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Foreward

As part of the on-going program in "Decision Control Models in

Operations Research," Professor Joseph Mazzola, Mr. William McCoy

and Professor Harvey Wagner have examined economic order quantities

when the amount supplied is random. This situation occurs in many

industrial settings, such as the manufacturing of electronics.

The report provides easy-to-compute formulas that give close to

optimal quantities. The formulas are straightforward modifications

to the classic economic lot-size model. The approximations are

tested with differing economic and deterministic demand parameter

settings. Other related reports dealing with this program are

given on the following pages.

Harvey M. Wagner
Principal Investigator

Richard Ehrhardt
Co-Principal Investigator
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Abstract

We consider the multiperiod lot-sizing problem in which the production

yield (the proportion of usable goods) is variable accordin% to a known prob

ability distribution. A dynamic programing algorithm for an arbitrary

sequence of demand requirements is presented. We review two economic order

quantity (EOQ) models for the stationary demand continuous-time problem and

-. derive an EOQ model when the production yield follows a binomial distribution

and backlogging of demand is permitted. Heuristics based on the EOQ model are

discussed, and a computational evaluation of these heuristics is presented.

The heuristics consistently produced near optimal lot-sizing policies for

* problems with stationary and cyclic demands.
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Algorithms and Heuristics for

Variable-Yield Lot-Sizini

by

Joseph B. Mazzola, William F. McCoy, and Harvey M. Wagner

1. Introduction

The general multiperiod lot-sizing problem involves trading off of setup,

production, inventory carrying, and stockout costs over a planning horizon.

The solution is a policy that minimizes the sum of these various costs while

satisfying demand over the planning horizon.

The earliest solution to the lot-sizing problem was formulated by Harris

I in the early 1900s; this model is commonly called the Wilson Economic Order

• "Quantity (EOQ) model. In 1958. Wagner and Whitin [17) introduced a dynamic

lot-sizing algorithm for solving the multiperiod problem with varying deter-

ministic demands. Under certain conditions, the use of (s,S) models was shown

to be optimal by Beckmann (21. For a review of the early literature on the

* basic lot-sizing model, the reader is directed to Veinott 1161.

In this paper. we address a generalization in which the production yield

*(the proportion of nondefective goods obtained from a production run) is a

random variable and specified by a probability distribution. The variable

- yield lot-sizing problem is important to high technology industries in which

many of the manufacturing processes experience less than perfect yields. This

phenomenon could possibly be attributed to extremely rigid tolerance specifi-

cations or perhaps to various complexities in the production processes them

selves. A particular example arises in the silicon chip industry. Due to the

inherent nature of the manufacturing process, mnny firms in the industry

I



experience considerable fluctuation in their production yields. Consequently,

these firms often suffer excessive inventory carrying costs in an attempt to

meet product demands. The standard lot-sizing models do not adequately

address this problem.

One of the first discussions of the variable-yield lot-sizing problem

*appears in Karlin 17, 8); several results for the single- and multiperiod

versions of the problem are presented for the case when no setup costs are

i incurred. Silver 114) develops a general EOQ model for the variable-yield

lot-sizing problem. He shows that the only additional factors affecting the

economic order quantity are the mean and standard deviation of the yield

Idistribution.

, . Recently, Shih 113) also addresses the variable-yield lot-sizing problem.

The first of his models is an EOQ model; the second is a single-period model

in which there is a probabilistic percentage of defective items in the lot as

well as probabilistic demand. In both of these models, Shih assumes that the

probability distribution of the yield is independent of the order quantity.

Kelly 19) examines a variable-yield batch sizing problem involving a single

I. one-time demand.
We present an algorithm and two heuristics for the multiperiod variable-

yield lot-sizing problem. In the next section, we provide a dynamic program

ming formulation. In section three, we consider the continuous-time version

of the problem. We extend Silver's model (141 to the case in which back-

logging of demand is permitted. We give specific results for the situation in

L which the variable yield obeys a binomial distribution.

In section four, we define two easy-to-implement heuristics for the multi

period variable yield lot-sizing problem. In the last section, we report the

results of the computational testing of these heuristics on two classes of
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problems with a binomial yield distribution. These heuristic procedures are

quite good in that they consistently provide policies with expected costs that

are within 0.4% of the optimal cost as determined by the dynamic programming

algorithm.

2. Dynamic ProiraminL Alzorithm

Dynamic programing algorithms for deterministic as well as stochastic

lot-sizing models are well precedented in the literature (for example, see

131, 141. 151, (6), 1101, and 1171).

Assume that demand over the next W time periods comprising a planning

horizon is deterministic and given by D1 , D2  ... ,D,. Given the inventory

level at the beginning of any period t, we decide the production size

QL t 0 (in units).

Assume that production capacity is M > 0 units per period. A setup cost

of K dollars is incurred each time Qt 0 0. The variable production cost

is C dollars/unit, and since the lead time is less than one period, all

(nondefective) units produced during a period can be used to meet that

period's demand, which occurs at the end of the period.

For a lot of size Q units, the (integer) number x of usable (nondefec-

tive) units follows a discrete probability distribution (xIQ). Assume

* all defective units are discarded with no salvage value. The nondefective

units are used to meet either current (or past) demand or placed in finished-

* goods inventory.

A carrying cost of c h dollars/unit is charted each period for ending

inventory. Stocking out of demand is permitted. and all stockouts are back

ordered. A stockout cost of c dollars/unit is assessed each period for

any demand that has not been filled.

-.
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Define f Ml) as the expected total cost of an optimal lot-sizing policy

with an initial inventory level of i units and with n periods remaining in

% the planning horizon Assuming that f_ li) has been determined for all

possible beginning inventory levels i, then for any feasible production

quantity Q, let

A Q

f (Qji) I A(Q)K 4 C Q ICch(i4x-Dt) 4 c(DtZi)4

n v 1=0 h st

4 f:_ (14z-D )I,(zxIIQ), 1
n-i.

where

I if Y> 0,
6() =

0 otherwise,

4
(y) = max (y,0,

and t E U-n4l

* We then define

fn(1) mn (fn(Qli)), - < i S. (2)

where a > 0 is a bound on the total number of backlogged units and S is

storage capacity. Also, let= {Q (QIi) a fn(i)) be the set of all

optimal production quantities. The model requires that the ending conditions.a
fo(i) be specified for all possible end-of-horizon inventory levels i.

3. EOQ Models

We now consider the continuous time variable yield lot-sizing problem.

Assuming that demand is constant and deterministic, lead time is known, and

orders are produced instantaneously, several authors have developed economic

- order quantity (EOQ) models for the problem.

-.-.. .



In 113), Shih extends the basic EOQ model without backlogging of demand to

include the presence of a variable yield. In this case, the fraction t of

usable (nondefective) goods is stochastic with a (known) probability density

of 4(k); thus the yield distribution is independent of the production

quantity Q. For the case of no stockouts. the total annual cost function say

be written as

2 2
K 4 c vQ (c H/2D)(1(L )Q2 ) (3)

2(t)Q/D

where K is the setup cost, c is the variable production cost (per
v

unit), cH is the annual holding cost per unit (c = 12c if each period
Ht b

equals one month), D is the annual rate of demand, E(u) is the expected

value of u under the distribution #(k), and the decision variable Q is

the quantity scheduled for production. The resulting optimal production quan-

tity is

Q KD/c. (4)

Note the scaling factor I/IV/(t 2 ) appearing in (). One might expect

the scaling factor to be 1/E(L); however, the appearance of the second

moment in (4) comes from the calculation of the holding cost. Shih's model

* .1131 can be extended to allow for stocking out and backlogging of demand.

We assume that the actual yield is a function of the number of goods Q

* produced; that is, the variable-yield distribution is specified as V(xlQ),

where x is the number of usable goods resulting from a lot of size Q.

Silver 1141 presents an economic order quantity model for this case. Specifi-

* cally, Silver shows that the expected total annual cost (exclusive of the

"*- expected annual variable production costs) is given by

I
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2
K 4 (c /2D)(E(x IQ)) (5)

-(xIQ)/D

where K(uIQ) denotes the expected value of u given Q under the distri-

.., bution (xIQ).

It is shown that when E(xIQ) u bQ, for some constant b, and the

standard deviation 0 R Q = o, then the economic order quantity is

* 1 2
Sb (2KD/cM) (6)

Alternatively, if a Q = kQ, where k is a constant, then

." Q l2KD/[c,(b24) (7)

This model is now extended to the case in which backlogging of demand is

permitted and all backlogged demand must be met. Assume a lead time of 0.

As in the basic EOQ model in which backlogging of demand is permitted, we also

assume that production is not scheduled until the (backlog) inventory level

- drops to i < 0. Once this reorder level is reached, an amount Q is pro-

" duced resulting in an amount a < Q of usable goods that arrive, where the

- probability of realizing x is given by the discrete distribution o(xIQ).

Any backlog that exists is satisfied and 1 4 i is held in inventory. This

inventory is depleted at a known rate D, and the (average) amount of inven-

tory held is (x 4 i) 2/2D. Since production is not scheduled until a back

-log of Iii units has accumulated, the average number of backlogged units

2
is 1 /2D. At the end of this cycle, a lot of size Q is scheduled for

production and the process repeats.

"- ,*, . " , '-- -- - * -"- * -• " --- - • - - -" --- " . *. . . '
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The expected holding cost is given by

22 2
141 (i) /2D14,(xIQ)j (C /20)[E(x IQ) 4 2iE(xIQ) 4 1 1.

.10 cH( H

Therefore, given i, the expected total cost for a single replenishment cycle is2 12 cs22D

K 4 CvQ 4 (CH/2D)E3( 2iQ) 4 2ilZIQ) 4 1 4 1/2. (8)

In order to transform the costs to expected average cost per year, expres-

sion (8) must be scaled by the appropriate time interval. It is no longer

appropriate, however, to scale the expression by z/D since each random out-

come x induces a different duration between orders. Assuming that the time

between production runs is independently and identically distributed, since

the model requires that we schedule production from the same level of inven-

tory each time, the production cycle can be viewed as a renewal process.

To find the cost per unit time. we have from renewal theory 111)

Total cost accumulated by time t I(lsinle-cycle cost)

t EMtime between production runs)

as t -4 -. Thus, dividing (8) by the expected time between production runs

E(xIQ)/D, the following expression for expected total annual cost is

obtained

K 4 CvQ 4 (c /2D)IE(2 IQ) 4 2iE(xIQ) 4 1
2 1 

4 Cs 120 (9)

'(zIQ)/D

If we now assume that each item produced has a probability p of being

usable and that this occurrence is independent of other units produced, then a

:T. production lot of size Q can be viewed as a sequence of Q Bernoulli

trials. Hence. the probability of obtaining x usable goods (a yield of

x/Q) in a lot of size Q is Liven by the binomial probability of obtaining

x successes in Q trials

o-



0(zIQ) =(Q) ( Q-

PO p ,P

For this distribution E(xIQ) = pQ and E(z IQ) = pQ(l4p(Q-l)).

Using the binomial distribution in expression (9), we have that expected

annual cost is

K 4 C v Q * (C /2D)I(pQ(14p(Q-1)) - 2ipQ * i 2 4 C i /2D (10)

pQ/D

* Thus, the optimal Qt and i* are

Q = (l/P)&i2KD/cH j/(cH e /cS S

= 1t(12)Sc(c 4 Cs)

4. Heuristic Procedures

Basic EOQ models require stringent assumptions; however, these models are

readily adaptable to more general situations by modifying them into heuristic

decision rules. We now present two heuristic rules for the multiperiod vari-

able yield lot-sizing problem.

The general lot-sizing problm involves dynamic demand, and thus it is

common practice to use the sum of the future twelve monthly demands Dt as

the value for annual demand D. Each of the heuristic procedures presented

below uses this value in the computation of the economic order quantity Q

and the reorder point i as determined by (11) and (12).
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The basic tOQ model assumes that demand occurs continuously. The multi-

period, variable yield lot-sizing problem, on the other hand, is a discrete

K.2- time problem. Consequently, if one attempts to employ a straightforward"S
application of the well-known Cs,Q) decision rule, with s = i and

Q = Q , situations often arise in which the inventory level at the begin-

ning of one period is above the reorder point s, but by the beginning of the

next period the inventory level will have fallen well below the reorder

-. -point. Thus, in some sense, such a decision rule may result in waiting "too

long" to produce. The occurrence of the phenomenon suggests a modification of

the reorder point i
a

I- •Since the EOQ reorder level i* already optimally balances holding and

stockout costs, it appears reasonable to adopt a new production policy that

calls for making a production run whenever the current inventory level i is

such that (after experiencing this period's demand) the resulting inventory

level at the beginning of the next period will fall strictly below i (if

no run is made). Thus, the following dynamic or hybrid Cs.Q) decision rule

is suggested. If in any period t, the beginning inventory level is less

than or equal to st = D 41 -1, produce Q units; otherwise, do not
t

produce. This rule may be looked upon as an (stQ) decision rule, where

the reorder point is a function of the period t; the NEUR 1 heuristic uti-

lizes this rule.

The other heuristic is based on the notion that an (s,S) model (some-

times called a min max model) may be more appropriate for this particular

." problem. The intuition behind adoptin& such a model stems largely from the

wide success of (s,S) models for many other types of stochastic inventory

°---J
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models. (See 111 1151, and 1201.) Based on empirical observation. we heu-

ristically choose to set S Q where Q is the economic order quanti-

ty used in the earlier heuristic. Thus, the second heuristic REUR 2 say be

looked upon as an (st,S) decision rule in which an amount Q -I is pro-

U duced whenever the inventory level i at the beginning of any period t is

less than or equal to Dt4i -1.

The two heuristic rules are sumarized in Table 1.

Table 1. Suumary of the Heuristic Procedures

Heuristic
Procedure Name Type Policy Order Quantityt  Reorder Point

S(k)(Q (s

1 HEUR 1 (stQ) Q Dt41-I

2 HEUR 2 (St,S) Qt-i Dt4it-1

Ii is the beginning period inventory level.

The recursive structure of the dynamic programing algorithm may be used

to calculate the expected cost of the heuristic procedures. Recall from Section

2 that f (i) is the expected cost of an optimal lot-sizing policy given an

initial inventory level of i and n periods left to go. Similarly, define

k
f (i) to be the expected cost of a lot-sizing policy given by decision rule k,

where k a 1,2 corresponds to the two heuristics, given an initial inventory

level of i and n periods left to go in the planning horizon. Thus

........... °..
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)K4C Ic (14(lx-D) c5 (D -x-i)"

k kfkCi) * fn- (i4z-Dt )](zIQk if i s

c (i-D ) 4  c(D -) 44 fl (i-Dt ) otherwise,

h t s t n-I t

where t V U-n~l and Qk and sk are the order quantity and reorder point

th
of the k decision rule (as given in Table 1). In this manner, we calculate

fk i) by backward recursion and thus calculate the expected cost of using

policy k over the planning horizon for the desired beginning of the horizon

inventory level.

5. Computational Results

The EOQ heuristics as well as the dynamic programing algorithm were

tested and compared on two groups of problems in which the mean demand rates

were 10 and 25 units/period, respectively. Two distinct demand patterns

were represented within each group. One pattern has constant demand per

period, while the other has sinusoidal demand. These demand patterns are

given in Table 2.

The production yield is assumed to follow a binomial distribution. We

considered the three cases in which the probability p of an individual unit

being nondefective is 80, 501, and 20%. In this manner, we can compare the

relative behavior of the heuristics in the face of different production yields.

Three different cost structures were considered for each demand pattern

" and each production yield. The various costs were set relative to one another

so that the expected number of production runs, as determined by the binomial

., . . .... ...
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yield OQ model. is 2, 4, or 6 times per year. The unit holding cost € h

is set at $1. Incorporating the well known "Newsboy heuristic rule" (6).

which suggests that c /(c 4C ) a probability of stockout, the unit
h h

stockout cost c is set equal to $19 (thus approximating a 95% service
8

level). A variable production cost c - $4.00 is assumed. The setup

costs k are set so that the ZOQ formula (11) yields the desired number of

expected production runs per year, and they are given in Tables 3 and 4.

Table 2. Annual Demand Patterns

Average
Monthly Month 1 2 3 4 5 6 7 8 9 10 11 12
Demand Pattern

- Constant 10 10 10 10 10 10 10 10 10 10 10 10
D_.O Sinusoidal 10 13 14 1S 14 13 10 7 6 5 6 7

Constant 25 25 25 25 25 25 25 25 25 25 25 25
P = 25 Sinusoidal 25 31 36 38 36 31 25 19 14 12 14 19

For each problem, the maximum production amount N is set equal to

min (D/p. 600). where D is the total demand for one year, p is the

probability of an individual unit being nondefective. and the 600 unit maximum

arises from a computer storage capacity limitation. The maximum inventory

storage capacity S is set equal to the corresponding value of R in each

case. The maximum number of units that could be backlogged at any point in

time is set equal to the total demand D for one year.

a In order to compare the relative performance of the various procedures

over a twelve month planning horizon, it is necessary to establish appropriate

ending conditions. This is accomplished by first solving each problem to

optimality over an initial 24 month time period using the dynamic programming

algorithm with
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' '•: {chi if 1)•0,
if i >h

O) - c i otherwise

For each problem, the resulting cost vector f i1 is then "normalized" by
24

subtracting the smallest entry in the vector from each of its components. in

this way, the resulting vector contains the relative (nonnegative) penalties

of starting out in each possible inventory position when 24 months remain in

the horizon. This modified vector is then used as an end-of-horizon cost

vector for the twelve-month costs comparisons discussed below.

- --Tables 3 and 4 report the twelve-month cost of each of the lot-sizing pro-

cedures for an initial inventory level of 0 units. Using these tables we

,. also can assess directly the relative performance of the heuristic procedures

by comparing the degree (in terms of percent) to which they approach the opti-

mal expected cost (as given by the dynamic programming solution). In order to

give some indication of the computational effort required to solve these prob-

lems to optimality, we mention that using an 1B 3081 computer with a FOUTAN

H level compiler, on average the solution of a problem with a mean demand rate

of 10 units per month required 10.2 minutes of CPU time and the solution of a

problem with a mean demand rate of 25 units per month required 46.5 minutes of

CPU time.

-We immediately observe that both heuristics consistently provide lot-

sizing policies with expected costs that are within 0.4% of optimality. The

heuristic rule given by HEUR 2 almost always dominates that of HEUR 1; in

addition, with one exception, HEUR 2 always provides as good or better solu-

tions to the problems with constant demand. The exception occurred in the

case when the economic order quantity was truncated to 600 because of a com

' • puter storage capacity constraint. Note, however, that even in this case,

both heuristics continue to provide excellent quality solutions.



table 3. EaPeeted 12 Death Cost of Lot-Siuing policies
toad prtealtv of Ortimalit, of wSeuttite vttfh a
Deems Dommad Rate of 10 Ve it* per meath

M0 Frobabilit, of Individual Unit beige foadeftetive

Rapocted Do.
.elase.. of Setabs R Mo* i., w WWI I 31133 2

2 171.00 is -3 16 32.1 1668S.64(0.02%) 14432.9 (0.00%)
Constant 4 42.75 33 -1 lS839.S 15399.9 (0.071) 15890.7 (0.01%)

* 19.00 25 -1 15419.7 15433.1 (0.12%) 15427.4 (0.051)

2 11.00 75 -3 14711.3 1672S.7 40.09&) 16728.5 (0.10,L)
Simusoidal 4 42.75 33 -1 15973.6 15999.3 (0.16%) 15995.3 (0.141)

______ 19.00 25 -1 15713.4 15744.4 (0. 17M) 1S741.9 (0.23%)

50% Probabilitm of Individual Veit belpA Woudefoetive

Rapected no. 
Brt

Demand of. Setups a aw I-, w Evi I IV

2 171.00 120 -3 32477.7 32430.2 (a.01%) 32479.3 (0.0110
Constant 4 42.75 40 -1 31537.5 31441.1 (0.01%) 31539.2 (0.011%)

4 19.00 40 -1 31218.2 31227.0 (0.03%) 31222.3 (0.01%)

2 171.00 120 -3 33142.2 33148.1 (0.02%) 33143.0 (0.02%)
Simusoidel 4 42.75 40 -1 32203.3 32214.2 (0.04%) 3221S.4 (0.04%)

6 19.00 40 -1 31379.0 31894.9 (0.05%) 31902.4 (0.07%)

0% obbiit I Tmjjplvidua' nit heisL Sondefiective

Rapected No. £

..eaad of setups a WO i., wE 3Brut I UEU 2

2 172.00 300 -3 73334.3 13337.5 (0. 00,) 73337.5 (0. 00%L)
Constant 4 42.75 IS0 -1 72402.2 72404.5 (0.00%) 72404.0 (0.00%)

4 19.00 100 -1 72357.5 72342.3 (0.01%) 72341.9 (0.01%)

2 171.00 300 -3 75433.9 75494.1 (0.01%) 75494.3 (0.01%)
Sinuseoidal 4 42.15 1S0 -1 74922.5 74992.0 (0.011) 74991.3 (0.01%)

4 19.00 100 -1 74740.5 14153.2 (0.02t) 747S4.1 (0.02%)

lVslues ace rounded up to searest integer.

2.
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C>Table 4. 9spacted 12 Month Cost of Lot-Statem Policies
(sad Prolieti of Optimality of 3.uristica) with a
Na Demand late of 25 Units per South

L-:-

-01 Probability of Individual Unit baisL Ioodefective

lspected go. 4 4

Dosed of Setups K . i, OP Rlt I "CUt?

2 427.500 M6 -7 40153.6 41069.9 (0.04%.) 41656.3 (0.01%)
Constant 4 106.875 94 -3 39044. 3 39706.9 (0.11%.) 39678.1 (0.03%.)

* 47.500 03 -2 38939.5 39042.9 (0.141) 39009.4 (0.051)

2 427.500 168  -7 41713.2 41731.2 (0.161) 41777.3 (O.ISI%)
Sinusoidal 4 106.B5I 94 -3 39371.3 39962.7 (0.23.) 39947.0 (0.19%)

6 47.500 63 -2 39236.1 39322.8 (0.2-2) 39373.9 (0.35%)

SUL Probability of Individual Unit beint Nondefective

Eupected go. O t
""and Of Setups I t i. oP "Sut ISUR 2

2 427.500 O0 -7 1 8 1 . 13.11 1.2 ,0.01.,) 91137.3 (0.001.)

Constant 4 106.875 150 -3 18165.8 78796.2 (0.041) 78719.6 (0.02.)

6 47.500 100 -2 11953.0 78004.9 (0.041.) 77978.2 (0.031.)

2 427.500 300 -7 32693.4 12737.9 (0.051.) 82734.5 (0.OS )
Sinusoidal 4 106.875 150 -3 30330.2 80445.3 (0.031) 30430.8 (0.061%)

6 47.500 100 -2 79576.8 79640.8 (0.08%) 79671.2 (0.12%)

ZIProbbIIits of Individual Unit beinLilondefective

n apected No.

_Dend of Setuos a MQ _
t  

w "gPut I "cut 2

2 427.500 1OOtt -7 183421.4 183423.5 (0.00. 183430.6 (0.011)

Constant 4 106.675 375 -3 181450.9 131469.7 (0.01%) 161466.5 (0.01.)
* 47.500 25o -2 100824.2 150858.1 (0.021) 15051.4 (0.021)

2 427.500 OOt ,s -7 -139346.2 189303.3 (0.011) 139374.2 10.011.)

$inusoidal 4 106.875 375 -3 181329.3 1?379.1 (0.03) 1817373.1 (0.02%)
0 47.500 1250 -2 1725.1 186714.1 (0.031%) 166 75.9 (0.031)

lValues are rounded up to nearest inteser.

ttCOQ set to marteus production quantity.

* ' " .Xie". -. _ _ __ _ _ _ _
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Within each of Tables 3 and 4 we observe that as the production yield (as

measured by the probability of an individual unit being nondefective) de-

creases, there is a substantial increase in the (optimal) expected twelve

month cost. In studying the behavior of the heuristics in this regard, we

note that the quality of the heuristic solution increases as the production

yield goes down. This suggests that these heuristics have the potential to be

extremely effective when employed in low-yield production settings. We also

observe that the heuristics consistently perform better on those problems

exhibiting a constant demand pattern. This difference in performance dimin-

K- ishes, however, as the production yield decreases. Finally, comparing Tables

3 and 4, we observe that there is very little decrease in the performance of

the heuristics as the mean rate of demand increases from 10 to 25 units per

period.

6. Conclusions

We have presented exact and approximation algorithms for the variable-

yield lot-sizing problem. The procedures were tested and compared on problems

having various demand patterns and cost structures. In each case, the pro-

duction yield was assumed to follow a binomial distribution with an (expected)

80%, 50, or 20 yield. The outcome of the computational experiments showed

that two heuristic procedures based on the (st,Q) and the (st,S) deci-

sion rules consistently generated lot-sizing policies which were within 0.4%

of optimality. Moreover, the quality of the heuristic solution improved as

the production yield decreased.

While both heuristics performed very well, the hybrid (s,S) decision

rule of the HEIJR 2 procedure provided the best overall approximate solutions.

This procedure provided solutions that were within 0.05% of optimality on

average, and never worse than 0.35% of optimality.
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