Molecular Association and Monolayer Formation of Soluble Phthalocyanine Compounds (U) Naval Research Lab Washington DC A W Snow et al. 20 Apr 83

UNCLASSIFIED
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
Molecular Association and Monolayer Formation of Soluble Phthalocyanine Compounds

Arthur W. Snow
N. Lynn Jarvis

Naval Research Laboratory
Washington, DC 20375

Office of Naval Research, Code 413
800 N. Quincy St., Arlington, VA 22217

Approved for public release; distribution unlimited

Prepared for publication in the JOURNAL OF THE AMERICAN CHEMICAL SOCIETY.

Phthalocyanine
Association
Monolayer

A series of H2, Mg, VO, Co, Ni, Cu, Zn, Pd, Pt, Bi and Pb 4, 4’, 4”-, 4’’’-tetracumylphenoxy phthalocyanine, MPcX4, was synthesized. By vapor pressure osmometry measurements of toluene solutions at 65°C, all MPcX4 compounds were dimeric complexes except PbPcX4 which is monomeric and Cu, Ni, Pd and PtPcX4 which form larger complexes ranging from 2.7 to 4.1 molecular units. Each MPcX4 forms a stable Langmuir-Blodgett monolayer to film pressures of 20 mN/m and force-area curves indicate a dense packing of phthalocyanine units with molecular areas increasing with complex size.
Molecular Association and Monolayer Formation of Soluble Phthalocyanine Compounds

by

Arthur W. Snow
N. Lynn Jarvis

Prepared for Publication in the Journal of the American Chemical Society

Naval Research Laboratory
Washington, DC 20375

20 April 1983

Approved for public release; distribution unlimited
Molecular Association and Monolayer Formation of Soluble Phthalocyanine Compounds

Arthur W. Snow
N. Lynn Jarvis

Chemistry Division
Naval Research Laboratory
Washington, D.C. 20375

ABSTRACT

A series of H_2, Mg, VO, Co, Ni, Cu, Zn, Pd, Pt, Bi and Pb 4, 4', 4'', 4'''-tetracumylphenoxy phthalocyanine compounds, MPcX_4, was synthesized. By vapor pressure osometry measurements of toluene solutions at 65°C, all MPcX_4 compounds were dimeric complexes except PbPcX_4, which is monomeric and CuNiPd and PtPcX, which form larger complexes ranging from 2.7 to 4.1 molecular units. Each MPcX_4 forms a stable Langmuir-Blodgett monolayer to film pressures of 20 mN/m and force-area curves indicate a dense packing of phthalocyanine units with molecular areas increasing with complex size.
Recent advances in understanding the chemistry and physics of phthalocyanine compounds include reports of vapor induced electrical conductivity, electronic switching between conducting states, photovoltaic effects, oxidative and photooxidative catalytic activity and electrochromism. These phenomena involve surface interactions with chemical vapors, electromagnetic irradiation and electrical contacts. To study these interactions an ideal physical form would be phthalocyanine monolayers of known concentration and orientation deposited on interdigital microelectrodes. The mono and multimolecular layer (Langmuir-Blodgett) approach to studying organic films is of considerable current interest. Such studies require soluble phthalocyanine compounds and a knowledge of their solution and solid-state ordering. We wish to report the synthesis of eleven members of a new family of tetracumylphenoxy substituted phthalocyanines, their degrees of association in solution and their monolayer forming properties at the water/air interface.
Our new findings include the direct observation of a dimeric complex as the predominant degree of association for most of the phthalocyanine compounds in solution, a d^8 effect that promotes degrees of association greater than two for the Ni, Pd and Pt phthalocyanines, a large ion effect that prevents dimer formation of the Pb phthalocyanine and the formation of stable monomolecular phthalocyanine films whose packing densities at the interface relate to the degree of association.

The tetracumylphenoxy phthalocyanine compounds, MPcX_4, were synthesized in evacuated sealed tubes at 280°C by reacting cumylphenoxyphthalonitrile 8 with a four fold molar excess of hydroquinone for H_2PcX_4 9a, PdCl_2 for PdPcX_2, PtCl_2 for PtPcX_4, PbO for PbPcX_4 9b and the appropriate acid etched metal turnings or powder for the remaining MPcX_4 compounds. The cumylphenoxy group dominates the solubility properties of these compounds. They are all soluble in aromatic, chloroalkane and cyclic ether solvents and were purified by column chromatography on neutral alumina. Elemental analysis (C, H, N, M) and spectroscopic data (electronic, infrared, $^1\text{H NMR}$ 10, ESR) are consistent with the assigned structures.

The number average degree of association in toluene was measured by vapor pressure osmometry 11 as the apparent molecular weight divided by the molecular weight calculated from the assigned structure (Figure 1). The linearity of the plot indicates the degree of association does not significantly vary over the concentration range 3×10^{-3} to 2×10^{-2} M, and the slope is related to the solvent-solute interaction. Most of the MPcX_4 compounds are dimeric complexes in solution. The exceptions are PbPcX$_4$ which is unimolecular and the Cu, Ni, Pd and Pt phthalocyanines which form progressively higher order complexes.
That phthalocyanine compounds are dimeric complexes in organic solvents was postulated by Bernauer and Fallab12 and further advanced by Monahan et al13 on the basis of electronic and ESR spectroscopies and solvent polarity effects. Their systems were limited to copper, vanadyl and zinc metals, and they did not consider the possibility of higher order complexes. We confirm by direct solution activity measurements that dimeric association is a general trend of phthalocyanine compounds in solution and add that specific metal ion effects can superimpose on this dimerization tendency. These metal ion effects operate when the complexed metal ion has sufficient size or proper electronic structure to transcend the \(\pi \) orbitals of the phthalocyanine ring and interact with other molecular units. Table I presents the number average degree of association, metal ion radius and d electronic configuration of the M\(\text{PcX}_4 \) compounds investigated. To exert a strong influence on association from a consideration of size only, the metal ion electronic radius must perturb the phthalocyanine electronic structure or extend beyond the distance of maximum \(\pi \) electron density14,15 of the phthalocyanine ring. Of the M\(\text{PcX}_4 \) compounds studied, Pb\(\text{PcX}_4 \) has by far the largest ionic radius. Spectroscopic and crystallographic data on Pb\(\text{Pc} \) indicate that the lead ion is displaced 0.4 \(\AA \) from the plane of the phthalocyanine ring2a,16,17. This structural distortion of symmetry may disrupt the general tendency of the phthalocyanine ring to form dimers. Further, the 5d106s2 electronic configuration of the plumbus ion would not be expected to promote coordination with another Pb\(\text{PcX} \) unit. On the other hand, the M\(\text{PcX}_4 \) compounds with the d8 configuration have an enhanced capacity to form complexes of a higher order than two molecular units, and this effect increases with metal ion size. It is well known that square planar complexes of d8 Ni(II), Pd(II) and Pt(II) can form stacked columns with some partial metal-metal bonding through an axial interaction in
the solid state. Krogmann has applied the valence bond approach to describe the stacking of \(d^8\) square planar platinum complexes and proposed an axial bonding through the hybridized \(d_{z^2}\) and \(p_z\) orbitals in an excited high spin electronic state. His scheme would predict paramagnetism for analogously bonded \(d^8\) phthalocyanine complexes in solution, and, indeed, preliminary ESR measurements show very strong signals (10^19 spin/gram) which decrease progressively from the Ni to the Pd and Pt complexes. This would be consistent with a bond pairing of axial \(d\) electrons of the internal phthalocyanine units of larger stacked complexes. Regarding the phthalocyanines in general, NiPc is somewhat unique in that exceptionally strong ESR signals at \(g = 2\) have been observed in both solution and the solid-state.

Concentration and solvent dependent variations in electronic spectra have been interpreted as due to the formation of dimeric phthalocyanine complexes in the cases of CuPcX'_4, VOPcX'_4 and ZnPcX'_4 (X'_1 = SO_3\cdot NH(CH_2)_{17}CH_3) in organic solvents and of CuPcX''_4 and CoPcX''_4 (X''_1 = SO_3^-) in aqueous and mixed aqueous-organic solvents. The spectroscopic observation is a narrow monomer absorption band between 650 and 700 nm superimposed on a broad dimer absorption with a partially resolved maximum at a slightly shorter wavelength. The higher order Ni, Pd and Pt complexes of our NiPcX_4 system display a progressive enhancement of this broad shorter wavelength absorption when compared with a "well-behaved" dimer such as ZnPcX_4 or monomer such as PbPcX_4 (Figure 2). Only the PbPcX_4 electronic spectrum follows Beer's law, which would be expected as it exhibits no complex equilibria. The interpretation of the CuPcX'_4 electronic and ESR spectra as a dimer has been disputed in favor of a higher complex on the basis of a more comprehensive ESR study. Our results support the latter position.
Monomolecular films of the metal substituted cumylphenoxy phthalocyanines, where \(M = \text{H}_2, \text{Co}, \text{Cu}, \text{Ni}, \text{Pd} \) and \(\text{Pt} \), were spread at the water/air interface from benzene solution. Surface tension was monitored by the Wilhelmy plate technique to \(+0.05 \text{ mN/m} \). The force-area curves are presented in Figure 3. Each of the phthalocyanine compounds was discovered to form stable, reproducible films to film pressures of 20 mN/m or higher.

Two outstanding features of the monolayer data of Figure 3 are first, that the complexing metals have a pronounced effect on the area occupied per phthalocyanine molecule, and second, that all the phthalocyanine derivatives occupy areas that are remarkably small. The areas/molecule are consistent with cofacial orientation, with the planar rings oriented at a significant angle out of the water/air interface. Cofacial orientation is consistent with the electronic spectra of the compounds in solution and could readily give rise to strong metal-metal interactions between adjacent molecules. The effect of the metal atoms on phthalocyanine packing in the monolayer relates at least qualitatively to the degree of association given in Figure 1. The metals giving the highest degree of association, \(\text{Ni}, \text{Pd} \) and \(\text{Pt} \), also give the largest area/molecule at equivalent film pressures, and in the same order. The correlation indicates that the electronic interactions giving rise to the different degrees of association in solution are also operative in the monolayer regime. Those derivatives giving dimer formation in solution (\(\text{H}_2 \) and \(\text{Co} \)), and the somewhat more associated \(\text{Cu} \) compound, gave evidence of closer packing at the water/air interface; however, with significant individual differences.

If the phthalocyanine solution complexes are considered to have a columnar structure of cofacially stacked rings and to exist as such in the monolayer, then it is reasonable to presume that the smaller, shorter aggregates would pack more efficiently than the larger, longer ones. Such a
model would be consistent with the molecular area ordering of the Pt, Pd and Ni complexes. The variations in molecular area of the dimeric complexes may be due to additional ordering brought about in transition from the solution to the solid-state monolayer. Notably, polymorphs attributable to dimer structures, which are distinct from the commonly encountered α and β phthalocyanine crystalline forms, have been proposed for CuPc$_4$ and H$_2$Pc$_6$.

Currently we are developing characterization techniques for these monolayers.

Acknowledgements. We thank Ms. Milford Thompson for obtaining some of the VPO data and Mr. John Strolka for making some of the monolayer force-area measurements. This work was supported by the Office of Naval Research.
References

(6) These electrodes are microfabricated on quartz or silicon surfaces with a thickness on the order of 1000A and widths and space separations on the order of 1 micron.

(9)(a) Reaction temperature was 180 C°; (b) Reaction temperature was 210°C.

(11) For a review of this technique see: Billingham, N.C. 'Molecular Mass Measurements in Polymer Science'; J. Wiley and Sons: New York, 1977; Chapter 4.
References (Continued)

<table>
<thead>
<tr>
<th>M</th>
<th>DA</th>
<th>R(A)</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>1.9</td>
<td>.66</td>
<td>-</td>
</tr>
<tr>
<td>VO²⁺</td>
<td>1.9</td>
<td>.88</td>
<td>d¹</td>
</tr>
<tr>
<td>Co²⁺</td>
<td>2.0</td>
<td>.72</td>
<td>d⁷</td>
</tr>
<tr>
<td>Ni²⁺</td>
<td>3.0</td>
<td>.69</td>
<td>d⁸</td>
</tr>
<tr>
<td>Pd²⁺</td>
<td>3.6</td>
<td>.80</td>
<td>d⁸</td>
</tr>
<tr>
<td>Pt²⁺</td>
<td>4.1</td>
<td>.80</td>
<td>d⁸</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>2.7</td>
<td>.72</td>
<td>d⁹</td>
</tr>
<tr>
<td>Zn²⁺</td>
<td>1.9</td>
<td>.74</td>
<td>d¹⁰</td>
</tr>
<tr>
<td>Bi³⁺</td>
<td>2.0</td>
<td>.96</td>
<td>d¹⁰</td>
</tr>
<tr>
<td>Pb²⁺</td>
<td>1.0</td>
<td>1.20</td>
<td>d¹⁰</td>
</tr>
</tbody>
</table>
LEGENDS FOR FIGURES

Figure 1. Number average degree of association (vapor pressure osmometry molecular weight divided by monomeric molecular weight) of MPcX₄ compounds in toluene solution at 65°C.

Figure 2. Electronic spectra of monomeric PbPcX₄, dimeric ZnPcX₄ and progressively higher order (Ni, Pd, Pt) MPcX₄ complexes.

Figure 3. Langmuir-Blodgett force-area curves of MPcX₄ compounds.
DEGREE OF ASSOCIATION = \frac{M}{M_{Pc}} = \frac{K/(\Delta V/C)}{M_{Pc}}

CONCENTRATION (g/Kg)