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ABSTRACT

Equations of Hamilton-Jacobi type arise in many areas of application,

\ including the calculus of variations, control theory and differential games.

-Recently M. G. Crandall and P. L. Lions introduced the class of Oviscosity
"

solutions of these equations and proved uniqueness within this class. This

paper discusses the existence of these solutions under assumptions closely

related to the ones which guarantee the uniqueness.
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SIGNIFICANCE AND EXPLANATION

Equations of Hamilton-Jacobi type arise in many areas of application,

including the calculus of variations, control theory and differential games.

However, nonlinear first order partial differential equations almost never

have global classical solutions, and one must deal with generalized

solutions. The correct class of generalized solutions for equations of

Hamilton-Jacobi type has recently been established by M. G. Crandall, L. C.

Evans and P. L. Lions. Here we give some existence results concerning this

solution, under assumptions similar to the ones guaranteeing its uniqueness.
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EXISTENCE OF ViscosIry SOLUTIONS OF HA14ILTON-JACOBI Q2UATIONS

Panagiotis E. Souganidis

INTRODUCTION

Recently M. G. Crandall and P. L. Lions ([2]) introduced the notion of

viscosity solution for nonlinear scalar partial differential equations of the

form

(0.1) F(y,u(y),Du(y)) = 0 for y e 0

where 0 is an open set in Ra, F : 0 × R × R' R is continuous and

Du = (3u/3y, .. ,au/3y m ) denotes the gradient of u (also see M. G.

Crandall, P. L. Lions and L. C. Evans [1]) . They used this notion to prove

uniqueness and stability for a wide class of equations of the form (0.1), in

particular for the initial value problem

-t+ (t,x,u,Du) = 0 in RN  (0,T]

(0.2)

u(x,0) = u 0(x) in RU

and the stationary problem

(0.3) u + Aii(x,uDu) 
= 

n(x) in RN

Moreover they proved existence of the viscosity solution of the model problems

+ H(Du) = 0 in R
N 

x 0,T](0,T

(0.4)

u(x,0) = u0 x) in R

and

(0.5) u + H(DU) = n(x) in R"

This paper discusses the existence of the viscosity solution of the more

general problems (0.2) and (0.3). The assumptions made here are closely

related to the ones for which M. G. Crandall and P. L. Lions proved the

uniqueness -)f this ulution.

j Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



We now formulate typical hypotheses and describe the results. As far as

H : [0,T] x R x R x RN + R is concerned throughout this discussion we will

assume

, nn1 N XRxN( H i C([),T] x R x R ) is uniformly continuous in

(0,T] x RN x (-R,R] x SN(0,R) for each R > 0

and

There is a constant C > 0 so that

(H2)
C s sup IH(t,x,0,0)I < (**)

Moreover we require some monotonicity of H with respect to u. More

precisely we assume

F For R > 0 there is a yR e R such that

(H3) H(t,x,r,p) - H(t,x,s,p) ) YR(r-s) for x e R , -R 4 s ( r ( R

0 4 t 4 T and p e R
N

Finally we will have to restrict the nature of the joint continuity of H.

The following two assumptions will be used:

(*)
C k(0) is the space of k times continuously differentiable functions

defined on 0.
C.(0) consists of functions in Ck(0) which together with their

derivatives are bounded
% (0) consists of Functions in Ck(0) which togeher with their

derivatives have compact support

DN(xo,R) = {x e R : Ix-xl I SR}.
(**)

WT x (0,T], x = [ 0 f0,T] where T e (0,-)

-2-



f If AR (a) = sup{jII1(t,x,r,p) - H(t,y,r,p)I I x-Y 4 OLx-yjIpj 4 R,

(114) Ir{ 4 R, t e [0,T] 

then lim AR(a) = 0 for any R > 0
0+0

F For R > 0 there is a constant C R > 0 such that

(H5) IH(t,x,r,p) - H(t,y,r,p)l - C R(1+Ipl)ix-yl for t e [0,T], Irl 4 R

and x,y,p e RN R

The theorems are:

Theorem 1. Let H : [0,T] x R x R x RN + R satisfy (Hi), (H2), (13) and

either (H4) or (M5). For any u0 e BUC(R
1 ) there is a T = T(lu 0° ) > 0 and

u e BUC(QT) such that u is the unique viscosity solution of (0.2) in

T. (*
) If moreover yR in (H2) is independent of R, then (0.2) has a

unique viscosity solution in Q for every T > 0.

Theorem 2. Let H : R x R x R + R satisfy (Hi), (H2), (113) and either (H4)

or (H5). For any n e BUc(RN), there is a X0 = X(Inl,y R ) siich that for

every X, 0 < X < X0' (0.3) has a unique viscosity solution u e rPC(RN )

Several existence results for the problems (0.2) and (0.3) (including

versions with boundary conditions) can be found in P. L. Lions [7,8]. His

assumptions generalize (H5) but not (H4). However, for (0.2) he requires a

Lipschitz condition in t. Moreover, W. H. Fleming (14]) and A. Friedman ([61)

established earlier some existence results concerning (0.2) in the almost

(a)

BIC(O) is the space of hounded uniformly continuros fnctions ,injud on 0.
If u : 0 -R U then IBull S u( x)

-3-



everywhere sense, under Lipschitz type assumptions for all the arguments of

H and u 01 (N) ) Finally, the scope of the existence result. has

been recently extended by G. Barles ([0]).

The paper is organized as follows. Section 1 recalls the definition and

some basic properties of the viscosity solution of (0.2). It also contains

some new results about this solution. Section 2 is devoted to the proof of

theorem 1. Moreover, as an intermediate step towards the proof of this

theorem, we give a result about the convergence of the viscosity

approximations with certain explicit estimates. Sections 3 and 4 are devoted

to the stationary problem and have the same structure as sections 1 and 2.

Finally, we would like to thank Professor M. G. Crandall for helpful

discussions and good advice.

(a)
M o (0) Is the set of (bounded) Lipschitz continuous functions defined
on
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Section I

We begin this section with the definition of the viscosity solution of

(0.2). We have

Definition 1.1 (5.1 [21). Let H e C([O,T x R R f ). A function

u e C(QT) is a viscosity solution of

au
t + H(t,x,u,Du) = 0

if for every # e C(Q

(1.1) if u - attains a local maximum at (x0 ,t0 ) e OT, then

t (l0t0) + H(t'x 0 'u(x0 't0 ) D4(x0 't0 )) 4 0

and

(1.2) if u - attains a local minimum at (x0,t 0 ) e QT, then

2A (x0 't0 ) + H(t0 'x0 "u(x0,t 0 ), Do(x0 't0 )) ; 0

If moreover u e C(QT) and u(x,0) = u0 (x) in RN , we say that u is a

viscosity solution of (0.2).

Remark 1.1. In a similar way u e C(QT ) is said to be a viscosity sub-

solution (respectively supersolution) of (0.3) if (1.1) (respectively (1.2))

holds and u(x,0) u 0(x) (respectively u(x,0) ; u 0x)) in Ij.

Remark 1.2. Definition 1.1 and Remark 1.1 are a combination of Definition 2

and Lemma 4.1 of [I].

Next we state the theorem about the uniqueness of the viscosity solution

of (0.2) as well as some other important results of [2] concerning this

solution.

Theorem 1.1 (V.212)). Let u,v e Puc(R ) be viscosity solutions of the

problems

+ H(t,x,u,Du) = 0 in Q + H(t,x,v,Dv) = 0 in T
~anti

u(X,O) u0 (X) in R v(x,0) = 0(x) in R

! -5-
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respectively where H : 0,T] xR R I? -- R satisfies (Hl), WH) and

either (H4) or (H5). Let R0  max(IuE,EvI) and y = y *Then for

t e [0,T]

(1.3) Iu(-,t) -v(*,t)I 4 e'Ytlu -v I

In particular (0.2) has at most one viscosity solution.

Proposition 1.1 (1.11 [2]). Let T > 0, Y e R and g,h e C((0,T]D. Suppose

that for every n e C (0O,T)), if g-n attains a strict local maximum at

to e (0,T), we have

n' (t 0) + Yg(t 0 ) 4 h(t 0

Then for 0 4 s 4 t 4 T

(1.4) e 'tg(t) 4 e Ys g~s) + ft ey'h(Tr)dt

Remark 1.3. The assumptions on g in the above proposition are equivalent to

saying that g is a viscosity solution of

g+ Yg 4 h

as it is explained in [2].

Proposition 1.2 (VI.1[2]). For £> 0 let u Ce cb (UT) be a solution of

a3u

at CAu C + H C (t,xoU C ,Du ) 0 in -

u C (x,0) - u OE(x) in I?

wih u au~ CeC(Q ). Assume H H nfrl on N0T xI
wit I~- ax iax e T He uiomyC0T

[-R,R] x B (0,R) for each R > 0. If E 1 + 0 and u +u locally
n

uniformly in QT' then u e C(QT) is a viscosity solution of

Tu + Ht~x,u,u 0 inQT

NIf moreover u05 + uO uniformly in R and u C+ u uniformly in QT
n

then u is a viscosity solution of (0.2).

-6-



Proposition 1.3 (1.212]). Let Un e C(QT ) be a viscosity solution of

i + H (txuD ) = 0 in )

u n(x,O) = u Onx) in R .

Assume H + H uniformly on 10,T] x R x [-R,R] x N (0,R) for each R > 0.

If un + u locally uniformly in QT , then u is a viscosity solution of

au

T + H(t,x,u,Du) = 0 in QT

If moreover uOn + u0  uniformly on R and un + u uniformly on QTV

then u is a viscosity solution of (0.2).

Now we give a result which describes the evolution in time of the "off

the diagonal" difference of the viscosity solutions of two problems of the

form (0.2). To this end choose a e C 0(R ) and y e C (R) so that

r 0 4 8 1 1, $(0) = 1, ID01 4 2 and

( )(x) 0 if lxI > I

and

0 4 y 1, T(0) = I and
(1.6)(

Y(t) 0 if 1t > I

For c > 0 set ( lx) 81) and y (t) = y(W). we have

Proposition 1.4. Let u,u e BuC( ) be viscosity solutions of the problems

2t + + H(t,x,u,D ) = 0 in T

a N and 3

n = u(x,O) = u (x) in R

respectively, where u0, u0 e BUCCR ) and 11,W [0,T] x RN x R x RN + R

satisfy (HI) and (H3) with the same constant y R 0 for each R > 0. Let

R0 - max(luI,lul) and y = yR0. If for R ) R0  and c > 0, D, A are such

that

-7-



D = {(x,y) e R x R Ix-y C}

and

N N N
A {(t,x,y,r,p) e [0,T] x R X R x R x R (x,y) e D

IYIT
Irl < min(uUllfivll), 1p1 min(

6
Re E  + 1, L

where

L = min( sup I1Du(.,T)1I, sup IDu(.,T)II)
[0,T] [0,T]

then for every T e [0,T]

sup {Iu(x,T)-u(y,T)l + 3Re- YTC (x-y)} 4 e- Y T sup {u 0(x)-u 0 (Y) +
(x,y)eDE  (x,y)eD5

(1.7)

+ 3RE (x-y)} + e-YTT sup IH(t,x,r,p) - H(t,y,r,p)j

(t,%,y,r,p)eA

Remark 1.4. The assumption that H, H satisfy (H3) with the same constant is

not important. It is made only for simplicity. Moreover one can always

reduce to the case yR 4 0 for every R > 0.

Proof of proposition 1.4. For T e [0,T) let m ±(T) be defined by

(1.8) m±(r) = sup {(u(x,T) - u(y,T))+ + 3Re yTE (x-y)}
(x,y)eD

Then obviously (1.7) follows from

(1.9) m (T) < e-YTm± (0) + e sup IH(t,x,rp) - H(t,y,r,p)l fTeY~do

(t,x,y,r,p)eA

(*)

For u 0 - R, IDull denotes its Lipschitz constant. If u is not
Lipsciitz continuous, then 11T1= ".
(**)

r+) denotes the maximum' of r (respectively -r) and 0.

9 -8-



Moreover, since Mt e C( (0,T] ) (u,v e PTJC(T)), in view of Proposition 1.1
+

and Remark 1.3, it suffices to show that M-T) is a viscosity solution in

(0,T) of

(1.10) (m )' + Yin sup IH(t,x,r,p) - H(t,y,r,p)l

(t,x,y,r,p)eA

+Finally here we work only with n +, since for the proof of the m- case, one

uses exactly the same arguments.

J +

To this end, for n e C ((0,T)) let T e (0,T) be such that m - n

attains a strict maximum on I = [T-a,T+a] c (0,T) for some a > 0. We want

to show that

+
(1.11) n'(;) + Ym+(C) < sup IH(t,x,r,p) - H(t,y,r,p)I

(t,x,y,r,p)eA

If inCt) = 3Re- 'T then t is a local maximum of 3Re - Y T - n(T) in (0,T),

since for every T e [0,T] it is

+ -yTIn (T) ) 3Re

Thus

YT +
n'(T) = -y3Re -YT -y (CT)

and (1.11) is obviously satisfied. So without any loss of generality we may

assume that

+ -y
(1.12) in (T) > 3 Re T

N NIn this case and for 6 > 0, let 0 : R x R x I x I R be defined by

( t+s)

+ 2
D(x,y,T,s) = (u(x,T) - u(y,s)) + 3 e (x-y) +

(1.13)

+ (3: + 2 11n !1) y C ( - s )-n ( - -)

where y6 (t) = y(t/6) is defined by (1.6). Since 0 is bounded on

tU q
R x R x I x 1, for every 6 > 0 there is a point

N RI c(x I r~s ) e R x Rx I X I such that

-t



(xlYlZl, 1 )  > Nx P -
R XR x]XI

Next select e C (RN x RN ) satisfying 0 4 4 ( 1, C(xl,y I ) = 1, ID4I 4 1

and define T R XR xI x I R by

(1.14) Y(x,y,T,s) = O(x,y,T,s) + 26S(x,y)

Since Y = 4 off the support of C and

Y(x 1 ,y1 FT1 1 s I ) = (x 1 ,Y 1 ,T 1 ,s 1 ) + 26 > N sP +

R XR XIXI

there exists a (x0 ,y0 ,T0 ,s0 ) e R
N x RN x I x I such that

N N(1.15) T(x 0 ,Y 0 ,t 0 ,s 0 ) > Y(x,y,T,s) for every (x,y,T,s) e R x R X I x I

Moreover for 6 < R/2

(1.16) ITo-s 0 1 6

Indeed suppose not. Then (1.15) and (1.6) imply

- T+ 0 s
2R + 3Re - Y ( T + u ) - n( -0 ) + 26 > T(x 0 ,y 0 ,T0 ,s 0 ) > T(x,x,T+u, +)

) 3Re - ( u + 3R + 21ni - n(T+u)

i.e. 26 > R + 21n - n(T+a) + n(0 0
2

i.e. 6 > R/2 .

Now we assert the following about (x0 ,y0 ,t0 ,s0).

As 6 + 0 Ix 0 -Y0 1 4 C, T0 ,s 0 + T and

(1.17) (U(XoT - U(Yo,So)) + 3Re C(Xy 0 ) = (u(x0 ,T0 ) -

S 

++(u(Y0 ,s0)) + 3Re C (x 0 -y 0 ) + m+(t)

Indeed let 6 be so small that

26 + In(s) - n(t)I < R

for Is-ti < 6/2. If Ix0 -Y0 I > c, then (1.5), (1.15) and (1.16) imply

-10-



A

02R + 3R + 21n1 + 26 - n( ) '(0Y,0S ) (xx, 0,)

> 3Re + 3R + 21ni - n(T 0 )

T0+s0
i.e. 26 + n(T O) - n( ) R

which is a contradiction. Note that here is where we really used the

assumption y 4 0. Moreover, suppose that as 6 + 0 torso + T e I along a

subsequence (which for simplicity is denoted in the same way as the

sequence). Again (1.15), together with the facts that u,u e BUC(Q ) and

Ix 0 -y 0 1 4 C, implies that, for every (x,y) e R x R and r e I, it is

_I ( T+s) T +s2 0- + 0 0u(Y r T) -u(Y0,s0)I + m (To) - n( ) + 26 +

+ 3R + 210 ; T(x 0 ,Y 0 ,T0 ,s 0 ) ;0 T(x,y,T,T) ) 3R + 21n1l +

+ - Y
+ (u(x,T) - u(y,r)) + 3Re (x-y) - n(T)

1 (T +s) 0S
i.e. e 2MY 00To -u(Y 0 s 0 )I + m(T) - n(2 ) + 26 •

+
> m (T) - n(T)

Letting 6 + 0 we get

+. T +
m () - n(r) ) m (T) - n(T) for every i e I

But then T = T, since T is a strict maximum of m
+ 

- n on I. Next

observe that (1.15) and the fact that t0 rs0 + T as 6 + 0 imply that

T 0+S 
0

+ - u + 2
m (T) - n(T) > lim {(u(x0,T 0 ) - So)0 + 3Re ;S(x0 -y 0  nCT) P

6+0
S0 +s 0

+ 2
; lim {(u(x0 ,T0 ) - u(Y0 ,s 0)) + 3Re ((x0 -y0 )} - n(r)

---

m (T)-n(-



• 1

r0+s0

i.e. (u(x0 , 0 ) u(y0 s0 )) + 3Re 2 (x 0 -y) m ()

Finally, if along some subsequence 6 + 0, it is

(u(x0 ,T0) - u(Y 0 ,S 0 ))
+ 

= 0

then

m(T) - 3ReYT

which contradicts (1.12).

Next observe that (x0 ,T0 ) e QT is a local maximum of (X,T) * u(x,T) +

T+ S 0
-Y'- -- t+s0

3Re 2 (x-Y0 ) + (3R+21nl)y6 (T-S ) + 2 6 (x,y0 ) -n(--) and

T 0+ST0+
2

(Y0 ,s0 ) e T is a local minimum of (y,s) + u(y,s) - 3Re 8 x0 -Y) -

(3R+21nl)y 6 (T-s) - 26 (x0 ,y) + n(---). In view of (1.1) and (1.2) we have
2

T 0+S0T0+s - 0
(3R+21inI)y (T -s ) + - n (-) + 3Re 2 (x0 0 2 2 2 C E y

T0+s0

+ H(T0,x0 ,u(x0,T0 ), - 3Re 2 Da(x 0 -y0) - 26D x(x0,y)) 0

and

T0 +S+
n'R+1II fl(--' ) ---X

0 4 -(3R+21nH)y.(T0-s0) - n - 2 3Re 2 (x0-Y +00 2 2 2 0 0

T0+0

+ H(s0 ,y0 ,u(y0 ,s0 ), - 3Re 2 Da3(x0-Y 0 ) + 26DyC(x 0 ,y0 ))

Combining these two inequalities we obtain:

+sT - 1(T +5)
+ 2 0 0 0 E 0 -y0 )

2- +xYo) ,,Yu(y0 ,S0 ) -3Re (0+s0)

-12-



T0+s 0

26D y (x0,y0)) - H(T0,x0,u(XoT 0 ), - 3Re DBE(x0 -Y0 ) - 26D x(X 0y

To continue we assume that lull = min(lullull). (If not then one has to

modify the rest of the proof in an obvious way.) Then in view of (1.17) and

(H3) and for 6 small, we have

T0+s - ( +s)

n'( 2) + Y{(u(x0 T0 ) " u(Y0 ,S0 )) + 3Re 2 (x0 -y0 )} 
(

-2(0+s 0

( H(s 0 ,Y0 ,u(y 0 ,S 0 ), -3Re D0 0 (x 0 -y 0 ) + 26Dy (x0 ,Y0 )) -

- X(~T +S- 2 0+0 )

- 1(T 0 ,x 0 ,u(Y 0 ,s 0 ), -3Re DBE(x 0 -y 0 ) " 26Dx (x0 ,y 0 ))

Next observe that for 6 < 1/2

2(T +s
1-3Re 2 0 0 DO (x0-Y0 ) + 26Dy (x 0 ,y 0 )I,

1-3Re Dx 0 Y0 ) _ 2(D (x 0 ,Y 0 )I 4(+)1) 6Re' + I

Moreover if L < - and (without any loss of generality) L = sup NDu(, T)I,
0 4tT

then, since x0  is a maximum point of the mapping x + u(x,T0 ) +

20

+ 3Re 2 0 (x-Y 0 ) + 26 (x,y 0 ), for x e il we have

- ( T + S o  T ( T + s o
3Re 20 a(x-Y0) + 26C(x,y0 ) - 3Re 2i (x0-Y0 ) - 26 (x0 ,y0) '

4 Ljx-x •

-13-



But this implies that

- -'( T0+S 0

13Re 2 0 0 DO (x 0 -y 0 ) + 26D x (x0
' y 0 )1 4 L

Combining all the above we obtain

T0+s - 2C(T +s
n'( 2 ) + y{(u(x0,T 0 ) - u(y,S)) + 3Re 2 (x 0-Y0)

2 000 

SH(Try0,u(ys0), -3Re D C(x 0-y ) - 2D x (x0,y 0 ))

0000 "(000+s00

- H(T 0 . X 0 , u ( y 0 , s 0 ) -3Re D C(x0 -y 0 ) - 26Wx1 ( x 0 , y 0

+ W - 6 ReIyIT (46)

H. max( + 1,R)

sup IH(t,x,r,p) - H(t,yr,p)I + w RyIT (46)

(t x,y,r,p)eA , max(6Re +1Tmax - + 1g,

where for R > 0, W_ _() denotes the modulus of continuity of H on
H,R

[0,T] x RN x [-R,] x B N(0,R). Letting & 4 0 in the last inequality we get

(1.11).

Next we use Proposition 1.4 to establish several properties of the

viscosity solution u e BUC(QT ) of (0.2). In particular, we describe the

evolution in time of the norm, the modulus of continuity (in the x variable)

0,1 (4
and the Lipschitz constant (in the x variable) if U(I,T) e C CR ) for

b

T e [0,T]. Moreover we give an estimate for Iu(,T) - u 1 in the case that
0,1

u e Cb (R N). Before we state the results we introduce a notation for the

modulus of continuity of a function f 0 + R. It is

(1.18) f (r) = sup If(x) - f(Y)l

Ix-yi r

-14-



A

N N

prpsiin1.5: Let ji (0T 11 R x R x R N +~ RSatisf~y ("1l) an1 (03) with

Pro 0 for every > 0. If for un e 3oc| (y), u e Buc(QT ) is a viscosity

solution of (0.2), let R > Jul an6 1 = R" The folowing are true

(a) If H satisfies (H2), then

(1.19) lU(,T)l e e'Y(tC + ku 
0 1 ) for every T e 10,T1

where C is given by (H2).

(b) If H satisfies (H4), then for I > r > 0

(1.20) W(+,I) 
€ e-(T(2 u (r) + TA (+2 2r)) for every T e !0,Tj

(c) If H satisfies (1j5) and for every T e [0,T), u( T) e COV(R) with

L= sup IDu(,T)
1 , then for every T e [O,T1

(1.21) IDU(6,T)I ( e-'YT (L 0 + T[CR(+IL)I)

where L - IDu 01 and CR is given by (115). Moreover

T (2CCe Y- i)

(1.22) L 4 e (L0 + TCR

(d) if u0 e c b  (a ), then

(1.23) u(-.T) - U 0 1 e _YT sup _ 4(t,x,r,p)l for every T e (0,T1

(x,t)eQT

IP 41DUo I
r),l(%t'u 0n su 1( 

,
"  ,L

(e) if for every T e (0,T], u(., ) e c0 1() and sup Du(T)l L,

b 0 4r T

then u 0 (T) and for t,s e (0,T]

Ib



(1.24) lu(o,T) - u(-,s)1 4 IT-sle IT sup - IH(t,x,r,p)l
(x,t)eQT
Irl <nun
lp l '.

Proof. (a) We apply Proposition 1.4 to u and u = 0 which is an obvious

viscosity solution of the problem

-u+ 0 = 0 in Q
at T

N
u(x,O) 0 in R

Then, for T e [0,T] and E > 0, (1.7) implies

Iu(.,T)i + 3Re- YT < sup {Iu(x,t)l + 3Re- YT (x-y)} €
(x,y)eD

( eY sup {lu 0 (x)l + 3Re - Y T + e-YTT sup IH(t,x,r,p)l
(x,y)eD (t,x,y,r,p)eA

But in this case

AC = f(t,x,y,r,p) : t e [0,T],Ix-yl 4 E,Irl 4 min(Nun,0),

4p1 min(6 R e ly lT + 1,0)} = {(t,x,y,0,0) : t e [0,T], Ix-yI ; E}

So

sup I!(t,x,r,p)I = sup - IH(t,x,0,,l)I = C
(t,x,y,r,p)eA (t, x)eQT

This implies (1.19).

(b) For I > r > 0 fixed, let e RN  be such that

Il 4 r

If u Q R is defined by

u(x,T) = u(x+5,T)

-16-



then obviously u e BUC(Q T). Moreover u is a viscosity solution of

au- -+ H(t,x+tu,Du) = 0 in QT

N
u(xO) = u0 (x+) in R

To see this, we have to check (1.1) and (1.2). Here we only prove (1.1),

since the proof of (1.2) is identical. To this end, observe that, if for

e c (QT), (x 0 , 0 ) e QT is a local maximum of u - t, then (x 0 +t,T 0 ) is a

local maximum of u - *, where *(y,T) - *(y-t,T). By (1.1) we have

at (x 0 +4eT 0 ) + HIT 0 ,x 0 + ,u(x 0 +,T 0 ),D*(x 0 +toT 0 )) 4 0

i.e.

at o0 O) + H(To*X0 + ,u(xoTo),D#(xo,To)) 4 0

Now applying Proposition 1.4 to u, u for T e [0,T] and C - r we have

spUuJxr)-u(x+E,T)l + 3Re- YT 4 sup (lu(x,T)-u(y+E,T)I + 3Re- T .(x-y)1 '
xeR (x,y)eD rr

e-YT sup Iu0 (x)-u 0 (Y+E)l + 3Re
"7 T + e'TT sup IH(t,xgs,p) -

(x,y)eD r(t, xys,p)eAr

- H(t,y+C,s,p)I

But in view of (1.18) and (H4)

sup Iuo(x) - Uo(y+;)I < w (rtl-1l) ow (r)
(xy)eD r00

andr

sup IH(t,x,s,p) - H(t,y+&,s,p)[ C sup fIH(t,x,s,p) -
(t,x,y,s,p)eA te([OT

r Ix-yI Cr

Is IR

[pl<C e  +1r

H(t,y+A,s,p)l1 A (2r)A12Re I 1+1

thus the result.

-17-



(c) For F~e R" define u Q4R by

u(x,T) - u~x+&,tr)

Thn eBU( T U(,)eCb (? for every T e BUC(E and as shown in

(b), U is a viscosity solution of

7-~ + H(t,x+&,u,Dui) -0 in Q
t T

- RN
U(X,0) u 0xW inR

Applying Proposition 1.4 to u, u for T e t0,TI and c > 0 we have

SUpIU(X,T)-U(X+E,T)I + 3Re' 4 sup {Iu(X,T)-U(y+E)I + 3Re 0 C x-y)}
x Cx~y)eD~ C

4 _T(sup 1u 0(W - u O(Y+E)I) + 3Re Y +
Cx, y)eo E

+ e- TT sup IH~t,x,r,p) - H~t,y+E,r,p)I
(t~x1Y~s~p)eA~

and therefore

SUPIU(X,T)-U(X+4,T)I 4 e- YL C+IU1) +
x

+ e-T T sup IH~t,x,s,p) - H(t,y4t,s,p)I
Ct, xy,s,p )eA

But in view of the definition of A and (H45) we have

sup IH~t,x,s,p) -H~tgy+g,s,p)I (CR(1+L)CC+IEI)
Ct, x, y sp )eA e

Combining the above and letting E + 0 we get

SUPlU(X,T) - U(X+ ,T)I 4 e- T L 0+ IC R 1+L)]II
x

and thus (1.21).

-18



To prove the second part of the claim, we choose a positive integer m

so that
TC R 

1
0 < _- Yl 2

For i - 1,... tQi Qi, ui and Li be defined by

-- T, -Q, R" x T. -]
a -u

i N I ti-- .L

and

Li " sup IDu(*,T)I

.MC (-I Ti+ TI

where for f 0 R a and C a subset of 0, fIC  denotes the restriction

of f on C. Then ui e BUC(Qi) is a viscosity solution of

(au i

+ H(t,x,ui,Dui) 0 in Qi

u (X, -- T) -u(x, !- T) in or

i

where the obvious extension of Definition 1.1 has been assumed here. Applying

the first part of the claim to ui we obtain

Li -e -L 1  CR( 1+Li) )

T
ieL 4 e (L +C -(1+)

i i- R m i
_ 

T
i.. Li 4 a (lL + CR TII+Li)

-,YT/m
i .e . L i 4 -- T - T ( L i -

+ C R ; )

I-C R

-19-
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(2C _ e-Yr T
i.e. L. ( e m (r +C 'rm

L (Li-I 
+ 

C p T/m)

where here we used the fact that for 0 4 x 4 1
2

x+X 2x

1x 
e e

A simple inductive argument implies (1.22).

(d) Applying Proposition 1.4 to u e 3UC(QT) and u0 e BUc(RN), which is an

obvious viscosity solution of

+0 =0 in Q

N

u(x,0) = u0 (x) in R

for T e [0,T] and e > 0 we have

supIu(xr)-u0 (x)l + 3Re YT < sup fu(x,T)-u
0(Y)I +

x 
(x,y)eD

+ 3ReYT a(x-y)}

e Y T  sup 1u 0 (x)-u 0 (y)l + 3Pe 'YT + e - YT sup IR(tx,r,p)l(x,y )eD
(yeD 

( r,x,y, r,p)eA

therefore

Iu('T)-u01 < L 0 C + e-YT sup IH(t,x,r,p)J

(t,x,y,r,p)eA

But in view of the definition of A we have

sup IH(t,x,r,o)l 4 sup IH(t,x,r,p)l
(t,x,y, r,p)eA. (x,t)eQ 

T

Irl lu0 0
IpI q o

and thus the result

(C) Por any s e (0,T], u is the viscosity solution of

-20-



3~u
T + H(Tx,u,Du) - 0 in lN x (sT]

u(x,s) - u(x,s) in RN

as one can easily check. Then (d), for T e [sT], implies

EuC-,t)-u(.,s)I C (r-s)e - Y T sup - IH(tx,r,p)l
(x,tleQT

IrCluE

and thus the result.

-21-
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Section 2

We begin this section with a result concerning the existence of the

viscosity solution of (0.2), in the case that H and u0  are sufficiently

smooth functions. In particular, we show that the solution of the viscosity

approximation

au- CAu + H(t,x,u ,Du ) = 0 in Q

(2.1)

ueCx,0) = u0(x) in RN

converges as e + 0 uniformly in QT to a function u which is then, by

Proposition 1.2, the viscosity solution of (0.2). Moreover, we give an

explicit estimate on Eu-u I.C

2 N NProposition 2.1. Let H e C ([0,T] x R x R x R ) satisfy (H2), (H3) with

2 NY= YR 0 for every R > 0 and (H5). For u0 e c (R ) and C > 0, let
N (*)0 b

u. e BUC R ) n C2 ' (Q ) be the solution of (2.1) C Then there exists

u e BUC(RN) such that u is the viscosity solution of (0.2) and u. + u

uniformly on QT as c + 0. Moreover, it is

(2.2) sup EuC(*,T) - u(*, T) 1 4 K
SCT

where K is a constant which depends only on lu 01 and IDu 01.

Remark 2.1. M. G. Crandall and P. L. Lions proved the above result in [3] for

the case of (0.4). Moreover estimates like (2.2) have also been obtained by

W. H. Fleming ([5]) and P. L. Lions ([7]) by indirect arguments involving

stochastic differential games.

21u auu e c'(QT) means that Tx. x.' e C(QT)1)Q T

-22-



A

Proof of Proposition 2.1. The existence of such an u follows from standard

theory. (See in particular A. Friedman [6].) Moreover, it is also known that

0,1 N
under our assumptions on H, u0  and for every T E [0,T], uE(1,T) e Cb (R ).

In order to prove the existence of u it suffices to show that as

C + 0 f{u E forms a Cauchy family in BUC(Q T. Indeed then there exists

u e BUC(Q T) such that u + u uniformly in Q as E + 0. By Proposition

1.2 and theorem 1.1 u is the viscosity solution of (0.2). To this end, we

show that there exists a constant K, which depends only on IDu 0 1 and

Ou0 1, such that for c, n > 0

(2.3) sup IU (",T)-U (*,T)I ( (' + 'in)

0 ( T<T

To prove (2.3) we need the following lemma:

Lemma 2.1. If H, u0 , c and u are as in Proposition 2.1, then for ever>

T e [O,T)

(2.4) lu (,T) I e( e-YT(lu0I + CT)

where C is given by (H2) and

(2.5) IDuC (,T)l 4 e-YTDu 0 + iC R(1 + L ))

where L = sup IDu (.,r)l and R > e-T(lu 0 + CT). Moreover L

0e.(T 0

satisfies

T(2C Re- -y)

(2.6) L E e (IDu 01 + TC R ) L

We first complete the proof of the proposition and then prove the

lemma. Observe that it suffices to show that there is a constant K, which

depends only on lu0 I, IDu 0 1, such that for c, n > 0

+(2.711 sup SUPN (u (x,r) - U (x,T)) < K(' + s 104T41- xeR n

Here we establish only (2.4)+ since (2.4)- can be proved in exactly the same

0 4- 4
way. To this end and for e = + 4n and R > e-Y' (lu 01 + CT), let

-23-



m [0,T] * R be defined by

(2.8) M(T) = sup ((u (x,T) - u n(y,T)) + 
+ 3(R+1)e- T8 (x-y)}

I x-yIL9 0

where 8(w) = 8(), with 8 e C0 (R N) such that

0(0) = 1, 0 4 8 e 1, O(w) = 0 if Iwi > I

S(w) = 1 - Iwi2  for Iwi 4 2-

(2.9) and2

/3
O(w) < 1/2 for Iwl > V3

and R, L are given by (2.6). We claim that m, which is a continuous

function, is a solution of the viscosity inequality

(2.10) m'(T) + yM(T) K X1(/ + In)

where K 1 depends only on lu 01 and IDu II. Before we prove this claim, we

show that it implies (2.7)+. Indeed in view of Proposition 1.1, Remark 1.3

and the fact that y 4 0, for every T e [0,T], it is

m(T) 4 e-YT(m(O) + TK1(V + Vn))

But then

sup(u C(x,T)-u n(X,T))+ + 3(R+1)e - Y T 4 sup [(u C(x,T)-u (y,-:)) +
x I x-yI - 2

x --2

YT ~ Y I xyQ YT
+ e +) B 6 yrY} I - 2j - y~ (~~

+ e' TK (Ve + Vn) e- YT(2(L)
2 

+ 1K )(/c + in) + 3Re
- Y T

11

since 82 = + 4/q)2 4 2(iE + in), and therefore

(2.11) sup(uC (x,t) - Un (xT))+ e-YT(2(L) 2 + TK 1)(E + In)
x

F gr the proof of the claim, let n e C ((O,T)) and assume that T e (0,T) is

a strict local maxinuin of m - n on I =[-a, T+] c (0,T) for some

-24-



.1 > 0. We are going to show that

(2.12) n'(r) + yr(T) (/e + in)

and thus, in view of Remark 1.3, (2.10). If M(,) = 3 (R+l)e then, for

every T e I, we have

3(R+1)e - n(T) ; M(T) - n(T) ) 3(R+1)e - 1(T)

i.e. n'(;) = -y3(R+I)e
-'T

i.e. n'(T) + ym(T) = 0

and thus (2.12). Now we assume that

(2.13) 
m(T) > 3(R+1)e

- Y T

NN
and we define :R x R x I R by

(2.14) *(x,y,T) = C (x,T) - u (y,T))
+ + 3(R+I)e- YTe(x-y) - n(T)

Since 0 is bounded on R x R
N x I, for every 6 > 0 there is a point

N N
(x1 Fy1 1T1 ) e R x R x I such that

(xl,1,T I ) > sup 4 - 6

Next select e C (RxR) satisfying 0 4 4 ( 1, (xly 1 ) = 1, loci l 1,

[A4I 4 1 and define T z N0 xR xI R by

(2.15) T(x,y,T) = O(x,y,T) + 26c(x,y)

Since T = 0 off the support of 4 and

V(x 1,Y1 ,t1 ) O(x1 ,y 1 ,TI ) + 26

there exists a point (x0 , Y0 ,r 0 ) e R x RN x I such that

(2.16) Y(x 0 ,YoT 0 ) • '(x,y,T) for every (x,y,T) e R x R x I

We assert the following about (x0 ,Y0 1 T0 )

For 6 < min(-, Z2U2), Ix0-Y I (L + 26)b and as 6 4 0

a + 0-Y

To r and (u (x 0,T0 ) - un(Y 0 ,T0 )) + 3Re 13 (x0 -y0 ) =
(2.17)<

= u(x 0 ,t 0 ) - u (Y 0 ,T 0 ) + 3Re (X0 y +) m(t)

-25-



Indeed (2.9) and (2.16) together 
with the fact that y 4 0 imply that

2(R+)e 0+ 3(R+)e 08(x 0 -y 0 ) + 26 - n(T0) ( C (x 0 ,t 0 ) " u (Y0 'T0 )) +

+ 3(R+l)e 0o(x0 y0 ) + 26(x 0 "Y 0 ) - n(t 0 ) i

- Y 0

V(x 0 ,y 0 ,T 0 ) 'y(x,x,T0 ) > 3(R+1)e - n(T 0 )

11 26

i.e. 8 6(x 0 Y0 ) ;P - >10  3

3(R+I)e

Thus in view of (2.9) Ix0-y 0 1 4 and

Ix0 -Y0 12

(2.18) 
8e(x0-YO) = 1 - 2

Moreover if (u (xoIT 0 ) u (Y0 ,T0 )) = 0, the above inequalities give

26 -2 02

06 (x 0 -y 0 ) • 1 - 3- 1 • L -

and therefore

Ix0 -Y0 1 
4 LO 2

So we may assumre that (uE(x 0 ,T 0 ) - un(Y0 ,T 0 )) > 0. In this case, in view of

the fact that because of (2.16) x0  is a maximum point of x '- uE(x TO ) +

+ 3(R+1)e - 6 (x-Y 0 ) + 26S(xy 0 ), for every x e R
N
, we have

-Y t 0 
--Yo (

3(R+1)e -0(x-Y 0 ) + 26 (xy 0 ) - 3(R+1)e 88 (x0 -Y0 ) - 26 (x0 'yO) •

C( ,ro ) - u(x,T0) • Ljx-x0 1

Therefore

13(R+I)e D 6 (x 0 "Y0 ) + 26D x (XoY0)I 4 L

-Yt0 
-t 0

i.e. 3(R+1)e 1D8 6 (x 0 -Y0 f) 4 L, + 26 4 6(R+1)e (T+2
6 )

and by (2.18)
-YT O IX0- y0 ( -T0

6(R+I)c - 4 6(R+l)e (L+26)

-26-



i.e. Ix0-Y01 4 (L+26)02

Now suppose that as 6 + 0 To + T e I along a subsequence (which for

simplicity is denoted in the same way as the sequence). For each 6 for

-2 - 1
which Ix0-yoI > Z , we choose Y0 e R such that

Ix0-yol = 1xo-yol + tYo-Yo0

(2.19) and

Ix0-y o
I = LO .

-2 1 -2 2
If Ix0 -y0 1 La let y0 = Y0 . In either case and for 6 < min(1 , L 2 ) it

is

-2 -2
ix0-y01 Le and ly 0-yo0 1 260 .

So, in view of (2.16) and the above observation, we have that for every

(x,y,T) e R" x R x I,

+ - YIt0
(u (N0,T0)-u I(y0,' 0)) + 3(R+1)e (x0-) +

+ W U (Iy0 -y0 1) + 3(R+1)w 6 (ly0-y01) + 26 - n(T0 ) •

) Y(xoyoT O) ) (x,y,T) (UC (x,T) - Ur (y,T)) + + 3(R+1)e- IT(x-y) - n(T)

and therefore

0 022 + 3(R+)e 0

m(o) - n(T ) + W (260 ) +W (262 ) + 26

C 0 n)e - 0
0 (x 0 -y 0 )

+ 26 (x 0 y0 ) - n(t 0 ) k M(T) - n(T)

Letting 6 + 0 in the above inequality we obtain

m(r) - n(T) ) m(r) - n(i) for every r e i

which, in view of the definition of r, implies

T

This proves that as 6 * 0 To T . Moreover In this case, (2.20) also implies

0

~-27-



+ -YT 0
m(T) - n(T) lir (U C(X 0 ,T0)-un(Y 0 ,T 0 )) + 3(R+)e %(x 0 -y 0 )} - (-)

6+0

+ -Y TO

urn {(U(X 0 Tr0 )-U(Y 0 )) + 3(R+1)e O0(x0-yo) - n(T) >

6+0

M ( T ) - n ( )

i.e. lim {(uE (x0 'T0 )-un(y0 ,Ir0 ))
+ + 3(R+l)e 6(x0-y} = M(T)

6+0

Finally, for the last claim of assertion (2.17) observe that if along some

subsequence 6 + 0
+

(u (x0 ,T0 ) - un(yo,o)) = 0

then

m(T) ( 3(R+1)e

which contradicts (2.13).

Next observe that, for 6 sufficiently small, To is an interior

maximum point of T + U (X0 ,T) - u (Y0 ,T) + 3(R+1)e- YT 6 (x -y0) - n(T) in

I, therefore
@u - yr0  1

au (x0 TO) - (y 0 ,t 0 ) y3(R+1)e 
0  n'(T0 ) 0

-- 0 x O ,  -o- 0  0 -0 0

-YT 0

Moreover, x0  is a maximum point of x + u C(x,T 0 ) + 3(R+1)e 8 8(x-yo) +

+ 26(x,y 0 ) in O and y 0  is a minimum point of y + u -

-YT08(0 )

- 3(R+1)e %(x 0-y) - 264(x0 ,y) in R . Therefore

DuC(X0 ,T 0 ) -3(R+I)e T x 0 -y0 ) - 26Dx(X0,Y 0 )

Dun(y 0 , r0) =-3(R+1)e Da8(x0-Y 0  + 26D (x0,Y 0 )

and
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Au (x 0 1 T0 ) + 3(R+l)e Y0 AB ~6 "x0 -y 0 ) + 26A x (x0 1 y0 ) 4 0

AUn(X 0 T 0 - 3(FR+l)e O (x0y 26y (xo .Y0 ) ;k0

where A x0 y) = I LS (X0, and A~ 4( x0 1 y) i (X0 ,y0) The
1 =1 ax2y 1

above, together with the fact that u u nare solutions of (2.1) C# (2.1)

respectively, imply

n'(t 0) + y3(R+1)e _ BT8 a6(x 0 -yo ) 4 -3(R+1)e -YTA$6 x0 -y0 )(e+n) + 26(cfl) +

+ H(T 0 1 y 0 1 u 1 (yNOT 0 ) 3(R+1)e DO 0(x 0-yo) + 26D C( x0 1 y0 )

-Y~To
- H(r0 #X0 qu C(x r) - 3CR+1)e Do 0Cx 0 -y0 ) - 26D x (Xoy

In view of (W1), (H5), (2.9), (2.17) and (2.18), we have

nT0 ) 'V( (x 01T 0 - (~yo, TO)) ++ 3(R+1)e -T80( -

4 H(T0 ,y0 ,u C(x 0,T 0 ), -3(R+1)e Y0 DO 6(x 0 -y0 ) + 26D (x0 1 y,

- H(TO#1XoPuC(xOITo), -3(R4-1)e 
0 Do e(x 0 -yo ) + 26D x (X 0 ,y 0 )

- Yr0
+ W Y (46) + 3 (R+1 )e I ~+n) + 26( e+n)

H,3(R+1)e VIDB 0 1+1

4 C Ix -Y IL1 + 6(R+1)e Y0 x-o + 25] +

R-Vt 0 0 9

+ W (46) + 6(R+l)e -YT0 -~ 25(c+l)

H,3(R+1)eCVT IDB 6 1+1 82

4 C R(L+26)0
2 

[1 + (L+26) + 261 + w 1,(1eYT.30+1(46)
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+ 6(R+I)e ( + Vn) + 26(E+n)

where above we used the fact that

-YT

3(R+I)e IDB6 (x 0 -y 0 )I 4 L + 26

Letting 6 + 0 implies

n'(tr) + ym(T) 4 2(C R L(1+L) + 3(R+l)e -)(/c + in)

and thus (2.12) with

K I = 2(CR L(1+L) + 3(R+1)e

Remark 2.2. Note that the above proof gives a sharper estimate on lu -u I£ n

and thus lu -ut, than the one stated in Proposition 2.1. In particular we£

proved that for (x,T) e QT

(2.21) lu C(x,) - u (x,T)I eYT(2(L 2 + 2(C R L(I+L) + 3(R+1) E(I + n)

as one can easily check using Proposition 1.1 and the last inequality in the

proof.

Proof of Lemma 2.1. Here we prove a more general estimate which has (2.4) and

(2.5) as special cases. In particular, for c > 0, let

H,H e C2([0,T] x R x R x RN ) satisfy (H2), (H3) and (H5) with the same

constants C, CR and y = yR 4 0 for every R > 0. Moreover, let ' O,

- 2 N- 2,1-u0 e Cb (R) n BUC(R). If u , u e Cb  (T) are solutions of
au bu C

- C£ue + HIT,x,uCDu ) = 0 in Q - CAU + H ( Txu Du = 0 inat TatCC CQ
andN

u C(x,o)= u 0(X in R I C (x,O) u 0xW in R

respectively, then for every t e [0,T]
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supluC(x,T) - u (x,T) I r e Tsuplu 0 (x) - u0 (x) +
x x

(2.22) + Te- YT sup - IH(t,xr,p) - H(t,x,r,p)l
(x,t)eQ

Ir min(|1 i,,u I)
E £

IPI'4min(L ,L )

where L = sup IDu (.,T)I, L = sup IDu 1,,T)I

0( TT 0 T(T

As usual, without any loss of generality, here we only prove that for every

T e [0,T]

sup(u (x,T) - u (X, T)+ 4 e YTsup(u0 (x) - -0(x) +

x x

(2.23) + Te- T  sup _ IH(t,x,rp) - H(t,x,r,p)I
(x,tleQT

Irjl in(Iu tm,1u I)

(pf.min£(L CL C)

To this end, let m : 10,T] + R be defined by

(T) = sup(u C(x,T) - uC (x,) +

x

we claim that m , which is a continuous function, is a viscosity solution of

m'(T) + ym(T) 4 sup IH(t,x,r,p) - H(t,x,r,p)i
(x,t)eQ

Jrif min( lUc| II EII)

Jpl min(L CL )

This, in view of Proposition 1.2 and Remark 1.3, proves (2.23). To prove the

claim let n e C ((0,T)) and assume that T e (0,T) is a strict maximum of

m - n on I = (T-a, T+a] (0,T) for some a > 0. We want to show that

n'(;) + ym(;) ( sup - IH(t,x,r,p) - H(t,x,r,p) •
(x,t)eQ

(2.24) Irjlmin(lu , I1)

IP Imin(L CIL

If m(r) 0, then T is minimum of n on I, therefore n'(;) = 0 and
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(2.24) is satisfied. So without any loss of generality we may assume that

(2.25) m(;) > 0 .

In this case let 0 RN x I I R be defined by

O(x,T) (u (x,T) - u C(x,T)) n(T)

NN
Since 0 is bounded on R X I, for every 6 > 0 there is a point

(x1 ,T1) e R x I such that

(x 1 ,T 1 ) > sup O(x,T) - 6

(x, T)eRN X

Next we choose 4 e Co(RN ) so that 0 4 C 4 1, C(x I ) = 1, DI 4 1 and
01

IACI (1 and define T : RN x I + RN  by

'(x,T) = O(X,T) + 26C(x)

Since T = 4 off the support of C and

'Y(x 1 , T1 1 > sup O(x,T) + 6

(x, t)eRl -I

there is a point (x0 ,T0 ) e R x I such that

(2.26) Y(x FT0, ) > (X,T) for every (x,T) e ON x I

Moreover

(2.27) As 6 + 0 To + T and

(u (x 0 1 1  - U (x 0 ,T 0 )) + 
= uC(x 01 T0 ) - U" (x 0 ,TO) + m(T)

Indeed suppose that as 6 + 0 T0 + T e I along a subsequence (which for

simplicity is denoted in the same way as the sequence). Then (2.26) implies

M 0 ) + 26 - nT 0 1  (uc(x0 ,t 0 ) - u(x 0 ,t 0 )) + 26 n(T0  M T) n

therefore as 6 + 0

m(T) - n(T) ) m(T) - n(T) for every T e I

which in view of the definition of I gives

T =
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In this case (2.26) also implies

m(() - n(r) ( r (u (x 0 T 0 ) - u (x0 , o)+ n(T)
6+0x

; lirn (U C(x0 1 TO ) - U(xo,T0 )) - n(T) • m(T) - n(r)

6+0

thus

lir (U (x 0 , 0 ) - uC(x 0 , 0 )) m(U)

6+0

Finally, if along some subsequence 6+0

(u (x 0 ,T 0 ) - uC(XoTo)) + = 0

then m(;) 0 which contradicts (2.25).

Next observe that for 6 sufficiently small T is an interior maximum

point of T u C(x 0,T) - u Cx0,T) - n(T) in I. Moreover x0  is a maximum

point of x + uC(x,T 0 ) - u (x,T0 ) + 26C(x) in 0|. The above, together with

the fact that uC, u C satisfy the equations stated at the beginning of this

proof, imply

n'(T 0 ) 4 26c + H(T 0 ,x 0 1uC(X0,T 0 ), DU(x 0 , 0 )) -

- HITr,x0,uClx0 ,T 0 ), Duu Cx 0 ,T 0 ))

If (without any loss of generality) we assume that Eu CI = min( luC , Ru C)

and L. = min(L L ), then
C C

n'( 0 + Ylu (x0,T 0  U x0 ,T 0 )) 26F + H(T 0 ,x 0 ,u (x 9 ,T 0 ), Du (x 0,T 0 ))

- HIT0,Xo,U (x0,T0), Du"(x0,0 ) - 26Dr(x0)) 4

( 26C + WIImax(lu 'T) (2S) + sup _ jH(t,x,r,p) - H(t,x,r,p)?

C E (x,t)eQ T
Ir Qnin lu CI

£

Letting 6+0, in view of (2.27), we ohtain (2.24).
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Since (2.4), (2.5) and (2.6) follow from (2.22) the same way that (1.19),

(1.21) and (1.22) follow from (1.7) we omit their proof.

Remark 2.3. Estimates similar to (2.4) and (2.6) already exist in [6], where

they are proved via arguments of the parabolic theory.

Now we continue with the proof of theorem 1. First however we give a

short description of the arguments we are going to use. In particular, we

approximate H and u0  in a suitable way so that the resulting problems have

viscosity solutions (by Proposition 2.1), which in view of Proposition 1.5

satisfy some estimates. Then using Proposition 1.4 we can conclude that (0.2)

has a viscosity solution.

Proof of theorem 1. For the given u0  and H and regardless of whether H

satisfies (H4) or (H5) let R0 > 0 and T0 > 0 be such that

21u01 + C + I < R0
(2.28) -~T

(2 e 0T (lu0 1 + (C+1)T
0 ) < R0

where C and y R are given by (H2) and (H3) respectively. Note that

throughout the proof we assume that y R r 0. This does not impose any

restrictions since one can always reduce the problem to this case.

The claim is that (0.2) has a unique viscosity solution on QT. The

uniqueness follows from Theorem 1.1 so here we have to establish the

existence. To this end, we first observe that it suffices to assume that

2 N
u0 e C b(R ). Indeed for the given u0 e BUC(RN), we can find a sequence

u0,n e C (R ) so that
On b

l0,n A 0

and
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lu0, n - uI0 as n +

If (0.2) has a viscosity solution un e BUC(Q ) for every u0,n e C bN),

then in view of (1.19)

IUn I < R
n 0

for every n, therefore by theorem 1.1

Eu- Um u -1 U0m
fun Um on ,m

i.e. there exists a u e BUC(Q ) such that u + u uniformly on QT as

n + -. Then Proposition 1.3 implies that u is a viscosity solution of

(0.2).

N N
Next for every positive integer t, let Hi: 0'T 0] X R X R X R + R

be defined by

l H(t,x,u,p) for Jul e R0
(2.29) H (txup) -W(P/,) 14(t,x, - R0.p) for jul R0

lul Op0

where w e C (RN) is such that

0 4 w 4 1

(2.30) w(p) = I for ipl 4 1

( w(p) = 0 for Ipl > 2

It is easy to see that for every X

(i) H I e BUC([O,To] 0 N x R x N)

(ii) sup I (t,x,0,0)l = C
(x,t)lQT0

0

(iii) H (t,x,r,p) - H (t,x,s,p) yR (r-s) for every (x,t) 8

p e RN  and r 0 s

(iv) H satisfies (H4) or (H5) depending on whether H satisfies (H4) or

(115) respectively. Also 4 AR for R > 0 and C (C for
R R

R > 0.
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Moreover observe that as £ + -, H9L(t,x,u,p) + H(t,x,u,p) uniformly on

N
[0,T0] x R x [-R0 ,R0] x BN(0,R) for every R > 0.

Now for every X, let H e C ([0,T 0 ] x R x R x R) be such that
L b 0% NXRXR)b uhta

(i) IH -H I 4

(ii) sup _IH (t,x,0,0)I 4 C + I

(x,t)eQT 0

(iii) H (t,x,r,p) - H (t,x,s,p) > y0(r-s) for (x,t) eQ , p e R and

r~s

(iv) If H satisfies (H4), then H also does and (a) 4 A (a) for

R> 0

(v) If H satisfies (H5), then H also does and CR ( 2C for R > 0
9.R R 0+1

(vi) Regardless of whether H satisfies (114) or (H5), H always satisfies

(H5) for some constant c-- for R > 0.CR

Because of all the above properties of H in view of Proposition 2.1, for

every L the problem

au-- + H = 0  in Q

u (x,0) = u0 x) in

has a unique viscosity solution u e BUC(QT ). Moreover, because of the
x0

properties of H and Proposition 1.5, for every T [0,T 0  we have

luL (.,T)I ( e (1u 0  + (C+1)T) < R0

(2.31) and

u (., CE) 4 f(C) for e < I
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A

where f : to,-) + to,-) is so that f(O0) = 0. In particular, if H

satisfies (H4), then

R T0

(2.32) f(E) = e (2w u0() + T 0A TyRoT0 (2E))

12R0e +3

and, if H satisfies (H5), then

-YR TO

T O(4CR0+e -Y0

(2.33) fT 0e (4 1 0 R0
(2.33) f(E) 4 [e (IDu 0 +  2T0CR +1)] e = LC

We want to show that {u } is a Cauchy sequence in BUC(Rt4 ) i.e. we

want to show that for every a > 0 there is a £ = L0 (a) > 0 so that, if

X'1' ) Lo' then

lu -utN 4 sup Eu ( T) -U1. .T)I < *,•

04T(T 0

This, in view of Proposition 1.3, will finish the proof of the theorem. To

this end and for arbitrary but fixed a > 0, let I > C > 0 be so that

(2.34) e w (c) < q/3
u 0

and

- R T0
(2.35) T e A yT (2E) < a/3

12R0e +3

if H satisfies (H4), or

-YoT0
yR 0

(2.36) 2T0 e CR+1 (1+L)r < /3

if H satisfies (H5). Having chosen £ as above next select t0 so that

for £'t' > £0
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(2.37) Toe 0  sup- IH (t,xtrp) - H, (t,x,r,p)l < a/3
(x, t)Q QT

IrL<R0 
0

RY T
60e

6R 0e 0

p Lmin ( + 1,

where if H does not satisfy (H5) L = . Then in view of Proposition 1.4,

we have that for T e [0,T 0  and 1,' > X0

lu (.,T) - UZI.,) I < a

and thus the result.

Finally note that, if y in (H2) is independent of R, we do not have

to impose the restriction (2.28) on T and therefore we have existence for

every T > 0.

Remark 2.4. In the case that yR is not independent of R we can not expect

global time existence, as we can easily see from the simple ordinary

differential equation
2u t + u = 0

U(0) = c < 0

As a corollary of the above proof and Proposition 1.5, we have the

following proposition which we state without proof.

Proposition 2.2. If H satisfies (Hi), (H2), (H3) and (H5) and
0,1 N(01-

8 Cb R ), then (0.2) has a unique viscosity solution 
u e C Q

u0  b bC
b

Remark 2.5. A Lipschitz type condition in x is necessary in order to have

solution Lipschitz in x. In particular, if H e suc(R) is such that
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H(x) " x1/ 3 for x e [-1,1), then u(x,t) - -tH(x) + 1 is the viscosity

solution of the problem

ut + H(x) = 0

u(x,O) -

0,1
but u(*,T) e Cb (a) for T e [0,T].

Remark 2.6. Assumptions (H4) and (H5) are different. In particular, if H

is independent of (t,u,p), then (H4) implies that H is uniformly

continuous in x and (H5) that H is Lipschitz continuous in x. Moreover,

there are functions which satisfy (H4) but not (H5) and vice versa. Indeed if

g : R + R is H8lder continuous with exponent a then

H(x,p) - g(x)lpl* '¢

for 0 < C 4 a satisfies (H4) but not (H5). But if g : R + R is Lipschitz

continuous, then

H(xp) - g(x)p

satisfies (H5) but not (H4.

Remark 2.7. One can prove Theorem 1 in the case that H satisfies (H5),

using compactness arguments, once Proposition 1.5 is proved. However here we

gave a constructive argument, which establishes the uniform convergence of

solutions of approximate equations.
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Section 3

We begin this section with the definition of the viscosity solution of

(0.3). We have

Definition 3.1 ([1],[2]).Let H e C(R x R x R N ) X > 0 and n e C(RN). A

function u e C(RN) is a viscosity solution of

u + )Ui(x,u,Du) = n in RN

if for every e c(R N )

(3.1) if u - * attains a local maximum at x0 e R, then

U(X0 ) + XH(x0,u(x0 ),Do(x0)) 0 n(x 0

and

(3.2) if u - * attains a local minimum at x0 e Rw, then

u(x0 ) + XH(x 0 ,u(x0 ),Do(x0 ) ) n(x 0 )

Next we state the theorem about the uniqueness of the viscosity solution

of (0.3) as well as some other important results of [21 concerning this

solution.

Theorem 3.1 (III.1[2]). Let u,v e BUC(RN) be viscosity solutions of the

problems

u + XH(x,u,Du) = n in RN  and v + MH(x,v,Dv) = m in RN

respectively, where H : RN x R x RN + R satisfies (Hi), (H3) and either (H4)

or (H5) and n,m e nUC(). Let R0 = max(Iu,IvI) and y = y R. Then

(3.3) (1+Xy)Iu-vI ( In-m

In particular, if 1 + Xy > 0, then (0.3) has a unique viscosity solution.

Proposition 3.1 (IV.1(21). For C > 0 let u e C 2(R N ) be a solution of

-CAu E + u + XH (x,u ,Du ) = vC in R

Assume If H uniformly on RN x [-R,R] x B N(0,R) for each R > 0 and

V + v uniformly on R N If C n 0 and u E u locally uniformly on RN,£ n £
n
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then u e C(44) is a viscosity solution of

N
u + AH(x,u,Du) = v 

in R

Proposition 3.2 (1.2[21). Let un e C(RN) be a viscosity solution of

u + H n(x,u n,DU) = vn  in R . Assume H + H uniformly onn n nn n

R x [-R,R] x B (0,R) for each R > 0 and v + v uniformly on 1I. Ifn n

u + u locally uniformly on 1N , then u e C(RN) is a viscosity solution ofn
N

u + XH(x,u,Du) = v in R

Now we give a result which estimates the difference of the viscosity

solutions of the two problems of the form (0.3). This estimate will be used

later in order to derive several properties of the viscosity solution. To

this end choose s ec (RN) as in (1.5). We have

-NProposition 3.3. Let u,u e BUC(R ) be viscosity solutions of the problems

N - - - N
u + )H(x,u,Du) = v in R and u + AH(x,u,Du) = v in R

respectively, where H, H R x R x R + R satisfy (Hi) and (H3) with the

same constant Y R for each R > 0 and v, v e BUC(R ). Let R= max( lul, lui)

and y = y . If for R > R and C o 0, D , A are so that

N ND - {(x,y) e R x R Ix-yI < C}

and

A = {(x,y,r,p) e RN x RN x R x RN : (x,y) e n.,

6F

Ir 1 4Min(u1, lu1), Ipi ( min(- + 1, L)1
C

where

L = min(|oul,I6|uI)
and moreover

1 + Ay > 0
then
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sup {lu(x)-u(y)l + 3R8 (x-y)} ( sup {v(x)-V(Y) +
(x,y)eDe (xy)eC

(3.4)

+ 3R(+XY)BE (x-Y)} + 1+-- sup IH(x,s,p) - H(y,s,p)1
(x,y,s,p)eA

where 8 (*) )

Remark 3.1. The assumption that H, H satisfy (W3) with the same constant is

not important . It is made only for simplicity.

Proof of proposition 3.3. It is obvious that (3.4) follows from

(xy 1 - sup {Iv~x)-v(y)I

+ 3R(1+LY)BC (x-y)1 +-- sup IH(x,s,p)-H(x,s,p)l
} 1+ (Xy,s,pe A

Here we prove only (3.5) + since (3.5)- follows exactly the same way. To this

end observe that, if

sup ((u(x) - u(y}) + + 3R C(x-y)} 4 3R
(x,y)eD C

then there is nothing to show. So we may assume

(3.6) sup (Cu(x) - u(y)) + 3RO Cx-y)} > 3R
(xy)eD

In this case let 0 R x R be defined by

O(x,y) = (u(x) - u(y)) + 3RBE(x-y)

Since 0 is hounded, for every 6 > 0 there is A point (x1,y) e R" x R"

such that
(xiY 1 ) > sup N (x,y) - 6

(x,y)eR xR

Next select ; e C(RN x R N ) satisfying 0 ( ( 1, C(xl,Y i) I and
0

-42-



IDC 1 and define IV RN K ft I t by

Y(x,y) = (x,y) + 26C(xy)

Since T t* off the support of and

=l (x1 f ,y) + 26 > sup t(x,y) + 6

(x, y)eRN MR

there exists a (x0,Y0 ) e ft x R such that

(3.7) T(x0 ,y0 ) ; y(x,y) for every (x0 ,y0 ) e N N

We assert the following about (x0 ,y0 )

If 6 < R/2 then Ix0 -y01 4 E

and
(3.8) as 6 + 0, (u(x0 )-(y 0 ))+ + 3 RBC(x0 -y0 ) = u(x 0 )-u(y0 ) + 3RB (x0 -Y0 )

sup {(u(x)-u(y)) + 3R C(x-y)I .
(x,y)eD €

Indeed if Ix0 -Y0 I > C, then in view of (3.7) and the definition of $ we

have

2R + 26 Y(x 0 ,y 0 ) ) Y(x,y) > 3R

i.e. 6 R/2

Moreover (3.7) implies that

+ +(u(x 0 )-u(y 0 )) + 3 R C(x 0 Y0 1 + 26 • sup [(u(x)-u(y)) + 3RC (x-y) )
, (x,y)eD C

So as 5 + 0

*(U(X 0)-U(Y0) + 3RC (x0-y) sup {(u(x)-u(y)) + 3RB (X-Y)
(xY)eDC

Finally observe that, if along some subsequence 6 + 0 it is (u(x0 )-u(Y0)) =
=0,

then, in view of the above, we have

sup f(u(x)-U(y)) + 3RO (x-y)) 4 3R
(xy)eD C
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which contradicts (3.6).

Now observe that x0  is maximum point of x + u(x) + 3R E (x-y 0) +

+ 26 (x,y 0 ) in le and y. is a minimum point of y * u(y) -

- 3R E(x 0 -y) - 26C(x0,y) in RN. In view of (3.1) and (3.2) we have

u(x 0 ) + AH(x0,u(x0), - 3RDO3 (x 0 -Y 0 ) - 26D(x 0 ,Y0 )) l v(x 0 )

and Iv(y0 ) < U(y 0 ) + XH(Y 0 -u(y 0 ), - 3RDi3E(x0-Y 0 ) + 26Dy 4(x 0 Y0 ))

Combining these two inequalities we obtain

u(x 0 ) -u(y 0 ) . v(x 0 ) -v(y 0 ) + XH(y 0 ,u(y 0 ), -3RDO,(x 0 -y0 ) +

+ 26Dy(X 0 ,Y 0 )) - AH(x 0 ,u(x 0 ), -3RDie (x 0 -y 0 ) - 26Dx (X0 ,y 0 ))

To continue we assume that lug = min(Uul,lul). (If not one has to modify the

rest of the proof in an obvious way.) Then in view of (H3) and (3.8) for 6

sufficiently small we have

(1+Ay)(u(x 0 )-U(y 0 )) v(x 0) -V(y 0 ) + XH(y 0 ,u(y 0), -3RD E(x 0 -y0 ) +

+ 26Dy(x 0oY 0 )) - AI(x0 ,u(Y0 ), -3RDI3E(x 0 -y0 ) - 26Dx 4(x 0 1y 0 ))

and, since Ix 0 -y 0 1 4 c for 6 < R/2,

(1+Xy)I(U(x 0 )-U(y0 )) + 3R3 (x0 -y 0 )} • sup fjv(x)-V(Y)I +
(x,y)eD

+ 3R(1+Xy)3 (x-y))} + O(Y 0 'u(y0 
), -3RD (x0 -Y0 ) + 26Dy(0 'Y

- )H(xo f u(yC), -3RDE(n'0-Y) - 26D (x 0 'y 0 ))

Next observe that for 6 < 1/2

I-3RDO (x -Y0) + 26Dy(X0,Y0 )1, I-3RDd (x0 -Y 0 ) - 26Dy4(X0 ,Y 0 )I 6R + 1

Moreover, if L ( (note that the case L is trivial) and (without any

loss of generality) L = lMul, then since x0  is a maximum point of the

mapping x + u(x) + 3RL (x-y 0 ) + 26u(x,y0) for x e RN we have
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3R8 (x-y 0 ) + 2SC(x,y0 ) - 3R (x 0-y0 ) - 265(x 0 ,y0 ) 4 LIx-x0!

But this implies that
13RDO (x 0 -Y0 ) + 26D x(x 0 ,Y 0 )1 j L

Combining all the above we obtain

(1+xy)(u(x 0 )-u(Y0 )) + 3RBC(x 0 -y 0 )) sup {Iv(x)-v(y)l + 3R(1+XY)8 (x-Y)} +
(x,y)eD

+ (Y 0 ,u(y 0 , -3RDO E(x0-Y 0 ) - 26Dx (x 0 ,y 0 )) -

- XH(x 0 ,u(y 0 ), -3RD0E(x0 -y0 ) - 26Dx (x 0 ,Y0 )) +

+ A (46)

H,max(§- + 1, R)
C

therefore

(1+Ay){(u(x0 )-u(y0 ))
+ + 3RO E(x0 -y0 )} 4 sup {v(x)-V(y)l +

(x,y)eD 
E

+ 3R(1+AY)i C(x-y)} + A sup IH(x,sp) - H(y,s,p)l + A_ (46).

(xys,p)A£ Hmax( C 1,R)

Letting 6 + 0 in the last inequality we get (3.5)
+ .

Next we use Proposition 3.3 to establish several properties of the

viscosity solution u e BUC(RN) of (0.3). In particular the next proposition

gives a priori bounds for the norm, the modulus of continuity and the Lipschitz

constant of u. Moreover, it gives an estimate for lu-vl, if v e cb (R ).
b

Proposition 3.4. Let H : RN x R x R" + R satisfy (HI) and (H3). If for

v e BUC(RN), u e nUC(R N ) is a viscosity solution of (0.3), let R > lul and

Y = YR. If I + Ay > 0, the following are true

(a) If H satisfies (H2) then

(3.9) lul ( 1 ()C + lvl)
1+XY

where C is given by (H2).

() If H qatigfipq ("4) thien for 1 > r > 0

(3.10) w (r) 4 (2w (r) + XA (20)

u 1+AY v 12R+2
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(c) If H satisfies (H5) and u, v e cb 0( W), then
b

(3.11) IDul -" Dvi + CR0 + IDuU)]
14-AY tiv R(1+Iu)

where CR is given by (H). Moreover if 1 + A(T-C ) > 0 thenIR

(3.12) IDuE 4C I (IDv1 + )C
l+A'Y- ) R

(d) If H satisfies (H2) and v e Cb (3?) then
b

lu-yl OC i;jsupN IH~x,r,p)I
(3.13) 1+u xeu

ip I Dvl

Proof. (a) We apply Proposition 3.3 to u and u - 0, which is a viscosity

solution of the problem

0 + A0-0 in IN

Then for E > 0, (3.4) implies

lul + 3R 4 sup {lu(x)l + 3RO (x-y)} C sup jv(x)j + 3R +
(x,y)eD CC 1+Y (x,y)eD

A
1+" sup IH(x,r,p)l

(x,y,rp)eA

But in this case

Ar {(x,y,r,p):Ix-yl l C, Irl C umin(lul,O), IpI 4 min(- + 1,0))

= {(x,y) e x N:x x } I

So

1 +Alul 4 - (IVl + c).

(b) For r fixed (1 > r > 0) let c e R be such that

I~ r

If u + * R is defined by

u(x) - u(x+&)

then u e BUC(3 ). Moreover u is a viscosity solution of

u + N(x + ,u, ) - v(x+V) in IN
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To see this observe that, if for e C (RN), x0  is a local maximum of

u - *, then x0 + E is a local maximum of u - , where *(y) = O(y- ). By

(3.1) we have

u(x0+E) + XH(x0 +E, u(x0+E), D*(x 0+)) ( v(x 0+)

therefore

U(x0) + XH(x0+, U(x0), D x0)) v(x0+)

Similarly one can check the case u - * has a local minimum at x0o.

Now applying Proposition 3.3 to u, u for c = r we have

suplu(x)-u(x+E)i + 3R 4 sup {lu(x)-u(y+&)l + 3R r(x-y)} )
x (xy)eD r

sup Iv(x)-v(y+E)l + 3R(1+Xl) +I+XY (x,y)eD rIX

r

X sup IH(x,s,p) - H(y+t,s,p)l
I+Xy (x,y,s,p)eA

r

But in view of (H4)

sup IH(xs,p) - Hiy+E,s,p)l 4 sup IHlx,s,p) - H(y+E,s,p)I '
(x,y,s,p)eA Ix-ylrr IsI~Iu,

IpI(- +1
r

1 A 12R+2(2R)

Moreover

sup Iv(x) - v(y+E)l 4 2w (r)
(x,y)eD vr

thus the result.

(c) For E e R define u : R" + R by

U(x,T) 0 ux+ET)

Then u e C b(a) is a viscosity solution of
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U + li(x+&,u,Du) = v(x+&) in RN

Applying Proposition 3.3 to u, u for > ) 0 we have:

supju(x)-U(x+ )I + 3R 1 sup Iv(x)-v(y+E)l + 3P +

X J (xy)eD

+ A sup IH(x,s,p) - H(y+ ,s,p)j

(x,y)eD

Is I .uI
IPI &|DuI

therefore

suplu(x)-u(x+E)l 4 1 (EDvi + C (1 + EDul))(E+IU1)
x1+Y R

Letting C + 0 we obtain (3.11). If 1 + X(y-C ) > 0, (3.12) follows from

(3.11).

(d) Applying Proposition 3.3 to u and v e Cb0l(R), which is a viscosity

b

solution of

v + AO = v in R

for c > 0 we have

Iu-v+3R -- sup Iv(x)-v(y)l + 3R + A s IH(xsp)
1+AY - upj

-Isl (lul

Ipl <IDvI

Letting c + 0 we obtain (3.13).

Remark 3.2. In the case that H is independent of x, one can deduce

(3.10), (3.11) and (3.12) directly from (3.3) ([2]).
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Section 4

We begin this section with a result concerning the existence of the

viscosity solution of (0.3), in the case that H and v are sufficiently

smooth functions. In particular, we show that the solution of the viscosity

approximation

(4.1) -EAu + u+ + )H(x,u C,Du) = v in RN

converges as E + 0 uniformly on RN to a function u e BUC(N), which is

then, by Proposition 3.1, the viscosity solution (0.3). Moreover we give an

explicit estimate on lxu C.

Proposition 4.1. Let H e cb( RxsN ) satisfy (M2), (H3) (with y -

for R > 0) and (H5). For X > 0 so that 1 + 2 Xy > 0, 1 + My-i) > 0 and

1 + M(y-C R) 0, where R > 21v1 + C and C, CR are given by (W2), (H5),

C > 0 and v e C (RN), let u e c 2 (N) BUC(CN) be the solution of

(4.1) Then there exists u e BUC(RN) such that u. + u uniformly on

as e * 0. u is the viscosity solution of (0.3) in RN and moreover

(4.2) lu-u I ( X

where K is a constant which depends only on Ivi and IDv1.

Proof. The existence of such an u £ follows from standard theory (see in

particular [7]). Moreover it is also known that, under our assumptions on H,

0,1 NV, u. e cb (Z ). In order to show the existence of u it suffices to show

that as c + 0 (u 3 forms a Cauchy family in BUC(IP). Indeed then there

Nexists u e Buc(S) such that uV + u uniformly in R as C + 0. By

Proposition 3.1 and Theorem 3.1 u is the viscosity solution of (0.3). To

this end we show that there exists a constant K, which depends only on

|Dv| and lvi, such that for 6, n > 0
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(4.3) u-u n 1 K ( + i)

This also will prove (4.2), if we let n + 0. To prove (4.3) we need the

following lemma.

Lemma 4.1. If H, v, C, A, R and u are as in Proposition 4.1, thenC

(4.4) lu 1 4 (1v1 + AC)

where C is given by (H2) and

(4.5) IDU K ( 1 (IDvI + R) =L
C I +X(Y-CR) R

where CR is given by (H5).

We first complete the proof of the proposition and then prove the

lemma. Observe that it suffices to show that there exists a constant K,

which depends only on %v%, %Dvi, such thlat for C, n > 0

(4.6)± I(u-u ) I - K(/" +

Here we establish only (4.6) , since (4.6)- can be proved in exactly the same

way. To this end observe that, if I(N -u n) 1 0, there is nothing to

prove. So we may assume that

(4.7) E(uC-u ) +I 0

4- 4/- NN
In this case and for 8 = 4' + 4n let 0 R x R + R be defined by

O(x,y) = (u(x)-un (y)) + 3(R+1) 0 (lx-y)

where R is as in the statement of the proposition and 0() = 8(-) with

8 given by (2.9). Since 0 is bounded, for every 6 > 0 there is a point

(xl,y I ) in x RN  such that

(x1,Y 1 ) > sup N (x,y) - 6

(x,y)en X

Next select ; e C0(RN) so that 0 4 C 4 1, C(xly 1 ) = 1, InDl 4 1 and

N N

lACI 4 1 and define T : RN x RN .+ R by
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A

T(x,y) = O(x,y) + 26C(x,y)

Since T = 0 off the support of C and

T(x1,Y1) = *(xly i ) + 26 > sup (x,y) + 6
(x,y)eRN -RN

there is a point (x 0 ,y 0 ) e RN x RN  such that

N(4.8) T(x0,Y 0) ) (x,y) for every (x,y) e R

We claim that (x0 ,y0 ) has the following properties

For 6< 
1min 2 I ' U+

(4.9) 1x0,y0 1 , x0-y01 1 (T+26)0, (u(x 0)-u (y0)) + > 0 and

I(uEXo)-U n(Yo) )+ > l(uC-un) + I - 26

where Z is given by (4.5). Indeed, since in view of (4.4) luC I < R, if

Xo0-Yo I > e, (4.8) implies

2(R+1) + 26 o V(x0,Y 0 ) ) ;1'(x,x) > 3(R+1)

which contradicts the fact that 6 < 1/24. Moreover, for every x e Fe, it

is

(U(xo0)-u(Yo0)) + + 3(R+I) + 26 o Y(x 0 ,Y0) T(x,x) (u Cx)-u (x))+ + + 3(R+1)

therefore

(uc(xO)-un(Yo)) +  I(uu n) + - 26

and by the choice of 6

+
(u C(xo)-u (Yo)) = uc(xo)-un(y O )

In this case and since IDu I < L we have
C

uC(x 0 )-un(Y 0 ) + 3(R+1)0e(x0-Y0 ) + 26 o uC(Y0)-Un(y 0 ) + 3(R+1)

therefore

,IR+l)80 (x0 -y0 ) ;o 3(R+1) - 2(R+1) - 26(3(R+1))

which implies

L: -51-
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B(xo-Y o  •

But then, in view of (2.9), it is

Ix o-Yol 2

(4.10) (Xo-Y ) 1 e2

Moreover, (4.8) also implies that, for 6 sufficiently small, x0  is a

maximum point of the mapping x + u C(x) + 3(R+1)0 (x-y0 ) + 26C(x,y0 ),

therefore for x e I?

3(R+1)B(X-y0 ) + 2SC(x,y0 ) - 3(R+1)08 (Xoy 0) - 26C(xo,0y) 4 uC(x0 )-u(X) 

4 LIx-x01 1 6(R+1)Llx-x01

This gives

(4.11) 13(R+)DPe(x0-y0) + 26D x(x0,y)I ( 1 4 6(R+1)L

and by (4.10)

1x0 -y 0 1 4 (i+26)02 .

Next observe that, in view of (4.8) and (4.9) x0  is a maximum point of

x + uC(x) + 3(R+41)0(x-y 0 ) + 26C(x,y0 ) and y0  is a minimum point of

y + Un(y) - 3(R+l)0e(xo-y) - 2SC(xo,y). This, together with the fact that

u , un e C 2(N) are solutions of (4.1)., (4.1) n respectively, implies that

u (x0) -u(y 0 ) 4 -3(R+1)0 (x0 -Y0 )(c+n) + XH(y0,u (Y0),-3(R+I)DO (x0-Y 0 ) +

+ 28DyC(x 0 ,y0)) - x ),-3(R+I)DOe(x 0-Y)-26D x¢(X0Y0)) + v(x 0 ) - v(y 0)

But then using (4.9) and the properties of H, v and A we have

(1+XY)(u C(x )-un(y0)) + 4 IDvI Ix0-yIj + 3(R+1) C-+
0 ~0a 082

+ Aw 3(R+1) (46) + AH(y0,uC(y0),-3(R+I)Dq(x0-y0 ) -

H,max(R, -0 UDBI+)0

-26DxC(X0 ,Y0 )) - AH(Y0,U (Y0),-3(R+l)DOe(x0-Y0)-26DxC(X0,y0))

therefore, since e2 4 2(re + rn) and C 4 r + /, and by (4.11)
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(l+Ay) lu C-u ) 1 (1+,y)26 + 211DvI(L+26)(/"E+/n) +

+ XW 3(R+I) (46) + C R(1+L)2(L+26)('-+ On)
H,max(R, R D+1+1) )

Letting 6 + 0 we obtain

(4.12) I(u -u ) 1 4 1 (2IDvIL + 2)C (1+L)z)(iC+f)
£ fl1+Ay R

and thus the result.

Proof of Lemma 4.1. Here we prove a more general estimate which has (4.4) and

(4.5) as special cases. In particular, for E > 0 let H, H e C 2(R x R x R
b

satisfy (W2), (13) and (H5) with the same constants C, CR and y = YR for

R > 0. Moreover, let v, v e C b(R) and choose R0 > 0 so that

irax(21vl+ C, 21vl + C) < R0

If A > 0 is so that 1 + 2Ay > 0, 1 + A(y-1) > 0 and I + X(y-CR ) > 0 and

U , U e C2 (11) n BUC(RN ) are solutions of

-CAuC + U£ + H(x,u ,Du ) v and -£zu + u + H(xu CDu ) = v

then

(4.13) qu -ut C (Iv-v + A sup IH(x,r,p) - H(x,r,p)l)

Irj min(lu C Ilu' I )
jpl Qnin(LCL C

where L - IDu I and L - IDu I.
C £ C £

As usual and without any loss of generality here we show only

+ I(4.14) I(uC-u )+1 4 + (lv-vl + A sup IH(x,rp) - H(x,r,p)l)Y xe N

I rl nin(lu C , lu C I)

JpIo rmin(L C,L
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.. ... __________.

To this end observe that, if l(u.-u.)+ - 0, there is nothing to prove. So

we assume that

l(uc-u ) > 0

In this case let 0 : R" + R be defined by

*(x) = (u Cx) uC(x))

Since * is bounded, for every 6 > 0 there is a point x1 e a such that

>sIp>su Ox) OW

2LeR

Let C e CO(EN) be such that 0 ( C ( 1, C(x,) = 1, IDCI 4 1 and IACI C I

and define Y : R" + R by

TYx) -(x) + 26C(x)

Since I = 0 off the support of 6 and

Y(x I ) = x ) + 26 > sup. O(x) + 6

there is a point x0 e RP such that

(4.15) Y(xO ) ) Y(x) for every x e RN

I(uC -u )l
Then for 6 < 2 it is easy to check that

(u C(x 0)-U C(x 0)) u e(x 0 ) - u C(x 0 ) > (u C- ) - 26

But then x0  is a maximum point of x + u C(x) - u Cx) + 26C(x). This,

2 2Ntogether with the fact that u6, u6 e Ce ( ) satisfy the equations stated at

the beginning of the proof, implies

u Cx) - u(x o ) - -26C + X(i(xou(xo),e(x 0

- H(x 0 ,uC(x 0 ),DuC(x0) + 2DC(x 0 ))

If we assume (without any loss of generality) that lu l - min(lu 1, 1l) and

Le min(L CL C) then
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(l+)y)(u (x )-u (x0)) C -26C + X, SuNl tH(xr,p) - H(x,r,p)I +cO £0 €
I rfiu C~

+ AAa (26)
H,uax(tu ILE )

Letting 6 + 0 we obtain the result.

Since (4.4) and (4.5) follow from (4.13) the same way that (3.9), (3.12)

follow from (3.4) we omit their proof.

Remark 4.1. Once one has (4.4) and (4.5) the existence of the viscosity

solution u e BUC(R") of (0.3) under the assumptions of Proposition 4.1

follows immediately from usual compactness arguments. The only reason we give

a different proof is to establish the explicit estimate on lui-ul.

Now we continue with the proof of Theorem 2. As in the case of Theorem I

here we approximate H and u0  in a suitable way so that the resulting

problem have viscosity solutions (by Proposition 4.1). Using the a priori

estimates we have about the viscosity solution together with Proposition 3.3,

we can conclude that (0.3) has a solution.

Proof of theorem 2. For the given n and H and regardless of whether H

satisfies (H4) or (H5) let R0 > 0 be such that

(4.16) 2n + C + I < R 0

where C is given by (H2). Then choose > 0 so that for 0 C X <

(4.17){ 21 >0

1 + ,X¥R 0- > 0

and
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(4.18) 1 + A(Y - 2C+) > 0
R0 R0R+1

in the case that n satisfies (H5), where YR0  is given by (H3) and is

assumed to be yR0 ( 0 and CR0+1 is given by (H5). The claim is that, for
every X such that 0 ( A < A00 (0.3) has a unique viscosity solution. The

uniqueness follows from Theorem 1.1 and the choice of A since by Proposition

3.4(a), any solution u e BUC(RN ) is such that

lul 4 1 (Inl+ C) < R0
Here we establish the existence. To this end we first observe that it

2 Nsuffices to assume n e Cb(R ). Indeed for the given n e BUC(RN) we can

2 Nfind a sequence nm e C (R ) so that

In I 4 Inl
m

and

In -nI + 0 as m

If we know that (0.3) has a viscosity solution for n e Cb(RN), then for
every n and A as above

um + AH(x,u ,Dum m

will have a viscosity solution um e BUc(RN) such that

lum I R0
But then theorem 1.1 implies

Eu -u I ( - In -n Im X 1+Ay m it
i.e. there exists a u e BUC(R") such that um * u uniformly on 0 as

m * -. Then by Proposition 3.2, u is the viscosity solution of (0.3).

Next for every positive integer Z let H RN x R x R + R be defined

by

HH(x,u,p) for lul 4 R0H(x,u,p) w(p/ p ) 
for ul > R0
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where w e c; (3?) is as in (2.30). It is easy to see that for every I

(i) ii e euc(aM X RX R )

(ii) sup iH(X,0,0) C
x

Ciii) Hi(x,r,p) - H,(xsp) ) YR 0(r-s) for every x e tN , p e RN and

r 
0

(iv) H satisfies (H4) or (H5) depending on whether H satisfies (H4) or

(H5) respectively. Moreover 4 A,, for R > 0 and C 4 C

for R > 0.

Also observe that as £ + m, HI(x,u,p) * H(x,u,p) uniformly on

x [-R0 ,R0 ] x DN(O,R) for every R > 0.

Now for each I let Hi 6 c%( x R xi ) be fjuch that

Ci) iH-HI 'C

(ii) sup IHIxoo)i 4 C + 1
K

(iii) Hi(x,rp) - HI(x,s,P) ) YR (r-s) for x e ?, p e RN and r > a

Hi
(iv) If H satisfies (H4), then HI also does and AR AR+ for R > 0

Ht
(v) If H satisfies (H5), then H also does and CR 2C for R > 0

it R 0 +1

(vi) Regardless of whether H satisfies (H4) or (HS), HI always satisfies

(H5) for some constant C i for R > 0.
R

Because of all the above in view of Proposition 4.1, for each I the problem

N
u + Hit(xut,Du) n in R

has a unique viscosity solution u e BUc(UN). oreover, because of i)

above, Proposition 3.4 and (4.17), (4.18), for every t we have
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Eu 1 1 (InK + (C+))< R0

(4.19) and
( 9 e) w f(e) for c > I

where f : [0,-) * [0,-) is such that f(O +) = 0. In particular, if R

satisfies CM4), then for e < 1

f(c) = (2w () + A A 2 R+ 3 (2c)f() I+AyR0 n1R0+
0

and if H satisfies (H5), then

f(c) = I+1(YR02C0+ (IDni + 2CR0+1 A) =

0 0R 0+1) 0+

We want to show that {u I is a Cauchy sequence in PHC(CtP) i.e. that

for every a > 0 there is a to = 0( a) > 0 so that if t,'' > 10 then

lu i-ulf I < a .

This, in view of Proposition 3.2 will finish the proof of the theorem. To

this end and for a > 0 arbitrary but fixed let I > C > 0 be so that

(4.20) 1 w (c) < q/3
I+AyR0  n

and

(4.21) A A (2 0 < a/3l+AkyR 12R0+3(2: /

YR 00

if H satisfies (H4), or

(4.22) A 2CR (1+L)c < /3

R 00

if H satisfies (H5). Having chosen E as above, next select 10  so that

for 1,1' > X0
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+Ay supN IH(x,r,p) - Hf,(x,r,p)l < a/3
1+YR 0 XeflN

(4.23) lrJfR
6R0

IplImin(-- +I.L)

where in the case that H does not satisfy (H5), L *. Then, in view of

Proposition 3.3, for L,1' > 10 we have

lu,7u., I U C

and thus the result.

As a corollary of the above proof and Proposition 3.5, we state without a

proof the following proposition.

Proposition 4.2. If H satisfies (hi), (H2), (H3) and (H5) and

n e c0 1 (N) , then (0.3) has a unique viscosity solution u e cb  (1P).

Remark 4.2. If H is independent of u, then the above proof gives

A0 - *. If H satisfies H3) and either (H4) or (H5), so that the constants

are independent of R, then X0  is independent of Int.

Remark 4.3. One can prove theorem 2 by using compactness arguments, once

Propositions 3.4 and 4.1 are proved. Here we gave a more constructive proof

to establish the uniform convergence of solutions of approximate equations.
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