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when the amount supplied is random. This situation occurs in manv
industrial settings, such as the manufacturing of electronics.

The report provides easy-to-compute formulas that give close to
optimal quantities. The formulas are straightforward modifications
to the classic economic lot-size model. The approximations are
tested with differing economic and deterministic demand parameter
settings. Other related reports dealing with this program are

given on the following pages.
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g Abstract

- We consider the multiperiod lot-sizing problem in which the production
..i yield (the proportion of usable goods) is variable according to a known prob
ability distcibution. A dynemic programming elgorithm for an arbitrary

sequence of demand requirements is presented. We review two economic order

quantity (EOb) models for the stationary demand continuous-time problem and
derive an EOQ model when the production yield follows & binomial distribution
and backlogging of demand is permitted. Heuristics based on the EOQ model are
discussed, snd s computational evaluation of these heuristics is presented.
The heuristics consistently produced near optimal lot-sizing policies for

problems with stationary and cyclic demands.
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Alporithms snd Heuristics for

Variable-Yield Lot-Sizing

by

Joseph B. Mazzols, William F. McCoy, and Harvey M. Wagner

1. Introduction

The genersl multiperiod lot-sizing problem involves trading off of setup,
production, inventory carcying, and stockout costs over a planning horizon.
The solution is & policy that minimizes the sum of these various costs while
sstisfying demand over the planning horizon.

The earliest solution to the lot-sizing problem was formulated by Rarcis
in the early 1900s; this model is commonly called the Wilson Economic Order
Quantity (EOQ) model. 1n 1958, Wagner and Whitin [17) introduced a dynamic
lot-sizing algorithm for solving the multiperiod problem with varying deter-
ministic demands. Under certain conditions, the use of (s5,S) models was shown
to be optimal by Beckmann [2). For a review of the early literature on the
besic lot-sizing model, the reader is directed to Veinott [16].

In this paper, we address s generalization in which the production yield
(the proportion of nondefective goods obtained from a production run) is a
random variable and specified by a probability distribution. The variable:
yield lot-sizing problem is important to high technology industries in which
many of the manufacturing processes cxpericnce less than perfect yields. This
phenomenon could possibly be sttributed to extremely rigid tolerance specifi-
cations or pecheps to various complexitics in the production processes them

selves. A particular example arises in the silicon chip industey. Due to the

inherent nature of the manufacturing process, many firms in the industry
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experience considerable fluctuation in their production yields. Consequently,
these firms often suffer excessive ianventory carrying costs in an sattempt to
meet product demands. The standard lot-sizing models do not adequstely
address this problem.

One of the first discussions of the variable-yield lot-sizing problem
appears in Karlin [7, 8]; several results for the single- and multiperiod
versions of the problem are presented for the case when no setup costs are
incurred. Silver [14]) develops a general EOQ model for the varisble-yield
lot-sizing problem. He shows that the only additional factors affecting the
economic order quantity sre the mean and standard devistion of the yield
distribution.

Recently, Shih [13]) also addresses the variable-yield lot-sizing problem.
The first of his models is sn EOQ model; the second is a single-period model
in which there is a probabilistic percentage of defective items in the lot as
well as probabilistic demand. 1n both of {hese models, Shih assumes that the
probability distribution of the yield is independent of the order quantity.
Kelly [9] examines a variable-yield batch sizing problem involving a single
one-time demand.

We present an algorithm and two heuristics for the multiperiod vacriable-
yield lot-sizing problem. 1In the next section, we provide a dynamic program
ming formulation. 1In section three, we consider the continuous-time version
of the problem. We extend Silver's model [14] to the case in which bazk
logging of demand is permilted. We give specific results for the situation in
u;ich the variable yield obeys a binomial distribution.

In section four, we define two easy-to implement heuristics for the multi
period veriasble yield lot-sizing problem. 1n the last section, we report the

rcsults of Lhe computetional testing of these hcuristics on two classes of
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;!, problems with s binomial yield distribution. These heuristic procedures are
Ejl quite good in that they consistently provide policies with expected costs that
;'...‘

}i~ sre within 0.4% of the optimal cost as determined by the dynamic programming

algorithm.

2. Dynamic Programming Algorithm

Dynamic programming algorithms for deterministic as well as stochastic
lot-sizing models are well precedented in the literature (for example, see
{3), (&), (5], (6], [10]), and [(17])).

Assume that demand over the next N time periods comprising a planning

horizon is deterministic and given by D D.,. Given the inventory

1’ DZ' cee oDy

level at the beginning of any period t, we decide the production size

Q

¢ 2 0 (in units).

Assume that production capscity is M > O units per period. A setup cost
of K dollars is incurred each time Qt > 0. The variable production cost
N is cv dollars/unit, and since the lead time is less than one period, all
’ (nondefective) units produced during & period can be used to meet that
period's demand, which occurs at the end of the period.

For a lot of size Q units, the (integer) number x of usable (nondefec-

é

:f_ tive) units follows a discrete probability distridbution e¢(x|Q). Assume

%f‘ s8ll defective units are discarded with no salvage value. The nondefective
%; units are used to mcet either curcrent (or past) demand or placed in finished-
A goods inventory.

%f. A carrying cost of u dollars/unit is charged cach period for ending
. inventory. Stocking out of demand is permitted, and all stockouts are back-
TT ordered. A stockout cost of <, dollars/unit is assessed cach peciod for
Eﬂ sany demand that has not been filled.

ii

........ P A A A A
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Define f:(i) as the expected totsl cost of an optimal lot-sizing policy
with en initial inventory level of i wunits and with n periods remaining in
the plenning horizon. Assuming that f:-l(i) has been determined for all
possible beginning inventory levels i, then for any feasible production

quantity Q, let

Q
l: .- ‘ -_‘
fn(le) = §(Q)K 4 ch + x§0 lch(lﬁl Dt) + c.(Dt z-1)
£ (i
+ £ (isz-D ) )e(xlQ), n
where
1if’>oo
8(y) =
0 otherwise,
+
(y) = max {y,0) ,
and t = N-n4l .

We then define

€.(i) = min (€ QI)), -Bgicgs, (2)
0<Q<M

where B > O is a bound on the total number of backlogged units and S s

" ]
storage capacity. Also, letfl_n(i) = {Qlfn(Qli) = fn(i)] be the set of all
optimal production quantities. The model requires that the ending conditions

x
fo(i) be specified for all possible end-of-horizon inventory levels 1.

3. EOQ Models

We now consider the continuous time variable yield lot-sizing problem.
Assuming that demand is constant and deterministic, lead time is known, and
ocrders are produced instantancously, several authors have developed economic

order quantity (EOQ) modcls for the problem.

o - I PR T . . e e - . PR,
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1n [13), Shih extends the basic BOQ model without backlogging of demand to
include the presence of a variable yield. 1an this case, the fraction § of
usable (nondefective) goods is stochastic with s (known) probability density
of @(f); thus the yield distribution is independent of the production

quantity Q. For the case of no stockouts, the totsl annual cost function may

be written as

K + ch 4 (culzb)(!(tz)oz)
2()Q/D

(3)

where K 1is the setup cost, <y is the variable production cost (per

unit), c“ is the snnusl holding cost per unit (c“

equals one month), D is the annual rate of demand, B(u) is the expected

= 12ch if each period

value of u under the distribution ¢(}), end the decision variable Q is
the quantity scheduled for production. The resulting optimal production quan-

tity is

® 1
Q = \/ 2‘D/CH . (4)

E; Vz(tz)
o

EE Note the scaling factor 1/ Vt(iz) sppearing in (4). One might expect
:i the scsling factor io be 1/E(}); however, the sppearance of the second
moment in (4) comes from the calculation of the holding cost. Shih's model
: f13) can be extended to sllow for stocking out and backlogging of demand. .
Ve assumc that the actual yield is a function of the number of goods Q |
produced; that is, the variable yield distribution is specified as ¢(x|Q),
Ef where x is the number of usable goods resulting from a lot of size Q.
;i Silver [14) presents an economic order quantity model for this cese. Specifi-

cally, Silver chows thal the expecled total annual cost (exclusive of the

expected snnual varisble production costs) is given by

R LI W L L L I N A;L_‘.‘_‘_A—A;A_'_._,‘_L,__“‘_-_J
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K + (culzb)(!(leo))
E(x|Q)/D

' (5)

where E(u|Q) denotes the expected value of u given Q under the distri-
bution e(x]Q).
1t is shown that when E(x]Q) = bQ, for some constent b, and the

= ¢, then the economic order quantity is

‘v (ZKD/c“) + 02 . (6)

= kQ, where k 1is s constant, then

standard deviation ¢

z)Q

o
"
o =

Alternatively, if o

1]

® 2 .2
Q ZKD/[c“(b +k7)) . 1)

This model is now extended to the csse in which backlogging of demand is
permitted and all backlogged demand must be met. Assume a lead time of O.
As in the basic EOQ model in which backlogging of demand is permitted, we also
assume that production is not scheduled until the (backlog) inventory level
drops to i < 0. Once this reorder level is reached, an smount Q 1is pro-
duced resulting in an amount =x < Q of usable goods that arrive, where the
probability of re&lizing x is given by the discrete distribution e(zx]Q).
Any backlog that exists is satisfied and x + i 1is held in inventory. This
inventory is depleted at a known rate D, and the (average) amount of inven:
tory held is (x + i)2/20. Since production is not scheduled until a back
log of |i| wunits has accumulated, the average number of backlogged units

is £2I2D. At the end of this cycle, a lot of size Q is scheduled for

production and the process repeats.

. T T T e
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The expected holding cost is given by

Q 2 2 2
) lc“(x¢i) /720)e(x1Q)) = (e,/2D) [E(x 1Q) « 2iE(x}Q) + 1°).
x=0

Therefore, given i, the expected total cost for a single replenishment cycle is
2 . 2 2
| 8 ch . (c“IZD)lE(x 1Q) + 2iB(x]Q) + i) « csi /2D. (8)

In order to transform the costs to expected average cost per year, expres-
sion (8) must be scaled by the appropriate time interval. It is no longer
appropriate, however, to scale the expression by =x/D since each random out-
come x induces a different duration between orders. Assuming that the time
between production runs is independently and identically distcibuted, since
the model requires that we schedule production from the same level of inven-
tory each time, the production cycle can be viewed as a renewal process.

To find the cost per unit time, we have from renewal theory (11}

Total cost accumulated by time t E(single-cycle cost)

-
t E(time between production runs)

as t * e Thus, dividing (8) by the expected time between production runs
E(x]Q)/D, the following expression for expected total annusl cost is
obteined

K+eQe (c“IZD)lE(leo) + 2iB(x]Q) + 1%) + csiZIZD
E(xIQ) /D

(9)

1f we now sssume that each item produced has a probability p of being

usable and thet this occurcence is independent of other units produced, then s

production lot of size Q can be viewed as & sequence of Q Bernoulli

:f triels. Hence, the prodbadbility of oblaining x wusaeble goods (a yleld of

ii 2/Q) in e lot of size Q 1is given by the binomial probability of obtaining
}

?7 X successes in Q triels

&
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o(xlQ) = (Q) pr-p T .

Por this distribution E(x|Q) = pQ and !(xZIQ) = pQ(1+p(Q-1)).
Using the binomial distribution in expression (9), we have that expected

snnusl cost is

K+ € Q+ (c /2D)[(PRIL4PIQ-1)) - 2ipQ + i2) . csi2/20 (10)
pQ/D

Thus, the optimal Q and i* are

o
"

(1/p) Jf2KD/c V[(c“< e )/cg - (1)

™ -1

i = — ‘/2KDc“ . (12)
‘(cs(c“o cs)

4. HNeuristic Procedures

Basic EOQ models require stringent assumptions; however, these models are
readily adaptable to more general situstions by modifying them into heuristic
decision rules. We now present two heuristic rules for the multiperiod vari-
able yield lot-sizing problem.

The general lot-sizing problem involves dynamic demand, and thus it is
common practice to use the sum of the future twelve monthly demands Dt as
the veslue for annual demand D. Each of the heuristic procedures presented
below uses this velue in the computation of the cconomic order quantity Q.

”
and the reorder point i as determined by (11) aend (12).
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The basic EOQ model assumes that demand occurs continuously. The multi-
period, variasble yield lot-sizing problem, on the other hand, is s discrete
time problem. Consegquently, if one sttempts to employ s straightforward
application of the well-known (s5,Q) decision rule, with s = i. and
Q = Q‘, situstions often arise in which the inventory level at the begin-
ning of one period is above the reorder point s, but by the beginning of the
next period the inventory level will have fallen well below the reorder
point. Thus, in some sense, such s decision rule may result in waiting "too
long” to produce. The occurrence of the phenomenon suggests a modification of
the reorder point i'.

Since the EOQ reorder level i. already optimally balances holding end
stockout costs, it appears ressonable to adopt a new production policy that
calls for making & production run whenever the current inventory level i |is
such that (after experiencing this period's demand) the resulting inventory
level at the beginning of the next period will fall strictly below i- (if
no run is made). Thus, the following dynamic or hybrid (s,Q) decision rule
is suggested. 1f in sny period t, the beginning inventory level is less
than or equal to st = Dt¢i'-1, produce Q‘ units; otherwise, do not
produce. This rule may be looked upon as an (st.Q) decision rule, where
the reorder point is a function of the period t; the HEUR 1 heuristic uti-
lizes this rule.

The other heuristic is based on the notion that an (s,S) model (some:
times called & min max model) may bc more appropriste for this particular

problem. The intuition bchind adopting such & modecl stems largely from the

wide success of (s,S) models for many olher types of stochastic inventory
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models. (See [1], (15]), and {20]).) Besed on empirical observation, we heu-

x ®
. ristically choose to set S = Q where Q is the economic order guanti-

ty used in the earlier heuristic. Thus, the second heuristic HEUR 2 may be

®
looked upon as an ('t'S) decision rule in which an amount Q -i 1is pro-
duced whenever the inventory level i at the beginning of any period t is

less than or equal to Dt4i -1.

The two heuristic rules are summerized in Table 1.

Table 1. Summary of the Reuristic Procedures

Heuristic
Procedure Name Type Policy Order Quuntity* Reorder Point
(k) Q) (s,)
k k
1 HEUR 1 (s¢.,Q) Q" Deei®-1
2 HEUR 2 (s¢,S) Q"*-i Dy+i”-1

*i is the beginning period inventory level.

The recursive structure of the dynamic programming slgorithm may be used

to calculate the expected cost of the heuristic procedures. Recall from Section

"
2 that fn(i) is the expected cost of an optimal lot-sizing policy given an
initial inventory level of i end n periods left to go. Similaerly, define
f:(i) to be the expected cost of a lot-sizing policy given by decision rule Kk,

where k = 1,2 corresponds to the two hcuristics, given an initial inventory
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p K
+ )
G(Qk)K +cQ + lzo lch(i4x—bt) + ¢ (D -x-i)
) = 4 e if i
n LI 14:-Dt)lv(x|0k) < s .
. + “ k .
ch(t-Dt) + c'(Dt-i) + fn_l(i-bt) otherwise,

.
where t = N-n+1 and Qk and s, are the order quantity snd reorder point

of the kth decision rule (as given in Table 1). 1In this manner, we calculate
f:(i) by backward recursion and thus calculate the expected cost of using
policy k over the planning horizon for the desired beginning of the horizon

inventory level.

S. Comput.tionalzggsults

The EBOQ heuristics as well as the dynamic programming slgorithm were
tested and compared on two groups of problems in which the mean demand rates
were 10 and 25 wunits/period, cespectively. Two distinct demand patterns
were represented within each group. One pattern has constent demand per
period, while the other hes sinusoidal demand. These demand patterns are
given in Table 2.

The production yield is assumed to follow a binomial distribution. We
considered the three cases in which the probadbility p of an individual unit
being nondefective is 80%, 50%, and 20%. 1In this manner, we can compare the
relative behavior of the heuristics in the face of different production yields.

Threc differentl cost structures were considered for each demand pattern

and each production yield. The various costs were set relative to one snother

so that the expected number of production runs, as determined by the binomial
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yield BOQ model, is 2, 4, or 6 times per year. The unit holding cost ¢
$1.

h

is set at Incorporating the well known “Newsboy heuristic rule” (6],

which suggests that ch/(ch¢c') = probability of stockout, the unit

stockout cost <. is set equal to $19 (thus epproximsting a 95% secvice

level). A variable production cost cv = $4.00 is sssumed. The setup

costs k are set so that the EOQ formuls (11) yields the desired number of

expected production runs per year, and they are given in Tebles 3 and 4.

Table 2. Annual Demand Patterns
l Average
| Monthly Month 1 2 3 4 S 6 7 8 9 10 11 12
- Demand Pattern
i D = 10 Constant 10 10 10 10 10 10 10 10 10 10 10 10
| = Sinusoidal 10 13 14 15 14 13 10 7 6 S 6 ?
D = 25 Constant 25 25 25 25 25 25 25 25 25 25 25 25
- Sinusoidal 25 31 36 38 36 31 25 19 14 12 14 19

For each problem, the maximum production amount M is set equal to

min {D/p, 600), where D is the totsl demand for one year, p is the
probability of an individual unit being nondefective, and the 600 unit maximum
arises from a computer storage capacity limitation. The maximum inventory

storage capecity S is set equal to the corresponding value of M in each

case. The maximum number of units that could be backlogged at any point in
time is set equal to the total demand D for one year.

In order to compare the relstive performance of the various procedures
over & twelve month planning horizon, it is necessary to establish appropriate
ending conditions. This is accomplished by first solving each prodlem to

optimality over an initiel 24 wmonth time period using the dynamic programming

slgorilhm with

P W S I ST U VORGPt S V.
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e i if 10,
€oli) =

- c.i otherwise .

Por esch prodblem, the resulting cost vector f;‘(i) is then "normalized” by
subtracting the smallest entry in the vector from each of its components. 1n
this way, the resulting vector contsins the relative (nonnegative) penalties
of starting out in each possible inventory position when 24 months remain in
the horizon. This modified vector is then used as an end-of-horizon cost
vector for the twelve-month costs comparisons discussed below.

Tables 3 and 4 report the twelve month cost of each of the lot-sizing pro-
cedures for an initial inventory level of 0 units. Using these tables we
also can sssess directly the relative performance of the heuristic procedures
by comparing the degree (in terms of percent) to which they approach the opti-
mal expected cost (as given by the dynamic programming solution). 1In order to
give some indication of the computational effort required to solve these prob-
lems to optimality, we mention thet using an 1BM 3081 computer with a FORTRAN
R level compiler, on sverage the solution of & problem with a mean demand rate
of 10 units per month required 10.2 minutes of CPU time and the solution of a
problem with s mcan demand cate of 25 units per month required 46.5 minutes of
CPU time.

We immedistely observe that both heuristics consistently provide lot-
sizing policies with expected costs that ere within 0.4% of optimality. The
heuristic rule given by HEUR 2 almost slways dominates that of HEUR 1; in
eddition, with onc exception, HEUR 2 salways providcs as good or better solu-
tions to the problems with constant demand. The exception occucred in the
casc when the economic order quantitly was truncated to 600 becsuse of a com:
puter storage cepacity constreint. Note, however, that cven in this case,

both heuristics continue to provide excrllent quality solutions.
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Tadle 3. Bspected 12 Woath Cost of Lot-Sizing Policies
(and Prozimity of Optimality of Weuristics) with o
Wean Demand Rate of 10 Vaits per Woath
SO% Probebility of Individusl Unit being Bondefective
Bapected No. 1 *
Demand of Setups BOQ __{e o uEue 3 neur 2
2 171.00 75 -3 16682.1 16685.6 (0.02%) 16682.9 (0.00%)
Constant [} 42.7% 38 -1 15889.5 | 15899.9 (0.07%) 15890.7 (0.01%)
[ ] 19.00 23 -1 15619.7 | 15638.1 (0.1%) 15627.6 (0.05%)
2 171.00 1} -3 16711.3 | 16725.7 (0.0%%) 16728.5 (0.10%)
Sinusoidel 4 42.7% 3 -1 15973.6 | 15999.8 (0.16%) 15995.8 (0.1a%)
[ 3 19.00 a5 -1 15718.4 15744.4 (0.17%) 15761.9 (0.28%)
30% Probabjlity of ladividusl Unit being Wondefective
Rapected No. t +
Demend of Setups K 00" _ §* or e 3 ueve 2
2 1N1.00 120 -3 32477.7 | 32480.2 (0.010) 32479.8 (0.01%)
Constant 4 42.75 60 -1 31537.9% 31%41.1 (0.01%) 319390.2 (0.0
[ 19.00 40 -1 31219.2 | 31227.0 (0.03%) 31222.6 (0.01%)
2 171.00 120 -3 33142.2 | 33148.1 (O.0O%) 33148.0 (0.02%)
Sinusoidel [ 42.7% 60 -1 32203.3 | 32216.2 (0.04%) | 32215.4 (0.04%)
[ ] 19.00 40 =1 31879.0 | 31894.9 (0.05%) 31902.4 (0.07%)
20% Probability of ladividual Unit being Nondefective
Bxpected No. 4 4
r_g_-pnd of Setups it oP neue 1 neue 2
2 171.00 300 -3 73334.3 73337.% (0.00%) 73337.9 (0.00%)
Constent 4 62.7% 150 -1 72602.2 72604.3 (0.00%) 72604.0 (0.00%)
[} 19.00 100 -1 12357.% 12362.8 (0.01%) 72361.9 (0.01%)
2 171.00 300 -3 715698.9 715694.1 (0.01%) 75694.3 (0.01%)
Sinusoidal 4 42.73% 150 -1 74982.5 14992.0 (0.01%) 74991.8 (0.01%)
[ ) 19.00 100 -1 74740.% 74753.2 (0.02%) 747%4.1 (0.02%)

’anucl ece

counded up to acarest integer.
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Bzpected 12 Noath Cost of Lot-Siziag Policies
(end Prozimity of Optimality of Weuristics) with o
Hean Demand Rate of 25 Units per Honth

$0L Probedility of lndividusl Unit deing Wondefectiv
Bapected Mo. + 4
Pemand of Setups | § 20Q DP npuR 1 nEuR 2
2 427.%500 188 -7 416%3.8 41669.9 (0.04%) 41656.3 (0.01%)
Constent 4 106.873 % -3 39664.3 39708.9 (0.11%) 39678.1 (0.03%)
[ ) 47.3%00 [ X} -2 38989.5% 39042.9 (0.14%) 39009.4 (0.05%)
2 427.%00 188 -7 41713.2 41781.2 (0.16%) 41777.3 (0.15%)
S$inusoidal 4 106.87% 9% -3 39871.3 39962.7 (0.23%) 39947.0 (0.19%)
[} 47.300 63 -2 39236.1 39322.8 (0.22%) 39373.9 (0.35%)
30% Probebility of Individusl Unit being Wondefective
Zapected No. + +
b Demand of Setups | § 200 i* oP [ 3 WEUR 2
2 427.%001] 300 -1 $1133.4 | 81141.2 (0.01%) $1137.3 (0.00L)
Constant 4 106.873 150 -3 78765.8 78796.2 (0.04%) 718719.6 (0.02%)
[ 3 47.500 100 -2 17958.0 78004.9 (0.06%) 17978.2 (0.03%)
2 427.500 300 -7 82693 .4 82737.9 (0.05%) $2734.5 (0.05%)
Sinusoidel ] 106.875 150 -3 80380.2 80445.3 (0.08%) 80430.8 (0.06%)
[ 47.%00 100 -2 719576.8 719640.98 (0.08%) 719671.2 (0.12%)
r
! 20% Probadility of Individusl Unit being Mondefective
Tapected No. 4 *
Demand of Setups 4 20Q i* oP NEUR 1 HEUR 2
2 427.500 | eoott| -7 183421.4 183423.5 (0.00L) ! 183430.6 (0.01%)
Constant 4 106.875 375 -3 181450.¢ 181469.7 (0.01%) | 181466.5 (0.01%)
[ ) 47.500 250 -2 180824.2 180858.1 (0.02%) | 180851.4 (0.02%)
2 427.%00 600" -7 189348.2 189363.3 (0.01%) | 189374.2 (0.01%)
Sinusoidal 4 106.87% 37 -3 187329.3 187379.1 (0.03%) | 187373.1 (0.02%)
[ 47.300 2%0 -2 186725 .1 186774.7 (0.03%) 186775.9 (O.DJU

’Vnun are rounded up to nearest integer.

t120Q set Lo meximua production quantity.
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Within each of Tables 3 and A4 we observe that as the production yield (as
measured by the probability of an individual unit being nondefective) de-
creases, there is a substantial increase in the (optimal) expected twelve
month cost. 1In studying the behavior of the heuristics in this regard, we
note that the quality of the heuristic solution increases as the production
yield goes down. This suggests that these heuristics have the potential to be
extremely effective when employed in low-yield production settings. We also
observe that the heuristics consistently perform better on those problems
exhibiting a constant demand pattern. This difference in performance dimin-
ishes, however, ss the production yield decreases. Finally, comparing Tables
3 and 4, we observe that there is very little decrease in the performance of

the heuristics as the mean rate of demand increases from 10 to 25 units per

period.

6. Conclusions

We have presented exsct end spproximation algorithms for the variable-
yield lot-sizing problem. The procedures were tested and compared on problems
having various demand patterns and cost structures. 1In each case, the pro-
duction yield was assumed to follow & binomial distribution with an (expected)
80%, 50%, or 20% yield. The outcome of the computational experiments showed
that two heuristic procedures based on the (st.Q) and the (st.S) deci-
sion rules consistently generated lot-sizing policies which were within 0.4%
of optimaelity. Moreover, the quality of the heuristic solution improved as
the production yield decceased.

While both heuristics performed very well, the hybrid (s,S8) decision
rule of the HEUR 2 procedure provided the best overall approximate solutionms.
This proceducre provided solutions that wecre within 0.05% of optimality on

average, and never worse than 0.35% of optimality.
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