = x
Similarly define
OCt,x) = a(T-t,x) (0 <t<T, x ¢ R,
so that
G(t,x) s sup inf {é(x(T))} .

a€l(t) zeN(t)

x(.) solving (7.14).

Next assume

(7.19) u(T,xO) > 03

then

U(O,xo) z sup inf {g(x(T))} > 0O .
a€T(0) z€N(0)

Fix
0 < 2¢ < U(O,xo)
andbthen choose a€éT(0) such that

(7.16) inf {g(x(T))} > =,
Z€EN(O)

x(*) solving




™

*(s) -f(x(s),alz)(s),z2(s)) (0 < 8 < T)

(7.17)

x(0) L 1

Thus for any z€N(0),

x(T) €{g > ¢} 5f§>o}

for some o = o(ec) > 0. Consequently

inf (g(x(T))} = o,
Z€N(O0)

x(-) solving (7.17). Therefore

G(T,xo) =z G(O,xo) ] sup inf {g(x(T)))} > O.
a€l'(0) z€N(O)

We have proved u(T,x,) > 0 implies u(T,x,) > 0, and the

opposite implication follows from interchanging u and u

in the argument above. This proves (7.4).
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