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ABSTRACT
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The discrete least squares method is convenient for computing polynomial
approximations to functions. We investigate the possibility of using this
method to obtain polynomial approximants good in the uniform norm, and
describe applications both to the case when the function to be approximated is

known on a discrete point set only and to the case when we can freely choose

N\

the set of least squares nodes. Numerical examples are presented.
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1)

2)

SIGNIFICANCE AND EXPLANATION

The simplicity of computing least squares polynomial approximations to
functions, using function values on a discrete point set only, makes it
attractive to use the least squares method for computing polynomial
approximations, which are good also when the error is measured in the uniform

We deacribe how this can be done, and consider the cases

the function to be approximated is known on a discrete point set
only. For example, we may wish to approximate a function on

(-1,1], but the function is only known on an equidistant point set
on the interval.

We are free to select an arbitrary set of discrete least squares
nodes. For example, we may wish to approximate an analytic function
on a bounded region in the complex plane, and the function is known
on the boundary of the region. We discuss how to allocate least

squares nodes on the boundary without computing conformal mappings.
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ON POLYNOMIAL APPROXIMATION IN THE UNIFCEM NORM
BY THE DISCRETE LEAST SQUARES METHOD

Lothar Reichel
1. Introduction
Polynomial approximations to functions are conveniently computed by the
discrete least squares method. We describe how this method can be used to
compute polynomials, which provide good approximations also when the

approximation error is measured in the uniform norm on the whole domain of the

function. Important is the choice of an appropriate relation between the
number of discrete function values to be used, and the degree of the
polynomial. This choice should depend on the distribution of the least
squares nodes.
Ex. 1.1. Consider the approximation of f£(x) := (1 + 25x2)"1 on [-1,1].
Use function values at m equidistant points xk = =1 + 2 EE%, k
= 1(1)m, to compute a least squares polynomial of degree < n.
a) n =m. The uniform norm approximation error increases with
m, see Runge [5], or Dahlquist-Bjorck (4], section 4.3.4.
b) n= f: Ym. The computed sequence of polynomials for
increising n converges maximally to £(x) in the sense of

walsh (7], {i.e. the exponential rate of convergence is

optimal. Details are given in section 2.

Ex. 1.2. Regard the same approximation task as in the previous example, but

2%k-%
2m

use the Chebyshev nodes X, cos( e X = 1,2,...,m. Already

for m=n we obtain a polynomial sequence which converges

maximally to f£.

Sponsored by the United States Army under Contract No. DAAG29-80-C~0041.




In section 2, we state results on the rate of convergence in the uniform
norm of the polynomial approximant computed by the least squares method. Our
approach is to first give error bounds containing certain interpolation

operator norms, and then bound the interpolation operators. Numerical

examples are presented in section 3.




2. Estimates for the least squares operator

Let T be a Jordan curve or Jordan arc in the complex plane. Denote the

open set bounded by T by Q. 1f I 1is a Jordan arc then Q is void. We
wish to compute polynomials, which provide good approximations to functions

£ on ' in the uniform norm,

(2.1) ltl“ = sup |£(z)] .
zerl
Let {zk m}:-1 be a set of distinct nodes on . Introduce the inner-product
’

and corresponding semi-norm

m
‘ ———
(2.2) (£,9) := - k21 f(zk'm) g(zk’m) '
(2.3) 11 = e,0"2

where the bar denotes complex conjugation. For a given function £ on T,
let Ln,nf denote the best polynomial approximant of degree < n with
respect to the semi-norm (2.3), m > n. Let I,£ be the polynomial of
degree < n interpolating £ at n distinct points {wk}:_1 on T. We

introduce the notation

< { w,_  distinct .

n m
(2.4) I 4L it {w } zk,m}k-1' X

n n,m k'k=1
We also need the definition

(2.5) En(f) 1= gup If - pnl“ '

Py

where the supremum is taken over all polynomials of degree < n.
Theorem 2.1

Define Ln,u and I, on the set of functions continuous on TuQ and
analytic on 1, and let both domain and range of Ln,n anda I, be equipped
with the uniform norm (2.1). (If T 4is an arc, then  1is empty.) Then

(2.6) I 1< I(1+/m) VvI4L ,Vvm>n .
n,m n n n,m

’ ’




The growth rate of the right hand side is the smallest possible.

Proof. Let P f be a polynomial of degree < n such that IPnf - fl“ =
!n(f). Then
(2.7) 1L £f-fl <Ipf-f1 <Ip £~-£f1 =E (£f) .

n,m m n m n u n

Let I.9 Ln,m and let lk(z) denote the Lagrange polynomials associated

with In, i.e.

n
(2.8) (1_£)(z) = kz1 £lw )4 (z) .

Expre3s Ln,m with the same polynomial basis,
n
(2.9) (L, pf)(2) = ) QL (2)
k=1
for some constants . Substituting (2.9) into (2.7) yields
la, - £lw )] < /m E(E) , k=1n .
Substitution into

n n

I(Ln'm £)(2)] < ) lq - £lw, )| |£k(z)| + ) |f(.k)| 14, ()]
k=1 k=1

ylelds

(2.10) i 4= sup ML _£1 <II I+ lInl/; sup E (£) .
e 1EN =1 nem o n e =1

This proves (2.6). We next give an example, where the growth rate of the
bound (2.6) for increasing m, and n held fixed, is obtained.

Let fq(x), x & [-1,1], q > 0, denote the piece-wise linear function

gqx e x| <€ Vq
(2.11) £ (x) :=
1 x/Ixl , 1/q < |x| <1 .

Approximate f_ by a 1st degree polynomial Lz'qu on [-1,1] for m

q
even. The polynomial Lz,qu we define by least squares approximation at

1

the m points Xy = 1:, X, = X, B,,.= X = -xj, = 1(1) %‘

e 'n " Q" Fme1-3
2




Then

1+ 72 ?— - 1)1—
2 - |

(L, £ ){x) = x .
m 1

2,mq m_ puLy
1+ 2(2 1) p 2

Letting q = v % - 1, we obtain

2, 4 )(x) = -(1 + /m=1)x .
m

(L
For m sufficiently large,

(2012) 1L 1> IL £0 >IL £ -£0 - M1 =3(/am1-2) -1 .

n,m n,mqgqu n,mq qu qu 3
Moreover,
X=X, =%, 2 |
(2.13) inf M1 1 = 1] | + ] It < =1n(2) +4 ¥m>»4 . !
I4L 2 x - x1-xm u | '
2 2,m

Combining (2.12) and (2.13), we see there is an I, and a constant 4 > 0,
such that

(2.14) le'nl > uzl/?i Q@ ¥ m sufficiently large .

The least squares nodes of this example are not distinct, but we can find

distinct nodes close to those used in this example and such that

. 1> lIzl/; . a/2.

2,m
O
Generally, we will select n as an increasing function of m.
Additional smoothness of the functions to be approximated will decrease the -7
growth of an n' with m, n = n(m). The next theorem illustrates this.
[
Theorem 2.2
- : \
a) Let I = (-1,1] and let Ln,n have the domain Pd,k 3=
X dkf
(t: £ec[~1,1], l-—;l“ < 4} equipped with norm (2.1). Then, for some
dz
constant D depending on the constant d and integer k,
1/2 =k “
(2.15) .Ln,nl < lInI(1 + Dm n ) ¥ In-\ Ln,m . 9
-5 :
.8 - . D ?};’%W’v——
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b) Let I be a smooth Jordan curve with interior Q. Define Ln,n on

k
Pa,x = (£ : £ analytic in 9, £ecfaurm, 51 <d} equipped witn
az

norm (2.1). Then, there is a constant D such that

(2.16) IL 1 <IT I(t + D/m |L“)|k
n,m n n

) + VI 4L ¢ N > k+2 .

n n,m
Proof. The inequalities (2.15) and (2.16) follow from (2.10). To obtain
(2.15) we use Jackson's theorem, see Cheney [2], p. 147. (2.16) follows from

Smirnov-Lebedev [6], p. 99.

In the following we will assume that there is a distribution function
S(z) on I with a strictly positive derivative for the least squares nodes
and that these nodes are defined by

k-1

s( = k=11)m, m = 1,2,... .

zk,m) =
The sets of interpolation points will be subsets of the least squares node
sets.

The next theorem gives estimates for lInl for various distributions of
interpolation points. We first single out two special point distributions.
The definitions follow Walsh [8), ch. 7.

Definitions

Let G({z) be the Green's function for the region exterior to I’ with a
logarithmic singularity at infinity. Let %; denote the outward normal
derivative. A point set {wk}:_1 on I' is called uniformly distributed if
the 6 defined by‘

k,n w
(2.18) ]w“” -g% (plagl =8, k=1n-1,

for any 0 € ¢ < 4 < 1, satisfy

1lim l’{Number of 6 in (c,d]} = @¢c .
nbe n k,n




Integration in (2.17) is understood to be carried out along I in the

positive sense.

- k=1 -k n
If ek,n = ¥Vk, on ek.n o ¥k, then the point set ﬁ'k}k-1 is

said to be equidistributed on T.

Ex. 2.1. The zeros of the Chebyshev polynomial Tn(x) = cos(n arc cos(x))
are equidistributed on [-1,1]. Equidistant nodes on

I'= {z :]z] = 1} are equidistributed.

Theoxrem 2.3
If the interpolation points are equidistributed, and I is an interval,
or an analytic Jordan curve, then there is a constant B8 such that
(2.19) It < 2 1ntn) + 8, n=0,1,2,0.. .
If the interpolation points are uniformly distributed and T is a Jordan
curve or Jordan arc, then
(2.20) unl’/" +l,use .
If the interpolation points v, - Vi, n’ k = 9(1)n, in the limit n + » are

distributed according to a density function o, then

P
(2.21) VPl nae,
n P
0
where Py i~ exp(sup IP In|z=-gla(z)}ag]), and Py ™

zerl

exp(int [, Inlz-glatz)lazh).
zer

Proof.
Statement (2.19) is well-known for T being an interval. For T being
an analytic Jordan curve, (2.19) follows from Curtis [3], theorem B. (2.20)

is a special case of (2.21). The latter can be shown by potential theoretic

methods. This is carried out in the appendix.




Approximation method

Guided by theorem 2.3, we select n = n(m), so that among the least
squares nodes {zk,m}:-1 there is a subset of n points, which is uniformly
distributed on ' as m + », The assumed existence of a distribution
function $(z), with strictly positive derivative, for the Zy .m guarantees,
that such a function n(m) does exist, and, moreover, we can let n(m) + =

as m + o,

. DO T
>y S e

Maximal convergence, defined in ex. 1.1, is obtained if an ml1/n + 1
’
a8 n, m » o, From (2.6), we see that a sufficient condition for maximal
convergence is that the function n(m) is such that n(m) > n® for some
constant a > 0. The next theorem provides an example.
O
Theorem 2.4
2,(-1 w —-—
Let I' = [«1,1], and let =z = «) + ——, k= 1(1)me Then n = — vVm
k,m m /2_
satisfies the proposition. Conversely, there is no subset of n = cm
uniformly distributed nodes as m + =, for any constant c¢ > 0.
Proof. See appendix.
o
Remark
An approximation problem related to that treated in Theorem 2.4 has been
discussed by Bjork [1], who measured the approximation error Ln,mf - £ with
a semi-norm "ll' with £>> m. The computation of the Euclidean norm of
matrices defining the change between different orthonormal polynomial bases
on [-1,1], 1led Bjork to the suggestion that n should be selected < 2v/m.
This choice of n 1is close to ours, since LI 2,22,
2
]
r
- <]
- ¢ :'%U‘f., N - S ) . A. AR : ‘. .




3. Numerical examples

When applying the approximation method, we discern the following
different cases.
a) the function £ is known on all of T.
b) the function £ is known only on a finite point set on T.
¢) the normal derivative of the exterior Green's function for T |is
explicitly known
d) the normal derivative of the exterior Green's function for T is not

simply available.

Only if a) and c) are true, or, if we have the situation described in theorem

2.4, then we know how to select n = n(m). In general we compute Ln,mf for

several n < m. This is illustrated in example 3.3. If then a) holds true,

we can compute 1L f - £l and select the best of the computed L_ _f's.
n,m u n,m

If instead b) is true, the selection of an appropriate Ln'mf must be based

on a numerical perturbation analysis.

Our first example is a continuation of examples 1.1 and 1.2. All
computations were carried out on a AX/780 in double precision, i.e. with 15
significant digits.

Ex. 3.1, Let T = [=1,1], £(z) = (1 + 2522)"), ana z, _ = -1 + 221
’ m
Li T
k + 1(1)m:s Let n be the largest integer <« 3 /m. Inf below
denotes the interpolation polynom Inf determined by
interpolating f at the zeros of Tn(x) = cos(n arc cos (x)).
I:f is known to converge maximally to £. 1In all examples on

approximation on {-1,1], we have used the polynomials Tk(x) as

basis functions.

09-




1/n

wof-
m n 'L t - f' el e ——,
" v n’e - a0'/®
n u

10 vi 0.688 1.15
40 14 0.173 1.02
160 28 0.161 + 107! 1.03
640 56 0.904 - 10°% 1.02
2560 112 0.192 « 1078 1.01

The entries of the last column are close to 1 and decrease as n, m

increagse. This indicates the maximal convergence of Ln,mf to f.

Ex. 3.2. We continue the previous example. Increase the value of n to

n = 0.5m, everything else kept as in ex. 3.1.

m n iL f - £l
n,m u

10 S 0.319

40 20 0.523

160 80 12.221

The error increases exponentially.

Ex. 3.3. Let § be the interior of the curve T := {xtiy, x(t) :=

4 cos(t) + 2 cos(2t) - 3, y(t) := sin(t) + 2 sin(2t) -
7 7 7 S

2
35 sin(4t), 0 < t < 2w},

-10=-




T, .. 7
x(50+1y(5%/// I We wish to approximate functions
/ 2 \\ analytic on 2 and continuous on
2 Ul by polynomials. I is some-

\
\
x(m)+iy () s +0 'TX(O)+iY(O) what similar to the ellipse & :=

(

B
)

\ 0 <t < 27},

{z, z(t) = x(0)cos(t) + iy(F)sin (t),

m
The point set {Z(tk,m)}k-1
k-1

2w-1;—, k = 1(1)m. This leads us to select the least squares nodes 1z, . =
1

is equidistributed on & if tem™
[4

x(2x% Eil) + iy(2w Eil), k= 1(1)m, on T. As basis functions we use the

Chebyshev polynomials of the 1lst kind for the interval between the foci

of § and we scale them s0 that their maximum magnitude on I {s 1. This
basis is sufficiently well-conditioned to allow representation of polynomials
of a fairly high degree. Let f(z) = (z - 2x(!))-1. For m = 80, we

compute Ln,m for n = 30(10)70. The best approximation so obtained is

underlined.

m n IL f - £1
n,m u
-3

80 30 0.193 + 10
80 40 0.914 » 10>
80 50  0.437 + 10°°
80 60 0.250 « 107>
-2

80 70 0.241 « 10 .

. G s TeE Tgrar
R o T,




rﬂ!ﬂ Chaaait ) —

How overdetermined the linear system should be to yield the smallest
approximation error depends on the location of the singularities of the
function to be approximated. Reflecting the singularity of f in the

imaginary axis, we obtain g(z) = (z - 2x(0))-1.

m n 'Ln,mq - qlu
' -3
40 20  0.413 < 10
4 30 0.114 » 109
-
40 39  0.611 « 10
40 40 0.592 + 10°°
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Appendix

Proof of theorem 2.3.

Proof of theore <.
By potential theoretic methods, we prove (2.21) of theorem 2.3. Let the
interpolation nodes be {w }k-1' and consider the Lebesgue function
(a.1) A_(2) 1= 1 | .
k-1 3=1
itk

For z % Wy, we have

(A.2) —1n T jzow,) =+ 2 Infzw;| = [pnlz = wlotw)|avl + odninly
=1 ) " g=1
¥k Ik
and
hl - i1n(n)
(a.3) = 1n 351 Iwk—wjl fr lnjw ~wlotw)law] + 0(=] )
itk

Substituting (A.2), (A.3) into (A.1) yielas

A_(2) = o2 exp(n [; lnlz-wlow)lawl) +0(1)

. Z exp(-n IP 1n|v -wjo(w)|aw|), z €T .
k=1

Hence,
2n -n
An(z) =n'p, ° 0(1) *n Po '
and finally,
Py

AP el nse
n u po

If the interpolation nodes are uniformly distributed as n + », then 0o(w)

is the equilibrium density function for T, and in this case p, = Py

Proof of theorem 2.4.
The zeros of the Chebyshev polynomial Tn(x) = cos(n arc cos(x)) are

equidistributed, and therefore uniformly distributed, on [~1,1]. Let

-13-
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N:(c,d) denote the number of zeros of T (x) in the interval {c,q],
“1<¢c<ac< 1. Given a set of n uniformly distributed nodes on [-1,1],
let Nn(c,d) be their number in [c,d), -1 € ¢ € 4 < 1. Then
1m 1N (c,d) = lim 2 8 (c, ).
n“n n n“n n

We first show that n cannot be equal to om, for any constant c¢ > 0.
Assume the contrary, i.e. there is a constant ¢ > 0, such that as n + o,
there is a subset of n = cm uniformly distributed nodes. For any € with

0 <€ <1, we then have

1
1lim oy (Nn(-l,-1+e) + Nn(1-e,1)) <€ ,

nee
and
1 1 (1-¢ 1 2
lim n Nn(-1+e,1 €) p I-1+e at = 7 arc sin(1-¢) .
n+o 2
1-t
Therefore

lim (LN (=1+€,1-€) + N_(=1,-1+€) + N _(1-6,1)) < < + 2 arc sin(1-¢) .
nbe n n n n Q : 4

It remains to be shown that to each ¢ > 0, there is an € 0 < € < 1, such

€ 2 €
that p + 3 Arc sin(1~-€) < 1. Let h1(e) =g and hz(e) :

1 - % arc sin(1-€). Then h,(O) = h2(0) = 0, Further h;(e) - %,

hi(e) -2 ——l—-—, € > 0. In a punctured neighborhood of € = 0, we have

' 428"82

hi(e) > h;(e). This shows that hz(e) > h1(e) in that neighborhood, and we
are ready.

Next we show that a subset of L /m nodes can be distributed uniformly
2

L , 2z @ [=1,1]. The distance between the last

3 1
with respect to an (z) p

1-:2
two largest zeros Xy,n¢ %2,n of Tn(x) is
n 3x ® ¥ x> 1
x1’n “ %n = con(;;) - con(;;) =2 sin(;)lin(s;) -t 0(;3) .
With m equidistant nodes, z, _ = =1+ 2—:21, k = 1(1)m, we have
,

-14-




2

‘k+1,n - Zx,m - We require

2
w

—2' ’
n

B

(A.4)

or equivalently =n =X u . Since the zeros of Tn(x) are most dense at the
2

ends of the interval, the choice (A.4) of n guarantees that for every mn a

subset of n nodes can be selected which is close to the set of zeros of

T,(x), and uniformly distributed with respect to %s' as n + =,
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