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ABSTRACT

It is shown that the arguments developed in Vol'pert and Hudjaev's paper
for the Cauchy problem and in the author's paper for the first boundary value
_ ; problem can be extended to other kinds of boundary value problems. As an

i : example, equations of the form

-:% = -:—x (a(t,x,u) %) + -:—x- g(t,x,u) + glt,x,u) (a(t,x,u) > 0)

with the boundary conditions

a % + £ =0 (x = 0)
u=29 (x = 1)

and the initial condition
u= uo(x) (t = 0)

are investigated, and the existence, unigqueness and continuous dependence on
the initial value of generalizec solutions are proved under certain
conditions. In proving the existence, the key step is to establish estimates

on solutions u € of regularized problem, especially the uniform estimate of

|3ue| 3ue
emt— and ——‘ .
k14 I.‘ ax L‘

AMS (MOS) Subject Classifications: 3I5K60, 3I5K6S

Key Words: quasilinear degenerate parabolic equations, nonlinear boundary
value problems, regularization, existence, uniqueness and
continuous dependence
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SIGNIFICANCE AND EXPLANATION

v Using the theory of functions of bounded variation, Vol'pert and Hudjaev

successfully treated the initial-value problem for a class of degenerate

Of particular interest was their

'5:::9 of a scalar

conservation law in the class they treated. The author subsequently treated

The

parabolic equations in one space dimension.

ability to incorporate even the-;i;;pletely degenerate

the first boundary value problem in a similar spirit and generality.
current work shows that analogous results can be obtained for other boundary

conditions. As before, regularization is used to obtain existence results for

{’ ) approximate problems. New estimates are obtained on the approximations which

allow passage to the limit.
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A BOUNDARY VALUE PROBLEM FOR QUASILINEAR DEGENERATE PARABOLIC BQUATIONS

Zhuogun Wu

$1. 1Introduction

For quasilinear equations of the form

(t.1) %‘;’ - %; (a(t,x,u) -:%) + -:-; f(t,x,u) + glt,x,u)

with

al{t,x,0) >0,
the Cauchy problem has been investigated in [1] and the first boundary value problem in
{2], (3). 1In this paper, we will show that the arguments developed in {1]-(3] can be
extended to other kinds of boundary value problems. As an example we consider (1.1) with

the boundary conditions

1.2), att,x,u) Ry fie,xu) =0 (x=0)
(1.2}, u=0 (x = 1)

and the initial condition
(1.3} u = uy(x) (¢ =0),
For simplicity, only homogeneous boundary conditions are dealt with here.

Let Q. = (0,T) x (0,1). Assume that the functions a, f and g are swooth for
te,x) 3, ana uer.

The problem will be formulated in a generalized sense as follows (with notations
referred to (2}).

Definition. A function u e L.(Q,r) N BV(Q,) is called the generalized solution of
problem (1.1), (1.2}, (1.3), if the following conditions are fulfilled:

1) There exists a function g € LZ(Q‘.). such that

(1.4) [f sateax = [] Eterxsud Baex  veeciey

Sponsored by the United States Army under Contract No. DAAG29-80=C-0041.
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where r(t,x,u) = Jalt,x,u) and f£(€,x,u) denotes the mean value of composition of

r{t,x,u) and wult,x),

2) u satisfies the integral inequality

(1.5) [f sgntu = X)[{u ~ k) %‘3 - ({(}.x.u) -g% + £{t,x,u) - £(t,x,k)) -:-3 + i

t ' + (f,(t,x,k) + glt,x,u))4ldtax >0  veecy), ¢>0.
’ 3) For almost all t & (0,T],
| (1.6), v x,m) %& + £(t,x,u)) = 0 (x = 0)
(1.6, =0 (x=1) .

4) For almost all x € {0,1],

(1.7) Y = ug(x) (t=0) .
: /\ &
Remark. From (1.4) it follows that the measure r(t,x,u) > and hence the

i measure n/&,x,u) %E -~ is absolutely continucus. (1.5) implies, in particular, that

- -\
‘ { /] %3 - (a(t,x,u) % + £(t,x,u)) -:-3 + glt,x,u)¢)dtdx = 0 vee c;'(q,r) .
h Hence %; ({(},x.u) -:-3) is a measure and the trace Y(a(/},x.u) %) st the boundary points
i
L g oxht.f
L‘ { We will first prove the uniquensss and stability of generalized solutions (§2) and
then study the existence (§3, §4). Similar to (1]-(3]), we prove the existence by means of
i . the method of parabolic regularization, namely, consider
; (1.1¢ Rol (emw + o {) e Loeexm +otemu (630

N : 3t
k instead of (1.1) and

w.ag (att,x,u) ¢ €) 324 £e,xu) =0 (x = 0)

instead of (1.2),. However, it is somewhat difficult to obtain some of the estimates on

the solutions of regularised problems (1.1)%, (1.2)5, (1.2),, (1.3), which we need for the

proof of existence.
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§2. Uniqueness and Stability

Theorem 1 (Stability of generaliszed solutions). Let u,v be generalized solutiomns
of equation (1.1) with the boundary oconditions (1.2) and initial oconditions
Wwey, Wwevy (t=0).
Then for almost all t € (0,T], we have
1

1
| lute,x) = vig,x)|ax < Mt I lug(x) = vpix)lax ,
0 ]

where

1
n= -ér-p |£ g9, (tex, da (8,x) ¢ (1 - Auy(e,x))ad] .

As a consequence, we have

Theorem 2 (Uniqueness of generalized solutions). The boundary valus problem (1.1),
{1.2), (1.3) has at most one generaliszed solution.

Proof of Theorem 1. For any nonnegative function ¢ € Cg(0,), we have (see (1))

2.9 [fogmtu-vilta-v) - &, x,u - A T+ etemu - etexen o

+ (glt,x,u) - glt,x,v))¢latax > 0 .
Since Yu= yv = 0 (x = 1), this inequality holds even for those nonnegative functions
‘e c"(E,,) with supp ¢ C (0,7) % (0,1] (see [2]).
Let
q 1% e
(2.2) p,(0) = L 8, (nar = & _[. §Flar o>

«»
where &(0) € ¢ (R), 8(d) > 0, 8(0) = 0 (Jo] > V), | &(var= 1.

Taking ¢ = p (x ~ Zh)#(t) with e c;(o.-n and 920, from (2.1) we obtain

Jf sgntu = w)ltu - vig (x - M)y -
g’ - (l/(\tul-!l) % - a’(\t.x,v) %:!: + f(t,n,u) - t(t.x.v))s‘(x - 2n) ¢+

+ (glt,x,u) ~ q(t.x,v))ph(x - 2h)¢ldtax > 0 .

3=

p” N P -
" ’ etV o7



e

e Pt e -

Letting h + 0 and using Lemma 2 in [2] yield

T 1
[/ lu - vig'dtax > = [ sgniw - mm-/(},x,u) -:‘-’ + f(t,x,u)) - !

Q‘X‘ (]
-Y(a(txv)!!-tt(txv))l e - ‘
Ry ax Ry x-o P

- J] sgntu = v)(glt,x,u) - gle,x,v))¢atdx .
N
Hence, by virtus of the boundary condition (1.6),,

/[ tu - vivatax > = [[ sgntu - v){glt,x,u) = glt,x,v))¥atax . 1

Let 0 < g < T<CT and take '(t)'oh(t-l)-ph(t-t). Then

JI 1u-vlig e - ) - 8 (c - Datax

o

> [[ sgntu = v)(glt,x,u) ~ g(t,x,v))(%(e -8) - nh(t - t)atdx .

0

As h + 0, this gives
1 1 T 1

J lutt,x) = vit,x)idx € | luls,x) = vis,x)lax + X [ [ lult,x) - v(t,x)|deax .
0 0 s 0

Hence, by Gronwall's Lemma we obtain

! K1) '
] lu(t,x) = vit,x)|ax < o [ luts,x) = via,x)]ax
0 [

and the desired result follows by letting s + 0.
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§3. Estimates on (\\‘}
In addition to the smoothness condition on functions a, £ and g, we assume that
£(¢,0,0) 0 for t e (0,7], t“(e.o.u) €0 for te€ [0,7], u@R and fru v 9y I8
bounded above for (t,x) € §,, u € R and that compatibility conditions are satisfied so

that for any ¢ > 0, the regularized problem (1.!)‘. (1.2):, (1.2)4, (1.3) has a solution
3
u, e 2@y n gy
nax

Propogition ! (Maximum principle).
n { princip o)
uy = max |tx(t,x,0) + g(t,x,0)| and A > my. Then

Let w = l“o': " = '\lp(fn + q“),

At ‘z"\e

’ A-m

(3.1) |u‘(t,x)| < max{me } for (t,x) e Qp -

In particular, we have

(3.2) l“c' €M for (t,x) € Q,

with a contant N independent of ¢.

m! « Let
3 A

u-ut-(v+k)o ' wn <k +ue

wheres k = max(am, A_-'?T)' Then
1

2 ™
(3.3) ®_owre i!’z-- ta +a e’ Rag B, g T

b -
YO = £ TR - (£, (,x,0) + gle,x,0000 w0,

e
vhere ., *+ g, denotes the value of fyu ¥ 9y A&t soms point.
We want to prove w € 0. 1If it is not true, then there exists a point (tg.xg)

with 0 < ty €T, 0 < xo < 1, such that w(to,:o) >0, v(t.o,xo) being the maximum of w

on mo Ve can prove that at (toono)p

(3.4) -:'— >0, e =0, 2 v

which contradicts (3.3). Obvicusly, (3.4) holds if 0 < X € 1. By (1.2),, %=1 s
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X, = 0 and ':-:- (tq,0) < 0, then % {tg,0) < 0. Since u(ty,0) > 0

impossible. If
and £(t,0,0) 30, £,(¢t,0,u) <0 by assumption, we have
uoc)l“-o:-(.+:)-’!+'£“n<o

ax x
at (tg,0), which contradicts (1.2)g. 80 (3.4) holds even if xo = 0.
Thus we have proved that w € 0, i.e. u ¢ kch. Similarly, we can prove that

At At

ke € u by setting u = u, " (v - k)e instead of u = u_= (v + k)o*’- The proof is

complete.
Proposition 2.
hc 2
(3.5) /] ate,xu (377) atax < w,

with a constant M, independent of €.

Proof. Multiply (‘I.i)c by U integrate over Q, and use (1.2): and (3.2).

Proposition 3.
0. £,<0 for (t,x) @B, uer, or £,>0 for (t,x) eJy, ue Xy, where

Assume that

By = {w al(t,x,u) = 0 for some (t,x) € 51.}:
a

20, ._Tt'E = p jitself and its derivatives are bounded uniformly in € for
(t,x) e 6.!. and u on any finite interval.
Then
LIS ¢ 3xt
(3.6) J l-“—|ax <My Jf |;—|aeax < My
0 %
with constants M,,M; independent of &.
% u
Proof. Let v = O—ts' w = 3;'5. Differentiate (1.1): with respect to t and multiply

the resulting relation by -qnn(v):

T _(v) 2 . 2
T ™ hqnn(v) 3clla s cv ¢ 7} - sgni(vi(a ¢ ¢ (-;)
(3.7)
- sgn'(v) 2 (ap + & viv - sgn'(v) b (£, + £,v) + ogn (v)l(g + q.v)
n x Tt n - 't v n t
where




-1 (1< =-n)

- - X
(v o[ sgn (s)de, sgn (1) w (Ut em
1 (t>mn.

T

v
’ Two of the terms on the right of (3.7), -oga;'(v) = Y and -gn;‘(v) -E £, need
to be treated further. Rxpressing a, as (a+ €)p and using (1.1)', we have

2y - 3
-m"‘(v) rdl N rs (m“(v)ltv) + .gn“(v) o {a,w)

¥ =-d e e+ ) +agn (I R ta v e e oo (vip % (e + €]

3 x

;

’ - - ':'; (lvn“(v)(a + Clpw) + m“(v) % (a + E)w + m"(v)pv -
. 2 - (vip(g_+ £ w) ~ (v) .
L . sgn, (VIp(f, + £,v) ~ sgn (vipg

‘i E Clearly

- cogn(v) g oo X (ogn (v)L,) + agn_(v)(L, + £, )
i > . bt DA Y ax 0T VIE? T 8, ISk T fea™) -
. ( - Substitute these into (3.7) and throw down the second term on the right which is
! nonpositive. Then
1 |
¥ -
Y T _(v)

A‘t—' < ':'; (lqn"(v) ':T ((a+€wergl)- % (sgn (v)(a + c)pv] -
% ‘ - L o ey - sgmiv) Eota, 4 20w ¢ on (Mp 4 g v +

‘ * m“(v) (% fa+e)-pf, + £ lve .gm“(')(ijt “pfy+t L. - P9 .

: : Integrate this inequality over Q,, use (1.2):. (1.2), and then let n + 0. By condition

F 2°. we obtain

: 1 t 1
’ (3.98) J Wvlax ccyvcy [ [ (vl + Iwlravex .
0 00

&
Nere and below, c¢; denotes & constant indspendent of ¢.

,£ To complete the proof we will make use of condition |°. For definiteness, we
ot

supposs £, <0 for (t,x) e{,, ues,




[T S

rrom (1.1,

-!uv-%'-[(l+c)\vl+£x+q-v.

Multiplying it dy -gnnlv) and integrating over ([0,1] with respect to x yield

1 1
1 v
- { agn (w)t wax = sgn (w)(a + c)-l::o - ‘{ sqnj(v) 22 (a + clwax +

(3.9)

1 1

+ [ egn () (g, + glax - / sgn (v)vax .
0 n 0
Integrating

%[(l#t)v*ﬂ -Av-q,

which is just (1.1)‘, and using (1.2);, we see that

1
{3.10) Ita + elw| <cy+ [ |viax .
0

Using (3.10) in (3.9) and letting n + 0, we obtain

1 1
(3.11) - [ tyiwlax <cg+cg [ Iviex .
0 0

From condition ‘lo it is easy to see that there exists a constant £ > 0 such that
(3.12) Ea~-f£,>0 for (t,x) e{y lul <nH.

Combining (3.11) with

t 1
f ! alwiatax < Ccg
L
which follows from (3.5), gives
t 1 t 1
J ] (ka-g)vlteax ccy+cg [ [ Iviavax .
00 g0

Hence, from (3.12) we obtain

SRR R Ry




T k-

t 1 t 1
J | Iwlarax € cg +¢cg [ [ Iviavax .
[

Substitute into (3.8). Then

1 e
| Ivlax € cqg + Cqq [ | Iviarax .
0 o0

Thus Gronwall's Lemma gives the first estimate of (3.6) and hence the

d one of (3.6)

follows too. The proof is complete.

1 %
Remark. It seems difficult to obtain sharper estimates (like ) |-;£|dx < My).
0

Summing up, we obtain

Theorem 3. Por the family {u‘} of solutions of regularized probleﬁ (1.1) e.

(1.2)5, (1.2)g, (1.3), we have estimates (3.2), (3.5), (3.6).
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§4. Existence

In this section, we will further assume that for any T #0 and t e (0,T],

(4.1) [‘ a(t,1,8)ds > 0 .

0
Without this condition, we can proceed in a similar way. However, in that case, a modified
definition of generalized solutions should be introduced.

According to Theorem 3, we can conclude that the family {u ‘} is strongly compact
in L‘(Q.l.), namely, there exists € = ¢ <+ 0 such that (“c } converges both in L‘(gr)
and pointwise a.e. to a function u @ L.lQr) n !V(Q,r). "

That the limit function u satisfies condition 1) in the definition of generalized
solutions is proved just as in (1] ana (2].

Let ¢ e C.“.’-r" ¢ >0, supp ¢ C (0,T) x (0,1]. Multiplying (1.1)S by

sgnn(uc - k)¢, integrating over Q‘. and letting n+0 and ¢= cn » 0 successively,
we obtain (similar to (2])

J] sgntu - x){(u - K) 2 _ (l/(},x.u) % + f(t,x,u) ~ £(e,x,k)) -:": +

at 2
&

+ (£,(t,x,k) + glt,x,u))¢}atax -
T N N

- ] -qn(k)[ﬂt,x,yu) - £lt,x,k) - v(a(t,x,u) ;] ac +
0 1
T

+ | tegnlya = K) + sgn(k)] [A(t,x, W) = Alt,x,k}] %ﬂ a >0
0 x=1
u

where A(t,x,u) = f a(t,x,s)ds. First, this implies condition 2) in the definition of

0

generalized solutions.
Secondly, as in (2], we can derive
(sgniva = k) + sgn(k)} (Alt,x, ) = Alt,x. X)) 4 =0 .
This and condition (4.1) imply (t.é),.

The verification of (1.7) is just the same as in (1].

«10~
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It remains to check (1.6),. For any Wt) € Ci(0,T), from (1.2)] ve have
T [ 4
0= .{ [tale,x,u,) + €) 3== ¢ £lt,x,u )] o ¥e)de
]
T, du,
=-- ‘{g 3allta + ) 3= +f1wm Jaax
1 ? hc T1 hc
- - — —— - e——— L]
“ 3% [(a + €) 3= 411wy deax .{J [(a + € 3=+ flmyatax ,

where uh(c)-i-

Wotice that

'li'
=

ph(c - 2h) and ph(o) is the function (2.2).

O\l‘ Tlaut T
““"T’”‘"‘h""""gt{ ?t—mdtdx*g‘{ gty deax

T1

=[]
00

T1
u ¥y deax + ‘{ J gy, drdx

T 1 T

(e w0y | [ uwugeex s [ ompaeax gy 0,

T
-] W«a
00

u T 1 dA(t,x,u) + o))
’ﬂ-&-x_"ﬂwl..““-’ll{ ",: € .
00

= aglt,xeerax + 2ie,x,0.) fee)y (x)dtax
0

T T

= [ Wtexu) +mongiiie v [ [ (iexuy) ¢ o) i deax
00

T1% T 1
+ ol g{ a (t,x,8)d8 4 atax -ojol £(t,%,u,) ) dtax

Ttu

1
(¢, +0) {T'{ ALt x,u) by deax *JJJ a,(t,x,8)ds py atdx

21 ‘
- ‘{J £(t,x,u) Py drax
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T1
BN (n{},x,u) -:— + £{t,x,u)] hydedx
00
ToA N
v IR (U RNE R JCR BN
0

Thus for any ¥ & C(0,T), we have

T
,{ v(ﬁ},x,u) % + 2e,x,0)) _ Wt = 0

and (1.6)o follows.

Theorem 4 (Existence of generalirzed solutions). The boundary value problem (1.1),
{(1.2), (1.3) has a generalized solution u which can be obtained as the limit in L‘(QT)
of the family {“t) of solutions of regularized problems (1.1)‘, (1.2):. (1.2)1, and

(1.3).

=f2=

€ SO L.
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