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=~ FUN.STAT is a name proposed by us to describe a synthesis of statistical
reasoning which combines quantiles and quantile-densities, information and
eniropy, and functional statistical inference. This paper describes a

FUN.STAT approach to the problem of statistica] data analysis of two random
samples, respectively representing two populations of interest. It is composed
of four parts. Part 1 describes how conventional approaches to two sample
problems, including representations of linear rank statistics, are equivalent
to functionals of a stochastic process,b(u). Part 2 motivates the auto-
regressive Qensitx estimation approach to the problem of functional statistical
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inference of D(u) and states several conjectures concerning the properties

of the density estimation approach. Part 3 outlines heuristic derivations
of the asymptotic distribution theory of B(u}. Part 4 provides a summary

and an example, using TWOSAM which is a computer program for autoregressive
two sample statistical data analysis; it has been implemented as a Fortran
program and as a SAS procedure.
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Part 1. Two Sample Problems as Data Analysis of Stochastic Process 5(u), O<u<]

1.1. Univariate: one sample problem

The univariate: one sample problem of statistical data analysis considers

a random sample X ..,Xn of a continuous random variable X and seeks to infer

1
its probability law.

In the quantile approach to the study of the probability law of a random
i‘. variable X, the functions to be estimated are [Parzen (1979)]:

b

distribution function F(x) = PrX < x], -w<x<w;

quantile function Q(u) = F'](u) = inf{x: F(x) > u} , O<u<i;

probability density function f(x) = F:(x), -e<x<e ;

quantile-density  q{u) = Q'(u), 0<u<l

density-quantile  fQ(u) = f(F ' (u)) = {q(u)}”' , O<u<l;
score-function J(u) = -(fQ)'(u) = —f'F'](u)/fF'](u), 0<u<1

) . -1 - -
when F is continuous, FF (u) = u. When F ! is continuous, F ]F(x) = X.

1

We call X (or F) bi-continuous if both F and F ' are continuous functions.

When F is bi-continuous, then F'] is a true inverse in the sense that

F(x) = u if and only if F'](u) = X. !
To estimate a function [for example, D(u), O<u<l1] three types of

estimators should be distinguished: fully parametric [denoted D (u)l;

fully non-parametric [denoted b(u)]; and functional parametric [denoted

~

D(u)]. These types of estimators have the following characteristics:

(1) fully non-parametric makes almost no assumptions about a model for the

function; (2) fully parametric estimates the parameters of an assumed

finite-parametric model for the function; and (3) functional parametric

estimates the parameters of an approximating parametric model whose order

js determined (selected) by the data.




Fully non-parametric estimators of F(x) and F'](u) [given a random

sample X],...,Xn with order statistics X(])<...<X(n)] are defined by the

sample distribution function F(x) and the same quantile function ?'](u).
We systematically use " to denote a sample function which is a raw (or fully

non-parametric) estimator of a function defined on the ensemble or population.
Definition. Sample distribution F and sample quantile F-]. For a

sample X]""’Xn’ F and F'] are piecewise constant functions satisfying for

j=0,1,...,n
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J-)<X<X(j+-|) M
=-1 J-1 Jj
Folul =X mSush
where X0) = == Xne1)

A basic question of the univariate: one sample theory is the goodness

of fit problem: to test the null hypothesis H : F(x) = Fo(x), where F_(x)

is a specified continuous distribution function. The mathematical
statistician is concerned with finding the exact and asymptotic distributions

under both null and alternative hypotheses of statistics such as

Dy = oS IF(x) - F (X))

n -0 X <00

"

We = [ HF(x) - F (x? dF (x)
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By a formal change of variable x = Qo(u) = F;](u) one can write

- Sup =
Dy = dcual |FF0 (u)-ul
2 1 =c- 2
W= ) - w?

One rigorously obtains these formulas by interpreting ?F;](u) as the sample
distribution function ?U(u) of the random variables U; = Fo(xl)”"‘un = FO(Xn).
The null hypotheses Ho is equivalent to the hypothesis that U = FO(X) is
uniform on [0,1].

Alternative to testing the sample distribution function for uniformity,

one could test for uniformity the sample quantile function EG (u) = éu(u) =
FOF (u).

A Brownian Bridge process B(u), O<u<l is a zero mean Gaussian process

with covariance kernel
E[B(u])B(uz)] = min (u],uz) - Uyu,

The asymptotic distribution of test statistics such as Dn and wﬁ is

based on the convergence theorems:[as sample size n tends to «]: assuming Ho’
Be(u) = /n (FF () - up @ B.(u)
F 0 F ?
5 _ ==1 D
B _y(u) = /n {(FF (u) -uwy 5 - B (u)
F

where 2 denotes convergence in distribution of stochastic processes and BF(u)

is a limiting process distributed as a Brownian Bridge process.




A quick and dirty definition of convergence in distribution of stochastic

processes is as follows:
(Br(u), 0<u<l} ¥ (B.(u), O<uc)

if and only if for every bounded continuous functional g(x(u), O<u<l) on a

suitable metric space of functions x(u), O<u<1,
E[g(éF(u), O<u<1)] ~ E[g(Bp(u), O<u<l)].

Testing for uniformity a random sample U],...,Un of points on the unit

interval is a canonical problem of statistics in the sense that many other

statistical problems can be transformed to this problem. One way to

determine the appropriate transformation is by attempting to find the

2

n° To develop such analogues, one

analogues of the test statistics Dn and W
might compare computational formulas.
Computational formulas for Dn and wﬁ [which are well known in the theory
of goodness of fit tests, see Durbin (1973)] can be stated in terms of a general
distribution function B(u), O<u<1 defined in terms of a set of specified

constants Uj’ where 0 = U0 < U] < ,.. < Un < Un+] = 1; define

5(u)=0 0'-=Uoiu<-U.I 5

= J

_-h- s UJ- iu < Uj+~|

= ] Py Un f_ U < U +~| = ]

Then
_omax Ry oo max o j N LK

On = Ocucl |D(u)-u| 1<j<n (5 Uss U =)
2 _ A ,: 2 1 17 _2§-1, 2
Wy = Jo 1O(u) - u}” du = 202 ' 7 jz, t; Zn )
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1.2. Univariate: two sample problem

The univariate: two sample problem of statistical data anlaysis

considers random samples X],...,Xm and Yl""’Yn respectively representing
measurements on random variables X and Y with continuous distribution
functions F(x) and G(x). We interpret X and Y as measurements of a physical
variable in two different populations. The null hypothesis HO:F(x)=G(x) of
equality of distributions is to be tested, if possible without specifying

the distributional shapes. This paper assumes that F and G are bi-continuous

(that is, F, G, F'], 6! are continuous functions).

The random sample X],...,Xm has sample distribution F and quantile E'].

The random sample Y],...,Yn has sample distribution é and quantile é'].

Wwe denote by H the sample distribution of the pooled sample X],...,Xm,

Y osY It can be represented

preeea¥ e
H(x) = AF(x) + (1-1) G(x)

defining N = m*n and A = m/N. The limit of ﬁ(x) is H(x) = aF(x) + (1-2) G(x).

igf We assume that as N tends to =, Atends to a limit satisfying 0<a<l.

5}1 Techniques in the two-sample problem which are close counterparts of

L,‘ one sample techniques are the statistics

t‘«

-

T . sup = oz

= D = e 1F00 - GO0

C

Tﬂ- 2 - R o 2 .5

Won = [ (F(x) - G(x)} dH(x)

». Durbin (1973) states computational formulas in terms of the ranks

T¥; Rj, j=1,...,m, in the pooled sample of the j-th largest observation in the
X-sample. In our notation these formulas become

PP P P R P S S R . . —— o cardaieaboedboandh e tnacdinc




R. R.-1
Dmn 1-2 jJ=1,...,m (m N ° N T m )
i 2
2.1 17 Ry 2 ]:} . 1 2mmn
mn ('I-A)2 m 521 N Zm 12rﬁ2 n

By comparing these formulas with the general computational formulas in the

one sample case one sees that the test statistics Dmn and Nﬁn are reiated

to the statistics

1 i
T ocuct [DCw)-ul a 1)2 J1 o(u)-w? du

defining ﬁ(u), O<u<l, as follows:

- R,
D(U)=0 ’ OiU<‘N— s
R R.
i geregt
m
R
= M
=1 , N <tc 1.

One aim of this paper is: (1) to relate the process 5(u) to the processes
F and ﬁ'], (2) to relate D(u) to representations of linear rank statistics,
(3) to relate 5(u) to quantiles, and (4) to use B(u) graphically for a

complete data analysis of the null hypothesis Ho‘




1.3 Representations of ﬁ(u)

We have defined Rj to be the rank in the pooled sample of X(j), the

j-th order statistic in the X sample. A more precise definition of rank is

defined in terms of the sample distribution H:
- R, = NH(X,.\). i=1,...,
:‘ j ((J)) J=1 m

Another insight into the definition of rank is provided by the formula, of

later use,

e

,-...‘-]( ) X R.-] Rj
u) = X5y » Sl—<uc< H
(3) N N

note H-](u) equals the k-th order statistic in the pooled sample for

k-1
N

=Z| =

< U <

The null hypothesis Hy: F(x) = G(x) is often tested by means of linear

rank statistics of the form

L g ok ol e Drae LAt e AL
1 ] : 4 'I v . . " ‘4 " . . N . . .
‘ M- .' . . ‘, . - .‘A‘A .. .

= 1Y L

- W=m .Z )

i-'—,‘-' J-]

f! where J(u) is a suitable weight function called a score function. Some

- frequently suggested score functions are listed in Table 1A.
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Table 1A

Score functions for two-sample linear rank statistics

Test for Location Difference

Test for Scale Difference

-1 -1 2

o ' (u) [ " (u)]
Normal scores test

u - 0.5 (u - 0.5)°
Wilcoxon-Mann-Whitney Test Mood test

Sign (u-0.5)

Median test

Sign {|Ju - 0.5 | - 0.25)

Quantile test

lu - 0.5 -0.25

Ansari-Bradley test

To study asymptotically the distribution of TN various representations

have beer introduced. The celebrated Chernoff-Savage (1958) representation

of a linear rank statistic TN is

Ty = I 9y (o H(x))  dF(x)

The Pyke-Shorack (1968) representation is

Ty = o FRT(W) dvy(u) - i

W1

-1 i i -
FH (W) {VN(N) - vN(_ﬂ—)}

for a suitable signed measure v\ Chernoff-Savage establish directly a limit

theorem for TN’ while Pyke-Shorack derive the convergence properties of TN

from the convergence properties of the process Eﬁ'](u), O<u<l [see Pyke (1970)].

The functional statistical inference approach proposed in this paper is

-~

based on the proposition that FH ', the Pyke-Shorack two-sample process,

e o A e e Aees oo e oot oot e e e e B e A m o oa
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may be appropriate for theorem proving but is not directly useable for
exploratory data analysis. The role of the score function J(u) is preserve
and functions whose graphs are suitable for data analysis are obtained, by

using

61(u) ﬁ?"(u), estimator of D](u) = HF'](u) :

D (t) = 6;‘(t), estimator of D (t) = D{](t) - FH (1),

Note that 6;](t) is a right continuous function which is the inverse of the

left continuous function 6](u); it is defined by

-~ -~

-1 _ )
D] (t) = sup {u: D{u) < t}

Theorem 1B shows that b(u) is computationally exactly the same as the
process 6(u) in terms of which we approximately expressed Dmn and win.

Theorem 1A is further evidence that one can introduce a process 6(u) such

that many conventional two sample statistics are functionals of this process.

The univariate: two sample problem is thus transformed to a problem of
statistical inference from a continuous parameter process D(u), O<u<l.

We call this a problem of functional statistical inference.

10

d,

The branch of statistical theory which we call “functional (statistical)

inference" (FUN.STAT) is a branch of "abstract inference" [Grenander (1981)].

R PP VDT Gy VNG WO Wur e
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Theorem 1A;: Functional Representations of Linear Rank Statistic

= [ o ) (t)

Proof: Define JN(u) = J(NgT u). In the Chernoff-Savage representation

] ~ ~ -
Ty = fo JN(H(x)) dF(x) make the change of variable u = F(x) to obtain
= 7 - . ~
%' TN = fo JN(D](u))du. The change of variable t = D](u) completes the proof.
Theorem 1B: Explicit Formulas for ﬁ](u) and D(t).
%(u) O<u<l, is piecewise-constant, non-decreasing, left continuous, and
satisfies

- R. R .
-1 .
Dp)=ﬁi,3m <u5% s J=1,...,m.

D (t) = D{](t) is piecewise-constant, non-decreasing, right continuous, and

satisfies D (0) =0 ,




More precisely,

J G Culi ) S i g ALIOC L "
. PR . A

Fa (u)

R]=2, R2=4.

Pl

LA St Al an o

Lo lel

Fi- () =

D (t) =0
b (t) =3
D (t) =1,

" 1}
o 3.

]
—

Il ot oues Sl SaEE Mo asih U NER. el eshk R

<u<l.

Dttt D B e

Example. Suppése n=2, n=4, x]=2, x2=4, y]=], Y

ey

2

m-1 3

=3, Y

3

=5, Y

4

=6.

12

Then
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=]Z’ ?]5‘< "ig'
{l‘
E‘l =1, % <u <]
[ -
The statistic
1 m Rj
SRR o)

is the Wilcoxon statistic (up to a constant multiple); it corresponds to

J(t) = t. The value of T, is 3/7; it can be evaluated by the defining

ﬂ?i : N

» _ .

F sum or by the representations

o ro= (1 o) qu-8(2. 1,4 4.17.3
R N o7 B 7l zts 21 =3
=6 ¢ 4p 62,1 ,4.1,_3
- Wologtd ()=3[G7+53]=7
o

L .. The Pyke-Shorack representation would be evaluated
3 1 3 1

" 7 Ion(g) - i) + 1 {v,() - vN(%)}

S

if one bothered to discover the values of the measure N corresponding to J(u).

Zn 2l an S ge 00 AR AR b ol e
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Part 2. Functional Statistical Inference Approach to Two Sample Problem

2.1 Introduction

Part 1 has attempted to show that most conventional test statistics in
the "univariate: two sample problem" are functionals of a stochastic process
5(u), O<u<l, and proposes that the problem of statistical inference should
be posed as follows: what can we learn from a sample path of the stochastic
process D(u), O<u<l, assuming that it is the sum of a signal D(u) = FH'](u)

and a noise represented CD(u)//ﬁ:
a 1
D(u) = D(u) + — Cn(u)
/N D

The covariance kernel of CD(u) in general is a function of the

following unknown functions (which it is our goal to estimate)

6H™ (u),

D (u) = FH ' (u), 0g(u)

dF(u) D%(u), dG(u) Dé(u).
Note that DF(u) = D(u) and ADF(u) + (1-A)DG(u)'= u.

Part 3 outlines a heuristic proof of the following conjecture.

Conjecture 2A. Covariance Kernel of CD(u). E[CD(u) Cp(v)] equals, for ucv,
(1-0% 117" dglu) dg(v) D (u) (1-D.(v))
G G F F

+ (1407 de(u) de(v) DG(u) (1-Dg(v))]

PN S VG W S S
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Distribution of CD(u) under Ho and local alternatives H]. Under

Ho: F = G, Dp(u) = Dg(u) = u, deu) = dglu) = 1, Cp(u) has covariance

kernel (for u<v)

(1-0% 07 u-v) + -0 e = (B w -y

- 1
which is the covariance kernel of (lxl)ﬂﬁ(u). Wnen HO is true, or under

alternative hypotheses H] under which H0 is only "gently" not true (as

opposed to "violently" not true), then [D denotes equal in distribution]

o

(=29 g(u)

Cplu) X

When the parameter in a statistical model is a function the statistical
inference techniques used are called functional statistical inference. By
introducing 6(u), O<u<l, the two sample problem has been formulated as a
problem of functional statistical inference (abbreviated FUN.STAT) in
which the parameters to be estimated or tested are the function D(u) = FH'](u),

its density d(u) = D'(u), and its Fourier transform
o(v) = fl g2miuv dbD(u) = fl e2miuv d(u) du , v=0, +1,+2,...
The hypothesis H0 is equivalent to

H:D(u) =u; dlu) =1; p(v) =0fFforv#0

U W SO U WY Wy T T Gy M Sy - N 3 RO R T WY ST N " . N . . o .
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To understand what we can learn from d(u), let us relate it to the

underlying densities f(x) and g(x); the derivative of D(u) = FH'1(u) equals

Consequently, the reciprocal d'](u) satisfies

LA iy T
AT RIS . .

Sy o b ) o )+ (1-0) gh N w)
¢ u) = 2 a3
fH™ ' (u) fH " (u)

A+ (1-2) S (u
fH™ " (u)

Therefore: d(u) ig']; d(u) tends to 0 if f(x) tends to 0; d(u) tends to u

if g(x) tends to 0. By estimating d-](u), one can estimate the likelihood

S i’" R T.y w
“© "t et X B
Lo e . -, .

ratio g{x)/f(x) without estimating g(x) and f(x) separately.

iil An estimator a(u) of d{u) generates an estimator of D(u) by

D(u) = [y d(t) dt.

To form an estimator a(u) from 6(u) it is often convenient to introduce

first a raw estimator of p(v) denoted ;(V).

The sample pseudo-correlations are defined by, for v = 0,+1,...,

p(v)

[l eZﬂiUV db(u)

ne~13

15 exp 2miv(R./N)
m j ] J

. .
s aTa e m e a4 m 8.+ s B, B e A & o n. B d el e el b, s?. R T
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They obey the model (for alternative hypotheses close to Ho)
o(v) = o(v) + (G% n(v) . v=0.41,..

defining

n(v) fl e2n1uv dB(u) , v=0,+1,...;

one can show that n(v) is a sequence of independent N(0,1) random variables.

A Brownian Bridge B(u) can be represented [see Csorgo and Revesz (1981)]

= -2mivt
B(u) -V;O n(v) fo e "V dt

Under H, |;(v)|2 is asymptotically distributed as a sequence of

0
1-a

with 2 degrees of freedom. A 95% significance level for this statistic is 6.

independent random variables such that [;(v)|2 is chi squared distributed
To test H, one could examine if any values of |;(v)|2, v=1,2,...,
exceeds a threshold such as 3(1-1)/Na.
Natural "portmanteau" test statistics for Ho are of the form

Z] ky(v) |;(v)|2 for a suitable weight function ky(y). The optimal choice of
v>

weights kN(v) depend on the alternative hypothesis against which one is
testing H . If one makes an arbitrary choice of weights [such as

kN(v) = 1/v for v>1], then there will always exist alternative hypotheses
against which the test statistics has efficiency close to 0. If one always

uses for a goodness of fit test the statistic

U S SO U VO T SV S S *MMMMW
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20 .
Z] le(v)|?

V=

one will too often accept Ho when it is false but only a few values of p(v)

are significantly non-zero; if one always uses the statistic

4 .

1 le(v)]2

v=1

one will too often accept H0 when it is false because p(v) = 0 for
v=1,...,4 but is non-zero for v>4. To achieve an “optimal portmanteau”

test statistic, one might consider

M -
L o(v)]?

V"_"

where the order M is determined by the data. Insight into how to choose M

is provided by density estimation.
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2.2 Density Estimation, Kernels, and Windows

Some insight into the problem of optimally choosing weights kN(v) can
be obtained by examining the density estimation problem in which one seeks to
optimally choose a test or estimator based on the data. Estimation of the
density d(u), O<u<l, can be based on its Fourier series representation:

(-]

d(U)= z e-2ﬂiUV p(v)

V-

A raw estimator o(v) generates a symbolic raw estimator

d(u) = E e~ 2miuv S(v)
V=-w

The series defining a(u) is symbolic because it does not converge. A natural

class of estimators a(u) of d(u) are of the form, called kernel estimators,

dw = T 0 I o) = [ K u-t) ab(e)

defining

« -2nitv
Ky(t) = ] e K

- - 00

2ﬂitv KN(t) dt.

_ (0.5
ky(v)s  kylv) = [0.5 e
We call kn(v) a kernel, and KN(t) a window. The theoretical investigation
of these estimators in the context of the two sample problem is still very
open for research [see conjecture 2B below].

Example. The choice of weights

----- - - ‘- - A A a m'm e ala’ela s & & 4 & o ammla e o ala s

|
| -,
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may be shown to be equivalent to the estimator of d{u) given by [for h<u<l-h]

- _ D(u+h) - D(u-h)
3 dh(”) 2h
5! which we call a gap or leap estimator, or a numerical derivative.

Example. The density estimator a(u) can be motivated as a Bayes

estimator of d(u) given the data ;(-). Let

d(u) = E[d(u)]o(-)], o(v) = E[o(V)]o(-)].
Then
a(u) = § e-2n1uv (v)
VE-w
The prior distribution of p(-) is that p(v), v=0,+1,... is a sequence of

independent zero mean normal random variables with variance E|p(v)|2 = o C(v),
where ¢ is a scalar parameter and C(v) is a known convergent sequence.

Under local alternatives H], and conditional on the value of p(-), we consider
;(v), v=1,2,... to be independent with mean p(v) and variance CN=(]-A)/NA.

Then o(v) = k(v)o(v), where

Var [p§v§| _ 8 C(v)
Var{g(v CN + oC(v
C 1

{1 + ey

k(v)

M S T S N ST T - -




An important family of weights of this form is

k(v) = (1 + (&N
where one has to choose the exponent r and the truncation (or half-power)
point M adaptively from the data. This choice of weights can also be

motivated by formulating the density estimation problem as an optimization

problem: choose a(u) to minimize

f; |d(u) - d(u)|2 + p I; |;1(r)(u)|2 du

where p is a penalty parameter to be specified by the researcher.

In the general context of functional statistical inference, when a
kernel estimator is motivated by an optimization problem of the foregoing

kind, we call it a non-parametric penalty estimator. A density estimator is

called parametric select when it is a function of a finite number of

parameters and the number is chosen by the sample. Autoregressive density

estimators [described in section 2.4] are parametric select estimators.

Conjecture 2B. The asymptotic distribution of kernel density
estimators can be developed from the theory [outlined in Part 3] of

. 1 - A -
functionals [ J(u) dD(u) and the representation d(u) = fl Ky(u-t) dD(t).

Let k(x) - w<x<=, be a kernel generating function, and take kN(v) to be

of the form

ky(V) = k()

We call M a bandwidth lag or truncation point or half-power point [depending
on the standardization of k(-)]; it is a function of N, and tends to = as N

tends to . Then the asymptotic variance of a(u) is conjectured to satisfy




v oy
y ]

T

N var (a(w)] - @ lil de(u) dg(u)

where

@ - [~ Ké(t) dt = j“ k%(x) dx,

-
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defining K(t) = [ e 2" X \(x) dx, K(x) = I 21X y(t) at.

- ~®

Example. The kernel generating function

k(x) = SRAX g,

corresponds to the window generating function

K(t) = 0.5 for [t| <1

0 otherwise

One may verify that Rz = 0.5; the weights

ky(v) = k() = SR ipu/t

correspond to a leap estimator with M=1/h. The foregoing conjecture for the

variance of a kernel estimator agrees with the formula in Part 3 for the

differential variance of 6(u).

P TP S . WP P R X : - P e,
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2.3 Parametric "Non-parametric" Tests based on Location Scale Parameter Models

,wvri* T

A fully non-parametric estimator of D(u) = FH-](u) is provided by D(u).
A functionally parametric estimator 6(u) is provided by density estimators
d(u) based on the kernel method [section 2.2] or the autoregressive method
[section 2.4]. A fully parametric estimator of D(u) is based on estimating
parameters in a finite parametric model.

A frequently adopted parametric model for the distribution functions

TTIT

F and G is the location-scale parameter model

Fx) = F (D), G(x) = F (2

00]

)

g

2

where Fo(x) is a specified distribution function, and My Oy uy O, are
unknown parameters. Equivalent parametric models for the quantile functions

are

F(0) = up *+ oy Q) 6T (W) =, + oy Q ()

A model for D](t) = HF—](t) is easily obtained:

Dy(t) = at + (1-1) GF7'(¢)

At + (1-2) FO( %

M2 9
R E-RNNO)

at o+ (1-0) Foo(t) +
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= ot + (-1 Fo0y(1) - 6 - 4o (1)

defining parameters

Hy1~H Y
-9 = ] 2 ’-w=-—l-]
92 92

Alternative hypotheses H] which are local to Ho correspond to assuming 6
and ¢ to be near zero; then one can employ a linear Taylor series expansion

of Fo(x) about x = Qo(t) to obtain

D,(t) = t - (1-2) fo f,Q (t) + ¢ Q (£) f Q (t))

Our goal is an approximate parametric formula for D{y:.

Conjecture 2C. An approximation for D(u), valid for ¢ and y near 0, is

D(u) = u+ (1-2) o f,Q5(u) + (1-2) vQ, (u)f Q,(u)

A careful derivation of this approximation, and its consequences, is given
by Prihoda (1981). By substituting a parametric formula for D(u) in the

model for b(u) under local alternatives to Hg,
o _ T-2y &
D(u) = D(u) + (1) % B(u),

one can obtain estimators 6 and y which provide parametric estimators of D(u).

e e o P .
o - 2 ad e o o - o 4 A . - VPR o 2 e P J
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The model for ﬁ(u) can be stated as a regression model in 8 and y:
- _1
(75 D(u) - wp =6 fQ (u) + v Qulu) £,Qu(u) + (A (1-2)) " *B(u)

This representation is similar to a representation used by Parzen (1979) in

the univariate: one sample case to form estimators of location and scale

parameters in the model F(x) = Fo(ljﬁ):

fQ (u) Qu) = u .0 (u) + 6 Q (u) fQ (u) + o Blw

Linear Rank statistics j; J(u) dD(u) arise naturally in expressions

for estimators ¢ and y. The variance and covariance of optimal estimators

6 and @,in the reqular case,are given by inner products of foQo(u) and
Qo(u) foQo(u) in the Reproducing Kernel Hilbert Space (RKHS) corresponding to the

=1 -
process {Na(1-1)} 2 B(u). One can use the data D(u)-u over the full

interval O<u<l, or on a subinterval O<p<u<g<l, or at a discrete grid of
values uy,...,u in (0,15,

Asymptotically efficient estimators 5 and @ which are linear functionals
in D(u) are obtained by applying the theory of regression analysis of
continuous parameter time series developed by Parzen (1961). Introduce the

reproducing kernel Hilbert Space inner product between functions f(t) and

Ancndinond PR . B A n A A Beia d
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g(t) on a subinterval p<t<q of the unit interval corresponding to the

covariance kernel K(u],uz) = min (u],uz) - uyu, of a Brownian Bridge process:

oo = (3 F(1) g (1) ar + Flale) , Flala(a)
Digression. We find interesting an alternate expression:
<> = [1 (1) T (L) at

where

fr(t) = f'(¢) p<t<q

< |-

f(p), O<t<p

g fla),  gstsd

To form the inner product of f(t) and g(t) over 0<t<l1 we require

f(0) = f(1) = g(0) = g(1) = 0; then
<fip = [} F(t)g'(t) dt.

Note that (fOQo)'(u) = -Jo(u), {Qo(u) foQo(u)}' =1 - Jo(u)QO(u). To

form the estimators 8 and @ we form: the information matrix




T AR O . 7
[ S ERUE
R AN . v .

Pl it ol
L

r"‘ﬁ‘s‘.'-"'?—'” M SCRAASCARLII I
: oLt T T A

g e D T ——— A I T——,~, e ——

27

~ A o .
I = I” 112 = <foQ0, foQo> <foQo,Qo-fOQ°>
12] 122 <f Q Q -f Q > <Q -f Q Q .f Q >
L 0%’ "o 070 0 0%’ 0 00
- L -

and the statistics

T] = <f0009 {D(u)-u}>
T, = <Q - Qs {D(u)-u}»
Then
i i
° = (= 17! N
1-2
v T,

In the symmetric case fooo(u) = fOQO(l-u), and Qo(u) = -Oo(l-u). Then
I]2 = 0 when q = 1-p.
Let us explicitly evaluate the inner products when we use the interval

O<u<l and all the data D(u), O<u<l. We must assume that

] _ ) -
foJo(u) du = jo {1-Jo(u)Qo(u)} du = 0. Then

Ly = Sl Pau, 1,5 = Lh-g (e, (u)|? au,

rm S P O P P O oo
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G Ty = [2 J,(u) db(u)

fo 0 - 3 (u) Q (u)y db(u)

T2 o

The covariance matrix of e and y is given in general by

r -
Var (o) Cov (8,9)

Cov (6,9) Var (y)

e p

To illustrate the meaning of the foregoing formula for variance,
consider 6 = (up-uy)/o, in the normal case. Assume that o] = 0p = 0.
tet ;j be the sample means and ;2 the variance of the pooled sample.
Then (;]—;2)/; has asymptotic variance equal to m! o+l - N/mn =
{NA(]-A)}—] I;}, since Jo(u) = ¢'](u) in the normal case.

To test Ho: F=G the analogue of conventional "non-parametric" test

statistics (which could be called a parametric "non-parametric" test

statistic for Ho) is the quadratic form [where * denotes transpose]

-1

D>

Var [6] Cov [5,@]

«D >

]

< >

Cov [5,&] Var [&]

<

which, under the null hypothesis Ho, has a Chi-squared distribution with

two degrees of freedom.

]
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*

Example: The logistic distribution has standard quantile functict

and score function
= _u_ = 24y-
Qo(u) log R Jo(u) 2u-1

Therefore [see Eubank (1979)]

2 _ 3+ g2

_— 1
L= Jo (2u-l)y du=3, Iy = =g

A non-parametric test statistic for location [which is optimum for the

logistic distribution] is

2
NI
- N | 11 _ 12Nx 1 1 N 2
H‘ﬁrﬁ'rr:;)' Jo (u-7) ddlu) |

m
which is asymptotically equivalent to the Wilcoxon statistic. { Rj. It is
. j=1
equivalent in a finite sample if we define D(u) to be piecewise constant

and equal to j/m at u = Rj/(n+1); then

: Rj/(N+1)

3|
ne-1 3

j; u dD(u) =
J
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A non-parametric test statistic for scale [which is optimum for the
logistic distribution] is
N
L = —— —
=.%§_N%T(___T 1 ? (Ei. -1 10g (EJ_____) :

This test may have been given first by Prihoda (1981).

Motivation of entropy or information measures as "portmanteau" test statistics.

Parametric "non-parametric” tests of Ho given by L may be most powerful when
one is testing alternative hypotheses which correspond to shifts in location
and scale parameters. To obtain general "portmanteau" procedures, which do
not require close specifications of the alternative hypothesis, let us

re-express the statistic L in terms of the estimated density
d(u) =1+ (1-2) Le(f Q, (u})' +y (Q (u)F,Q4(u))']

One may verify that

*

[}
—

Jo |atw) - 1]? au ! - LL(1-0)/M)

One is led to conjecture that

Mo raw-17% du




4

e i
coel
O 0 -

3N

is a test statistic for Ho whose null distribution is chi-squared with
degrees of freedom equal to the number of parameters in a(u). Next one is

led to conjecture that the entropy or information measure

2N f]

o - 1og d(u) du

is a test statistic for H0 whose null distribution is chi-squared with
degrees of freedom equal to the number of parameters in a(u). We next
introduce autoregressive estimators d(u) for which f; log d(u) du is

evaluated as a parameter without integrating an estimated density.

S S S SUIUPIRNE. SRS -SSR . SR ST SR - ST, S T S ) - - - L S . T Y T Y T
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2.4 Autoregressive estimation of d(u) and tests of H0

The entropy H(f) of a probability density f(x), -~<x<w, is defined to

be
H(f) = I:{-log f(x)} f(x) dx
= fl {- log fF_](u)} du.
For a density d(u), O<u<] we define
H(d) = f] - log d(u) du > 0

to be the entropy in the density-quantile sense. Density estimators:a(u)
whose entropy are easily evaluated are provided by the autoregressive
method of density estimation.

Given p(v), v=0, +1,...,+m, ... one forms for m=1,2,...

~

_ s - 2niu "
d (u) = k|14 (1)e27 U va () e

ZﬂiumI-Z
m

where the complex-valued autoregressive coefficients ;m(m) are computed by

the Yule-Walker equations described below. Further

~ _ 'l ~ _ -~
H(d ) = [, - log d_(u) du = - Tog K

is directly computed in terms of the parameter Km.
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The Yule-Walker equations[which are solved to obtain ;m(j), j=1,..., m

and km from o(v), v=0, +1, ..., + m] are [see Parzen (1979)]

m . -
L (3) o(3-k) =0, k=1,...,m,

WO BRI R A an ae s i, SIS SRERE T
=

il
—
.

where am(O) They are solved using the recursive algorithm

o (m) = - mi] a1 (3) ol
a - ar 1{3) e(j-m)

I Km_] j=0

and for j=1,...,m-1
S, - - . - "% s
o (3) =a 1(3) +a (m) o o (m-3)

where a* is the complex conjugate of o. The autoregressive method of
estimating densities was first implemented in a computer program,and its
theory investigated, by Carmichael (1976, 1978).

A proposed diagnostic for determining the order m of an autoregressive

estimator &m(u) is the plot of

K - 1
D, (u) =/, =y dD(u)

An intuitive criterion for choosing an optimal order m is the

smallest value of m for which Bm(u), O<u<l, is not significiantly different

from Do(u) = u, O<u<l.




34

This paper aims to raise the consciousness of statisticians about the
FUN.STAT (functional statistical inference) approach to the two sample
problem. At this time we can only state conjectures about the theorems
that need to be proved [theoretically and/or by Monte Carlo calculations].
!!l One theorem is about the large-sample properties of autoregressive density
- estimators; another theorem is about the use of estimates -log km [of
entropy or information measures] to test H0 and to form order determining

criteria for optimal autoregressive orders m. A noteworthy irony is that

the orders m chosen in practice are small, and one might wonder about the
relevance of a large sample consistency theorem.

-~

Conjecture 2D. Formula for the asymptotic variance of dm(u) as an
estimator of d{(u): As m tends to « at a suitable rate [such as m3/N - 0

as N + «] am(u) tends in probability to d(u) and its asymptotic variance satisfies

% Var [am(U)] = Zlil dp(u) dg(u)

(Note that m denotes the autoregressive order and not the size of the X
sample.) This conjecture is based on the formulas for the variance of the
kernel estimators conjectured in section 2.2, and the relations between the
distributions of kernel and autoregressive estimators of the spectral
density function of a stationary time series [conjectured by Parzen (1969),
and confirmed by Berk (1974)].

Conjecture 2C. A "portmanteau" (alternative hypotheses unspecified)
procedure for testing Ho [which may have optimal properties] is of the

form: accept Ho if
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2m 1-) -
- log Km _<_'—N'T ’ m-l,2,

It should be emphasized that further theoretical and Monte Carlo
investigation is required to find the best multiple of the right hand

side to use in practice [perhaps including a factor of log log m].

Conjecture 2F. A procedure for autoregressive density estimator order
determination. If one rejects Ho because one of the inequalities in
Conjecture 2E is violated, let m be the value of m minimizing a criterion

of the form

] 2m 1-)

AIC(m) = log Km N

An estimator of d{u) is taken to be &&(u). Note that AIC(&)<O.
Conjecture 2G. Cain one develop criteria for accepting Ho based on

the values of (%@%

asymptotically independent Chi-squared distributed with 2 degrees of freedom.

)|p(v)|2 , v=1,2,..., . Under H0 these statistics are
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Part 3. Asymptotic Distributions of Stochastic Processes Arising in Two

Sample Quantile Data Analysis

3.1 Introduction

; see . -
A #
. I N )
PRI

The FUN.STAT approach to testing equality of two independent populations

with bi-continuous distributions F and G respectively is based on:

(1) estimating parameters which are functions such as D](u) = HF'](u), and

D(u) = FH ' (u), and

\..".
=

(2) exploratory data analysis of the fully non-parametric estimators
5](u) = ﬁ?'](u) and D(u) = 5{](u).

This part discusses how to derive the asymptotic distribution of the
stochastic processes 6](u), 0<u<1, and D(u), O<u<l. Our aim is to outline

an operational calculus for intuitively deriving results concerning the

distribution of empirical processes [such as 6(u)], and for identifying

stochastic processes CD(u) and Cpy (u) such that
1

T"""
I i

A B(u) - D(u)y 3 e lu), A o (u) - Dy (w3 G, (W)

where 9 connotes convergence in distribution of stochastic processes.

@

i

Our results are heuristic theorems, rather than rigorously proved theorems
with carefully stated regularity assumptions.

Theorem 3A. Asymptotic distribution of a sample distribution function

DR SR AL A3UCH KA ST AL AL 4
e o

E(x). E(x) of a random sample X],...,Xm can be expressed in terms of

?U(u) of Uy = F(X]),...,U = F(Xm) which are uniform on [0.1]. Note that

m

Ry’

Frl(u) = ?U(u). One can show that there is a Brownian Bridge process

B(u), O<u<l, such that
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;Q’
mﬁFMu)- ul PB(M

We denote by BF(u) a B8rownian Bridge process such that

B-(u) = m? i) -w 2 Bc(u)

Next define

C(x)=m2F(x) - F(x)) 2 BL(F(x)

The 1limiting process of ?(x) is denoted CF(x), where CF(x) = BF(F(x)).

Theorem 38. Asymptotic distribution of sample quantile function ﬁ'l(u).

Eal(u) = F?‘](u) satisfies

-~

8 _y(u) = AR (w) - w3 (P ()= -Bp(u)

E'](u) under suitable conditions on fF'](u) [see Csorgqo and Revesz (1981)]
satisfies

AE ) - Py 8B e )

fF " (u

The 1imiting process of F1(u) is denoted C _1{u). We note the basic

F
relation

Proof: Write FE-](u) -u = F?'l(u) - ??-](u) + FF" ' (u) - u. One may

verify that




ST L () T

1
O<u<l m

A FF Y - FE )y - EF(?'}(U)) 2 CF(F'](U)) = Bc(u)

The first conclusion may now be inferred. Next m%{ﬁ' (u) - F_](u)} equals

~_1 -1 . .
Efu = F )y (N (u) - u))
FF 1 (u) - FFT (u)

The left bracket contains the reciprocal of a difference quotient which

tends to f(x) evaluated at x = ! (u). The right bracket converges to -BF(u).

3.2 Conjectures in Distribution of ﬁ(u)

To apply Theorems 3A and 3B to the two-sample problem we first derive

heuristically the asymptotic distribution of é? !

6F ™ (u):

(u) as an estimator of

A G (u) - 6F Y (u))

=N 66 6 ) - 6T (u) + 6F T () - 6F T (u))

(-0 8, (&' (u)

by S (FF“(u)) 6F'(u) ;3 (W
) - u F~

‘o

(1-0)7% 8 (6F™'(u)) - x‘*{d 6F ™' ()1 B (u)
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The asymptotic distribution of

-~ o~

5§u) = AF V() = AFFT V() + (1-2) 6F T (u)

as an estimator of %(u) = HF'](u) = au + (1-2) GF'](u) is described by the
asymptotic distribution of ﬁﬁ-](u) - HF'](u).

Conjecture 3C. N (ﬁﬁ' (u) - HF-](u)) and

/N(1-1) (éﬁ—](u) - 6F 7 (u)) converge in distribution to

L]
Cpfu) = (1) [01-0)7% Bg(6F 1 (w) - 272 {Sf%i(:—;} B (u)]

Let d(u) = Of(u) = hF™'(u)/FF " (u). Then d(D71(w)) = hH™T(u)/ ™ (u).
The asymptotic distribution of D (u) = (QE'])-](u) as an estimator of

'])’](u) = FH'](u) is conjectured (using proofs similar to those

D (u) = (HF
used for sample quantile functions) to satisfy the following theorem.
Conjecture 3D. Asymptotic distribution of D (u).

N (u) -0 (] ¢y (w

where CD(u) —if%l—-‘CD (Di](u)) is explicitly given by
(077 (u)) 1

-1 -1
Cotw) = (1-0) [0-0)7F ) g (o Tuyy - a9 Lu) g eyt (uy))

P R ST ST WY
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;t! The covariance kernel of CD(u), given in Conjecture 2A, shows that
%:i the complex-looking process CD(u) actually has much simplifying symmetry.

It has been previously derived fn Pyke-Shorack (1968) who show

A FE ) - () QCD(U)

An interesting question is whether the asymptotic distribution of b(u)
can be deduced from the Pyke-Shorack results using the fact [Theorem 18] that
6(u) - Eﬁ'](u) equal 0 except for about m sub-intervals of length 1/N
in which it equals 1/m.

Distribution of stochastic Stieltjes integrals and linear rank

statistics. The process ﬁ(u) has the important property that a linear rank
statistic can be asymptotically represented as a stochastic Stieltjes

integral
'l -
fo J(u) dD(u)

for a suitable continuous score function J(u). Its limiting distribution

can be described as follows:
8(3) = A (fy I(u) ddlu) - f) 3u) dD(u))

is asymptotically normal with zero mean and covariance kernel KA(JI’JZ)’

aeuristically representing

KA(J] st) = Cov [A(J])’ A(Jz)] ’

OV S S Y Y _-'_‘.-.._Al
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4
and given by

Ky (9950 = o [0 9y (u) 9y(u) dELCH(uy) Cp(U)]
Explicitly

Ky (9959,) = Ky (99:95) + K3(dy,95) - Kp(d9,9)

where

K (9150,) = 22 110 () 0,(u) dg(w) de(u) du s

2
Kp(97.9,) = L2 1y () agludpp )yt au gl o (u) g (wop )y au

A
+ (1-0)f) 33 (u) 1dp(uIDg(u))' du f) 9,(u) (dp(u)D(u)}' du s
_ 2 1A
K3(d9,95) = (1-2)° [ [q duy duy Jq(uq)35(up)

[{x']

4 (uy)dg (u)D (min(uy,u,)) + (1-1)714 (u)df- (u,)0g(min(uy,u,))
+ e(up-uy) (17 (uy)de(uy)de(uy) + (1-3)71dp (u))dpuy)dguy))

+ e(uz-u]){x']dé (uz)dG(ul)dF(“1) + (1-A)']d§ (uz)dF(ul)dG(u])}]

where e(t) = 1 or 0 as t>0 or t<0. Under the null hypothesis H,
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i(- K, (3759) = (S 7] 0y (o) du - 1) 9y(u) du fg 9,(u) dub .

One can obtain the asymptotic covariance of ;(v]) and ;(vz) by choosing

J](u) - e2n1uv1 , Jz(“) - e-2n1uv2

3.3 Density Estimation and Differential Variance

Insight into the asymptotic variances of density estimators is provided
by a formula for the variance of the fully non-parametric estimator of

d(u) = D'(u) given by the numerical derivative

. D (u+h) - D (u-h)
d (u) = 2h

Conjecture 3E. A formula for the asymptotic variance of the numerical

derivative a(u) is

5 20N Var [d (u)] 2 122 d(u) dglu)
. The expression on the right hand side is called the differential variance
of 6(u); it can be used to suggest conjectures concerning the asymptotic
. distributions of kernel and autoregressive density estimators [Conjectures 2B
e and 2D]. The form of the differential variance suggests that d(u) has the
distributional properties of a density-quantile estimator since an estimator

of a probability density d(u) has variance proportional to d(u), while the

variance of a density-quantile d(u) has variance proportional to d2(u).
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Conjecture 3F. A fully non-parametric estimator of d](u) = Di(u) =
A+ (1-2) {gF_](u) fF'](u)} given by
) D, (uth) - (D, (u-h)
d,(u) = ] !
1 2h
has asymptotic variance satisfying
2hN Var q. =12 d -] d -1 - dy(u)-a
[d)(w)] = 52 (G- 6F 7 (u); G ) - lii & (u) 1: i }

Qutline of a heuristic proof of Conjecture 3E. 2hN Var [a(u)]

approximately equals

7 ElCy(uth) - Cplu-h) |

2
= UL ra) M) ElBglan (uh)) - Bg(eH (u-n))|?
g;ﬁ + 270 dA(u) EIBE (FH™T(uth))- Be(FH™ T (ush)) 2]
Ei; (1-x 2 2 2
o eIy D de(u) dg(u) + (1-2) dglu) de(u)]
g = 12 g (u) dglu)
o
rt-“
5 since Adg(u) + (1-2) dg(u) = 1.
o
8
| L. . . aa PR . . e
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Covariance of linear functionals required to derive asymptotic variance

of density estimators. A general theory of asymptotic distribution of

density estimators can be developed by assuming that KA(JI’JZ) can be

represented

_ )
w 1Yl ey 9, (u) Vo(uysu,) duydu
o lo "1 2 2\Uyelz) QY
r‘F where V](u) and V2(u],u2) are integrable functions. We call V](u) the
:n

differential variance; V2(u],u2) vanishes in formulas for the asymptotic

variance of kernel and autoregressive density estimators. Spectral averages

of the spectral density of a stationary time series which is a linear

process have the foregoing structure [see Parzen (1961), p. 982].
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tf‘ Part 4. Summary of Two Sample Quantile Data Analysis Using TWOSAM

: To test the null hypothesis Ho: F(x) = G(x) of equality of two populations,
!‘. . . . . . ,2
- statisticians usually choose a test statistic (TN, Dmn’ dmn’ etc.), compute
*!l its value from the data, and test the significance of the computed value of
! the test statistic chosen. This paper shows that conventional test

- statistics can be represented as functionals of the process 5(u), O<u<1, and
[‘l proposes an autoregressive density estimation approach to the data analysis
} of D(u).
3
3 In addition to providing the applied statistician with the ability
Ti! to analyze sample paths of continuous parameter stochastic processes
|

[such as D(u), O<u<1], this paper aims to stimulate the applied statistician

to appreciate the basic probability theory of these stochastic processes.

A graphical (rather than an arithmetical)way to test Hy is to plot
’ D(u), 0 < u < 1, and examine whether its deviation from the uniform
‘Il distribution Do(u) = u appears to be significantly different from the sampie

path of a Brownian Bridge with variance (1-1)/aN.

;’f The proposed quantile data analysis approach to the univariate: two

?’ sample problem involves several stages.

E{ Stage 1. Fully non-parametric analysis. Obtain for each of the two samples,
t. and for the pooled sample, descriptive statistics and plots of the

. informative quantile function. Plot on one graph the quantile functions of

the two samples. Plot 6(u).

Stage 2. Autoregressive analysis. Obtain: |;(v)|2, square modulus of

sample pseudo-correlations, for v=1,...,M where M is a specified maximum
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order. Plot am(u) and ﬁh(u) for m=1,...,M. List values of Rm, log km,
and AIC(m) for m=1,...,M. Obtain optimal order by AIC criterion.

The two sample non-parametric data modeling procedures described in
this paper haye been implemented in a computer program called TWOSAM. I
would 1ike to acknowledge the contributions to this program of the
following colleagues during the course of their Ph.D. studies: Jean-Pierre
Carmichael, Mike White, Tom Prihoda, Scott Anderson, Phil Spector, and Avi
Harpaz (who deserves special thanks for the current version of the program).

To illustrate how the quantile approach to data analysis could be
presented to students in an introductory statistics class, we consider a
data set analyzed by Larsen and Marx (1981), p. 324.

An important problem of two sample data analysis arises in cases of
disputed authorship. Were the 10 essays published in 1861 by "Quintus
Curtius Snodgrass" actually written by Mark Twain? Let X and Y respectively
denote the proportion of three-letter words in (eight) Twain essays and
(ten) Snodgrass essays. For ease of writing, the sample values X],. X

LI 89
Y],...,Y]0 are multiplied by 1000 and 200 is subtracted. The samples then

have order statistics:
X: 17, 17, 25, 29, 30, 35, 40, 62
Y: -4,1, 2,5, 7,9, 10, 20, 23, 24.

A typical data analysis might include the following diagnostics.

I. An analysis of the two samples based on the t-test yields a t-value

of 3.86 and rejects H [at the .002 level]. That the distributions of X and
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Y are very non-normal can be quickly examined by plotting the informative
quantile functions of the samples. For a sample quantile function é(u) the

informative quantile function IQ(u), which represent Q(u) normalized so that

Q(0.5) = 0 and approximately Q'(0.5)=1, is estimated by

1§(u) = Q) - 9(0.5)
2{Q(0.75) - Q(0.25)}

For a random sample x],...,xm, with order statistics X(])<...<X(m), we define

UG = X5y 0 371

é(u) is defined by linear interpolation for other values of u. With this

convention we obtain

u 1/9°  2/9 3/9 4/9 5/9 6/9 7/9 8/9

Iéx(u) -.38 -.38 -.14 -.02 .02 .17 .32 .98

u o2/ 311 4/n 5/ 6e/11 7/11 8/11 9711 10/1

1Q(u) -.52 -.30 -.26 -.13 -.04 .04 .09 .52 .67 .70

These informative quantile functions indicate shorter-tailed distributions
than the normal. A test based on the t-statistic might still be defended by
those who believe that robustness justifies such procedures [this may be true
only for distributions for which IQ(u) is not too asymmetric].

II. Conventional two-sample procedure. Apply a Wilcoxon rank sum test.

Let Rj denote the ranks in the pooled sample of the X values.

R: 8,9, 13, 14, 15, 16, 17, 18

Liadin A Beoreethesntbmasiion P Yy o 2
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One desires to test the significance (concerning equality of populations)

of the rank sum equal to 110, or equivalently of the statistic

m R,
T <1 ) J
m L. N+T
3=
Note E[T] = 0.5. For the Mark Twain data, T = 110/152 = .7237. The

variance of T is .0055; therefore (T-E [T])/o(T) = 3.02. One concludes
that the hypothesis Ho that Twain wrote the Snodgrass papers is rejected

[at the .001 level, using the normal approximation].

I1II. A graphical test can lead to a firm conclusion. An alternative to

computing a statistic and determining its significance level is to plot
6(u), using the fact that it is a distribution function with jumps of

t‘i - size 1/m at the points Rj/N. D(u) has the following values:

b u 8/18 9/18 13/18 14/18 15/18 16/18 17/18 18/18
.444 .5 .722 .778 .833 .889 .944 1.0

~

D (u) 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8

125 .25 .375 .5 .625 .75 .875 1.0

The graph of D(u) is always below the uniform Do(u) = u; we conclude that
no reasonable test procedure would decide that Twain wrote the Snodgrass
papers.

IV. Pseudo-correlations. The following table lists for the Mark Twain

data the squared-modulus I;;(v)|2 of the pseudo-correlations of lags

v=1,...,5:

48
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lo(v) |2 .2527 .1664 .0652 .1196 .0253

Since 2Nx/(1-1) = 28.8, the pseudo-correlation of lag 1 indicates that H0
should be rejected [at the .025 level; 28.8|p(1)]2 = 7.3].

V. Entropy and AIC. The following table lists for the Mark Twain data the

entropy - log km’ and order determining criterion AIC(m), for m=1,2,...,5:
m 1 2 3 4 5

-log km .29 .696 1.669 1.980 2.740

AIC(m) -.152 -.418 -1.252 -1.424 -2.046

One rejects H0 because AIC(m)<0 for some m>1 (and indeed AIC is negative
for all the values of m listed above). No optimal order m is chosen
because AIC(m) does not achieve a relative minimum among the orders listed.

~

VI. Graphs of autoregressive density estimators &m(u). When an order m

is determined one considers aa(u) as an estimator of d(u). For the Mark
Twain data, where the two samples are almost disjoint, no order is
determined. The graphs of ﬁh(u) also indicate that a satisfactory estimator
is not achieved among m=1,...,5. Since the sample sizes are so small here,

one hesitates to consider larger values of m.

P S N R T T R T T S T A m- e m im e oA e e aiaia




]

50

Actual graphs produced by TWOSAM are not included in this paper
because the paper is too long and for the Snodgrass example the graphs are
not actually needed to draw conclusions about Ho‘ Of course, one should

study the graphs in order to discern information not contained in the numbers

- proposed as diagnostic measures.

r‘ Epilogue. What do we see as the future of the FUN.STAT Quantile approach to

F .

two-sample data analysis? It aims to provide statisticians with (1) new
procedures which can detect differences in populations which are not diagnosed

by conventional procedures, and (2) diagnostics of distributional shape

> Do

which can enhance confidence in the use of conventional procedures. The
theory of the new procedures is asymptotic, but they are practical to use

in both very small and very large samples. The investigation of their

properties, especially in small samples by Monte-Carlo methods, can be
considered to provide many important research problems. We would like to
emphasize our belief that it is unwise to rely on pure graphical data

analysis based only on graphs which are not accompanied by diagnostic
measures. FUN.STAT facilitates estimation of entropy and information measures

which are particularly useful summary measures because they may provide

comparisons between parametric and non-parametric analysis of a data set

[see Parzen (1983)].
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