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is a Fréchet differentiable functional on C[0,1]}, b = -

ABSTRACT

If F

{b(t)]|0 € £ € 1} is a Erownian motion, and B, ofb(s)ls € t}, Clark's

formula states that F(b) = f; E{AF(S,1]; ')I§s}db(s), where AF(du;b) is
at b.

the measure defining the Fréchet derivative of F In this paper we

extend Clark's formula to the more general class of weakly H-differentiable
functionals, and we give a simple proof based on Malliavin's calculus.
using Malliavin calculus techniques, we also derive Haussmann's stochastic

integral representation of a fur-~.:ional F(y) of the diffusion process

dy

m(t,y)dt + o(t,y)db. 1In doing this, we show that y(t) is weakly H-

differentiable if m and ¢ have bounded, continuous, first derivatives in

y.
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SIGNIFICANCE AND EXPLANATION

In stochastic analysis, we often encounter functionals
F(y(s); 0 € 8 < t) of a diffusion process y(°*); e.g., the solution of a
stochastic differential equation is a functional of its stochastic input; an
estimate E{x(t)|y(s), 0 < 8 < t} of a random process x(t) based on
obgserving y(s), 0 € s < t, is a functional of y(°<). A theory of such
functionals making essential use of the randomness in y{(°*) is therefore of
interest. For example, it is possible, and useful, to find fairly explicit
representations of such functionals by stochastic integrals, and formulas of
Clark and Haussmann give such representations in the cases that F |is
Fréchet differentiable (plus, technical conditions) and either y is Brownian

(Clark) or y is an Ito process (Haussmann).

'f’ The recent invention of the so-called Malliavin calculus haé/also.led to
new advances in the analysis of functionals of Brownian motion. Basically,
the Malliavin calculus is a method for integrating by parts in function space
and with respect to Wiener measure. One version of the theory can be
developed through the use of the Clark-Haussmann formulas (Bismﬁt). Another
approach uses a second-order, self-adjoint operator on functionals and the
natural concept of differentiation in Wiener space, the H-derivative./‘Let
H = {y|ly(t) = f; Y'(s)ds, f; (Y'(s)z)ds < @}, Then if b(°*) is a Brownian
motion, b(°*) + Y(°¢) generates a measure absolutely continuous w.r.t. Wiener
measure iff Y @ H. Hence it makes sense to consider only derivatives in H

ds

T b R 'l\ol)
(—~In this paper,-we show that this second form of Malliavin's calculus

directions, DF(b)ey =4 F(b+sY)|s_o. where Y € H.

leads to a very simple derivation of Clark's integral representation.gf
F(b(*)), where b(°) is Brownian, and, at the same time, extend the result
to the broader and more natural class of H-differentiable functionals. - This
demonstrates the equivalence of the two approaches to Malliavin's calculus and
leads to a nice interpretation of Clark's formula.r— We then use Malliavin
calculus techniques to rederive Haussmann's representation of F(y) if y |is
a diffusion process. In doing this we show under fairly weak smoothness
conditions on the diffusion coefficients of y(°), that y(t) must itself be
H-differentiable.

—

The responsibility for the wordf;g and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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1. Introduction

)
LI IR

8,

Let {b(t)|0 € t € 1} be a standard, Brownian motion and Et = og{b(s)|0 €8 ¢t} the
filtration it generates. Suppose F(b) is a functional on Brownian paths, and
E[Fz(b)] < », Then, according to martingale representation theory, there is a R-adapted
process f(t) such that EIF(')IEt] = fg f(s)db(s), almost surely, for every 0 <t € 1,
In [2], Clark showed that if F is Fréchet differentiable and satisfies certain

technical regularity conditions, then

ALY

F
£(t) = E{A ((s,1); °)|§t} a.s.

P

for each 0 € t € 1, where AF(du;b) denotes the signed measure associated to the

et a

Fréchet derivative dF(b). As a consequence

(1.1) F(b) = [) BIAT((s, 101 +)IB Jdbls) .

In (5], Haussmann extended this formula to functionals F(y(*)) of processes y(t)
satisfying

(1.2) dy = m(t,y)dt + o(t,y)db, y(0) = Yo e R

where m(t,y) and o(t,y) are causal functionals of y(e¢). Since y(t) = y(t,b), G(b) =
F(y(*,b)) defines a Brownian functional, and, roughly speaking,to find a representation
for F(y) one applies (1.1) to G. Ignoring hypothesis on m, ¢ and F, Haussmann's
result states that

(1.3) Fly) = f; E{!( XF(du:y)Z(u)z-1(s)I§s} a(s,y)db(s)

s,1)
in which Z solves the equation of first variation associated to (1.2), (see (4.5)).
(1.1) and (1.3) have appropriate versions for multi-dimensional y and bh.

Other proofs of (1.1) and (1.3) than those originally given by Clark and Haussmann

have become available. Davis [3] shows that the form of (1.3) arises quite naturally from

potential theoretic arguments. Haussmann [6] and Rismut [1) recover these formulas neatly

»
Mathematics Department, Rutgers University, New Brunswick, NJ 08903.
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by using a Girsanov transformation, and, in Bismut's case, results on stochastic flows.

These alternate approaches do not significantly generalize the conditions on F, b, and

n:‘-'

AR,

[+

'l."} l‘ "

Bismut [1]) also contains a significant application of (1.3). He uses (1.3) as the
basis for an alternative development of the Malliavin calculus. The Malliavin calculus,
basically a theory of integration by parts for functionals on Wiener space, can also be
derived by introducing a self-adjoint operator which acts on square integrable, Wiener
functionals and which is the infinite dimensional analogue of the Ornstein-Uhlenbeck
generator (Malliavin [8], Shigekawa [11], Stroock [9, 10]). [1] shows that the Haussmann
formula in effect achieves an integration by parts.

It is of interest, therefore, to determine whether the Clark and Haussmann formulas
are more general than the Malliavin calculus, or, conversely, whether the operator version
of the calculus leads to these formulas. 1In this paper, we resolve this issue by using the
Malliavin calculus, in its manifestation due to Stroock [9] and Shigekawa [11]), to prove
(1.1) and (1.3). The exercise contains several points of interest. First we find that
Clark's formula, (1.1), is a simple, immedjate conseguence of the most basic properties of
the Malliavin calculus, and so we obtain a nice explanation of its form. Second, we
identify what seems to be the proper class of functionals F for which to frame Clark's
formula (see theorem (3.1)). These are the weakly H-differentiable functionals ([11]),
i.e., functionals that are differentiable in a weak, Sobolev sense in the direction of any
absolutely continuous function. Our formulation explains the technical conditions placed
on P in previous statements of Clark's formula; they insure that F be weakly H-
differentiable. Section 2 previews H-differentiability and those elements of the Malliavin
calculus needed to prove Clark's formula in section 3.

In section 4, we prove Haussmann's formula, again using Malliavin calculus results,

but restricting the treatment to coefficients m and 0 such that m(t,y) = m(t,y(t))

and o(t,y) = g{t,y(t)). To do so requires that we prove the weak H-differentiability of




e y(t) under weaker conditions on m and ¢ than have been previously conliaered (see [9,
?; 10] and [11]). This is done in theorem (4.14), in which it is shown that bounded

e

Ef . continuity of the y-derivatives of m and ¢ suffices for weak H-differentiability. |
f?{ 2. Differential Calculus in Wiener Space

:; This section gives a brief resumé of the Malliavin calculus as presented in Stroock
.52 (9] and of the notion of weak H-differentiability (Shigekawa [11]) and its connection to
‘wi Stroock's set up. The following notation shall be used in the rest of the paper. (B, B,
'? M, Et) will denote d-dimensional Wiener space with the standard filtration, that is,
B={bec(lo,T); ld)lb(O) =0}, B, - o(b(s)|0 < s < t}, B = By, and u = Wiener meagure
? on (B, B} bl = sgup |b(t)| will denote the sup norm on B. We shall also use the
;_ Hilbert space 0.1
:j:; H=({yeB |y is abs. cont. and I; <Y'(8),Y'(s)>a8 < =}

'i equipped with the inner product <y1,yz>ﬂ - [; <Y1'(')'Y5")’d" If 1 : H+B is the
N inclusion map, it is well known that (i,H,B) is an abstract Wiener space and that u
o extends the Gauss measure on H. We shall be concerned with derivatives of functionals
;3 F : B+ R. The Fréchet derivative of F will be written dr(b), or, in its guise as a
i; d-vector of signed, Borel measures A’(dl;b) = (X:(d-;b),...,l:(d-;b)). In other words

| dF(b)eu = f; <u(l),kp(dlrb)) for u € B.

3: The derivative appropriate to Wiener space is not the Fréchet derivative but the

’2: H-derivative.

f 2.1) _Definition: If DF(b) is an element of H such that

IP(b+Y) = F(b) = <Y,DF(b)> | = oll¥l )

- for every Y € H, P is said to be H-differentiable at b and DF(b) is called

e
s a

its H-derivative.

Pl

If F is Fréchet differentiable and Y € H,

arorey = [3 <vis), 3 tdnim> = [) v s, 3 tts 1 1im0an

It follows immediately that P is then H-differentiable and

RABGIV Yy » 'l"l',-.-':-tl-:f.u' '




(2.2) pE(b)(e) = [5 AT((s,1):b)as .
Shigekawa {11] also introduces a notion of weak H-differentiability as follows. |

(2.3) _Dpefinition: If F(b) = £((L,,b),...,(2 ,b)) where f : R® + R is Borel measurable

*
and l,,...,ln €B , F is called a cylinder function. F is a smooth cylinder

® n
function if f € co(l )e

e 4
e Let IPIp - !1/p|l'lp + Bilplbrlg and ﬁ(p) = {FIF is a Préchet diff. cylinder function,

i";';

-':;“- lrlp < ®},

p {2.4) Definition: a) H(p) := completion of ;l(p) with respect to I'Ip.

N » 1™ = n .

'7{ p>1

If P e H(p), a sequence {Fn} of differentiable cylinder functions exists such that
DF, is Cauchy in LP(B.upH). Thus there is a (LP-) convergent subsequence Dl"nk and we
make the
(2.,5) Definition: DF = :t: D!nk. DF 1is called the weak H-derivative of F.
(2.6) Lemma (Shigekawa [11])
i) DP in (2.5) is well defined.

ii1) smooth cylinder functions are denge in H(p), ¥p > 1.

One may readily verify that H(p) is a separable, reflexive Banach space for p > 1
and hence that I'lp bounded subsets of H(p) are relatively (sequentially) weakly

compact. This leads to a useful criterion that F € H(p). Suppose F, € H(p) ¥n and
1) lim nlr—rnlq-o , some q »1
(2.7)
ii) l:p IPnIp Cw
Then F € H(p).
Our definitions so far have introduced a small ambiguity. DF is used to denote both
the H-derivative and the weak H-derivative, although it is possible for DF(b) to be

defined for all B in the sense of (2.1) but not in the sense of (2.5). In deriving the

usual form of Clark's formula, we shall need to identify the two under certain

circumstances.

-4- . I
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(2.8) Lemma. Let F : B+ R satisfy

i) P is continuous and H-differentiable (as in (2.1))

ii) DF(b) is strongly measurable (DF(b) = H-derivative of (2.1))

-

IS

? iii) There exist positive constants K, a such that

IP(B)| + |DR(B)], < R(1 + 1% .

e at e g
TR Y
PN

RS

Then F € H(2) and the weak H-derivative coincides with DF u-almost surely.

(n)}' where T(n) is given by 0 = t;n) < c:n)<'"< t(n) =1 , bea

Proof. Let (T n

.t

sequence of partitions that becomes dense in ([0,1] as n +® If be€eB, let

b .

N (n) o L0
N bl ™)t =t
XN (n)
b (t) = .
- 1 (n) (n) (n) (n) (n) (n)
% t(")-t(") [(tiﬂ-t)b(c1 ) + (¢ ti )b(t1+1)] if t <t < t1*1
i+1 "1
30
3'1‘ ' Likewise define F,(b) = (b)), ror each n, P, is Fréchet differentiable and
y or (5),p = 0rd™),v"> . Also, because 1im 1™ 1 =0 ana B™1 < w1 for
] nee
’ every b e B, it is clear from assumptions i) and iii) and dominated convergence that
o lim !(!'-rn)2 = 0. Thus, to prove that P € H(2), it is enough to show that
noe
sup Irnl2 < ®» (see (2.7)). However, since <Drn(b).Y>H =- <Dr(b(n)),1(n)>ﬂ, (1ii) implies
n
ehat I (012 + tor (012 < trs™ 12+ ore ™12 < k(1 + BMIZ 1e follows
immediately that sup |!'“|2 < =,
-Q n
: Let n(b) be the weak H-derivative of F. It remains to show that n(b) = DF(Db)
E' u-a.s. where DF(b) is defined as in (2.1). For this it suffices to show that for each
™ YE€H and t > 0,
»
3 E{(P(b+ty) = F(B)IG(B)}( = EIG(b) [T <OF(b+sy),vds])
: (2.9)
5 = El6(v) [¢ <n(brey) ) 1> ds]
N ’ for each G € L (B,u). Indeed, if (2.9) is true, then
g (2.10) <DF(b+lY).Y>H =- <n(b+-1).1>ﬂ
-~ v
"
1
A -
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for all Y € H, for (Lebesgue) almost all s, u~-a.s. Let u’Y = measure induced on B by
B(*) + sY(*) where B8 is a standard, Rd-val.ued Brownian motion. Since n.Y ~y, (2.10)
implies that <DP(b),Y>H - <n(b),Y>H for all Y € H, u-a.s., or, in other words, that
DF(b) = n(b) u-a.s. To establish (2.9), begin by noting that F is the weak limit in
H(2) of a subsequence {rnk}. In particular, for every G € L.(B, ¥) and every

dp
Y € H, lim E<DF (b).YG(b)>H = g<n(b) :YG(b)>H- Likewise, since -ful e LZ(B,u) uniformly
koo

for fixed Y on compact subsets of s,

lim E<DF_ (b+sY), YG(b)>
ke M H

Ecn(b), Ye(b-sy)>, LB

= E<n(b+sY), 1G(b)>H
and {E<DF_ (b+sY), YG(b)>H} is uniformly bounded on compact subsets of s. Thus, again

invoking 1) - 1iii),

E[F(b+ty) = P(B)]G(b) = lim E[F_ (b+ty) = B_ (b)]G(b)
ke "k Xk

= lim & [§ F_ (btsY), V> ds G(b)
ko X

=E f;' <n(b+sY), Y>,ds G(b)

as desired.
(W]
The Malliavin calculus introduces another differential operator on Lz(n, ¥) which is
the analogue of the finite-dimensional Ornstein-Uhlenbeck operator. To define this most

directly we first recall the Ito-Wiener decomposition

2 -
L (B,u) = © I
n=0

(n)

where (n) 1 s1 sn_1
ey fy oo, “’1"“"n’“xn"n"""x1"'1" 164 <a,

£ er2(t0,m1", ax)}
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-.‘,-
; is the space of n"h order, multiple stochastic integrals. Alternatively stated, if
A
<3 rer?m,u) and M .a projjzt®

4 -
*I
"7 r= ] 2 .
sg ' n=0
3 (2.11) Definition

’ -

‘ .- ] B2pinh
- 2

'. n=0

R if F e D, = D(A),

-

o) = (¢ e t23,m1] 2’z M2 < W) .

2 0
It turns out (see [9]) that A is a non-positive definite, self-adjoint operator that
\:j generates an Ornstein-Uhlenbeck type Markov semigroup. Moreover, if G(p) =

s

.'3 D, N {E[IPIP + |aP|P) < @)}, AIGP extends consistently to a closed operator A, on
"t Lp(a,n) for p » 1; that is, APID(Aq) = Aq if g > p. Without causing any ambiguity,

w3

we shall drop the subscript p.

{ &Y

(2.12) Lemma (9] If F, G € Dy, then PeG € 01 o

(2.13) Definition. Let P, G = Dy.

[y
’

AN OrOY
Y XV WY WY

VFVG = AFG - F(AG) - G(AF) .

‘l

LIPS

A and VP-VG are the basic tools of the Malliavin calculus. The following theorem

-

:_.’ collects some basic facts about their use.

’; ’ (2.14) Theorem [9]

: a) Let F, GE€D, and assume 1),  F is B, -measurable, ii) G is

' o{b(u) = bl(t)|t € u €< 1}-measurable. Then

:' A(FG) = P(AG) - G(AF) .

" b) If F, GeD, then EVP'VG = -2EPAG.

‘ Shigekawa {11] defines A by using higher order weak H derivatives. We prefer

‘: Stroock's direct approach (2.11) since we shall utilize his applications to stochastic !
: differential equations. However it is important for us to connect Dy to weak H- :
(: . differentiability. The notation VP*VG introduced in (2.13) begs an analogy to a gradient

S

inner product. The next result makes this precise.
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; (2.15) Zheorem

;’; i) b€ H(2)

u

3 i4) 1f F, GeD,, then VPG = <wF,06> .
o LT ¥ () '

- Proof. Let F = z P P, G= 2 P 'G where N, M < », Then results of Shigekawa [11)

0 ]

directly imply F, G @€ H(2) and VFeVG = <DF,DG>H. For general F € D,, 1let

., N

- r. =] »™r. Then

. N .

3 0

N 2 2

(2.16) lim E(lP, - P|" + |AF - AR |7} = 0

Now

B (2.17) lim E|VE eV, - VPeUF| = 0 .

a, Noo

L

<,

o (2.16) is immediate and (2.17 is proved in [9). Since

- 2

: E|DF, - m'ulH = EV(F, - F)°V(F, - F)

.2 - ;ZE(P“ - PH)A(FN - !‘") .

- DFy is Cauchy in Lz(B,u;H). Thus F € H(2). Moreover .
. . - 2 2 _ 2

e E|VE, VP Inrlnl = E| lor |, - lorl |

T (2.18)

- 1/2 2 1/2 2 _ 2

o < [l:p (= lnrﬂlH +E |Dr|ﬂlzllo(r“ r)lnl .

A (2.17) and (2.18) together imply VFeVF = (OF,DF> . The general statement (ii) follows
£ from the polarization identity.

’l

7 n]
-’f

v

i The following extension of (2.14) a) will be useful later.

5

» (2.19) cCorollary. If F, GE€H, and F is B,-measurable and G is

o{b(u) -~ b(t)|t € u < 1}-measurable. Then <DF,DG>y = 0.

H Pf. Approximate F and G by smooth, cylinder functions.

o o
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3. Clark's formula

In this section we will prove the following theorem and show that it is a general
version of Clark's formula.
(3.1) Theorem. Let F € H(2) and let a(t), 0 < t < 1 be any bounded, ld-valuad, B~

adapted, measurable process. Then

E{P(b) [] <a(s),db(s)>} = B{F(b), [, als)dae> }

= z{]; <[DF]1'(s),a(s)>ds} .

In (3.1), as in Clark's formula, we equate an expression involving F to one involving
DP. 1In fact, using the following corollary of (3.1), we may easily derive previous
statements of Clark's formula.
(3.2) cCorollary. Assume
i) P 1is H-differentiable (as in (2.1)) for each b € B
ii) DF is H-measurable
1ii) There exist positive constants K and a such that
f2(b)| + IDE(BYI, < (1 + 1B .
Then
(3.3) F(b) = I; <E{[DP(*)]*(8) B },ab(s)> u-a.s.
In particular, if F is also Fréchet differentiable
(3.4) F(b) = I; <![AF((3,1];~)|_5‘],db(s)> ya.s.
Proof. A simple application of martingale representation theory (see, eg. [7]) shows that
(3.3) is equivalent to
(3.5) E{F(D) !; <a{s),db(s)>} = s{f; <[DF(b)]'(s),a(s)>ds}
for all bounded, adapted processes a. However, according to lemma (2.8), F € H(2) and
its weak H-derivative is DF. (3.5) is then immediate from theorem (3.1). (3.4) follows
from (3.3) because (see (2.2)) (DF(s)]'(s) = XP((I,1]}b) if F is Fréchet

differentiable.
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The identity (3.4) was first proved by Clark (2] for functionals F that are Fréchet

differentiable and for which the remainder R(b, .bz) - r(b,«tbz) - r(b,) - t!l‘(b’)')::2

satisfies [R(b ,b,)| < ulbzl‘*‘

8, and a. Davis [3] requires that P be Préchet differentiable, Ar(-;b) be weakly

(1 + lb1la)(1 + lbzlc) for some positive constants M,

continuous in b, and [P(b)] + VAP(D)I, < K(1 + 1b1%) for some K, a> 0 where I I, =
total variation norm of AF. Both of these conditions imply hypothesis i) - 1ii) in
corollary (3.2), and hence require that F € H(2). ‘l'hul., the condition that F € H(2) |is
more general, and, as will appear from the proof, the theoretically natural one for which
to state Clark's formula. Theorem (3.1) thus explains the conditions of Clark and Davis)
they guarantee the weak H~differentiability of F.

To prove theorem (3.1) we first establish the following lemma, which is a direct
consequence of basic properties of the Malliavin calculus.
(3.6) Lemma. Let a be a smooth 2%-valued cylinder function and assume o is B~
measurable. Let T > t. If F € H(2), then

a
E{] a,<oF,D(b (1) - b, (£))>}

(3.7) 1

= g{r<a,b(1) - b(t)>} .

Remark. g: D(hi('r) - bi(t))(l) - (l)c1 where e, is the standard basis vector

Ve,

with 1 in the ith position. Thus
g 1
(3.8) I o,<oF,D(b (1) - b (£))>, = [/ <[DFI'(s),a Ve, q (808 .

1
Proof of (3.6). It suffices to prove (3.6) when P is a smooth cylinder function also,
because, if F € H(2), (2.6) guarantees the existence of a sequence {rn} of smooth

cylinder functions such that lim |rn - ”2 = 0, Since
n*>e

|E{(l‘-rn)<a,b(t) - b(t)>}

< :'/z(u-rn)z}:‘/z{<u,»(1-c))

~10-
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ls[cim(r-rn), D(bi(‘l) - bi(t)»il”

< ‘1/2 1/2

2 2 2
In(r-rn)lﬂn (e ()71 ,

limits may be taken on both sides of (3.7) to prove the case F € H(2). Thus, assume F
is smooth and let 01 - bl(t) - bi(t). From (2.14a) A“i't - cint‘. + ““1"1' and, by

definition A*i - - % '1' Therefore, using the self-adjointness of A

n{a1<nr,nvt>n) - z(ctmrv* - My, - v,_u-l}
= x{nimt - @ FAY, = FlaAY, + 015011)
- ‘m‘iltl L "01’1 0

m]

Proof of (3.1). It suffices to prove (3.1) for bounded, adapted simple process. For a
general bounded, adapted a(s), let Gn(l) be a sequence of simple process such that

lim 8 I; la (8) - a(s)|2as = 0
nee

Then it is a simple matter to show

lim (P f; <a_(s),d8(s)>} = E{r I; <a(s),dB(s)>}
nee

lim E{<DP, !; “n"’d"n} = g{<oP, I; c(-)dvn}
nee

and so prove the general case.
Now, for simple functions, it is enocugh to treat the case a(s) = ¢1( t 1’]( s), where
’

a is B, measurable and bounded. Lemma (3.6) and the remark following prove this case

if, in addition, a is smooth. To treat a(s) = ol (s) when a is not smooth,

(¢, 1]
choose a sequence of smooth, gc-uuurablo, cylinder functions such that

lim E|o~a |3 = 0. It may easily be shown that
n+e n

-ll=




T e s T

»

(s)as) = Lim E[? [} a1 (s)as)

1
B(r at
Io n 0 n (t,T)

(e,1]

1
lim B[ <DP, !o LA L
-l @F, [}a (s)as> )
‘70 T(e,T) ;A

This qolploen the proof.

4. The Haussmann formula.

Let y = {y(t) : 0 < t < 1} Dbe the N'-valued diffusion that solves

dy(t) = m(t,y)dt + o(t,y)ddb
(4.1)

Y(O) - Yo .
We assume y, € n“, n(t,y) 3 (0,1] x l“ > n“ and o(t,y) s [0,1] x l“ + l" [ ] ld are Borel
measurable in (t,y) and continuously differentiable in y for each ¢t, b(t) is 4-

dimensional, standard Brownian motion, and

-

3:1
(4.2) sup N <™ 1¢4, 3 <N
- u yj
t<1,yeR

B
« e
(TW YW

VSN

0
sup |—u"<- 1¢i, k<N , 1€j<a

dy
1, yen K

R
et

.

4
. (4.3) sup [m(t,0)| + f1o(t,0)0 ¢ »
A <1

S
[V}

Note that (4.2) and (4.3) imply that there exists a constant K such that

(4.4) sup |m(t,y)| + sup lo(t,y)}l < (1 + |y]) .
t<1 (14}

Standard existence theorems then guarantee a unique, strong, a.s. continuous solution

y(t) of (4e1),

-t~
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The equation of first variation associated to (4.1) is

d
az = ay-(t.,y)-z ac + 12:1 ayai(t,y)-z dﬁi
(4.5)

z(0) = I“ .

(In (4.5) 9 denotes the Lth column of 0.) (4.5) has a unique, B ¢ ®'-valued

solution Z(t), which is invertible for each t. Indeed, W(t) = z"(t) satisfies

d
2
=W (-3 mie,y) ¢+ 1zilayoiuur)l lat

a
. - L ] t db
(4.6) w 121 KALE L

wo) =1 .

z(t)z"(a), 0<8s<t<1 then serves as a state transition matrix for (4.5).
Let 1 I, denote the total variation for signed, 2'-valued Borel measures. Let
3™ = c(10,11,8") N {bIb(0) = 0}). In this section, we prove

(4.7) Theorem (Haussmann). Let P : B(“’ + R be Fréchet differentiable and suppose

i) Xr(b) is weakly continuous in b
(4.8)

1) 1] + 12T )1, <K(1 + 1% for some K, a> 0 .
Then
1 1 F -1
(4.9) EBlrP(y) Io <a(s),ab(s)>] = ‘Uo <j(.'" X (ausy)Z(w)Z  (s)o(s,y(s)),als)>ds)
for every bounded P, -adapted process {a(t) | 0 € t < 1).

(Remark. In (4.9), 7 is interpreted as a row vector.)

The condition (4.8) imposed on P is the same as that given in Davis [3]. However,
less restrictions are placed on m and ¢ in the present treatment because we do not rely

on potential theoretic results. Haussmann's (5] original statement of the theorem actually

allows mn(t,y) and 0o(t,y) to be causal functionals of y, although more stringent

regularity conditions are placed on F. We shall indicate below how the proof given here

might be extended to deal with such coefficients.




Our strategy for proving (4.7) begins from the observation that y(°,b) is a
functional of Brownian paths and, hence, that PF(y) defines the Brownian functional
G(b) = F(y(*,b)). Thus, roughly speaking, to derive (4.9) it is only necessary to show

that G € H(2) and
[oG(b)]*(a) = [ o A (quiy)z(w)z™ () ots,y(s))

and then to apply theorem (3.1). To be more precise, we actually need to show that y(t;b)
: € H(2) and to compute Dy(t). In the case that m and ¢ satisfy (4.2), (4.3) and, in
addition, possess slowly growing, continuous, second derivatives with respect to vy,
Stroock (9, 10] establishes that y(t) e DP for every p > 1 (see discussion after
(2.11)) and E[ sup Iyi(t)lzp + |1\yi(t)|"'P + |Vyi(t)-vi(c)l"1 <w 1<4<N, and
Shigekawa (11] cct»:;.llinl similar results. Thus wvhen m and 0 are cz, yi{t) e H(2) (o
certainly true. 1In theorem (4.14) we extend this analyis by showing that y(t) € pf;1 H(p)
even if the C? assumption is dropped, and by calculating Dy(t). The 2 assumptions in
previous work are necessary only to prove the stronger result that y(t) is in the domain
of the second order operator A. Since 'D' is a first order operator only continuous

' differentiability of m and 0 is needed for weak H-differentiability of y(t). Theorem
:’ (4.14) is the crucial step, and, once it is established, the proof of Haussmann's formula
.o follows easily. Thus, to extend this method to m(t,y) and o{t,y) which depend

functionally of y, it would be necessary to generalize theorem (4.14) appropriately and

obtain the natural analogue to equation (4.15) for Dy(t).

We begin with some preliminary lemmas. The first concerns how the property, F € Hp,

behaves under the transformation ¢(F) for a function ¢.

(4.10) Lemma. Let ¢ : ll“ + R bea c' function such that
n
1ot + 313 ool cxa e xS
i=1 1
for some K, a > 0. Let q > (a+1) and F = (Fy,...,F,) € (H(@))" = H(q) xee+ox H(q).

Then if p € q/a+1, ¢(F) € H(p) and

n
(4.11) Dé(F(b)) = ):-:3- (P(b))DF (B) .
1 %%
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In particular, if P € H
Proof. (4.11) is straightforward to establish if ¢ has compact support and F is a
smooth cylinder function. If P € (H(qQ))?, 1let L in (ll(q))n as k + @ vhere
F, are smooth cylinder functions, and take limits in (4.11) still assuming ¢ to have
compact support. When ¢ does not have compact support let &(x) = ¢(x)p(x/k) where
.':\.; pix) e c‘, p(x) =1 for x| €1, p{(x) =0 for |x|'>2 and 0 € p(x) € 1, ¥x. Take

limits as k + ® to achieve the final result. The condition p € q/a+1 insures that

b E(D(HP))P ¢ -,
o :

::2 The second lemma addresses a similar issue. What can be said about the weak H-
._,. differentiabily of the integral f;' f£(s,x(s))ds + f: <a(s,x(s)), db(s)> 4if x(t) is a
= B-adapted process such that x(t) € H'") = N, VE<?

(4.12) Lemma. Let f(s,x) : [0,1]) x 'y + R, a(s,x) s [0,1) x ®' + 2 be measurable in
_.‘:,'-. (s,x) and continuously differentiable in x for each s. Suppose that |¢(x)] +
: ‘ :l—:-:— (x)] ¢ k(1 + |x|") for some K, a> 0 if ¢ =f(s,x) or a(s,x), s <1. Let

x(t)i be a B,-adapted process such that x(t) e n('), t <1, |px(t)|,; has a measurable
: version, and n[['\’:?] Ix(t)|p+ Ipx(t)|P) ¢ @ for each P> 1. Then if
vit) = [5 e(a,x(0))88 + [C <ats,x(a)),b(e)>
v(t) e 5'™) for each t, 0 < t ¢ 1. Also .[(;“fl Dw(e)|B) = W < @ and W, depends

.
only on p and B[ sup Ix(e)|P + Im(t)l:l.
(0,1)
Proof. The proof is no different, except in notational complexity, if we assume
g N=d4a=1, Consider the first term z(t) = f: a(s,x(s))db(s). Note that for each s,
> 0<s <1, a(s,x(s)) € H‘.) and a(s,x(s))[b(t) -~ bi(s)] € H(-’ because of lemma (4.10).
Purthermore :t[;u;:]l.(t,x(enl" + Ioate,x(t))|f) = K < ® for each p> 1 where K
-'; ’
.;: ) depends only on l[(:u:llx(e)lp + IDx(t)l:] <® K and a, for each p > 1. Now let
'

('1'(.)) be a sequence of partitions of [0,1], and define

18-
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0ielay
I %a%a

% “v'

a™a,xian) = I ate, xte ) (0 .
tiﬂ(n)

(et ]

i+

Using the method in Doocb (4], p. 440, choose {'r(")} so that

1lim I; Ela(s,x(s)) - l(-)(l,x(l))lzdl = 0, Clearly, from the above, it follows that
nhe

™) = [8a™ s xta)rani0)

- (m) -
I o™i xte bt ©) = bie, )

ts in '™, ana, for each p> 1, Lim Els(t) - 2™ ()12 = 0. Thus to conclude that
mhe
e(t) € 5™ s 1s sufficient to show that eup EIDe™ (¢)12 < = for every p.. 1In the
n
following, let b(Att) - b(tiﬁnt) - N‘i"t)' We want to study

E(-) ( (m)

(e) = <02™(¢), b= (e,

(4.13) -
) <Dfalt, ,x(t,))blaL, )], Dlalt ,x(t,)Ibla,)p> .

(m)

ror each i, D[l(ti,x(ti))b(&‘)l - l(ti,x(tl))bb(ui) + (m(ti,x(ti))b(ui). Moreover, if
i € j, corollary (2.9) implies that

<nn(tt.x(t1)). nb(Atj»n =0 .

Likewise, it is easy to compute <Db(M:t), N“t”n - (t*ﬂ,.t - ti"""ij‘ By applying

these identities, the individual term of (4.13) becomes, if 1 < J,

<Dli(t1.x(t1) )b(Atl)l . D[l(f-jm(t,) Ib(at 01>,

3

- <D(n(t1.x(t1))b(Ac*)l. Da(t,,x(t ))>H b(at,)

3

1 (e

3

t - ti t)Gi

3

x{(t

+ <D¢(t1'x(t1) ), Dalt

i+ b]

3 3

Ssumming and rearranging these terms in (4.13) gives




(m)

(m)

€™ (e) = 2 I: =" (s), ta ™ (s)> abls)

(m) 2 (m) 2
+ [ uoa™ @+ 1a™mdree .
It follows from the Burkholder-Gundy inequality that
e1e™ 1?2 < X [;' gl<os™ (s, u(')(-»Hl"/’d-

+ 2t £ (10a™ (a)1P + 1a™(8) 1P1as
P 0 H
. (m), . p/2 P
< xs [: (O + B8 (817 1de + K3e

-5 I: E1%(s) 1P 28 + x;(cnp)

where Kl" ‘and K; depend only on p and xp independently of =m. By the Gronwall-

Bellman inequality sup llbz(-) ()P = sup llE‘ (t)lp/2 < ®», This completes the proof for
n n
z(t), and the term f: f(s,x(s))ds is treated similarly.

- 0
These results prepare us for proving the weak H-differentiability of solutions to
(4.1).

(4.14) Theorem. Let y(t) be the solution of (4.1) and assume that conditions (4.2) and

(=)

(4.3) are satisfied. Then y(t) € H for all t € [0,1] and

At -1
(4.15) Dy(e)(t) = [, Z(£)Z (s)o(s,y(s))as .
We first prove
(4.16) Lemma. Assume in addition to the hypotheses of theorem (4.14) that m and o are

twice continucusly diferentiable in y and that the second derivatives are slowing growing

(=)

functions. Then y(t) € H and (4.15) is valid.

Proof. Consider the usual Picard iteration
y(O)( ¢) 3 Y

’(nﬂ) (n) (

(£) = g, + !: nis,y " (s))ds + [: ots.y™ (s))ab(s) .

stroock [9) shows that for each n, y"(t) e Dp, for all t and for all p> 1, and




Il:ry(“)(t)lu has a measurable version. Purthermore,

lim B sup |y(t) - y(n)(t)lp =0 P>
nee  [0,1)

ana sup Bl sup {1y ()P + (ay'™ (e)(P + lny""(t)l{;n < ® Lemma 4.12 implies that
n [o,1)

(») (=)

y(n)(t) eH for each n. PFrom these observations it follows that y(t) €H ', as

desired.
It remains to prove (4.15) under the added assumptions of the lemma. let h € n(",
n(e) = [E '(s),ab(a)> and g (¢) = @y (). .
Then, using Stroock's (9) application of Malliavin calculus to stochastic d.e.'s
Ck(t) - <Dyk(t). lm(t'.b'I
- Vyk(t)'Vn(t)
.} D-k
- f" I = (a,y(s))E (s)a8
O guy 3y *
4 2

N
+ [ 1 g ] -fl‘i(-,y(-))ab

(s)
=1 =1 ayl

3
e &
+fg 1 %y (sIn}(s)ds .
3=t
In other words

4
ag(e) = 3 M(e,y(e))eE(t)ae + ) 3 0,(t);E(t)db, (¢)
y o1 ¥ 3

+ o(e,y(t))n'(e)ae
E(0) =0 .
The solution of this equation is precisely

Ee) =[5 20z (mota,yant (eras

t T
and Dy(t)(1) = [, 2(t)z '(s)als,y(s))ds follows directly.

Proof of theorem (4.14). Assume m and ¢ satisfy (4.2) - (4.3). 1let pec;(l“) such

that [ pdx = 1 and p > 0, and let P (%) = ndp(nx). Define

N P WP P P, T P . U PR S VOO N Y



2™ (e, = (p_omie, N (y)

o™ (e,y) = (p *0t, *))(y)

(n)

ay (1) = a® (e, dar + o™ ie,y ra8

ynto) =0
(n) ‘2’ (n)
'., dz = 3 m (t.y )2 dac + 0 (tpy o2 & (t)
4 (4.17) n Y L - A ol
’u(o) =31 .
It may be shown that l(n) + m and c‘n) + 0 uniformly on compacts as n + ® Moreover,

(n)

tor each n, af?) and o satisfy the hypotheses of lemma 4.12, and, there is a

constant K' such that

I-(n) (n)

(e, )} +# 10" "(e,9)0 < X*'(1 + |y|l), and

(n)

AL

. (4.18) I-(n)

(o) - (e, + 16 (e, %) - o® (e, 1

€ K'|x-yl

I e 2

SRS

for all 0 € t < 1, for every n. These facts provide a sufficient basis to prove, with a

20,

standard, Gronwall-Bellman inequality srgument,

ety

(4.19) lim 5{ sup Iy (t) - y(©)|P} =0
nee  0GE<H

K"

for every p > 1.

(n) (= for each n.

By construction of =‘®) ana ¢ and lemma 4.12, y (t) € H

Thus, proving

> A

(4.20) lim 2lDy (t) - 7l= =0
ne>e

t Tt
for every p > 1, where Y(T) = [o z{t)z 1(cm(c.y(l))d. is sufficient to prove that
y(t) € B and Dy(t) 1is given by (4.15). However, it is easy to see that (4.20) holds if
(4.19) is true and

(4.21) lim B{ sup 12

(t) - z(t)lgl -0
nee [ 1114
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(4.22) s 2l eup 1z_' () - 27N )f) =0
{ ave  0<ecl

:-:'.' for every p-. (lzl: = tlzulz). Thus, to complete the proof we need only verify these

L} 1m“.
An easy extension of theorem 5.2 in [12]) shows that (4.18), (4.2), (4.3) and the
condition (4.23 below are enough to guarantee (4.21):

vt <1, €>0, M<K »

(4.23) 1im P( sup 103 =™ (t,y ) - 3 mit,y)]1 21 > €) =0
nee Izlzﬂl Y n Y
g (n)
1im P( sup 0 ] (a0, (toy,) - bydi(t,y)l'zl >e)=0 .

nee lzlzm i=1

8ince ayl(t.y) is continuous in vy, ay-(t,yn) L4 ay-(t,y) as n + e for each t, and,

MICHER
e -

poo since 3y-(“, » 3yl uniformly on compacts as n'+ =, and sup !Iyo(t)l2 < -,
—x.",‘ n
) Oyl(")(t.yn) 24 ayl(t,y) as n * @ for each t. This proves that
‘.-' byl(n)(t,yn) LS ay-(t.y), n + ®, which is enough to verify the first limit in (4.23).
< Completely analogous arguments demonstrate the limits in (4.23) involving oi. This
. completes the proof of (4.21). Since 2! satisfies equation (4.6), and 2. '(t) the
=
-.:]: analogous equation with m and ¢ replaced by aln) and c(n), (4.23) and the
:‘_2’ additional condition
e d (n) 2 2
Lim P( sup 120 ] (3 0 " (t,y 117 = (3 alt,y) 170, > €) = 0
.. nee  |zjan  i=1 ¥ b 4
- for every 0 <t €1, E>0 and M <=, suffice to imply (4.22). But, this last
S
:.: condition is true by repeating the arguments from (4.23). This completes the proof.
~NG
s @]
—
_' Proof of theorem 4.7. First suppose that the theorem is true if, in addition to satisfying
': the hypothesis of theorem 4.7, F is a cylinder function F(x) = Q(x(t1)....,x(tn)). In
e
1 .',." this case, note that (4.8) implies ¢ is ¢! ana
s n
e (4.24) lotx)| + |{—2—y’— ()] SR+ axt®) .
1%
<
Wl
' -20=
-
s
v‘l Q.‘z
[y
‘i:
0

"f".
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A

w To prove the general case, let {'L‘(n)} be a sequence of partitions of {0,1] and define
bl

=1

A x{") for x € B as in the proof of lemma 2.8. Likewise, define P (x) = F(x{?)). Then
iy B if P satisfies (4.8), lim Pn(y(',b)) = p(y(+,b)) a.s. and there exists a subsequence
o nee
(51 n, such that

5

! F“k

Lim 3 B, 4 A (ds1y)Z(£)z ' (s)o(s,y(s))|a_}ab(s)

o ’

" (4.25) ke

= ey A (asiyrz(e)z” (s)o(s,y(s) ) [a_}an(s) .

. 0 " (s,1] ! s

] A nice proof of (4.25) is given in Davis (3] and will be omitted here. Now if (4.7) is
:: true for cylinder functions

. r

. . = n -1

N (4.26) F (y(*.8)) = [o 'U(-.n A “dsiy)z(t)z” (s)o(s,y(s))|B Jdbls)
H using (4.25) to take limits, we find that this equation is true if F_, is replaced by
~.} any P satisfying (4.8). 8Since (4.26) and (4.9) are equivalent, this completes the proof
l1

..; once the cylinder function case is established.

1

3 Thus let

Ply) = #ly(t ), eee,yle ) = 6(y) .

4 Since y(ti) [ H(.) for 1 <4< tn' and since ¢ satisfies (4.24), we find from lemma
" (4.10) and (4.15) that P(y) e &™) ana

30 = g

J -

R P(y)'(s) = [ 3= (2t )27 (sats,y(a) 1,

) i=1 Ty i

.

o » -1

3 =f A (awy)z(u)z (s)o(s,y(s)) .

X (s,1]

o

. For such P, (4.9), and hence (4.26), are direct consequences of Clark's formula (3.t),
! w}
L)

¥

4

i
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