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ABSTRACT

The discrete least squares method is convenient for computing polynomial

approximations to functions. We investigate the possibility of using this

method to obtain polynomial approximants good in the uniform norm, and

describe applications both to the case when the function to be approximated is

known on a discrete point set only and to the case when we can freely choose

the set of least squares nodes. Numerical examples are presented.
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SIGNIFICANCE AND EXPLANATION

The simplicity of computing least squares polynomial approximations to

functions, using function values on a discrete point set only, makes it

attractive to use the least squares method for computing polynomial

approximations, which are good also when the error is measured in the uniform

norm. We describe how this can be done, and consider the cases

1) the function to be approximated is known on a discrete point set

only. For example, we may wish to approximate a function on

(-1,1], but the function is only known on an equidistant point set

on the interval.

2) We are free to select an arbitrary set of discrete least squares

nodes. For example, we may wish to approximate an analytic function

on a bounded region in the complex plane, and the function is known

on the boundary of the region. We discuss how to allocate least

squares nodes on the boundary without computing conformal mappings.
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ON POLYNOMIAL APPROXIMATION IN THE UNIF09M NORM

BY THE DISCRETE LEAST SQUARES METHOD

Lothar Reichel

1. Introduction

Polynomial approximations to functions are conveniently computed by the

discrete least squares method. We describe how this method can be used to

compute polynomials, which provide good approximations also when the

approximation error is measured in the uniform norm on the whole domain of the

function. Important is the choice of an appropriate relation between the

number of discrete function values to be used, and the degree of the

polynomial. This choice should depend on the distribution of the least

squares nodes.

Ex. 1.1. Consider the approximation of f(x) :- ( + 25x 2 )- 1 on [-1,11.

k-
Use function values at m equidistant points xk -1+2 ; k

- I(I)m, to compute a least squares polynomial of degree < n.

a) n - m. The uniform norm approximation error increases with

m, see Runge (5], or Dahlquist-Bjorck [41, section 4.3.4.

b) n - -- r. The computed sequence of polynomials for

increasing n converges maximally to f(x) in the sense of

Walsh [7], i.e. the exponential rate of convergence is

optimal. Details are given in section 2.

0

Ex. 1.2. Regard the same approximation task as in the previous example, but

2wk- w
use the Chebyshev nodes x :a coo-(--), k - 1,2,...,m. Already

for m - n we obtain a polynomial sequence which converges

maximally to f.

Sponsored by the United States Army under Contract No. DAAG2-80-C-0041.
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In~ section 2, we state results on the rate of convergence in the uniform

nova of the polynomial approximant computed by the least squares method. Our

approach is to first give error bounds containing certain interpolation

operator norms, and then bound the interpolation operators. Numerical

examples are presented in section 3.
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2. .stimates for the least squares overator

Lot r be a Jordan curve or Jordan arc in the complex plane. Denote the

open set bounded by r by 0. if r is a Jordan arc then 0 is void. we

wish to compute polynomials, which provide good approximations to functions

f on r in the uniform norm,

(2.1) IfI :- sup If(z) •
u zeF

Let {z, }:., be a aot of distinct nodes on F. Introduce the inner-product

and corresponding semi-norm

(2.2) (f,g):" f(z g(z )
ik=I k,m k,m

(2.3) Ifl s- (ff) 1/2

where the bar denotes complex conjugation. For a given function f on r,

let Ln,.f denote the best polynomial approximant of degree < n with

respect to the semi-norm (2.3), m # n. Let Inf be the polynomial of
n

degree < n interpolating f at n distinct points {wk ) on r. we
kk-i

introduce the notation

(2.4) I 4 L if {w 1  C {zk ., wk  distinct
n nom k- kim k,m k-i k

We also need the definition

(2.5) n(f) :" sup If - p nIu
Pn

where the supremum is taken over all polynomials of degree < n.

Theorem 2.1

Define Lne m  and In  on the set of functions continuous on 1U 0 and

analytic on 0, and let both domain and range of Lnm and In be equipped

with the uniform norm (2.1). (If r is an arc, then 0 is empty.) Then

(2.6) IL n,m II (1 + ) V I n4 L n, m  V m O n

-3-
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The growth rate of the right hand side is the smallest possible.

Proof. Let Pn be a polynomial of degree < n such that UP nf - fl -

Un(f). Then

(2.7) IL nmf - fl m 4 P nf - fl m r IP nf - fli - E (f)

Let In4 Ln~m and let Ik(z) denote the Lagrange polynomials associated

with 1.1 i.e.

n
(2.8) (1 f)(z) I f~w k )Lkz)

Express Lnm with the same polynomial basis,

(2.9) (L nmf)(z) -C:IIa~~)

for some constants ak. Substituting (2.9) into (2.7) yields

-a f(vk)I < rm En Cf) , k - i(I)n

Substitution into

ICL nmf)(z)i 4 1 1%* - f(vk)l 110"C+I If~w 01) 10
n~mku k-i k

yields

(2.10) IL n I - sup IL n fl n <I1I I + 1I * sup E nCM)
n~a 1f -1 ~ IfI -

u u

This proves (2.6). We next give an example, where the growth rate of the

bound (2.6) for increasing a, and n held fixed, is obtained.

Let fqCx), x e (1],q > 0, denote the piece-wise linear function

(2.11) f C x) : [li(/
q ~ x/lxl , i/q 4 lxi C 1

Approximate fq by a 1st degree polynomial L2,,f q on [-1,11 for a

even. The polynomial L2,mf q we define by least squares approximation at

the a points x, 1 -, x 2 - x3 -.. , x. I x,+-j xj' jui ).

-4-
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Then

I + r2 -)

(L 2,f q ) (x) I -x1 + 2(S - 1)* 2

2 q

Letting q - /-T'-l we obtain

(L f )(x) - 0+
2,. q 3

For m sufficiently large,

(2.12) IL I ) IL f I ; IL f - f I - If I = 1- 2) - 1
nem n,m q u nm q q u q u 3

Moreover,

(2.13) in 121 1 3l + I l'u 11 - ln(2) + 4 V m 4
I24L 2mXm-x 1  XlX M  u

Combining (2.12) and (2.13), we see there is an 12 and a constant d > 0,

such that

(2.14) IL 2m 11 I21 d V m sufficiently large

The least squares nodes of this example are not distinct, but we can find

distinct nodes close to those used in this example and such that

IL 2,m 11 21m d/2.

0

Generally, we will select n as an increasing function of m.

Xdditional smoothness of the functions to be approximated will decrease the

growth of IL I with m, n - n(m). The next theorem illustrates this.nem

Theorem 2.2

a) Let r - 1-1,11 and let Lnem have the domain Fd k :1

k dk
(f 3 f e (-1e13, IC- 1 C d) equipped with norm (2.1). Then, for some

dzk u

constant D depending on the constant d and integer k,

(2.15) IL nI I 1(1 + Ol/ 2 nk) V I n Ln m

-5-



b) Let r be a smooth Jordan curve with interior 0. Define Ln m  on

k dkf
Pdk - {f : f analytic in a, f e c (a U r), dz kIu 4 d) equipped vith

norm (2.1). Then, there is a constant D such that

- m(n)k

(2.16) IL I -C II I(1 + Da -In) ) , V I 4 Ln, n ) k+2
n,m n n n n,m#

Proof. The inequalities (2.15) and (2.16) follow from (2.10). To obtain

(2.15) we use Jackson's theorem, see Cheney [21, p. 147. (2.16) follows from

Smirnov-Lebedev (6], p. 99.

0

In the following we will assume that there is a distribution function

S(z) on r with a strictly positive derivative for the least squares nodes

zk,m , and that these nodes are defined by
-k-i

(2.17) S(zk) -, k - I(1)m, m - 1,2,...

The sets of interpolation points will be subsets of the least squares node

sets.

The next theorem gives estimates for I I for various distributions ofn

interpolation points. We first single out two special point distributions.

The definitions follow Walsh [8), ch. 7.

Definitions

Let G(z) be the Green's function for the region exterior to r with a

logarithmic singularity at infinity. Let L denote the outward normal
3n

n
derivative. A point set {wk}k. I on r is called uniformly distributed if

the 0k,n  defined by
k+1 8G

(2.18) wk  in (C)1d€1 - Ok,n , k - 1(1)n-1 

for any 0 c < d 4 1, satisfy

lim. {Number of , in (c,d11 } -c
n k,nn+=

-6-
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integration in (2.17) is understood to be carried out along r in the

positive sense.

if k- ink, on 8 -- Vk, then the pointeset (w In is
k,n n' k,n n k k-'i

said to be equidistributed on r.
0

Zx. 2.1. The zerom of the Chebyshev polynomial T,(x) = cos(n arc cos(x))

are equidistributed on E-1,1]. Equidistant nodes on

r - (x :1:1 - 1) are equidiutributed.

Theorem 2.*3

If the interpolation points are equidistributed, and r is an interval,

or an analytic Jordan curve, then there is a constant such that

(2.19) 1I 1 4 - ln (n) + 6, n - 0, 1, 2,..
n W

If the interpolation points are uniformly distributed and r is a Jordan

curve or Jordan arc, then

(2.20) 11 1 1/n + 1,I* 

If the interpolation points wk - Vk, k - (1)n, in the limit n + are

distributed according to a density function a, then

(2.21) 1/n ._ 1 n

where P I -e '~u r lnjz-Cja(C)Id~j), and P0Ozer

ze r

Proof.

statement (2.19) is well-known for r being an interval. For r being

* an analytic Jordan curve, (2.19) follows from Curtis (31, theorem B. (2.20)

is a special case of (2.21). The latter can be shown by potential theoretic

methods. This is carried out in the appendix.
0
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Approximation method

Guided by theorem 2.3, we select n n(m), so that among the least

squares nodes {},m}mI there is a subset of n points, which is uniformly
squre-i

distributed on r as m + -. The assumed existence of a distribution

function S(z), with strictly positive derivative, for the zk,m  guarantees,

that such a function n(m) does exist, and, moreover, we can let n(m) + -

as m + a.

Maximal convergence, defined in ex. 1.1, is obtained if IL I/n + 1n~m

as n, m + 0. From (2.6), we see that a sufficient condition for maximal

convergence is that the function n(m) is such that n(m) ) ma for some

constant a > 0. The next theorem provides an example.

Theorem 2.4

2k-i w
Let r - [-1,1], and let z k, m  -1 + -, k - 1(0)m. Then n-1-imkm

satisfies the proposition. Conversely, there is no subset of n - cm

uniformly distributed nodes as m + -, for any constant c > 0.

Proof. See appendix.

0

Remark

An approximation problem related to that treated in Theorem 2.4 has been

discussed by Bjork [1], who measured the approximation error Lnmf - f with

a semi-norm l.l, with W>> m. The computation of the Euclidean norm of

matrices defining the change between different orthonormal polynomial bases

on (-1,1], led Bjork to the suggestion that n should be selected 4 2rm.

This choice of n is close to ours, since 1-- 2.22.

*. . . ................................. .... ........
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3. Numerical examples

When applying the approximation method, we discern the following

different cases.

a) the function f is known on all of r.

b) the function f is known only on a finite point set on F.

c) the normal derivative of the exterior Green's function for F is

explicitly known

d) the normal derivative of the exterior Green's function for r is not

simply available.

Only if a) and c) are true, or, if we have the situation described in theorem

2.4, then we know how to select n - n(m). In general we compute Ln,mf for

several n 4 m. This is illustrated in example 3.3. If then a) holds true,

we can compute IL f - fl and select the best of the computed Ln,mf's.nwm unm

If instead b) is true, the selection of an appropriate Ln,mf must be based

on a numerical perturbation analysis.

Our first example is a continuation of examples 1.1 and 1.2. All

computations were carried out on a AX/780 in double precision, i.e. with 15

significant digits.

Ex. 3.1. Let r - [-1,1, f(z) - (1 + 25z2a)- 1  -1 + 2k-1
k,m  m

k + 1(1)m. Let n be the largest integer 4 v'r. I Tf below2 n

denotes the interpolation polynom Inf determined by

interpolating f at the zeros of Tn(x) - cos(n arc cos (x)).

I Tf is known to converge maximally to f. In all examples on
n

approximation on (-1,1], we have used the polynomials Tk(x) as

basis functions.

-9-



IL f fl1
/ n

m n IL f - fl n's u
n,m u i1 Tf - fl1/n

n u

10 7 0.688 1.15

40 14 0.173 1.02

160 28 0.161 * 10- 1  1.03

640 56 0.904 9 10-4  1.02

2560 112 0.192 * 10-8 1.01

The entries of the last column are close to I and decrease as n, m

increase. This indicates the maximal convergence of Ln,mf to f.

Ex. 3.2. We continue the previous example. Increase the value of n to

n = 0.5m, everything else kept as in ex. 3.1.

m n IL f - flnm u

10 5 0.319

40 20 0.523

160 80 12.221

The error increases exponentially.

0

Ex. 3.3. Let 0 be the interior of the curve r :- {x+iy, x(t) :
4 2 2t -2 2i~t

cos(t) + cos(2t) , y(t) :- sin(t) + . sin(2t) -7
2

sin(4t), 0 4 t < 2w).

-10-
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X(2)+iy(2 ,r We wish to approximate functions

Q analytic on 2 and continuous on

a u r by polynomials. r is some-

x~r)i 7 +0 ± x(0)+iy(0) what similar to the ellipse & :

(z, z(t) - x(O)cos(t) + iy(l)sin (t),/2
0 -C t < 2w).

The point set {z(t ),m) is equidistributed on & if t m -
k,m k- 1k

2W -- , k = I(I)m. This leads us to select the least squares nodes Zkm
m - k-ix(2w ~1) + iy(2W ), k - 1(I)m, on F. As basis functions we use the

m m

Chebyshev polynomials of the Ist kind for the interval between the foci

of & and we scale them so that their maximum magnitude on r is 1. This

basis is sufficiently well-conditioned to allow representation of polynomials

of a fairly high degree. Let f(z) = (z - 2x(w))" I  For m - 80, we

compute Ln,m  for n - 30(10)70. The best approximation so obtained is

underlined.

m n IL f -fl
nm u

80 30 0.193 *10 - 3

80 40 0.914 * 10 - 5

80 50 0.437 *10
- 6

80 60 0.250 * 10 - 5

80 70 0.241 10-2

-11-



How overdetermined the linear system should be to yield the smallest

approximation error depends on the location of the singularities of the

function to be approximated. Reflecting the singularity of f in the

imaginary axis, we obtain g(t) - (z - 2x(0)) -.

m n ILng- g u

40 20 0.413 * 10
3

40 30 0.114 * 10 - 4

40 39 0.611 # 10
-6

40 40 0.592 • 10-6

0

Acknowledgement

I wish to thank Germund Dahlquist for making me aware of the paper of

Bjork, which aroused my interest in the approximation questions discussed.

Also, I want to thank Carl de Boor for several valuable discussions during the

preparation of this paper.

-12-

•~~. 
.- ...........................



Appendix

Proof of theorem 2.3.

By potential theoretic methods, we prove (2.21) of theorem 2.3. Let the

interpolation nodes be (wk}k.1, and consider the Lebesgue function

k-1j-

(.)n k-1 i19I k j

j4k

For z + wj, we have

(A.2) in 1, nz-w I lnlz-wv. =rlnz -wl(wl n
j=1 ., n .,i-= r

J+k Jink

and
n

(A.3) 1 in ff w j -W r inwkvWlGw)Idw + o(ln))

j4k

Substituting (A.2), (A.3) into (A.1) yields

A (z) 2 2 exp(n fr nlz-wlo(v)ldwl) * 0(1)

n
Sexp(-n -r nlVk'V)I(w)1dv), z e r

k-1

Hence,

() - 2n 0(1) *n p-n

and finally,

1/n 1/n = 1

n u p0

If the interpolation nodes are uniformly distributed as n * *, then o(w)

is the equilibrium density function for r, and in this case p1  p0 .

Proof of theorem 2.4.

The zeros of the Chebyshev polynomial Tn() - cos(n arc co(x)) are

equidistributed, and therefore uniformly distributed, on 
[-1,1]. Let

-13-
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N T(c,d) denote the number of zeros of Tn(x) in the interval Ec,dJ,
n

-1 4 c 4 d 4 1. Given a set of n uniformly distributed nodes on 1-1,1],

let N,(c,d) be their number in 1c,d), -1 C c 4 d 1C 1. Then

lrn-N (c, d) - liu-IN T(c,d).

We first show that n cannot be equal to cm, for any constant c > 0.

Assume the contrary, i.e. there is a constant c > 0, such that as n +

there is a subset of n - cm uniformly distributed nodes. For any C vith

0<C < 1, we then have

lirn- (M (-1,-1+E) + N (-,)
m n n

and

lim I N (-14e, 1-0) f - dt _ 2 arc sin(1-c
n n w +

Therefore

lim (-!(N (-+,-)+ N (-1,-1+E) + N (1-c,1)) 4 1 + - arc sin(1-E)
n- n n n n a W

It remains to beshown that to each c 0, there isan C,0 < C < 1, such

that -S + 2 arc sin(l-C) < 1. Let h (C) 1,- and h (C):
c II 2

1 - arc sin(1-C). Then h1 (0) - h2()-0 Further h;(C) - -!

h'~~ ~~ >t)-2 0. In a punctured neighborhood of e - 0, ye have
2 - -2

hl(c) > h;(0)- This shows that h2(c) > h (C) in that neighborhood, and we

are ready.

Next we show that a subset of 1-- rm nodes can be distributed uniformly

1 12
with respect to 11(z) - .z e -,] The distance between the last

an

two largest zeros x1 , x2,, Of Tn(2c) is

x, -x2  cos(I-) - cos(2w 2 sin(-I)sin(!) - 2.0(.

n n

With m equidistant nodes, z I + 2k-1 k i (1)m, we have
k~a



22

(A.4) 2 *
-2n

or equivalently n a . Since the zeros of Tn(2c) are most dense at the
r2

ends of the interval, the choice (K-4) of n guarantees that for every a a

subset of n nodes can be selected which is close to the set of zeros of

Tn W, and uniformly distributed with respect to Nas ni*na

-15-
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