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ABSTRACT

Equations of Hamilton-Jacobi type arise in many areas of application,

including the calculus of variations, control theory and differential games.
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““Recently M. G. Crandall and P. L. Lions introduced the class of Pvigcosity™

solutions of these equations and proved uniqueness within this class. This
paper discusses the existence of these solutions under assumptions closely

related to the ones which guarantee the uniqueness. T
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SIGNIFICANCE AND EXPLANATION

~ Equations of Hamilton~Jacobi type arise in many areas of application,
including the calculus of variations, control theory and differential games.
However, nonlinear first order partial differential equations almost never
have global classical solutions, and one must deal with generalized
solutions.’/;;e cérrect class of generalized solutions for equations of
Hamilton-Jacobi type has recently been established by M. G. Crandall, L. C.
Evans and P. L. Lions. Here we give some existence results concerning this

solution, under assumptions similar to the ones guaranteeing its uniqueness.
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EXISTENCE OF VISCOSITY SOLUTIONS OF HAMILTON~JACOBI EQUATIONS

Panangintis E. Sounganidis

INTRODUCTION

Recently M. G. Crandall and P. L. Lions ([2]) introduced the notion of

viscosity solution for nonlinear scalar partial differential equations of the

form

(0.1) Fly,uly),Duly)) =0 for y e 0

s . n m . .
where () 1is an open set in RP, F: OxRXR + K is continuous and

Du = (8u/3y1,...,8u/3ym) denotes the gradient of u (also see M. G,

Crandall, P. L. Lions and L. C. Evans [1)) . They used this notion to prove
uniqueness and stability for a wide class of equations of the form (0.1), in

particular for the initial value problem

%E + H{(t,x,u,Du) = 0 in RN x (0,T]

(0.2)

u(x,0) = u (x) in ]y

and the stationary problem

N

(0.3) u + Ad(x,u,Du) = n(x) in R .

Moreover they proved existence of the viscosity solution of the model problems

%‘t-‘ + H(Du) = 0 in R x (9,T]
(0.4)

u(x,0) = 4 (x) in R
and
(0.5) u + H(bu) = nlx) in RN .

This paper discusses the existence of the viscosity solution of the more
general problems (0.2) and (0.3). The assumptions made here are closely
related to the ones for which M. G. Crandall and P. L. Lions proved the

uniqueness of this solution.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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We now formulate typical hypotheses and describe the results. As far

as

H: [0,T]) x RF x R X RN + R is concerned throughout this discussion we will

assume

7
Hec(lo,T)] x ﬁq x R x RN) is uniformly continuous in
(H1)

N
(o,T] x R" x [-R,R] X R (0,R) for each R >0
i
and
There is a constant C > 0 so that

2
(H2) C = sup |H(t,x,0,0)] < = .

O

Moreover we require some monotonicity of H with respect to u. More

precisely we assume

For R > 0 there is a YR € R such that

3]
(H3) H{t,x,r,p) - H(t,x,s,p) 3 YR(r-s) for x € R, -R < s <r <R

0<t<T and p € Ry .

Finally we will have to restrict the nature of the joint continuity of H.

The following two assumptions will be used:

(*)
Ck(O) is the space of k times continuously differentiable functions
defined on (.
K(0) consists of functions in CX(0) which together with their
derivatives are bounded
(0) consists of Functions in €X(0) which togeher with their
derivatives have compact support
By(xy,R) = (x e i Ix~xq! < R}.
(**)
up = B x (0,71, B
Q. x (0,®), O

R x [0,T] where T & (0,)
x (0,»)

(*)

(*+%)
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If Agla) = sup{i(t,x,r,p) - Hit,y,r,p)} : | x-v| < o, lx~yllpl < R,

(ua) [r] <R, £t e (0,T]}

then 1lim A_(a) = 0 for any R > O
R
a0

For R > 0 there is a constant CR > 0 such that

(H5) |H(t,x,r,p) = H(t,y,r,p)| < CR(1+|p|)|x-y| for t e {0,T], {r] <R

and x,y,p € RF .

The theorems are:
Theorem 1. Let H : [0,T] x RN X R x RN + R satisfy (H1), (H2), (H3) and
either (H4) or (HS5). For any u, € BUC(RY) there isa T = T(Iuoﬂ) > 0 and
ue BUC(&&) such that u is the unique viscosity solution of (0.2) in
5&.(’) If moreover YR in (H2) is independent of R, then (0.2) has a
unique viscosity solution in 5& for every T > 0.
Theorem 2. Let H : R® X R x R\ » R satisfy (H1), (H2), (#3) and either (H4)
or (H5). For any n @ BUC(!F), there is a AO = A(InI,YR) such that for
every A, 0 € A < XO' (0.3) has a unique viscosity solution u e Auc(RY)
Several existence results for the problems (0.2) and (0.3) (including
versions with boundary conditions) can be found in P. L. Lions {7,8]. His
assumptions generalize (H5) but not (H4). However, for (0.2) he requires a

Lipschitz condition in t. Moreover, W. H. Fleming ([4]) and A. Friedman ([6})

established earlier sowe existence results concerning (0.2) in the almost

(*)
BUC(0) is the space of hounded uniformly continucus functions A~fined on 0,
If u : 0 + R then "u||= sus jutx)|

xe

-3-
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everywhere sense, under Lipschitz type assumptions for all the arguments of
H and u, € cﬁ"(np). ) Finally, the scope of the existence results has
been recently extended by G. Barles ({0)).

The paper is organized as follows. Section 1 recalls the definition and
some basic properties of the viscosity solution of (0.2). It also contains
some new results about this solution. Section 2 is devoted to the proof of
theorem 1. Moreover, as an intermediate step towards the proof of this
theorem, we give a result about the convergence of the viscosity
approximations with certain explicit estimates. Sections 3 and 4 are devoted
to the stationary problem and have the same structure as sections 1 and 2.

Pinally, we would like to thank Professor M. G. Crandall for helpful

discussions and good advice.

(*)
ng;(O) is the set of (bounded) Lipschitz continuous functions defined
on (.
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Section 1

We hegin this section with the definition of the viscosity solution of

(0.2). We have

N N .
Definition 1.1 (5.1 [2]). Let H e c({0,T] xR xR xR ). A function

u e C(QT) is a viscosity solution of

%% + H(t,x,u,Du) =0

if for every ¢ @ CQ(QT)
(1.1) if u - ¢ attains a local maximum at (xo,to) e QT’ then

%% (xo,to) + H(to,xo,u(xo,to), D¢(x0,t0)) £C
and
(1.2) if u - ¢ attains a local minimum at (xo,to) e QT’ then

%f (xo,to) + H(to,xo,u(xo,to), D¢(xo,t0)) >0 .
If moreover u € C(é&) and u(x,0) = uo(x) in RN, we say that u is a
viscosity solution of (0.2).
Renark 1.1. In a similar way u e C(aé) is said to be a viscosity sub-
solution (respectively supersolution) of (0.3) if (1.1) (respectively (1.2))
holds and u(x,0) € uy(x) (respectively u(x,0) > u (x)) in ®.
Remark 1.2. Definition 1.1 and Remark 1.1 are a combination of Definition 2
and Lemma 4.1 of [1].

Next we state the theorem about the uniqueness of the viscosity solution

of (0.2) as well as some other important results of [2] concerning this

solution.

Theorem 1.1 (V,2[2})., Let u,v € PUC(RN) be viscosity solutions of the

problens
Ju . v .
f’sz + H(t,x,u,Du) = 0 in QT 5; + H(t,x,v,Dv) = 0 in QT
‘l and
\ Ay
u(x,n) = uo(x) in R vix,0) = vo(x) in R'1
~5-




respectively where H : [0,T] x !P X R X RF + R satisfies (H1), (H3) and

either (H4) or (H5). Let Ry = max(ful,ivl) and Yy = YR . Then for
0

t e [0,T]
(1.3) Fule,t) = v(o,e)f € e hu v 1 .
In particular (0.2) has at most one viscosity solution.

Proposition 1.1 (I.11 [2]). Xet T > 0, Y@ R and g,h e Cc((0,T}]). Suppose

that for every n € C”((O,T)), if g-n attains a strict local maximum at
tg € (0,T), we have

n'(to) + Yg(to) < h(to) .
Then for 0 < s € t < T
(1.4) e"gte) < e¥g(e) + [ eTh(maT .
Remark 1.3. The agsumptions on g in the above proposition are equivalent to
saying that g is a viscosity solution of

g'+ yYg<h

as it is explained in [2].

Proposition 1.2 (VI.1[2]). For € > 0 let u, e Cb(ai) be a solution of

du

€
% eAue + He(t,x,ue,Due) =0 in QT
(x,0) =u__(x) in R
\le . uoe in
aue aue N
with Yt 3;;5;; e C(QT). Assume He + H uniformly on ([0,T] xR X

[-R,R] x BN(O,R) for each R > 0. If en + 0 and u, *u locally
n

uniformly in Qp, then u € C(Qm) is a viscosity solution of

)
a—: + H(t,x,u,Du) = 0 in Q. .

If moreover u +u

N -—
oe uniformly in R and u. *u uniformly in QT'

n

0
then u 1is a viscosity solution of (0.2),

——— — - o




Proposition 1.3 (I.2[2]). Let u e C(é&) be a viscosity solution of

e W - . .

du

n
~— + H x Du =0 in 9
n(t: :Unc n) 1 %)

at T

. )
un(x.O) = uOn(x) in R .

N
Assume Hn + H uniformly on [0,T] xR x [~R,R] x BN(O,R) for each R > 0,

1f un + u locally uniformly in QT , then u is a viscosity solution of

Ju
"t + H(t,x,u,Du) = 0

M : =
uniformly on R and u, + u uniformly on QT'

in QT .

If moreover u +u

On [4]

then u is a viscosity solution of (0.2).

Now we give a result which descrihes the evolution in time of the "off
the diagonal" difference of the viscosity solutions of two problems of the

form (0.2). To this end choose B e C;(RN) and Yy € C:(R) so that

0<B<1, B(O) =1, |IDB] €2 and
{1.5)
B(x) =0 if |x| > 1

and

0<y<1, y(0) =1 and
(1.6)
yit) =0 if jey > v .

(X = &
For € > 0 set Be(x) B(e) and Ye(t) Y(e)' We have

Proposition 1.4. Let u,; e BUC(é&) be viscosity solutions of the prohlems

du n

7t + H(t,x,u,Du) = 0 in QT Y + E(t,x,u,Du) =0 in QT
N and _ - N
u(x,0) = uo(x) in R u({x,0) = uo(x) in R

respectively, where Uy GO e BUC(R?) and H,ﬁ : [0,T) x RN X R X RN + R

satisfy (H1) and (H3) with the same constant YR <0 for each R > 0. ULet

Ry = max(lul,lcl) and Y = YR . 1f for R > R0 and ¢ > 0, De' AE are such
0

that

-7-
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h

h N
D= {(x,y) e R" xR : |x-y| < ¢}

€
and
N N N
A= {tt,x,y,x,p) € [0,7] xR xR xR xR : (x,y) €D
IviT
x|l € minClall,tvd), |pl <min(933€——+ 1, L)}
where
(*)

L = min( sup iDu(e+,T)l, sup fDu(e,T)l)
{o,T) [0,T]

‘ then for every 1t € [0,T]

Remark 1.4. The assumption that H, ﬁ satisfy (H3) with the same constant
not important. It is made only for simplicity. Moreover one can always
reduce to the case YR < 0 for every R > 0.

Proof of proposition 1.4. For 1€ [0,T] let mt(r) be defined by

- + - (x

(1.8) (1) = sup  {fulx, ) - aly, ™ + 3re Tie (x=y)} L
(x,y)eDE

Then obviously (1.7) follows from

(1.9) mi(T) <e ! mt(O) +e 1T sup IH(t,x,r,p) - H({t,y,r,p)] fJeY

(t,x,y,r,p)eAe

— -

(*)
ror u: 0 + R, ”Du|| denotes its Lipschitz constant. If u 1is not
Lipschitz continuous, then ”Du||= o,
(**)
4+, =
r {(r ) denotes the maximuw of ¢ (respectively =-r) and 0.

)

sup {lulx,T)=uly,0)| + 3Re-YTBE(x-y)} <e IT sup {|u0(x)-;0(y)l +
(x,y)eDe (x,y)EDe
(1.7)
+ 3RB€(x—y)} + e-YTT sup |H(t,x,r,p) - E(t,y,r,p
(tr*:Y:r:P)eAe

is

qio




Moreover, since m:t e c((o,T)) (u,v e RUC(ET)), in view of Proposition 1.1
+
and Remark 1.3, it suffices to show that mwm (1) is a viscosity solution in
(0,T) of
t., b4 =
(1.10) (m™)* + ym~ < sup [H(t,x,r,p) - H(t,y,r,p)l .
(t,x,y,r,p)éhe

. . + . -
Finally here we work only with m , since for the proof cof the mn case, one
uses exactly the same arguments.

. e - +
To this end, for n € C ((0,T)) let 1€ (0,7) be such that m =-n

attains a strict maximum on I = [1T-a,T+a) < (0,T) for some o > 0. We want
to show that

- . - _
(1.11) n'(1) + ym (1) < sup |H(t,x,x,p) - H(t,y,r,p)| .
(t,x,y,r,p)eAE

~

. " _ " _
If m (1) = 3Re T then 7t is a local maxirum of 3Re LA n{(t) in (0,T),

since for every T € [0,T] it is

+ -
m (T) » 3Re 1T .

Thus

-~

. _ Y -
n'(1) = =Y3Re Y% = —ym (1)

and (1.11) is obviously satisfied. So without any loss of generality we may

assume that

~

+ ° -
(1.12) m (1) > 3Re '' .
In this case and for § > 0, let ¢ : RN x R‘\I x I xI » R be defined by
_Jlus)
Yx,y,T,8) = (u(x,1) - uly,s)) + 3Re Be(x-y) +

(1.13)

+ (3?+2HnH)Y5(r-s)—n(l§§)

where Yé(t) = y(t/8) 1is defined by (1.6). Since & is bounded on

1] |
R' x R' x I x I, for every § > 0 there is a point

M 2l
(xl’y1'r1's1) e R xR xI x1I such that




e

—

®(x, ,y,.,7,,8,) > syp ¢ - & .
17¥17 %175, n“xngxxxx

Next select [ € C:(ly x RN) satisfying 0 < g < 1, ;(x1,y1) =1, |pgl <1
and define Y : np x HF xI xI +R by

(1.14) ¥(x,y,T,8) = &(x,y,T,8) + 28¢(x,y) .

Since ¥ = ¢ off the support of { and

W(x1,y1,r1,s1) = 0(x1,y1,1 ,s1) + 26 > N S§P d+ 48

R xR XIXxI

1

there exists a (xo,yo,ro,so) e RF x RN x I x I such that

(1.15) Y(xo,yo,ro,so) > ¥(x,y,Tt,8) for every (x,y,T,s) € RN x RN xI xI .

Moreover for & < R/2

(1.16) It ~so| <s .

0
Indeed suppose not. Then (1.15) and (1.6) imply

-y(t+a) _ To*%0 A -
2R + 3Re ¥ () + 26 > VX ,y.sT..5.) > ¥x,x, T+a, T+a)
2 0'¥o’ %S¢
> 3re Y™ 4 32 & 2001 - n(t+a)
- TS
i.e. 26 > R + 2Ink = n(1+a) + n( > )
i.e. § > rR/2 .

Now we assert the following about (xo,yo,ro,so).

a

+8, + T and

As 8§ + 0 Ixo-yol <€, T 0

0

To+so
< - + =)
(1.17) (u(xolfo) - u(yo.so)) + 3Re 8€(x0-y0) = (u(xo.To) -

+,
T0*%p

2

)

=-v( R
Be(xo—yo) +m (1) .

\ - u(yo,so)) + 3Re

Indeed let § be so small that
26 + In(8) - n{t)] <R

for |s-t] < &§/2. If Ixo-yol > €, then (1.5), (1.15) and (1.16) imply

-10~
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0 0 o .
2R + 3R + 2inil + 28 - n{ > ) » W(xo,yo,To,so) » #(x,x,to,to) M
-Y1
? 3Re + 3R + 2linl - n(ro)
T +8
. 070
i.e. 26 + n(TO) n( > ) » R

which is a contradiction. Note that here is where we really used the
assumption Yy < 0. Moreover, suppose that as ¢ » 0 [0'50 +Te1 along a
subsequence (which for simplicity is denoted in the same way as the

sequence). Again (1.15), together with the facts that u,; e BUC(aT) and

N N
Ixo-yol < €, implies that, for every (x,y) € R xR and 1 €I, it is

-1 (1 +s) Tyts
2 0 "0 — - + 00
e IU(yo.To) - u{yo,so)l +m(1) = al—5—) ¢ 28 +

+ 3R + 2inl > Y¥Y(x T ,so) > ¥(x,y,T,T) > 3R + 2inl +

0'Yo' %o
+ (ulx, 1) = aty, o+ 3Re-YT;3€(x-y) - n(1)

-1 (t +s ) Tts
2 0 "0 — - + 00 .
i.e. e Iu(yo,ro) - u(yo,so)l +m (TO) - n( 3 ) + 28 >

+
>m (1) - n(1) .
Letting § + 0 we get

m+(?) - n(1) > m+(T) - n{t) for every 1 €1 .

~ ~

But then T = 1, since T is a strict maximum of mt - n on I. Next

-~

observe that (1.15) and the fact that TgrSg > T as § » 0 imply that

A

m (1) - n(1) > Tim {(u(x

- + ) -~
i ,to) - u(yo,so)) + 3Re 3 (x yo)} n(t) »

0 €0

-y .
- + 2
> lim ((u(xo,to) - u(yo,so)) + 3Re BE(xo-yo)} - a(t) »

40

> m+(T) - n(;)
-11=-

e~ — e




- N
B (x =y ) »m (1) .
€ 0 “0

i = +
i.e. (u(xo,ro) u(yo,so)) + 3Re
Finally, if along some subsequence & + 0, it is
(ul ) - al nt=o
u xO'TO u Yolso =
then
m(1) < 3Re Y'
which contradicts (1.12).

Next observe that (xo,ro) e QT is a local maximum of (x,T) + u(x, 1) +

T+s

Y2 . ™S
3Re 3€(x-y0) + (3R+2HnI)Y6(r-so) + 20;(x,y0) - n{ 3 ) and
Tots
- A
(yo,so) e Qp is a local minimum of (y,s) + u(y,s) - 3Re Be(xo-y) -

T.+s
(3R+2lnﬂ)y6(ro—s) - 26c(x0,y) + n( g ). In view of (1.1) and (1.2) we have

R Rl TR 02 >
' - 4+ = nt - +
(3R+2unu)ya(ro so) 2 ( 2 ) + 2 3Re Be(x0 yo)
To*sy
-YT
+ H(To,xo,u(xo,ro), - 3Re DBE(xO-yO) - 26Dxc(x0,y0)) <0
and
. ) Totsy
0 < =(3R¥20nIYI(T =5 ) - & a0 _ X g 2, -y.) +
50 70 2 2 2 € 0 70
— TO+SO
- - 2 .
+ H(so,yo,u(yo,so), - 3Re Dﬂe(xo-yo) + ZQDyc(xo,yo)) .
Combining these two inequalities we obtain:
r +so - 1(t0+so) _ _ - l(r0+s )
1] i - - -
n'( 3 ) + Y3Re Jg(xn YO) < H(x“,yo,u(yo,so), 3Re D&s(xo yo) +

-12-
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- g(r +so)
ZGqu(xo,yo)) - H(To,xo,u(xo,ro), - 3Re DBe(xo-yO) - 26Dx;(xo,y0)).

To continue we assume that lul = min(dul, ful). (If not then one has to

modify the rest of the proof in an obvious way.) Then in view of (1.17) and

(H3) and for & small, we have

)

T +s0 - 1(ro+s°
Be(xo-yo)} <

)+ yltulxy, 1) - By, isy)) " + IRe

n'( 3

-~ - - 31Tg%sg)
< H(so,yo,u(yo,so), -3Re Dss(xo-yo) + 26Dyc(x0,yo)) -
- X
2(ro+s0)

- H(to,xo,u(yb,so), -3Re DBE(xo-yO) - 26Dxc(xo,yo))

Next observe that for §& < 1/2

- 1(1'0+so)
- - +
}-3Re DB (x)"y,) 260y;(x0,y0)|,
- Lerg+sy) ore! V17
| =3Re DBe(xo-yo) - ZGDXC(xo,yo)I < +1 .
Moreover if L < » and (without any loss of generality) L = sup bu( e, )10,
0<e<T

then, since x5 is a maximum point of the mapping x =+ u(x,ro) +

- Lergrsy)
+ 3Re Be(x-yo) + 26c(x,yo), for x e R' we have
- Lizges) - Jirg*sy)
3Re Be(x-yo) + 26c(x,y0) - 3Re Be(xo-yo) - Zéc(xo,yo) <

< le-xol .

-13-
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But this implies that

- l(T ts )
| 3Re DBE(XO-YO) + 26Dxc(x0,yo)l <L .
Combining all the above we obtain
Ty*sg _ + - 1(10+so)
1] - -
n'( 2 ) + Y{(u(xo,To) u(yo,so)) + 3Re Be(x0 yo)} <
_ - - %(To+so}
< H(To,yo,u(yo,su), -3Re Dﬂe(xo—yo) - 26Dxc(x0,y0))
- - 3(%*s,)
- H(To.xo,u(yo,so), -3Re DBE(XO-YO) - ZGDxc(xo,yo))
+w (46)
- 6Re|YIT
H, max(———z——— + 1,R)
< sup |H(t ,x,x,p) - i(t,y,r,p)l + w lylT (46)
(t,x,Y,r,p)eAe E' max(ézsz___ + 1,R) .

where for R > 0, w_ _(a) denotes the modulus of continuity of H on
H,R
(0,T] x R® x (-R,R] x BN(O,E). Letting & + 0 in the last inequality we get

(1.11).

Next we use Proposition 1.4 to establish several properties of the
viscosity solution u € BUC(ET) of (0.2). 1In particular, we describe the

evolution in time of the norm, the modulus of continuity (in the x variable)

0,1 N,

b for

and the Lipschitz constant (in the x variable) if u(e,T) € C

T e [0,T)]. Moreover we give an estimate for fu(e,t1) - uol in the case that

0,1
u € Cb' (R"). Before we state the results we introduce a notation for the

0
modulus of continuity of a function f : 0 » R. It is

(1.18) wf(r) = sup |€(x) - f{y)| .
Ix=-y|<r

=14~
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Proposition 1.5: Llet H: (0,7) xR xR XR =+ R satisfy (d1) and (H3) with

§ e e e Ao

YR < 0 for every R? 0. 1If for un € BUC(!F), ue BUC(&&) is a viscosity
solution of {0.2), let R > flul and Y & YR. The following are true

ta) If H satisfies {H2), then

(1.19) tuf=,1)¥ < e-YT(TC + luol) for every Tt & [0,T]

where C is given by (H2).

(b) If H satisfies (H4), then for 1 > 1 2 0

(1.20) NEIR e—YT(Zw“ (2r)) for every T € [0,T)

“ale,t (x} + TA1 {yiT

0 2Re +2

(c) If H satisties (HS) and for every T€ {0, T}, ute, 1) € Cﬁ"(lﬁ) with

L = sup fDul+, UL, then for every 1€ {o,T)
0<TLT

(1.21) 1ou(e, TN < e YLy + TIC UI+LI))
where Ly = lDuol and Cp, 1is given Dby (15). Moreover

T(che'*T- "
(1.22) L<e (L, + )

0,1, N
(@) If u, € cb’ (R ), then

1T sup _ {#(t,x,r,p}l for every te [0,T)
(x,t)eQT

<
lel luol

lpl(lDuol

(1.23) tu(e,7) = uyt < te

1
(e) 1If for every T € (0,T), ule, 1)@ c:’ (®) and sup WDule, DI <L,
Q< 1<T

1_-
then u € cg’ (QT) and for t,s € {o, T}

-15-

e e i e




(1.24) fufe, 1) = ule=,s) < IT-sIe-YT sup _ |H(t,x,r,p)| .
(x,t)EQT

|| <t
fpl <

Proof. (a) We apply Proposition 1.4 to u and W = 0 which is an obvious

viscosity solution of the problem

du ~ .
™ + 0=0 1in QT
u(x,0) =0 in R .

Then, for T € [0,T] and € > 0, (1.7) implies

- -yt
Ju(e,T)l + 3Re LA sup {lu(x, 1)1 + 3Re \ Be(x-y)} <
(x,y)eDe
- T - -
<e Y sup {Iuo(x)l + 3Re YT} +e e sup lH(t,x,r,p)| .
(x,y)eDe (t,x,y,r,p)EAs
But in this case
AE = {(t,x,y,r,p) : t € [0,T],]x~y! < ¢, || € min{0ul,0),
6re! YIT
|Pl < min(——e—_ + 110)} = {(tllelolo) : t e [o,T], |X‘Y| < E}
So
sup fn(t,x,r,p}l = sup _ |H{t,x,0,0)] =cC .
(t,x,y,r,p)&l\e (t,x)EQT

This implies (1.19),

(b) For 1 >r >0 fixed, let £ e R\l be such that

1F u: 0, * R is defined by

ulx, T) = ulx+&, 1)

-16-
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then obviously ue BUC(ET). Moreover u is a vigcosity solution cf

u - -
3t + H(t,x+E,u,Du) 0 in QT

CW(x,0) = ug (x+E€) in R,

To see this, we have to check (1.1) and (1.2). Here we only prove (1.1),
since the proof of (1.2) is identical. To this end, observe that, if for

o0 -—
¢ec (QT), (xo,To) e QT is a local maximum of u - ¢, then (x°+E,T°) is a
local maximum of u - ¥, where VY(y,T) = ¢(y~£,7). By (1.1) we have

)
5% (xo+€,ro) + H(to,xo+£,u(xo+£,to),Dv(xo+€,ro)) <0

a -—
5% (xo,To) + H(To,x°+5,u(xo,to),D¢(xo,to)) <0 .

Now applying Proposition 1.4 to u, u for t€ [0,7] and € =r we have

sup*u(x,t)-u(x+5,t)| +3re YT < sup {lu(x, T)=u(y+E, )] + 3Re-Yt8r(x-y)} <
XEeR (x,y)eDr

<e 't sup luotx)-uo(y+5)l +3Re YT+ e e sup |H(t,x,s,p) -

(x,y)eDr (t,x,y,s,p)él\r

- H(t,y+§,8,p)| .

But in view of (1.18) and (H4)

sup Iuo(x) - uo(y+E)| < w (xr+] E]) <€ 2“h (r)

(x,y)ed 0 0
r
and
sup {u{t,x,s,p) - H(t,y+&,s,p)| € sup {|u(t,x,s,p) -
(t,x,y,8,p)eA te(0,T]
r
| x-y| <r
|s| <R
Iyl
Ipl<2Re— 1

- H(t,y+E,8,p)|P< A (2r)

12RelY|T+1
thus the result.

-17~
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(c) For § e RP define u : ET + R by

ulx, ) = u(x+£, 1) .

Then u € BUC(E&), ;(-,r) e Cﬂ"(lﬂ) for every Tt € BUC(IF) and as shown in

(b), u is a viscosity solution of

2 | w(e,x+E,,00) = 0 in 0

it T

G(x,O) = uo(x) in BF .

Applying Proposition 1.4 to u, u for te (0,T] and € > 0 we have

suplul(x, T)~u(x+E, 1)) + 3Re '¥ < sup {1u(x, O)=uly+E, )| + 3Re-718€(x-y)} <

x (x,y)eDe
< e-YT( sup Iuo(x) - uo(y+£)|) +3Re T' 4
(x,y)eD
€
+e ' 1 sup |H(t,x,r,p) - H(t,y+E,x,p)l
(t,x,y,8,p)€A

and therefore

suplu(x, t)-u(x+§,1)] < e-YTLo(£+|E|) +
x

+e Tt sup lH(t,x,s,p) - H(t,y+E,8,p)| .

(t.x.y.S.p)eAe

But in view of the definition of Ae and (HS5) we have
sup {H(t,x,8s,p) - H(t,y+E,8,p)| < cR(1+L)(€+|E|) .
(t,x,y,s,p)ehe
Combining the above and letting € + 0 we get

suplul(x,T) = ulx+E, )| < e VILy + T (1+L)]11El
X
and thus (1.21).

-18-~
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To prove the second part of the claim, we choose a positive integer m

8o that

For i = 1,...,m let Q, 61, u; and L, be defined by

Q -n"x(-i-:—'-'r. -1-!-‘1

i n n
- i-1 iT
g, =® « e, i
u =u
i -
8,
and
L1 = sup tbu(+, 1)}
i-1 i+1
el T, Tl

where for £ : 0 + R and C a subset of 0, flc denotes the restriction

of £ on C. Then uy e Buc(ai) is a viscosity solution of

aui
I + H(t,x,ui,Dui) =0 in Qi

i=1 i~1 N
ui(x, T'r) = u(x, TT) in R

where the obvious extension of Definition 1.1 has been assumed here. Applying

the first part of the claim to u; we obtain

T
L <e-Y;(L + . S(141)))
i i-1 Rm i
T
i.e L <e-Y;u. + o, T,
*= i i Rm 1
-YT/m
e T
i.e. L, <€ (L +C_ =)
i 1-c T e yT i-1 Rm
Rm
-19=-




(2c, T -y %
i.e. L., €e (L. + C T/m)
i i=-1 R
where here we used the fact that for 0 < x < — .
1 x+x2 2x
T < e e .
1-x

A simple inductive argument implies (1.22).

s = N . :
(d) Applying Proposition 1.4 to u e BUC(QT) and ug € BUC(R ), which is an

obvious viscosity solution of

-— +

du |
—_— = i .
st T0=0 din o f
a(x,0) = ug(x) in &

for 7 & [0,T] and € > 0 we have

suplu(x,r)~u0(x)l + 3re 1T ¢ sup {lu(x,r)-uo(y)l +

x (x,y)EDE
+ 3Re” T8 _(x-y) )
< e YT sup luo(x)-uo(y)l + 3pe 7T 4 e YT sup {H(t,x,r,p)|
(x,y)ep (T,x,y,r,p)ea
3 €
therefore
lu(-,r)-uol < e-YTLOe +e 1T sup [H(t,x,r,p)| .
(t,x,y,r,p)eAe

s v

But. in view of the definition of Ae we have

. sup IH(t,%,r,p)| < sup _ [H(t,x,xr,p)|
) (t,X.y,r,p)EAe (x,t)eQrP
<
Il Iuou
Ipl<L0

and thus the result

{2} For any s e {0,T], u is the viscosity solutjon of

; -20-
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-g% + H(T,x,u,Du) =0 in RN x (8,T]

u(x,8) = u(x,s) in ly

as one can easily check. Then (d), for 1€ [s,T], implies

tu(e,t)-u(*,s)d < (t-s)e” 'T sup _ |H(t,x,r,p)|

(x.t)eQT
Izl <iut
lpl <t

and thus the result.
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Section 2

We begin this section with a result concerning the existence of the
viscosity solution of (0.2), in the case that H and u, are sufficiently
smooth functions. In particular, we show that the solution of the viscosity

approximation

'aue
Freadie eAue + H(t,x,ue,Due) =0 in QT
(2.1)e

, N
ue(x,O) = uo(x) in R

converges as € + 0 uniformly in ET to a function u which is then, by
Proposition 1.2, the viscosity solution of (0.2). Moreover, we give an

explicit estimate on lu-uel.

Proposition 2.1. Let H € Ci([O,T] x RF x R Xx RF) satisfy (H2), (H3) with

Y = YR < 0 for every ?.; 0 and (H5). For L e C:(IF) and € > 0, let
u_e BUC(RY) 0 C2'1(QT) be the solution of (2.1) . Then there exists

u @ BUC(RY) such that u is the viscosity solution of (0.2) and u  *u

uniformly on 6& as € + 0. Moreover, it is

(2.2) sup Iue(',T) - u(+, 1)1 < K/e
0<<T

where K is a constant which depends only on luol and lDuol.
Remark 2.1. M. G. Crandall and P. L. Lions proved the above result in [3] for
the case of (0.4). Moreover estimates like (2.2) have also been obtained by

W. H. Fleming ({5]) and P. L. Lions ([7]) by indirect arguments involving

stochastic differential games.

(*)

2,1 9u Ju
uec (QT) means that 5;:3;;7 SE'e C(QT)
-22-
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Proof of Proposition 2.1. The existence of such an uE follows from standard

theory. (See in particular A. Friedman [6].) Moreover, it is also known that
. 0,1 N

under our assumptions on H, ugy and for every T € [0,T], ue(-,r) e Cb (R ).

In order to prove the existence of u it suffices to show that as

€+0 {ue} forms a Cauchy family in BUC(QT). Indeed then there exists

u e BUC(E&) such that u, > u uniformly in ET as € + 0. By Proposition

1.2 and theorem 1.1 u is the viscosity solution of (0.2). To this end, we

show that there exists a constant K, which depends only on IDuOI and

luol, such that for €, n> 0

(2.3) sup tu_(+,T)-u (+, D) < K(/e + /n) .
0<T<T n

To prove (2.3) we need the following lemma:

Lemma 2.1. If H, ug, € and u, are as in Proposition 2.1, then for every
te [0,T]

(2.4) (5,00 <e” Mgt v co

where C is given by (H2) and

-yT
. i < + 1+
(2.5) IDue( TIN K e (IDuol ICR( Ls))
where L _ = sup IDu (+,7t)! and R > e_YT(lu I + CT). Moreover L
0 €
0<T<T
satisfies
'r(che'Yr-Y) _
(2.6) LE e (lDuoI + TCR) =L .

We first complete the proof of the proposition and then prove the
lemma. Observe that it suffices to show that there is a constant X, which
depends only on luol, lDuol, such that for € n> 0

b 1 + - -

(2.7) sup supy (u _(x,7) - un(x,T)) <K(Ve + /) .
0<1<T x€R

Here we establish only (2.4)+ since (2.4)” can be proved in exactly the same

4 — . - '
way. To this end and for 0 = Ve + /7 and R> e Y1(|u0| + CT), let

-23=
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m: [0,T] » R be defined by

(2.8) m(1) = sup  ((u_(x,T) - un(y,m+ + 3R+ VT8 (xy) }
|x-yl<£02

w . o N
where Be(w) = 8(3), with B8 € CO(R ) such that

B(O) =1, 0 < B< 1, Blw) =0 4if |[w] > 1
i
Blw) = 1 - IwI2 for |wl < 52
(2.9) and _
Blw) < 1/2 for |w] > %1

and R, E are given by (2.6). We claim that m, which is a continuous
function, is a solution of the viscosity inequality
(2.10) m' (1) + ym(1) < K1(/_e + /m
where K, depends only on luol and uouon. Before we prove this claim, we
show that it implies (2.7)+. Indeed in view of Proposition 1.1, Remark 1.3
and the fact that y < 0, for every 1€ [0,T], it is

-vt ~ -

mit) < e ' (m{(0) + rK1(/e +/n)) .
But then
+ -YT +

sup(ue(x,T)-un(x,T)) + 3(R+1)e < sup {(ue(x,T)-un(y,T)) +

x |x-y|<£92

+ 3(R+1)e-YTBe(x-y)} <e T sup Iuo(x)-uo(y)l + 3(R¥t)e VT 4

| x=y| <502

+ e°YtrK1(v’E +/m < e Y22 . u<1)(fE +/n) + 3Re T

since 0% = (4/2 + 4/;)2 < 2(¥e + /n), and therefore

(2.11) suplu (x, 1) = u (x, " < e Y22 + ® )+
X

for the proof of the claim, let n € Cw((O,T)) and assume that 1€ (0,T) is

P

a strict local nmaximuwa of m - n on I = [t=-a, t+al c (0,T) for some

-24-




2> 0. We are going to show that

{2.12) n' (1) + ym(1) < x1(/E !

and thus, in view of Remark 1.3, (2.10). If m(1) = 3(R+1)e-YT, then, for

every T € I, we have

~

YT

3r+1)e YT = n(1) > m(T) - n(1) » 3(RtDe ' = n(1)

| i.e. n' (1) = =y3(rete VT
i.e. n'(1) + (1) = 0

| and thus (2.12). Now we assume that .
(2.13) m(1) > 3(rere "

and we define ¢ : R” x RF x I +R by

(2.14)  O(x,y,1) = (u_(x,7) = un(y,T))+ + 3(ren)e TBylxy) - n(D

Since ¢ 1is bounded on R x RN x I, for every & > 0 there is a point

(x1,y1,11) e RN x RN x I such that

0(x1,y1,11) > sup ¢ - § .

RNXRNXI

Next select ¢ € C;(RNXRN) satisfying 0 < ¢ < 1, ;(x1,y1) =1, ipgl <1,
|acl < 1 and define ¥ : B x R x I » R by
(2.15) ¥Y(x,y,T) = ¢(x,y, 1) + 28¢(x,¥) .
since ¥ = ¢ off the support of ¢ and
Y(x1,y1,11) = ¢(x1,y‘,r1) + 28

there exists a point (xo,yo,ro) e Rw x RN x I such that

! (2.16) ?(xo,yo,ro) > ¥(x,y, 1) for every (x,y.T) € RN x RN xI .

We assert the following about (xo,yo,to)
. , 1 -2 2 T Y .
For & < mxn(a, L 8%, |x°-y0| < (L + 26)8° and as & + 0
- -Y1

+ 0
- + - =
21y ) T, * T oand  (u (x,T,) u lygsTg)) 3Re 3,(x=¥y)

\ ~Y1 -
_ 0
= ug(xo,ro) u”(yo,to) + 3Re do(x0 yo) +m{t) .

=25~
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indeed (2.9) and (2.16) together with the fact that Y € 0 imply that

2(R+1)e + 3(R+l)e Be(xo-yo) + 26 - n(to) > (ue(xo,ro) - un(yo,ro)) +
+ 3(R+1)e-YTOB (x.~y.) + 280(x,/Y,) = n(t.) =
870 70 0’0 0

0
= W(xo,yo,To) > W(x,x,ro) > 3(R+1)e - n(To)

1 28 1 26 1
. 128 1 _20,°
j.e. Be(xo-yo) >3 T, >3 3 > o

3(R+1)e
Thus in view of (2.9) Ixo-yol < 6 and
2
I%4=vq!

(2.18) Bg(xg¥y) = 1 - 5 .

(i
+

Morxeover if (ue(xo,ro) - un(yo,ro)) = 0, the above inequalities give

248 -2 .2

Be(xo'yo) 21 -3 »1-1°0

and therefore

-2

Ixo-yol < LS .
+ . .
So we may assume that (uE(xO.TO) - un(yO,To)) s> 0. In this case, in view of
the fact that because of (2.16) x4 is a maximum point of x ¥ ue(x,to) +
+ 3(R+1)e Be(x-yo) + 26;(x,y0), for every x € np, we have
-yt -YT

0 0
3(R+1)e Be(x-yo) + 26c(x,y0) ~ 3(R+1l)e Be(xo-yo) - 26c(x0,y0) <

< u(xo,ro) - u(x,TO) < le-xol .

Therefore
|3(R+1)e DBe(xo-yo) + 25Dxc(x0,y0)| <L

YT - YT -
i.e. 3(R+1)e lDBe(xo-yo)l <L + 28 < 6(R+1)e (1.+28)
and by (2.18)

-y1, 1%,7y,] -Yt, _
eret)e 0 ——2- < 6(R+1)e 0(T+26)
%)
-26=
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i.e. lxo-yol < (L+26)0 .

Now suppose that as ¢ + 0 Lo Ter along a subsequence (which for

simplicity is denoted in the same way as the sequence). For each ¢ for

which Ixo-yol > Eez, we choose ;0 e Rﬂ such that
Ixg=ygl = Ixg=ygl + lyg=y !
(2.19) and
_ Thal
Ixo~y0| = L0 .

-— - 1 -
If Ixo-yol < L92 let Yo =Yg In either case and for § < min(=, L292) it
is
% -; | < Eez and |y -; } < 2682 .
0 -0 0 -0
So, in view of (2.16) and the above observation, we have that for every

N N
(x,y,T) €@ R xR x I,

-YT
— + 0. —
(ue(xo,ro)-un(yo,to)) + 3(R+1)e so(x0 yo) +

+ wun(lyo-yol) + 3(n+1)m39(|y0-y0l) + 28 = n(1)) >

+ -1t
> Y(xo,yo,ro) ? ¥ix,y,t) > (ue(x,I) - un(y,T)) + 3(Re1)e Ge(x-y) - n(71)

and therefore

-Y1

m(t.) - n(T.) + 0 (286°) + 3(Re1)e  Cuw. (250%) + 2§ »
0 0 un Je

-YT
+
(2.20) > (ue(xo.To)-un(yo.to)) +3(R+1)e Go(xo-yo) +

+ 26c(x0y0) - n(ro) > m(t) - nl(1) .
Letting ¢ + 0 in the above inequality we obtain
m(?) - n(?) > m(1t) - n(1) for every t € [
which, in view of the definition of ?, implies
T

~

This proves that as ¢ ¢ 0 Tg * T+ Moreover in this case, (2.20) also implies

-27-
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- - _ . o -
m{T) = n(1) > éi: {(ue(xo,To)-un(yO,To)) + 3(R+1)e Be(xo-yo)} - n(1) >
. -yt .
> lim ((ue(xo,ro)-un(yo,To)) + 3(R+1)e Be(xo-yo)} - n(1) >
540
> m{t) - n(7)
+ -YTO a
i.e. lim {(ue(xo,TO)-un(yo,Te)) + 3(R+1)e Be(xo-yo)} =m(T1) .

8+0

Finally, for the last claim of assertion (2.17) observe that if along some

subsequence 6§ + 0
(u_( ) ( Nt =0
u (%0, 7, u (yge Ty =

then

-

Yt

~

m(T) < 3(R+1)e
which contradicts (2.13).

Next observe that, for &6 sufficiently small, To is an interior

- : _ -YT _ - .
maximum point of T ue(xo,r) un(yo,r) + 3(Rt1)e Be(x0 yo) n(T1) in

I, therefore

aue 333 -YTO
rYe (xo,'ro) rYs (yo,‘ro) - Y3(R+1)e Be(xo-yo) - n'(ro) =0 .

Moreover, X, is a maximum point of x » ue(x,ro) + 3(R+1)e Be(x-yo) +

+ 26c(x,y0) in R and Yo is a minimum point of y + un(y,ro) -

- 3(R+1l)e 0Be(xo-y) - 26c(x0,y) in RN. Therefore

-yt
Due(xo,ro) = =3 (R+1)e DBe(xo-yo) - 26Dxc(x0,yo)
-v1,
Dun(yo,ro) = =3(R+1)e DBe(xo-yo) + 26Dy§(x0,y0)
and
_28—
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_YT
0,q
Aue(xo,TO) + 3(R+1)e ABgixg=yy) * 288 glxgiyy) < 0

-yt
0
Aun(xo,ro) - 3(rR+1)e ABe(xo-yo) - 26Ayc(x0,y0) >0
N 32 N a2
where A Z(x_,y.) = X 5 (x.,y.) and & gi(x_ ,y ) = 2 25 (x.,y.)« The
x> 0'Y0 L 2 0'%o vy 70’ %0 L 2 Fo'7o
i=1 axi i=1 ayi

above, together with the fact that U un are solutions of (2.1)6, (2.1)n

respectively, imply

YT “YT
n'(to) + Y3(R+1)e Be(xo-yo) < =3(R+1)e ABe(xO-yo)(e+n) + 268(etn) +

-YT
0
+ H(To,yo,un(yo,ro), = 3(Rtl)e DBe(xo-yo) + 26Dyc(x0,yo)) -

-YT
0
- H(To,xo,ue(xn,To), - 3(R+l)e DBe(xo-yo) - 26Dxc(x0,yo)) .
In view of (H3), (H5), (2.9), (2.17) and (2.18), we have

-YT
+ 0
n'(To) + Y{(ue(xo,To) - un(yo,TO)) + 3(R+1)e Be(xo-yo)}

-yT

0
,ue(xo,To), 3(R+1)e DBe(x ))

n

H(ro.y0 o-yo) + ZGDy;(xo,yo

-yt
0
H(to,xo,ue(xo,To), - 3(R+1)e DBe(xo-yo) + 2GDx;(x0,y0))

-YT
‘w - (48) + 3(R¥1)e  HABI(esn) + 28(exn)
H,3(R+1)e ' 1DB 1+1

-Y1, Ix,~y,|
11 + 6(re1)e O —2—2 4 24 +
92

n

Cal%p7Yg

-YTO e+n
+w (48) + 6(R+1)e - * 28(e+n)
9

Ho3(R+1)e-YTIDBel+1
< c (26007 (1 + (D+26) + 261 + w } (46)
1, 3R+ 1)e” 03 141
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YT, _
+ 6(R+1)e (Ve + /n) + 28(etn)

where above we used the fact that

=Y, -
3(R+1)e IDBe(xo-yo)I <L+ 2§ .

Letting § » 0 implies
n'(1) + (v < 2(c, L(1+4L) + 3(R+1)e ") (/e + /n)
and thus (2.12) with

YT

K, = 2(c_ L(1+4L) + 3(R¥1)e 1) .

Remark 2.2. Note that the above proof gives a sharper estimate on hxe-unl
and thus Iue-ul. than the one stated in Proposition 2.1. 1In particular we

proved that for (x,T) € ET

(2.21) Ju x,1) = w (x, 0] < Y22 + 2(c, LO1+L) + 3R v(le + /)
as one can easily check using Proposition 1.1 and the last inequality in the

proof.

Proof of Lemma 2.1. Here we prove a more general estimate which has (2.4) and

(2.5) as special cases. In particular, for € > 0, let
H,H € ci([o,r] x B x R x R') satisfy (H2), (H3) and (H5) with the same

constants C, C and Yy =Y, € 0 for every R > 0. Moreover, let Une

R R

- 2 N - 2,1 = .
ug e cb(n )n BUC(!P). 1f U e Cb (QT) ari solutions of
aue Bus _ - -
Froin eAue + H(T,x,uC,Due) =0 in QT *® eAue + H(T,x,ue,Due) = 0 in QT
N and - _ N
ue(x,O) = uo(x) in R ue(x,O) = uo(x) in R

respectively, then for every Tt1€ [0,T]
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-3 YT -u
s:plue(x,r) ue(x,r)l <e s:pluo(x) uo(x)l +

(2.22) + e 7T sup _ |H({t,x,r,p) - E(t,x,r,p)l

(x,t)eQ
lrl(min(lﬁé?,luel)

lpl<min(L el

where Le = gup IDu (-, T}, Ee = sup IDEG(',T)I .
0<1<T 0<1I<T

As usual, without any loss of generality, here we only prove that for every

Te [0,T)
- + -YT - +
sup(ue(x,r) ue(x,r)) <e sup(uo(x) uo(x)) +
x x
-YT -
(2.23) + 1e sup _ |H(t:X'r:p) - H(t,x,r,p)l .
(x,t)eQ _

. T
lrl<m1n(lu£l,luel)
fPImin(LE.LE)
To this end, let m : [0,T] + R be defined by

m{t) = sup(ue(x,r) - ;e(x,'r))+ .
x

We claim that m , which is a continuous function, is a viscosity solution of
m'(t) + ym(t) < sup _ |H(t,x,r,p) - i(t,x,r,p)l .
(x,t)eQT _
Irl<min(lue ,Iuel)
|p|<m1n(L€,L€)
This, in view of Proposition 1.2 and Remark 1.3, proves (2.23). To prove the

claim let n € C‘((O,T)) and assume that t€ (0,T) is a strict maximum of

m=-n on I = (1-a, T+a] (0,T) for some a> 0. We want to show that
n'(1) + ym(t) < sup _ jH(t,x,r,p) - ﬁ(t,x,r,p)l .
(x,t)eQ
(2.24) Irl(min(luel,Tcel)

Ip|<min(L€.Le)

-

If m(t) =0, then T is minimum of n on 1, therefore n'(T1) = 0 and
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(2.24) is satisfied. So without any loss of generality we may assume that
(2.25) m(t) >0 .
In this case let ¢ : RN x I + R be defined by
- +
d(x,1) = (ue(x,T) - ue(x,r)) - n(1) .
Since ¢ is bounded on RN x I, for every & > 0 there is a point
N

(x1,f1) € R x I such that

0(x1,T > sup ®(x, 1) - § .

1)
(X'T)eRNxI

Next we choose [ € c:(nN) gso that 0 € 7 < 1, ;(x1) =1, |pgl € 1 and
. N N
laz] € 1 and define ¥ : R xXI + R by
¥ix,T) = &(x, 1) + 2686C(x) .
Since ¥ = ¢ off the support of [ and

W(x1.T1) > sup ®(x, 1) + 6
(X'T)CRB*I

there is a point (xo,To) e RN x I such that
(2.26) Y(x),T) > ¥(x,T) for every (x,1) e R x1I .

Moreover

~

As § + 0 T * T and

(2.27)

- + - -
(UG(XO'TO) - ue(xo’TO)) = ue(xo,ro) - ue(xo,ro) +m(1) .

Indeed suppose that as § + 0 T Ter along a subsequence (which for
simplicity is denoted in the same way as the sequence). Then (2.26) implies
~ +
+ - - - -
m(ro) 26 n(ro) > (us(XO'TO) ue(xo.to)) + 26 n(ro) > m{t) n( 1)
therefore as 6 + 0
m(T) - n(1) > m(1) - n(1) for every T €1

which in view of the definition of Tt gives

T=1 .
~32=-
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In this case (2.26) also implies

- “ - - + -
m(t) - n(1) > éig (ue(xo,ro) - ue(xo,ro)) - n(T1) »

— * ~ A -~
> lim (ue(xolTo) - ue(xo,To)) = n(T1) »m(1) - n(1)

——

8+0

thus

- + ~
lim (ue(xo,r - ue(xo,ro)) = m(1) .

}
540 0
Finally, if along some subsequence 6§40
(u_(x,,T) = u (x,71) =0
Ye'¥or o T %0 %o
then m(t) = 0 which contradicts (2.25).
Next observe that for & sufficiently small TO is an interior maximum
point of T + ue(xo,r) - ;e(xo,r) = n(t) in I. Moreover x; is a maximum
point of x » ue(x,To) - ;e(x,ro) + 28g(x) in R'. The above, together with

the fact that u., ;e satisfy the equations stated at the beginning of this

proof, imply

n (To) < 28e + H(ro,xc,ue(xo,ro), Due(xo,to)) -

- H(To,xo,ue(xo,ro), Due(xo;To)) .

If (without any luss of generality) we assume that luel = min(lueﬂ, IGEH)

and E
€

min(Le,Le), then

— + - -
n'(To) + Y(ue(XO'TO) - uE(xo,to)) < 28¢ + H(ro,xo,ue(x ,ro), Due(xo,rb)) -

9

- H(To,xo,ue(xo,ro), Due(xo,ro) - 260c(x0)) <

< 28 + (28) + sup _ |(H{t,x,r,p) - E(t,x,r,p)l .
(x,t)eQ
|rl<minlu;l

lpI<LE

w -
H,max(luel,Le)

Letting &+0, in view of (2,27), we obhtain (2.24).
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Since (2.4), (2.5) and (2.6) follow from (2.22) the same way that (1.19),

(1.21) and (1.22) follow from (1.7) we omit their proof.

Remark 2.3. Estimates similar to (2.4) and (2.6) already exist in (6], where

they are proved via arguments of the parabolic theory.

Now we continue with the proof of theorem 1. First however we give a
short description of the arguments we are going to use. In particular, we
approximate H and ug in a suitable way so that the resulting problems have
viscosity solutions (by Proposition 2.1), which in view of Proposition 1.5
satisfy some estimates. Then using Proposition 1.4 we can conclude that (0.2)

has a viscosity solution.

Proof of theorem 1. For the given ug and H and reqardless of whether H
satisfies (H4) or (H5) let Ry > 0 and Tq > 0 be such that

2fu l + C + 1 <R

0 0
(2.28)

"r_ To

I + + <
(e (Tu ¥ (c+1)Ty) Ry
where C and Yp are given by (H2) and (H3) respectively. Note that
0

throughout the proof we assume that YR € 0. This does not impose any

0
restrictions since one can always reduce the problem to this case.

The claim is that (0.2) has a unique viscosity solution on QT « The
0

uniqueness follows from Theorem 1.1 so here we have to establish the

existence. To this end, we first observe that it suffices to assume that
2, N . N .

Yy e Cb(R ). 1Indeed for the given u, € BUC(R"), we can find a sequence

2, N
uo'n e Cb(k ) so that

fu LI VO

and
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tu -u l+0 as n + =
0,n 0 *

. - N
If (0.2) has a viscosity solution u e BUC(QT ) for every Yo o e Ci(l Y,
0 L4
then in view of (1.19)

fu ¥ <
“n R0

for every n, therefore by theorem 1.1

-YT
lu ~ul <e flu -u 1
n m

j.e. there exists a u € BUC(E,r ) such that u + u uniformly on ET as
0 0
n + =, Then Proposition 1.3 implies that u is a viscosity solution of

(0.2).

- N
Next for every positive integer £, 1let H2 : [O,Tol xR xR x RP + R

be defined by

H(t,x,u,p) for lu| < R,

(2.29) Hz(t,x,u,p) = W(P/R) a
H(t,x, T;T Ro,p) for |ul > Ry

where w € C:(ly) is such that

0 <w<t

(2.30) w(p) 1 for |pl| <1
wip) =0 for |pl > 2 .
It is easy to see that for every &
. = N N
(i) Hz e BUC([O,TO] xR xR XR)
(ii) sup _ In,(t,x,0,0)] =cC

(x,t)eq, *
0

(iii) ® (t,x,r,p) = H (t,x,s,p) » v, (r-s) for every (x,t) € 6
L L R, To

p e f‘ and r > s

(iv) H, satisfies (H4) or (H5) depending on whether H satisfies (H4) or

l L)
Hl "l
(H5) respectively. Also AR < AR for R > 0 and CR < CR for

0
R > 0.
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Moreover observe that as £ + o, H (t,x,u,p) + H(t,x,u,p) uniformly on

2
N
[O,TO] x R X [-RO,RO] x BN(O,R) for every R > 0.

Now for every &, let H2 e Ci([O,TO] x RF x R X RN) be such that

- 1

i ] -H 1 <=
(i) Hl . )

(ii) sup _ IH, (t,x,0,0)] € C + 1

(x,)e3_ .
0

(iii) Hz(t,x,r,p) - Hz(t,x,s,p) > Y (r-s) for (x,t) e 6& , pe RN and

0 0
r>s
He
(iv) If H satisfies (H4), then Hz also does and AR (a) € AR+1(a) for
R>0
Hz
(v) If H satisfies (H5), then H2 also does and CR < 2CR +1 for R >0

0

(vi) Regardless of whether H satisfies (H4) or (HS), H2 always satisfies

(HS) for some constant Eﬁ for R > 0.

Because of all the above properties of H in view of Proposition 2.1, for

L
every 2 the problem

auk

EE_ + Hl(t,x,uz,Duz) =0 in QTQ
(x,0) = (x) i RN

ul ' ug in

% e BUC(EM ). Moreover, because of the
‘o0

properties of Hl and Proposition 1.5, for every T € [O,TO] we have

has a unique viscosity solution u

Ry
lu (¢, T}l € e (fu_ N + (C+1)1T) ¢ R
L 0 0
(2.31)
and
w (e) € f(€e) for € < 1
0(e,1)
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where f : [0,») + [0,») 1is so that f(0+) = 0. 1In particular, if H

satisfies (H4), then

-YROTO
= +
(2.32) f(e) [ (2“h0(€) TOA S (2€))
R0 o]
12R0e +3
and, if H satisfies (H5), then
-YROTO
(2.33) "o 4R 11® TRy’ =
f(e) < [e (lDuOI + 2T0CR0*1HE = LE .

We want to show that {uz} is a Cauchy sequence in BUC(®Y) i.e. we

want to show that for every a > 0 there is a 20 = 20(0) > 0 so that, if

L,2' > 20, then

fu_ ~u (e, )1 < a .

) l" < sup Mu,(-,T)

-u,,
0<‘1.'<T0 . .

This, in view of Proposition 1.3, will finish the proof of the theorem. To

this end and for arbitrary but fixed a > 0, let 1 > € > 0 be so that

-YROTO
(2.34) e w (€) < /3
u
0
and
-YROTO
(2.35) Tye A vy T (2e) < a/3
5 0
12R0e +3
if H satisfies (H4), or
. -YROTO _
(2.36) 2T0e CR0+1(1+L)€ < o/3

if H satisfies (H5). Having chosen € as above next select lo so that

for £,L' > 10
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(2.37) Tge sup | (t,x.x,p) - H,, (t,x,r,p)| < a/3
- % L
(x,t)€QT

x| <k, °

R e

3] 0 -
|pl§pin(————2?————- + 1, L)

where if H does not satisfy (HS) L = ®», Then in view of Proposition 1.4,
we have that for T € [0,T0] and £,%' > 2

lul('.T) - ul.(°,1)l < a
and thus the result.

Finally note that, if YP in (H2) is independent of R, we do not have
to impose the restriction (2.28) on T and therefore we have existence for
every T > 0.

Remark 2.4. In the case that YR is not independent of R we can not expect

global time existence, as we can easily see from the simple ordinary

differential equation

As a corollary of the above proof and Proposition 1.5, we have the

following proposition which we state without proof.

Proposition 2.2. If H satisfies (H1), (H2), (H3) and (H5) and

1 0,1 ~
u, € Cg' (IF), then (0.2) has a unique viscosity solution u € Cb' (QT) .

Remark 2.5. A Lipschitz type condition in x 1is necessary in order to have

solution Lipschitz in x. In particular, if H € BUC(R) is such that
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H(x) = x'/3 for xe [-1,1), then u(x,t) = -tH(x) + 1 is the viscosity

solution of the problem
+ =
“t H(x) 0

u({x,0) = 1

but u(e,T) € c:"(l) for te (0,7,

Remark 2.6. Assumptions (H4) and (H5) are different. In particular, if H

is independent of (t,u,p), then (H4) implies that H is uniformly
continuous in x and (H5) that H is Lipschitz continuous in x. Moreover,
there are functions which Qatisfy (H4) but not (HS5) and vice versa. Indeed if
g : R+ R is H8lder continuous with exponent a then

H(x,p) = g(x)Ip| ¥ °
for 0 < € < a satisfies (H4) but not (H5). But if g : R + R is Lipschitz
continuous, then

H(x,p) = g(x)p

satisfies (H5) but not (H4).
Remark 2.7. One can prove Theorem 1 in the case that H satisfies (HS),
using compactness arguments, once Proposition 1.5 is proved. However here we
gave a constructive argument, which egtablishes the uniform convergence of

solutions of approximate equations.
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Section 3

We begin this section with the definition of the viscosity solution of
(0.3). We have

Definition 3.1 ({1],[2]).Let H & C(R xR xR') A>0 and ne c(R). A

function u € C(IN) is a viscosity solution of
u + AH(x,u,Du) = n in RN
© N
if for every ¢ @ C (R)
(3.1) if u ~ ¢ attains a local maximum at xg € RN, then
u(xo) + XH(XO.U(xO),DMxO)) < n(xo)
and

(3.2) if u ~ ¢ attains a local minimum at x, € HP, then

u(xo) + AH(xo,u(xo),D¢(xo) > n(xo) .

Next we state the theorem about the uniqueness of the viscosity solution
of (0.3) as well as some other important results of [2]) concerning this
solution.

Theorem 3.1 (III.1[2]}). Let u,v € BUC(R') be viscosity solutions of the

problems

N : N
u + AH(x,u,Du) = n in R and v + M(x,v,Dv) = m in R
respectively, where H : RN x R x RN + R satisfies (H1), (H3) and either (H4)

or (H5) and n,m € BUC(RH). Let RO = max(full,fvll) and Yy = YR . Then
0

(3.3) (1+Ay)lu=vl € In-mt .
In particular, if 1 + Ay > 0, then (0.3) has a unique viscosity solution.

Proposition 3.1 (IV.1(2]). For € > 0 1let u, e CZ(RN) be a solution of

-€Av _ + + M (x,u_,D =y i .
€ u, e( ", ue) e n R

N
Assumne ME + H uniformly on R x [-R,R] x BN(O,R) for each R > 0 and
: N .
v + v uniformly on R. If € + 0 and u, *u locally uniformly on RN,

€ n
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then u € C(®') is a viscosity solution of

N
u + M(x,u,Du) = v in R .

Proposition 3.2 (I.2[2]). Let u, e C(RN) be a viscosity solution of

-

M .
u + M _(x,u ,Du ) =v in R . Assume H_+ H uniformly on
n n n’"n n n

N
R x [-R,R] x Bn(O,R) for each R > 0 and v,V uniformly on B, 1f

u *u locally uniformly on RF, then u e C(RN) is a viscocity solution of

N
u + M(x,u,Du) = v in R .

Now we give a result which estimates the difference of the viscosity
solutions of the two problems of the form (0.3). This estimate will be used
later in order to derive several properties of the viscosity solution. To

this end choose 8 e CZ(RF) as in (1.5)., We have

Proposition 3.3. Let u,u € BUC(IF) be viscosity solutions of the problems

u + Mix,u,bu) = v in R  and u + M(x,u,0u) = v in R

respectively, where H, H: Ry x R x RF + R satisfy (H1) and (H3) with the
same constant YR for each R > 0 and v, ve BUC(RN). Let Ry = max(lul,lGl)

and Y=Y, . If for R » R and € > 0, De' Ae are so that

RO Cc
N
D, = {(x,y) e R x R : Ix-yl < €}
and
N
A, = {(x,y,r,p) € R xR xR xR & (x,y) e P
. -~ ., BR
Irl € min(kut, lal), |pl < mxn(;- + 1, LY}

where

L = min{(MDut, IDul)
and moreover

1+2y>0
then
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(O

sup {Iu(x)-G(y)l + 3RB€(x-y)} < T%i_ sup {Iv(x)-;(y)l +
(x,y)€D_ Y (x,y)ep_

(3.4) -
sup lH(xlslp) = H(Y'S:P)l
,y,s,p)eAe

A
+ 3R(1+XY)B€(x-y)} + Teay (x

where Be(') = B(E)'

Remark 3.1. The assumption that H, H satisfy (H3) with the same constant is

not important. It is made only for simplicity.

Proof of proposition 3.3. It is obvious that (3.4) follows from

- 1 -
sup  {(u(x)~aly))® + 3RB_(x~y)} < Ty s (vto=vin)l +
(x,y)ep (x,ylep
€ €
(3.5)% N _
+ 3R(1+AY)B _(x-y)} + sup |H(x,s,p)=H(x,s,p)| .
€ 1+dy
(x,¥,s,pl€ Ae

Here we prove only (3.5)% since (3.5)" follows exactly the same way. To this
end observe that, if

sup  ((u(x) = u(y))" + 3R8_(x-y)} < 3R
(x,y)eDe

then there is nothing to show. So we may assume

(3.6) sup  {(u(x) - Gy’ + 3RB_(x-y)} > 3R .
(x,y)eDe

In this case let ¢ : RN x RN + R be defined by

d(x,y) = (u(x) - uly))’ + IRB_(x=y) -

Since ¢ is bounded, for every § > 0 there is a point (xl,y1) e RN x RN
such that
d(x,,y,) > sup d(x,y) - & .
LA N N
(x,y)eR xR

Next select ¢ @ C:(RN x RN) satisfying 0 < § <1, c(x1,y1) = 1 and
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IDZ) < 1 and define ¥ : R® x R® » R by

¥ix,y) = &(x,y) + 28g(x,y) .

Since ¥ = & off the support of ¢ and
Yix,,y,) = blx,,y,) + 26 > sup d(x,y) + §
(x,y)ElyXRy

there exists a (xo,yo) e RF x RF such that

(3.7) Y(xo,yo) > ¥(x,y) for every (xo,yo) e lP x !F .

We assert the following about (xo,yo)

If &§ < R/2 then lxo-yol < e

and

(3.8)
- -+ -
as § ¢ 0, (u(xo)-u(yo)) + BRBe(xo-yo) = u(xo)-u(yo) + 3R8€(x0-y0) +

sup {(u(x)-G(y))* + 3R8e(x-y)|} .

(x,y)éDe
Indeed if Ixo-yol > €, then in view of (3.7) and the definition of Be we

have
2R + 28 > Y(xo,yo) > ¥(x,y) > 3R

§ > RrR/2 .

i.e.

Moreover (3.7) implies that
- + - +
(ulxy)=uly,)) + 3RB (x =y,) + 26 > sup  {(ulx)-uly)) + 3RB (x~y)} .
€070 €
(x,y)eDE

Soas 8 + 0

(ulx)-uly )" + IRB_(x,=y,) » sup  {(ulx)-atyn® + IRE_(x-y)} .
€ 0“0 €
(x,y)eDe

- +
Finally observe that, if alonyg some subsequence § ¢ 0 it is (u(xo)-u(yo)) =0,

then, in view of the above, we have

sup {(u(x)-;(y))+ + 3RBe(x-y)} < 3R

(x,y)eDc
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which contradicts (3.6).
Now observe that x; is maximum point of x u(x) + 3RBE(x~yo) +
+ 26;(x,y0) in R and Yy is a minimum point of y * :(y) -~
- 3RB_(x,=y) = 20L(xp,y) in RY. In view of (3.1) and (3.2) we have
- ¥ - - <
u(xo) + AH(xo.u(xo), 3R05€(x0 yo) 26Dxc(x0,yo)) v(xo)
and
v(yo) < u(yo) + AH(yO,u(yo), - 3RDd€(x0-y0) + 26Dyc(x0-yo)) .

Combining these two inequalities we obtain
ulxg) = ulyy) < vixg) = vlyg) + AH(YO.U(YO): -3RDB_(x,=yy) +

+ Zéoyc(x )) - AH(xo,u(xo), -3RDB€(xo-y0) - 26Dxc(xo,y0)) .

0'¥Yo
To continue we assume that Tul = min(ﬂul,ﬂcl). (If not one has to modify the
rest of the proof in an obvious way.) Then in view of (H3) and (3.8) for ¢

sufficiently small we have

(1+Ay)(u(xo)-u(yo)) < v(xo) - V(YO) + Xﬂ(yo,u(yo), -3RD$€(x0-yO) +

+ 26Dyc(x0,yo)) - Au(xo,u(yo), -JRDBE(xo-yO) - ZéDxc(xo,yo))

and, since lxo-yol < e for 6§ < R/2,
— + —
(1+XY){(u(x0)-u(yo)) + 3R38(x0-y0)} < sup {lvix)=viy)| +
(x,y)eD
€
- + H a - - -
+ 3R(1+A1)8€(x vy} AH(yo,u(yo), 3RDBe(x0 yo) + ZGDyC(xo.YO))
- AH(xo,u(yc), -3RDBE(Y0-yO) - 260xg(xo,yo)) .
Next observe that for 6§ < 1/2
. . 6R
| 3RDL£€(x0 yo) + ZGDyc(xO,yo)l, |-3RDd€(x0-y0) - 2bDyQ(x0,yo)l st 1 .
Moreover, if L < ® (note that the case L = ® is trivial) and (without any
loss of generality) L = #Dul, then since x, is a maximum point of the

mapping x + u(x) + 3RB£(x-y0) + 26g(x,y0) for x € RF we have
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3RBe(x-yo) + 26c(x,y0) - 3R8e(x0-y ) = 28z(x

0 ) € Lix-x_|

0'¥o o' °
But this implies that
|3RDBe(xo-y0) + zébxc(xo,yo)l <L .

Combining all the above we obtain

(1+xy)(u(x0)-ﬁ(y0))+ + 3RB_(x,-y,)) <  sup vix)~v(y)] + IR(+AY B (x-y) } +
(x,y)eDe

+ Ai(yo,;(yo), -3RDﬂE(x0-y ) - 26ng(x

0 )) -

'Y

- AH(xo,u(yo), -3RDB€(x0-y0) - 26Dxc(x°,y0)) +

+ dw_ (48)
H,max.(%]3 + 1, R)

therefore
(1+Ay){(u(xo)-;(yo))+ + 3RB_(x,7y,)} ¢ sup  {IVO0-T(y)| +
(x,y)eoe

+ 3R(1+AY)Be(x-y)} + A sup |H(x,s,p) - i(y,s,p)l + Aw_ 486).
(x,¥,8,p)A_ H,max(Z= + 1,R)

Letting &8 + 0 in the last inequality we get (3.50%.

Next we uge Proposition 3.3 to establish several properties of the
viscosity solution u € BUC(lP) of (0.3). 1In particular the next proposition
gives a priori bhounds for the norm, the modulus of continuity and the Lipschitz

. R . , 1, _N
constant of u. Moreover, it gives an estimate for lu-vl, if v € Cg' (R ).

. 1
Proposition 3.4, Let H : RN x R x Rl + R satisfy (H1) and (H3). If for

v e BUC(IF), ue BUC(RN) is a viscosity solution of (0.3), let R > flul and
Yy = YR. If 1 + Ay > 0, the following are true

(a) If H satisfies (H2) then

1
(3.9) tull ¢ THhy (AC + fvl)

where C 1is given by (H2).

(h) If H satiafies (H4) then for 1 > r > 0

(3.10) wu(r) < (2r)) .

1
Ty (2wv(r) + XA12R+2
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(c) If H satisfies (H5) and u, v € 02'1(IF), then

1
1+Ay

(3.11) Ibul < [iDvi + xcR(1 + IDul)]

where C, 1is given by (H5). Moreover if 1 + X(Y-CR) >0 then

1

(3.12) tbul < m—;—)-

(ipvl + NCR) .
0,1, N
(d) If H satisfies (H2) and v e Cb (R') then

ha-vi < |H(x,x,p)| .

A
T sup
1+Ay uen"
lx|<iul
{pl<ipvi

(3.13)

Proof. (a) We apply Proposition 3.3 to u and u = 0, which is a viscosity
solution of the problem
0+ A0 =0 in RN.

Then for € > 0, (3.4) implies

ful + 3R < sup {lu(x)] + 3RB€(x-y)} < T%;; sup |v(x)| + 3R +
(x,y)eDe (x,y)eDc
+ A su |H{x,x,p)| .
1+XY P ’ Ip
(x,y,r,p)eAe

But in this case
A = {(x,y,r,p):lx=y| € €, |xr| < min(Mut,o0), Ipl < min(%? + 1,0)}
= {(x,y) € B x R:iix-y| < €} .
So
hul < T%T? (Ivlt + ) .
(b) For r fixed (1> r > 0) let e R be such that
1€l € .
If u: R + R is defined by
ulx) = u(x+£)

then u e BUC(lP). Moreover u is a viscosity solution of

U+ A(x + £, u, Du) = v(xtE) in B .
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To see this observe that, if for ¢ € CO(RN), X, is a local maximum of

then u - ¢y where y(y) = ¢(y-%).

a - d, x0 + £ is a local maximum of
(3.1) we have
ulx +6) + MH(xo+E, ulx +E), DV(x +E)) < v(x +E)
therefore
u(xo) + XH(x0+E, u(xo), DQ(xo)) < v(x0+£) .
Similarly one can check the case u - ¢ has a local minimum at Xq e
Now applying Proposition 3.3 to u, u for € =r we have

suplu(x)-u(x+E)| + 3R < sup

{lutx)-u(y+£)} + 3RB (x-y)} <
X (XIy)eDt

1
< 14AY

fvix)=v(y+E)| + 3R(1+AY) +

1
sup 1oy

(x,y)ebr

+ A
14AY

sup 'H(XISIP) - H(Y*grslp)‘ .

(x,y,s,p)e}\r

But in view of (H4)

sup |H(x,8,p) - H({y+E,s8,p)] < sup IH(x,s,p) - H(y+E,s,p)| <
(X:Y:B:P)eﬂr |X‘Y|‘!
|si<tal
6R

|p|<r +1

< .

A12R+2(2R)
Moreover
sup |vix) ~ v(y+£)] < 2mv(r)
(x,y)eDr

thus the result.
(c) For £ € R' define u : R » R by
ulx,T) = u(x+£, 1) .

is a viscosity solution of
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U+ H(x+E,a,0u) = vix+E) in R .

Applying Proposition 3.3 to u, u for €> 0 we have:

suplu(x)=u(x+£)| + 3R <
x

sup Jvix)-v(y+E)| + 3P +

1
14y (x,y)eDE

+ A sup |H(x,s,p) - H(y+&,s,p}|
(x,y)eDE

|s|<tul
Ipl<iDul

therefore

suplu(x)-u(x+§)| <
X

1
Ty (IDvil + M:RH + Wul))(e+gl) .

Letting € + 0 we obtain (3.11). If 1 + A(Y-CR) > 0, (3.12) fcllows from
(3.11).
. e 0,1, N . . . ;
(d) Applying Proposition 3.3 to u and v e Cb (R'), which is a viscosity
solution of
v+ X=v in R

for € > 0 we have

fu-vl + 3R € —%—- sup |v(x)-v(y)| + 3R + T%K? sup |H(x,s,p)| .
,y)eDe | x=-y| <€
|s|<tul
Ipl <IDVA

Tetting € + 0 we obtain (3.13).

Remark 3.2. 1In the case that H is independent of x, one can deduce

(3.10), (3.11) and (3.12) directly from (3.3) ([2]).
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Section 4

We begin this section with a result concerring the existence of the
viscosity solution of (0.3), in the case that H and v are sufficiently
smooth functions. In particular, we show that the solution of the viscosity
approximation
(4-1)e -eAue + u, + AH(x,ue,Due) = v in ly
converges ags € + 0 uniformly on ® to a function u e BUC(IF), which is
then, by Proposition 3.1, the viscosity solution (0.3). Moreover we give an

explicit estimate on Iuauel.

Proposition 4.1. Let H e C:(I“XRKRN) satisfy (H2), (H3) (with Y= v,

for R > 0) and (HS). For A > U0 sgso that 1 + 2Ay > 0, 1 + A(y=1) > 0 and
1+ X(y-cR) >0, where R > 2lvl +C and C, Cp are given by (H2), (HS5),
€E>0 and ve ci(lp), let u, e Cz(lp) N BUC(IP) be the solution of
(4'1)e' Then there exists u € BUC(!P) such that u, *u uniformly on R
ags € + 0., u is the viscosity solution of (0.3) in ® and moreover

(4.2) lu-u 1 <X /e

where K is a constant which depends only on Ivl and 1IDvl,

Proof. The existence of such an u. follows from standard theory (see in
particular [7)). Moreover it is also known that, under our assumptions on H,
v, u_e ci"(lp). In order to show the existence of u it suffices to show
that as € + 0 {“e} forms a Cauchy family in BUC(R'). Indeed then there
exists u € BUC(RY) such that u, *u uniformly in ly as € » 0, By
Propogition 3.1 and Theorem 3,1 u 4is the viacosity solution of (0.3). To
this end we show that there exists a constant K, which depends only on

fovli and #Ivl, such that for €, n> 0
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(4.3) T, unl < K(Y /n)
This also will prove (4.2), if we let n + 0. To prove (4.3) we need the

following lemma.

Lemma 4.1. If H, v, €, A, R and u, are as in Proposition 4.1, then

1
(4.4) luel < THhy (vl + XC)

where C is given by (H2) and

1

(4.5) lDuel < m?

(IDvl + XCR) =L

where Cp 1is given by (HS5).

We first complete the proof of the proposition and then prove the
lemma. Observe that it suffices to show that there exists a constant K,
which depends only on f%v%, 'Dvi, such that for ¢, n> 0
(4.6)% Humap¥n cx(/e+ /mo.

Here we establish only (4.6)+, since (4.6) can be proved in exactly the same
+ .
way. To this end observe that, if !(us-un) I = 0, there is nothing to
prove. So we may assume that
+
(4.7) I(ue-un) 1>0 .
, 4, - 4 ~ N N :
In this case and for 8 = Ve + ¥Vn let & : R xR + R be defined by
+
¢(x,y) = (u_(x)=u _(y)) + 3(R+1)8 (x-y)
€ n -}
where R is as in the statement of the proposition and 3,(*) = c(%) with
B given by (2.9). Since ¢ is bounded, for every & > 0 there is a point
(x4,¥4) in RF x RF such that
0(x1,y1) > sup $lx,y) = & .

N
(x,y)éllNXR

Next select (§ @ C;(RN) so that 0 < 7 < 1, c(x1.y1) = 1, I[pg] €1 and

[Az] € 1 and define ¥ : R xR » R by
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‘l’(x,y) = O(x,y) + 25C(XIY) .
Since ¥ = & off the support of { and
V(x1,y1) = ¢(x1,y1) + 268 > sup dix,y) + &

(x,y)ERNXRN

there is a point (x ) e Rw x l” such that

0'¥o
(4.8) Y(xo,yo) > ¥(x,y) for every (x,y) e !F .

We claim that (xo,yo) has the following properties

f{(u_-u )+l
For § < min( £ —l)
2 ' 23
(4.9) § Ix.,y.1 €8, [x.~y. | < (E+26)6%, (u (x )=u (y. )" > 0 ana
0'¥o ¢ 1X7Yg ¢ Wt XU Y

(ugixgd=u (v’ > T —u*t - 28
where L is given by (4.5). Indeed, since in view of (4.4) '“el < R, if
|XO'Y0| > 0, (4.8) implies
2(R+1) + 26 > V(xo,yo) > ¥(x,x) > 3(R+1)
which contradicts the fact that 6§ < 1/24. Moreover, for every x € RN, it
is

+ +
(ue(xo)-un(yo)) + 3(R+1) + 26 » ¥(x ) > ¥x,x) > (ue(x)-un(x)) + + 3(R+1)

0'Yo
therefore
+ +
(ue(xo)-un(yo)) > '(“e'“n) 1 - 28
and by the choice of §
+
(ue(xo)-un(yo)) = ue(xo)-un(yo) .
In this case and since IDueI < E we have
ue(xo)-un(yo) + 3(R+1)Be(xo'yo) + 28> ue(yo)~un(yo) + 3(R+1)
therefore

,cR+1)Be(x0-yo) ? 3(R+1) = 2(R+1) = 268(3(R+1))

which implies
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1
But then, in view of (2.9), it is
2
lx4=y,1
(4.10) Be(xo-yo) = 1 - —-;5———— .
Moreover, (4.8) also implies that, for § sufficlently small, x, is a
maximum point of the mapping x » ue(x) + 3(R+1)Be(x-yo) + 26c(x,y°),

therefore for x € A
3(R+1)Be(x-yo) + 26c(x,yo) - 3(R+1)Be(x°-yo) - 26C(xo,yo) < ue(xo)-ue(x) <

< ;|x-x°| < 6(R+1)zlx-xo| .

This gives
(4.11) |3(n+1)nse(xo-yo, + zcnxc(xo,yo)l < L < 6(RH1)L
and by (4.10)
- 2
lxo-yol < (L+2§8)6" .
Next observe that, in view of (4.8) and (4.9) Xq is a maximum point of
x> ue(x) + 3(R+1)B°(x-yo) + 26c(x,yo) and y, is a minimum point of :
y + u"(y) - 3(R+1)B°(xo-y) - 26;(xo.y). This, together with the fact that

u, v e cz(.p) are solutions of (4.1)c, (4.1)n respectively, implies that

ue(xo)-un(yo) < -3(R+1)8°(xo-yo)(€+n) + Aa(yo,un(yo),-J(R+1)DBe(xo-yo) +

+ ZGDy;(x )) - Xﬂ(xo,ue(yo),-3(3*1)DBe(xo-yo)-ZGDxc(xo,yo)) + v(xo) - v(yo) .

0'Yo
But then using (4.9) and the properties of H, v and )\ we have

+ €e+n
(14AY) (u (x) u“(yo)) < fpovl lx° Yol + 3(R+1) .2 +

+ \w (46) + AH(y,,u _{(y.),~3(R+1)DB (x ~y,)=
H,max(R, Elgﬁll I1DB1+1) 07770 870 "o

-260xc(xo.yo)) - An(yolue(yo),-3(R+1)D80(xo-yo)-26Dxc(xo,yo))
therefore, since 02 < 2(Ye¢ + /n) and E%n < /¢ +/n, and by (4.11)
0
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(1+Ay)lue-un)+l < (14Ay)26 + 21DvI(L+28) (Fe+vn) +

+ Aw (46) + AcR(1+E)2(E+25)(/'e+/?\) .

H,max(R, —“R’;” 1DBI+1)

Letting 6 ¢+ 0 we obtain

1
1+Ay

(4.12) l(ue-un)+l < (21bvIL + 2)c_ (1+1)D) (/e+/n)

and thus the result.

Proof of Lemma 4.1. Here we prove a more general estimate which has (4.4) and

(4.5) as special cases. In particular, for € > 0 let H, He Ci(!p X R x RN

satisfy (H2), (H3) and (H5) with the same constants C, cR and Yy = YR for

R > 0, Moreover, let v, ve ci(ny) and choose Rj > 0 so that

max(20vi+ C, 2Ivl + C) < Ry -

If A >0 4is so that 1 + 2Ay > 0, 1 + A(y=1) > 0 and 1 + A(Y-CR ) >0 and

0
u., ug e CZ(IN) n BUC(RN) are solutions of

- + + -eMu +u_ + u,Du)=v
eAue u H(x,ue,Due) = v and Aue u, H(x,ue, us) v

then

1
1+Ay

(4.13) !ue-;el < (hv=vl + A sup, [H(x,x,p) = Hix,r,p)|)

xeR -
|r|<m1n(luel,luel)

Ipl <nin(L ,L )

her =1 d L_ = tDu_I.
where Le Dusl ard Lc Duel

As usual and without any loss of generality here we show only

1
1+Ay

(4.14) I(ue-;e)+l < (lv=vi + A sup, IH(x,x,p) - H(x,r,p)|)

xe —
|r|<m1n(lu€ﬂ,luel)

lpl‘min(Le,Le)
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To this end observe that, if '(“e-;e)+l = 0, there is nothing to prove. So
we assume that
1o a1 >0 .
In this case let ¢ : RN + R be defined by
*0) = (u x)=u xn* .

Since ¢ is bounded, for every 6§ > 0 there is a point x, € ®' such that

&(x,) > sup, ®(x) - § .
0

Let e Cy(X') be such that 0 < g €1, &(x,) =1, [DZ] <1 and |Agl <1
and define Y : RN + R by

¥(x) = &(x) + 248z(x) .
Since ¥ = & off the support of § and

Y(xi) = 0(x1) + 28> sup, ®(x) + &

X€R
there is a point x, € B such that
(4.15) Y(xo) > ¥(x) for every x € RN .
- .+
l(ue-ue) ]
Then for § < R it is easy to check that

- + - - 4
(ue(xo)-ue(xo)) = ue(xo) - uc(xo) > '(“c-“e) 1-28 .
But then x, is a maximum point of x + ue(x) - ;s(x) + 28¢g(x). This,
together with the fact that u e’ u € e Cz(l") satisfy the equations stated at

the beginning of the proof, implies
ue(xo) - ue(xo) < -28¢ + Mﬂ(xo,ue(xo),me(xo)) -
= Hxg,u (x,),Du (x,) + ch(xo)) .

If we assume (without any loss of generality) that Iuel = nu.n(luel, I;el) and

Lc = Mn(ne,ne), then
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(1+M)(ue(xo)-.\;t(xo))+ €< =28 + sup, |H(x,x,p) - i(x,r,p)l +
ltﬁ‘uel

sl

+ dw - (28) .
H,nax(luel,Le)

Letting & ¢+ 0 we obtain the result.
Since (4.4) and (4.5) follow from (4.13) the same way that (3.9), (3.12)

follow from (3.4) we omit their proof.

Remark 4.1. Once one has (4.4) and (4.5) the existence of the viscosity

solution u @ BUC(®Y) of (0.3) under the agsumptions of Proposition 4.1
follows immediately from usual compactness arguments. The only reason we give

a different proof is to establish the explicit estimate on luc-ul.

Now we continue with thé proof of Theorem 2. As in the case of Theorem 1
here we approximate H and u; in a suitable way so that the resulting
problems have viscosity solutions (by Proposition 4.1). Using the a priori
estimates we have about the viscosity solution together with Proposition 3.3,
we can conclude that (0.3) has a solution.

Proof of theorem 2. For the given n and H and regardless of whether K
satisfies (H4) or (H5) let Ry > O Dbe such that

(4.16) 2Inb +Cc + 1 ¢ R,
where C 1is given by (H2). Then choose XD >0 so that for 0 < A< Ao

+ 2)
1 2 YR >0

0
(4.17)
1 4+ A(YR -1) >0
0
and
58




) >0

(4.18) 1My e
0

0

in the case that H satisfies (H5), where YR is given by (H3) and is
0

assumed to be YR €0 and Cr +1 1is given by (H5). The claim is that, for
0 Y]

every A such that 0 < A < AO' (0.3) has a unique viscosity solution. The
uniqueness follows from Theorem 1.1 and the choice of A since by Proposition
3.4(a), any solution u e BUC(IN) is such that

ful <

(Inl+)c) < Ro .

Here we establish the existence. To this end we first observe that it

1
1+dy

suffices to assume n e Ci(ly). Indeed for the given n € BUC(R') we can
find a sequence n, e Ci(lﬂ) so that
In 1 < Inl
m

and

In -al + 0 as m » @

m

If we know that (0.3) has a viscosity solution for n e Ci(lﬂ), then for
every n and A as above

u + AH(x,um,Dum) = n

will have a viscosity solution u, e BUC(!F) such that

Iuml < Ro .
But then theorem 1.1 implies
lu ~u 0 < _ In ~n_1
UnUt < Ty ey

i.e. there exists a u e BUC(RF) such that u, *u uniformly on e as
m + ®, Then by Proposition 3.2, u is the viscosity solution of (0.3).
- N
Next for every positive integer £ let Hk : RN x R x R'l + R be defined

by

- H{x,u,p) for Jul] < Ro
Hl(x,u,p) = wip/2)

u
H(x, T;T Rye P) for |u| > R
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where w € C;(IF) is as in (2.30). 1It is easy to see that for every ¢

(1) iz e suc( x r x &)

(1i) sup lil(x,0,0)l = C
x

(ii1) i;(x,r,p) - Ez(x,s,p) > YR (r-s) for every x € IF, pe lF and

0
r>s

(iv) i; satisfies (H4) or (H5) depending on whether H satisfies (H4) or

H H
(HS) respectively. Moreover ARl < AR for R> 0 and ch < CRo
for R > 0.
Also observe that as L + =, il(x,u,p) + H(x,u,p) uniformly on
] x [-no,aol x BN(O,R) for every R > O,
Now for each 1 1let Hl e Ci(lp X R x f’) be nsuch that
- 1
(1) "‘z'“z' < :
. (11) sup Iﬂl(x,0,0)l <€C+1
x
,P N
(1i1) ul(x,r,p) - Hz(x,s,p) > R (r-g) for x e +PER and r >s
0
Hy
(iv) If H satisfies (H4), then Hl also does and AR < AR+1 for R > 0
By
(v) If H satisfies (H5), then Hl algso does and CR < 2C for R >0

+
Ro 1

(vi) Regardless of whether H satisfies (H4) or (HS), Hl always satisfies

(E5) for some constant E: for R > 0.

Because of all the above in view of Proposition 4.1, for each £ the problem

N
u, + Hz(x,ul,bul) =n {n R

has a unique viscosity solution u, e BUC(IP). Moreover, because of (i)

above, Proposition 3.4 and (4.17), (4.18), for every { we have
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1

luzl < T:i?__ (Inh + (C+1)1) < Ro
R
(i}
(4.19) and
w (€) < f(g) for € > 1
Ye

where f : [0,») » [0,) is such that f(0+) = 0. In particular, if H

satisfies (H4), then for € < 1

1

f(e) = ;:;;;—

(2¢))

(2uh(€) + AA12R0+3

and if H satisfies (H5), then

1 =
1+A(YR —2¢ ) (IDnl + 2cR A)e = Le .

+1
+
0 Ro 1 0

fle) =

We want to show that {ul} is a Cauchy sequence in RUC(R') i.e. that

for every a > 0 there is a 20 = Eo(a) > 0 so that if ¢,2' > lo, then

Iul-ul,l <a .

This, in view of Proposition 3.2 will finish the proof of the theorem. To

this end and for a > 0 arbitrary but fixed let 1 > € > 0 be so that
1

(4.20) W wn(s) < a/3
and 0
(4.21) — A (2€) < a/3
‘ 1+1y 12R, +3
R 0
‘ 0
if H satisfies (H4), or
A =
(4.22) ryw 2CR +1(1+L)e < a/3
Ro 0

if H satisfies (H5). Having chosen € as above, next select 20 so that

for £,8' > lo
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—_— sup 4 (x,r,p) = H ,(x,r,p)| < a/3
1+XYRO xelN £ £
Jr]) <R
(4.23) sa

lpl(min(-zg +1,;)

where in the case that H does not satisfy (HS), 2 = o, Then, in view of
Proposition 3.3, for t,L' > zo we have

fu,~-u < a

o !
and thus the result.

As a corollary of the above proof and Proposition 3.5, we state without a

proof the following proposition.

Proposition 4.2, If H satisfies (h1), (H2), (H3) and (HS) and

ne CS"(IF), then (0.3) has a unique viscosity solution u e CS"(IF).

Remark 4.2. If H 1is independent of u, then the above proof gives
Ao = w, JIf H satisfies (H3) and either (H4) or (H5), so that the constants

are independent of R, then Xo is independent of |Inl.

Remark 4.3. One can prove theorem 2 by using compactness arguments, once
Propositions 3.4 and 4.1 are proved. Here we gave a mere constructive proof

to establish the uniform convergence of solutions of approximate equations.
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