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ABSTRACT

A new iterative method is presented for solving finite difference

equations which approximate the steady Stokes equations. The method is an

extension of successive-over-relaxation and has two iteration parameters.

Perturbation methods are used to analyze the iteration matrix. Sufficient

conditions for the convergence of the iterative method are obtained and it is

shown that many reasonable finite difference schemes for the Stokes equations

satisfy these conditions. Computational examples are given to show the

efficiency of the method.
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SIGNIFICANCE AND EXPLANATION

The incompressible Navier-Stokes equations describe the flow of many

common fluids. Thus effective numerical methods for solving these equations

are very important for many scientific and engineering applications. In this

paper a new algorithm is presented for solving finite difference equations for

the linearized Navier-Stokes equations. The method is similar to successive-

over-relaxation which is a widely used algorithm for solving elliptic

difference equations. Numerical results showing the behavior of the method

are presented. Other results appeared in an earlier report which discussed

finite difference schemes for the incompressible Navier-Stokes equations. The

method is efficient and easy to implement.
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AN ITERATIVE METHOD FOR SOLVING FINITE DIFFERENCE
APPROXIMATIONS TO THE STOKES EQUATIONS

John C. Strikwerda

1. Introduction

In this paper we present and analyze a new iterative method for solving

finite difference approximations to the steady Stokes equations. The method

is a variant of successive-over-relaxation (S.O.R.) and has similarities to

the method used by Chorin (1968) for the time-dependent Havier-Stokes

equations. The method described here is called extended successive-over-

relaxation (E.S.O.R.) and is useful for solving the nonlinear incompressible

Navier-Stokes equations as well.

The Stokes equations are

(11)in 0 c R

and we take as boundary conditions

on

The velocity u is a vector of dimension k and the pressure p is a

scalar. The system (1.1) requires k boundary conditions which can be either

of Dirichlet type, as given above, or some other type.

A commonly used method for solving (1.1) is to replace the second

•. equation of (1.1), the divergence equation, by an elliptic equation for the

a pressure. The resulting finite difference approximation can be solved by

iterative methods for elliptic equations, (e.g. Harlow and Welch (1965),

Roache (1972)). The difficulty with this approach is that solutions to the

derived system need not be solutions of the original system (1.1) (see

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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,. Strikwerda (1983), and Greenspan et al. (1964)). Therefore, we consider only

finite difference approximations to the system (1.1) in the form given there.

The finite difference approximation of (1.1) results in matrix equations

of the form

(1.2 ) y : G) uP h)

where the matrices -Ah , Gh, and Dh result from finite difference

approximations of the vector Laplacian, gradient, and divergence operators,

respectively. Ah will be assumed to be a square n by n matrix, Gh an

n by m+1 matrix, and Dh an m+l by n matrix. We will denote the

n+m+l by n+m+1 matrix in (1.2) by Zh. Systems of the form (1.2) also

&rise in solving the time-dependent Stokes and Navier-Stokes equations.

The equations (1.1) will not have a solution unless the integrability

condition

(1.3) "a -*

is satisfied. Similarly, the matrix Zh in (1.2) will, in general, be

singular, and the system (1.2) will not have a solution unless the data are

constrained to be orthogonal to the left null vectors of the matrix Zh. We
'.*'

will assume that the rank deficiency of Zh is only one, corresponding to the

one integrability condition (1.3).

Rather than constraining the data to be orthogonal to the left null

vector of Zh o we prefer to consider both ph and gh as defined only up to

arbitrary additive constants. That is, they are elements of the vector

'"':. spaces Re+lIt, where the quotient space is defined by v1  v2  if v1 -I v2 if v 2

has all components equal. Considered this way, Zh is an n+m by n+m non-

singular matrix. This approach to solving (1.1) is discussed in more detail

in section 4 of Strikwerda (1983).

-2-
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The .8oO.R. algorithm discussed in this paper has been used to solve

several test problems involving the Stokes equations (Strikwerda (1963)) and

is being used by the author to solve for solutions of both the steady and time

dependent Navier-Stokes equations. The method appears to be quite

efficient. Use of E.S.O.R. as a pro-conditioner for a conjugate gradient

algorithm is being investigated.
".4

In the next section we will analyze a class of iterative methods for

systems of the form (1.2) and in section 3 we will discuss how the methods

behave as the mesh sixe varies. Several numerical examples which illustrate

the utility of the method are given in section 4.

F.
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2. The Zxtended S.O.R. Method.

In this section we study a class of iterative methods to solve linear

systems of the form

(2.1) 
( ) y/ (

where A, G, and D are matrices of dimension n x n, n x a, and m x n,

respectively. We assume that the matrix

zI

is non-singular, hence n is greater then or equal to a.

Systems of the form (2.1) often arise in the solution of constrained

optimization problems, indeed, the solution of the Stokes equations may be

regarded as the minimum of a quadratic functional under the constraint that

the divergence of u is specified. If a, the number of constraints, is

much smaller than n one can often eliminate m values of the unknown x

using the second row of equations in (2.1) and so obtain a system which can be

solved by standard methods, see e.g. Dyn and Ferguson (1982). If a cartesian

grid is used on a rectangular region one can use a special technique developed

by Amit, Hall, and Poreching (1980) to reduce the system to an n by n

system. We, however, will consider the case where m is quite large and

where there is not a natural or convenient way to reduce the system to one

involving only n equations in n variables.

The iterative methods we will discuss are extensions of successive-over-

relaxation (S.O.R.) as applied to the matrix A. We assume that A has been

transformed so that

': A I L -U

".-
-4-



where L and U are strictly lower and upper triangular matrices,

respectively. The S.O.R. iterative procedure applied to the system

Ax- a

is given by

(2.2) x - x - W(xV Lx - Uxv a)

and we assume that this converges for w satisfying 0 < w < w0 for some

positive value of w0. For the basic theory of S.O.R. the reader is referred

to Young (1971). Assuming that (2.2) converges is equivalent to assuming the

following condition.

Condition 2.1

There is a positive constant w0  such that for 0 < w w the roots of

(2.3) det(o + -Z I - L - U) - 0

satisfy II < 1.

For the full system (2.1) we consider the extended successive-over-

relaxation iterative procedure

v~Nl .x - .$ VLx v~l UVG~~+yl a)
x %* - V ~ - Lxlx -+ Ux V + GO0¥y + Gly1 a

(2.4)
Y Y -fDx D l -b)

yl . y V '(o0xV + D I x b1

where

G0+G - G

and

Do + 01 - D

The iterative parameters must be determined so that (2.4) is a convergent

algorithm. The purpose of the analysis in this section is to find conditions

under which (2.4) will converge.

-5-
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Chorin (1968) used a scheme similar to (2.4) to solve for the velocity

and pressure at each new time level for the time-dependent Navier-Stokes

equations. In Chorn's method the matrix A is essentially the identity

matrix and he set w to be 1.0 and G1  and Do  were zero.

We rewrite (2.4) in matrix form as

(2.5) X1 w Xow + c

where
w V xv a

y V yb

and

Xl t1 I-L G

X1)

1WI+U -G
+... 

X0  =

-Y-1

The method (2.5) will converge if and only if all the eigenvalues of X1 X0

have absolute value less than one. The first result on the eigenvalues of

I.- X is this lemma.

Lemma 2.1

For y- 0 there are two classes of eigenvalues of X X There are

n eigenvalues which are roots of (2.3) and m simple eigenvalues all equal

to unity.

Proof

Let X be an elgenvalue of XI Xo, then

o dt(AI- x1  ) =det(AX1 - X0 )det X

At y 0,

-6-
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dot X wI

so X1 is non-singular for small values of y. We haveCA+41_1I -AL -U AG +G"') ' "I° 1, o )
(2.6) I XO YO )
so at y - 0 the eigenvalues of X- I0 are either roots of (2.3) or are

equal to unity. The eigenvalues equal to unity are easily amn to be simple

because A is non-singular. In fact1 for any y e vP the vector

is an eigenvector of X_ 10 at y - 0. This proves Lma 2.1.
-1

The n eigenvalues of X which are equal to the roots of (2.3) at

y -0 will be called the SO.R. eigenvalues of X 110
:7 10

We will now study the perturbation expansion of the eigenvalues of

Xo about y -0.10.

Theorem 2.1

Those eigenvalues A (y) of X s1X such that A (0) - 1 satisfy

(2.7) M,( - I - ni-Y + 0(Y)

where n Is an eigenvalue of -DA 1'G.

The proof of Theorem 2.1 depends on the following two lemmas.

Lema 2,2

Let T(Y) be an analytic matrix-valued function defined in a neighbor-

hood of y - 0. if A0 is a simple eigenvalue of T(O) then the eigen-

values A (y) of T(y) for which A j(0) A0 satisfy

(Y) " A 0 +  YPJ +  01( 1

where V is . .L v ae of T'(0).

-7-
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A Lemma 2.3

If a, b, c, and d are matrices of dimension n x n, n x m, m X n,

and m x m, respectively, then

a b°
det(a d det(a -b c) det d, if det d 0

=det(d - ca- b) det a, if det a O 0

Proof of Lemma 2.2.

The proof easily follows from results of Kato (1966) but we give it here

for completeness. For y near zero we can find a non-singular analytic

matrix valued function P(y) such that

P(Y) -Tlr)P(Y) - T(y)

has a block form

T(y)-
T1(Y)

where T(O) - 101 . We now consider only T0(,). The elgenvalues of T0 (Y)

have expansions as Puiseux series

Ai(Y) - X0 + x

1-i

for some positive integer p. If p - 1, the result follows. Assume that

p > 1, we will show that for 1 4 1 < p, A is zero.
i1

Let
,,. ui (y) UL :1/, I u jo 0, 0- uy " /P

it 0

be the eigenvector corresponding to A(y). (u:1 (y) does not have a pole at

Y 0 since T0(0) is diagonal.) Since T0 (Y) " A01 + Y01 + y2T02 +

and

T0 ()u1 (Y) - u1 (')'(Y)

. .. . . . . . . .
- - ~ S " . ... i , ,, -- ,,. -- , ..- ,,, .,, -.- -- ,,,,,, ,,,'.- -- ., .
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we see upon substituting the series for uj and A that A - 0 for

1 < <p. Moreover for I - p we have

)u 0o
jp)jo

which shows further that X is an eigenvalue of T and uj0 is a
ip1

corresponding eigenvector. This proves Lemma 2.2.

Proof of Lemma 2.3.

The result follows easily from the matrix factorization(:b) = (ai,&c bdl) (1 )

.ca- d - ca-b

Proof of Theorem 2.1.

Since the eigenvalues of xIX 0 which are equal to I for y - 0 are

* simple, by Lemma 2.2 we have that

A1(Y) = 1-i + O(Y)

*By Lemma 2.3 we nave

0 - det(X - X)

1i 0

det((X -1)I - y(A D +D I - A L - U) (X G + Go))

1i 0 (a j

-.'" • et( I.3T -  - X L - U)

Now at Y - 0, X is 1, and A = I - L - U is non-singular. So substi-
, Ij

. tuting the expansion for X(y) we have

0 - ymdet(-,l - DA-G + O(Y))

Hence Ti is an eigenvalue of -DA'G and this proves Theorem 2.1.

-9-
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Since the iterative procedure (2.4) will be convergent only if the

eigenvalues of X lX are all less than one in magnitude, we see from Theorem10

... 2.1 that for (2.4) to converge for positive values of y we must assume that

the following condition holds.

Condition 2.2.

All the eigenvalues of -DA 1G have positive real part.

Note that if all eigenvalues of -DA7-G have negative real part, then

one can either multiply the last m equation of (2.1) by negative one (i.e.

replace D by -1D) or, equivalently take Y to be negative. If, however,

some of the eigenvalues of -DA-'G have positive real part and others have

negative real part then the method will not converge.

We now state the main result of this section.

Theorem 2.3

Conditions 2.1 and 2.2 are sufficient for the algorithm (2.4) to converge

for y and wa satisfying 0 <y <Y0  and 0< w <w for some positive0 0

values of 0 and w0 . Furthermore, if A is non-singular then necessary

conditions for (2.4) to converge for such y and w are that the roots of

(2.3) satisfy 11I 4 1 and that the eigenvalues of -DA-1G have non-negative

real part.

Proof

Consider the two groups of eigenvalues described in Lemma 2.1. By

continuity of the eigenvalues as functions of the matrix elements we have that

the S.O.R. eigenvalues satisfy III < 1 for y in some range 0 4 y f YO

for 0 < < w0 . Then by Theorem 2.1 and Condition 2.2 the remaining eigen-

values of X X0  also satisfy I < 1 for 0 < y < y for some y0" This

_ proves the sufficiency condition.

-10-
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If the algorithm (2.4) converges for 0 < y < y and 0 < w < w 0 then

for y - 0 the eigenvalues of XI X0  must satisfy IXI 4 1. Since A is
-10

non-singular the S.O.R. eigenvalues of X;1 X are not equal to 1 for
1 0

y - 0. Thus the non-S.O.R. eigenvalues are simple and satisfy (2.7). The

condition that [Il 1 for small positive y implies that Re n 0.

We conclude this section by obtaining expressions for the perturbation of

the S.O.R. eigenvalues of the iteration matrix for the case where A is

diagonalizable and has property A. Under these conditions the iteration

matrix for S.O.R. applied to A has principle vectors of grade at most two,

(Young (1971) p. 233-238).

NoW let A be a simple S.O.R. eigenvalue for X' X0  at y = 0 and

jo ilet j ( + +0(M

be the perturbation expansion of a right eigenvector of X -I X with eigen-
1 0

* value
(2.8) A A + + o(y

Let

;100)

be a left rigenvector at y 0 such that

(volujo) vO 0

Substituting the above expansions for the eigenvector and eigenvalue in the

equation

we obtain

(v 1 o(Go+AoG
1 )p 1 1

J Vjo, 1 -L)Uj )

i -11-



Since vj is an eigenvector of -108w hv

Pj1  0 (1 -) 0)(D 0 + XOIuj

and also

(I-A )(/W I-L)UJ -AuJjo o j

hence

(2.9) A -- (VJ0 (G 0 +'X 1 G I)(D D0 +A1 0Dl
(V jo Au)

Similarly, if A jiis an S.O.R. eigenvalue of grade 2 at y -0, then we

have

(2.10) A -M xJ 2X
j /2O+ 1 (2

where

2 21)(A 1 ~ (v1 0,(G 0 +.X 0G1)(D 0 +X 0 Dl)u 0)
(v0 1Au 1/2)

and u1/2 is defined by

2*

I AOL -U)u I/ + (I-L)ujo - 0

-12-



3. The rinite Difference Stokes Equations.

In this section we consider the application of the iterative method (2.4)

to finite difference approximations of the Stokes equations. we first

consider Conditions 2.1 and 2.2 to see if they are satisfied.

Since the matrix A arises from a discretization of the vector

* Laplacian, Condition 2.1 is very reasonable. If the finite difference grid is

* .. rectangular with uniform spacing and one uses the standard five-point

discretization for the Laplacian, then Condition 2.1 is satisfied, Young

(1971). In addition, A will be symmetric and have Property A, (Young

(1971)).

Condition 2.2 will also be satisfied for appropriate difference

schemes. The operator Qh represented by -DhA G is a finite difference

approximation to the operator Q0 defined on L (1)/R as follows.

Qop q if

q *U

2 +~
where V u=p in 0

with u= 0 on 3.9

Crozier (1974) has proved the following:

Theorem 3.1

If fl is a connected, bounded domain in R2 with smooth boundary then

2the operator Q0 is a bounded, positive definite operator on L (D)/R.

Therefore, if Qh is a consistent approximation to Q0 one can expect

that the next condition holds.

Condition 3.1.

There are positive constants cl and c2 such that for 0 < h 4 h0,

(3.1) c1  ( Re n 1 In1i 2

where the n are as in Theorem 2.1.

-13-
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It is important to note that Condition 3.1 is not satisfied for all

finite difference schemes. in particular, if one uses standard central

difference to approximate both the gradient of the pressure and the divergence

of the velocity, then numerical tests indicate that Condition 3.1 is not

*satisfied. In section 4, we will discuss difference schemes which satisfy

Condition 3.1. Condition 3.1 is related to the regularity of the difference

scheme (Bube and Strikwerda, 1983). Regular difference schemes are those

whose solutions satisfy regularity estimates analogous to those satisfied by

solutions of the differential equation.

We now consider the convergence behavior of the X.S.O.R. method. Suppose

then that one has a finite difference approximation to the Stokes equations

(1.2) for which the method (2.6) will converge for same positive values of y

and 6. One would like to know how to choose values of a and y so as to

obtain a good rate of convergence for the method. We are unable to give

rigorous estimates of the convergence rate, but we will nov show that the

following conjecture is quite plausible.

ConJecture 3.1

If the matrix A satisfies property A and Condition 3.1 is satisfied

then there are positive constants co  and cl such that for w = 2/(+c 0 h)

and Y - cIh then

(3.2) P(X 1  = 1 - Kh + O(h)

for some positive constant K.

Since the iteration matrix for S.O.R. applied to the discrete five point

Laplacian satisfies a relation like (3.2), Conjecture 3.1, if true, shows that

..S.O.R. for the Stokes equations is roughly as efficient as S.O.R. for the

five point Laplacian.

*4
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we argue for the Conjecture 3.1 as follows. If A satisfies Property A

then for w ) w , where W is the optimal parameter for (2.2), and small

positive values of y, the S.O.R. eigenvalues satisfy (2.8) or (2.10) and

have modulus w-1 + 0(y). Consider first those A jO which are near w- 1,

that is, A jo has the form 10 h

where 8j . 0(1) and w - 2 + 0(h) as h tends to zero. If the finite

difference approximations for the divergence and gradient are consistent then

(2.9) can be approximated by

IDhuil2

J1 (u A u

since the adjoint of the gradient is the negative of the divergence and where

A is the finite difference negative Laplacian, i.e. without the normal-

ization which makes the diagonal elements unity. The discrete eigenvector

uj may be regarded as a representation of smooth vector function u and so

the above ratio is approximated as

"" Idiv u12

Igrad U*1

and so A is 0(1) as h tends to zero.

On the other extreme where X0 is close to -(w-1) the discrete
10

eLgenvector uj is a very oscillatory function. Then we have

(D0+A D )u -0(h - )

(G0 +AJ0 G 1 ) - 0h)

and

Auj 0 - 0(1)

and thus A J is again 0(1) as h tends to zero.

.4 -15-



For other values of IjO on the circle with radius w - 1, an argument

similar to those above shows that Xj will be bounded as h tends to

zero. For Aj,1, as in (2.10) and (2.11), the conclusion is that AjI 2 is

proportional to h"2 as h tends to zero.

Therefore if y is taken proportional to h in (2.8) and (2.10) and we

assume that the terms which are O(y) in (2.8) and 0(y) in (2.10) become

*" 0(h) and 0(h), respectively, we then obtain (3.2). This last assumption is

the one for which we have no theoretical justification. It is not

unreasonable, however, and the numerical experiments confirm that Conjecture

3.1 is quite plausible.

.1

,4 .
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4. Numerical Examples

In this section we present some numerical results of using the E.S.O.R.

algorithm on a test problem. We consider the Stokes equations

V2u 0
ax

'- "(4.1) V2V v 22y

au 8vx + - = g(x,y) - cos I x cos I y

on 0 4 x,y 4 1 with u and v specified on the boundary. The exact

solution is given by

u - (2) sin W x os w y

v - (2w) cos w x sin V y

pinCOSgI COOIY

The discretization used a uniform grid with the same number of grid

points in each direction. The second-order accurate five-point Laplacian was

used to approximate the Laplacian. As mentioned in section 3 the choice of

discretization for the gradient and divergence terms is crucial to satisfy

Condition 3.1. We employed here the regularized centered differences

(Strikwerda (1983)) given by

kc~6  1 26 2

ax xO 6 x-lx9

p h 6  -

au 1 2 6 2
ax xO 6 x+ X-

a,, 1 2 2
W v6yoV- h 6Y,8v ,

where h is the grid spacing and 6x0, 6x+, and 6x. are the centered,

forward, and backward difference operators in the x-direction. The operators

-17-



.y00 6,y+ and 6 are defined similarly for the y-directioa. To determine

the pressure at boundary points a cubic interpolatie was used, e.g.

Phj = 3(P2j - P3j) - P4j

In these tests the difference operators Do and G, were zero, i.e.

D I - D, Go - G. This is perhaps the easiest scheme to implement of those

considered here. Note that for the theory developed in section 2 it is

necessary that the difference operators Go and G 1 , toqether with G,

annihilate constants so that they are defined on JL+1/. This scheme has

been shown to be second-order accurate, Strikwerda (1983). Here we give

results only on the efficiency of the solution algorithm, ESOR.

To support the conjecture 3.1, several runs were made where w and y

were given by

w - 2/(1 + c0 h)

5 (4.1)

for several values of co, c1 and h. The iterative method was stopped when

the quantities

lun+1 - un I (Iun+11 2 + 1)1/2

(4.2) n - vn I ( + 1

n+1 n n+1l2
p pI/ +

were all less than 10 - . The norms for u and v in (4.2) were the

discrete L 2 norms, and the norm for p was the L2  norm in the quotient

space RM+l/R. The computation of the norm in the quotient space will be

discissed later. If Conjecture 3.1 were valid then the product of I, the

number of iterations required for converqence, and h would tend to a limit

as h tends to zero. To see this we observe that if the spectral radJs is

1 - 10 then the number of iterations required for the relative change in

successive iterates to be less than e is determined by

-18-



,% rI
(I- Kh) I

This implies

(4.3) hI g -(log E)/K

The results of these runs are shown in Table 1.

The results in Table I for c 0  5.0 and c= 5.0 give excellent

agreement with Conjecture 3.1. The variation in the values of h*I for other

values of c. and c1  can be explained by the presence of the 0(h) term in

(3.2) and because the use of the norms is only an imperfect indicator of the

spectral radius.

We now discuss the cumputation of the norms for the quotient spaces

3P+1/R. If X is a vector in e1 then the L2  norm of its image in

is

all 1 /2Xt- I. (xk -
k=

where X is the mean of X, i.e.

*1 m 1I x •
lk Xk

An efficient and accurate way to compute this norm is the algorithm of West

(1979). This can be described as follows

Initialise k = I

N1  X1

repeat for k = 2..., +I

R- Xk - Mk1

U - R/k

Mk = Mk-1 + U

Nk k1+ R U * (k-i)
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Table 1

Co  CI h I h-I

5.0 5.0 1/20 163 8.2

1.30 246 8.2

1/40 329 8.2

1/60 497 8.3

N 1/80 666 8.3

O4.0 5.0 1.20 141 7.1

1/30 219 7.3

1/40 298 7.5

1/60 467 7.6

1/80 656 8.2

3.14 4.5 1/20 163 8.2

1/30 254 8.5

1/40 347 8.7

1/60 582 9.7

4.0 6.0 1/20 132 6.6

1/30 199 6.6

1/40 267 6.7

1/60 >500
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finally

IXI - (NM+1 /2

This algorithm is stable as shown by Chan and Lewis (1979), and is very

convenient. This is used to compute the norm of the pressure and the residual

of the last equation in the Stokes equations.

The mean of the residual of the divergence equation is the quantity 6h

discussed in Strikwerda (1983), and for each of the cases reported here it was

on the order of the truncation error.

The E.S.O.R. method described here was used to compute the solutions

discussed in Strikwerda (1983) where accurate finite difference schemes for

the Stokes equations are described. It is also being used in the computation

of Taylor vortex solutions to the steady Wavier-Stokes equations and in

computations of solutions of the time-dependent Navier-Stokes equations. The

results of this research will be reported when it is completed. It has been

found to be a reliable algorithm, the main difficulty being the choice of

40 and y. Conjecture 3.1 provides a means of estimating good values of

w and y. By finding good values of w and y for, say, h - 1/10, one

can then use Conjecture 3.1 to obtain good estimates of w and y for

smaller values of h.
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5. Conclusion

The E.S.O.R. method has been rigorously analyzed for matrices of the form

(2.1) with the main results stated in Theorem 2.3. For the particular case of

difference approximations to the Stokes equations we have argued in section 3

that the assumptions required by Theorem 2.3 are reasonable for many finite

difference schemes. The results of section 4 have confirmed that the E.S.O.R.

method is indeed an efficient algorithm for the solution of the finite

difference Stokes equations.
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