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ABSTRACT

Modarn Neval wearcen and sSernsor systsms are sStrongly
influenced by +the marire enviroamsnz. Focemost amorng *he
atmospheric sifects is Juctirg of =siectromagne+ic =znergy by

[ r2fractive layers in *he atmosohe&re, T- assess “he effec+
of duc=ing or elec*rormagne+ic =zmissioas, <hs Navy dsveloped
the Intaqgrated Refractive Effescrts Preldictison System (IREPS).
Research at Naval Pcstgraduata Scrnocl (NPS) has i1ed <o

development cf a state-of-the-a-= audel which can be used <c

L]

az+lve profile of <*he 1lowa:s

h

predict changes «0o <he re
a*mosphere. The m~del us2s radisscends data and surface
m2 teorological observations tc pradict chaages in refractive
conditions arnd low level cloudrs/fog Zizmation over 18 o 30
kour periods. The model =shcws somse skill in forecas*iag

duct regions when subsidence 7ta*ss can be specified *o

= within +/-.0015 n/s. This <hzs.¢ =.ows the applicabilizy of
- *he NPS marine atwmosctheric alzsd l:yer mzdel +o fleet *azc-
P - =lcs. Atmospheric r:lrac<ive 2:Ifectis on specific zmitters

car be oredic+ed when nodzl przdiic=incs are used ir conjunc-

+ion wish IREPS.
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-} nturie ilit sada2rs have lecarre <
Over *he centuries militar lead2r have le d o]

appreciate and take advantage of *he effects o0f the snvicen-
men+, and when “hey failed to 1o =0, hav2 ms*t with disaster.
As 1t approached “he islands of Japan in *hs thir+teen+h cen-
tury, Ghengis Kran's Mongol :invasion flzzt was destroyed by
a *yphoorn. From August *o October 1588 the Spanish Armada
wis bes2t by storm af*er storm which rasul=zed ir +he sinking
of many ships and failure of Spain's att2mp+2d Invasion of
Britain. On D-Day, June 6, 1944, +hz allia2d ZInvas=ion force
<ook advantage of predictesd good w2ather between starms =2nd
made *hs amphibious assault across <the baaches of Normarndy.
In December cf *he same year Admiral Halssy's Third Flee+
was caugh*t preparing *o rcefuzl by arn undstected +typhoon,
causirg 28 ships =0 be cripplei, 156 2i-planes t> b= lcst,
and +the destroyers SEENCE, MONAGHAN, arnd HULL *o be sunk
(Nash 1976).

Modzrn rnaval warfare techaslegy Is orovidin increas-
irqly capabis and complex, bu* ervironmsn-=ally Jdspenden<
wzapons/senscr systems. Not only “he s2varz sea and weather
canditisons must be predicted %> re+ain advantage over advec-

saries, bu=< also environmental fac*ors which enhance ot
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dzgrade a wide range cf weapon and sensor systems which u*i-
lize electromagne-ic (EM) propagation. Elzciromagnatic fra-
gquencies above the HF (3-30Mhz) bard can be grea=ly 2ffected
bv atmospheric refrac+ion.

A condition known as ducting occurs wher a -zfractive
layers cause EM ener tc hend +*coward thz ear+h at a Ca<e
g-=2ater thar or equal to *hs 2arth's curvaturs. Duc*irng
oscurs with certain critical va2z+tical gradients of tempzra-
ture anl humidity, anéd can cause both increased radar and
2dic rarnges, and holes (gaps) in normal zoverage.

Tactical advantages exist by kncwing duct 1lcca+ions.

T-ese aivantages include being ablzs +%c make r=alistic es

oF
f'-

\ZS

ma<es cf ESM detectior ard coun*er detzction ranges. T

..

wzuld enzable commanders *o mak= decisions concerning emis-
sion con=rol (EMCON), <the posi:ioning o2f bo+th air ard sur-

face surveillance assets, the al<i<wud2 3nd fligh® precfilzs

th

cr strike zizcraf+ to minimizs detsctison, +he placemzn+t of
=lectrenic jammers fcr maximum effact, 3ind numerous othar
tactical considerations.

Ductirg coecmmonly occurs with inversions which 2¢c« 3s
<rappiny layers, refracting or bending EY 2nergy *oward the

ear+h, Irversions are stable layers bzs4ween warm, dry ai:c

19
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al0f+t and cocoler, more mcist 2air belew and +typically exis=
m in marine surface high pressursz regions. Extensive ar=sas of
low level s*ratus clouds oft=2n delinsate areas oI duc+

CCCUITeNCE .

Ducting is expected o b= ainimal near €ror*+s and areas
cf corvective cloudiness. Fron*+s, wi+th <heir assscia+zd

upwai¢ mo+ior, often dissipate the invasrsions as the whcle
ir cclumr. becomes mixed. Areas of <convec+*ive activisy,

4 jztectible by the presence of cumulus clouds, are also nor-

mzilv inversicn free., Thus sa*21llite infrared (IP) and vis-

:nls photngraphy should proviis means +5 estimate ducting
Teglimes,

Tt.e Navy employs a microcomputer bas2d sysi=p, I

-

Y

EPS

(Trn-egyrated Refractive Effects Predic+iosn Sys=em) (Hi<nevy,

sorde da<a as input.
7he disadvan-age c¢f IREPS is =haz iz predicts *the duct-
iny corditions only a* *he rajioscndes laanch site 2and ~nly

a* “he scundirg *=ime. As such, 2= is not an IREPS w=aakness

(1]

bu* morz an irherent weakress in single station assessmant

"
1]
2
1]
=
[(]
n

e}
"
O

[
D
(9]
N
'J-
[o]
*9
n
' 1
9]
n

o)
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(9]
D

Th2 variabilisv of “hs atmosphsz
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lat

. g v
B <

e’

and predicticns in “ime of the ducting znvironmen* impcr:

™ -

Y

for the tracticiar., While satelli+e da=a can provide some of

~te da*a necessary to make projections ia space, ssmething

or

else is rneeded *to predic* changes with ime. Considering
EMCON, +the ability tc¢ forecast ducting £2r a 24 hour period

ivicat, Under strict EMCON conditions radiosondézs

9
p
.<
o
[11]
Q
B ]

cannot be aurched because th2 sigral fhsy 2mi< while +rans-
mi+t+ing data could ac* like a b=zacon to hrstile fczcses.
A predictive model exists £or changes In +the macine

azmospharic mixed-layer. The nicro compu“2r based model was

)
...J

dsveloped by <he Environmen*t2l Physics 35roup a+* the Nav
Postgraiuate School. (Davidson =zt al, 1933) . Tre model i=
ini<ialized wi<h IREPS soundiny data, surface observatio:ns
2f sea surfece *emvoerature, wind spezdi, and subsidesnce a=
-=he *invzrsion.

g#ilizirnag :he HP-6845 (which all carrizrs curren=ly have

cr. board for use as pac*t of +h2 IREPS

n

ystem) and da%a in
IREPS forma*, Brower (1982) dJaveloped a orogram *o incorpo-
Ta=e <he NPS nixed layer mod2l o pradict changes in *he
rafraczivity profile for a 33 thour psriczd. The mciel
requires as Irpu*s: surface wind, sea sucface *emperaturs,

ard an 2stimated subsidence value as w2ll z2s currcent IREPS

12




soundiny data =< op-edic* th: mixed layer wevolution and

resul*ing changes i bo*h surfics bzssd and eleva:24 duce
hsights up *c 1200 m al<ituds.

tc avaluate +this state c<

(e
b

The purpcse of this the

n
[+

the ar* atmosgheric mixed layer mecdel and i+s applicztion =o
fleet *actics. The da+a utiliz:d ir +<his study war=s fronm

radiosondes <aken by USS NI&ir7? and USS CORAL SFA in +he

Arabian Sea in the vicini*y of 25! J6*E , a data-poor area,

;; during February 1980.
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II. THE MODEL DESCRIDIIOQN

A. MODEL OVERVIEW

The NPS mix2d layer model is an izszgrated, =~wo layer:,
zero-order model whict predicts changes i1 “%z marinz atmos-
pheric bcundary layer (MABL) b2low the invsrsion. The =wo
layers ceonsist of the lower, wzll-mixed, ~rurbulen: boundacy
layer tcpped by the relatively non-*ucbulsr=< fres a“mes-
phere. The +two laysrs are 32parated by ar inversion or
transition 2zcre which is assumed to hnave zevo <hickress.

The predicted proper+* ies are:

LW P AP P A o I " Vit ST Sy W

(1) height o€ inversion

(2) values of well-mix2d preopec=izs

(3) values of jumps & the Iavsrsin

(4) £formation of clouds/fcg wizhlin
Procedural uses are shown in Figurs 2, an
will be presented in Section B. Inputs to ~

(1) Radiosonde data

(2)

(a) Ver+ical distribution of

(b) Ver=ical dis:ribution of

it

Sea surface *temperatucr:

(3) Wind speszd

Bt ko a3

14
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he modzl are:
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(4) Subsidence

|2

(5) Latitude
(6) Julian date
(7) lecal time of sounding

From the predicted proper=ias, a refractivity rprofile i

n

produced using +he crefractivie+y equazion  (Section B).

Observed ard predicted sea a+ture and wirnd

n

arface t2av

1Y
rs

are 2stipmated

[
n

speed are input parametars. Subsidence rat

from przvious observatiorns., La%titude, Julian cat

[1)]
-«
f+V]
2]
(o7

local “imes ace used *o estimats inzidsnit solar racdiacioen,

P PRI SO SO CH A O G S S WP S G U AP SR I. WY WPV WA




INPUT

Figure 2.

RADIOSONDE
DATA
(TEMP/HUMID
PROFILE)
INPUT
INPUT DIGITIZE
SUBSIDENCE iU::EAg::TOE?)s VERTICAL
ESTIMATE SST + WIND t STRUCTURE,
{
COMPUTE READ
CONDENSATION |-= SST(1),
LEVEL (LCL) WIND(t)
COMPUTE
RADIATIVE
COOLING

-

COMPUTE
SURFACE FLUX

COMPUTE NEW
MIXED LAYER

& ENTRAINMENT

INVERSION JUMP

H T.HUM,DEPTH

COMPUTE NEW
EM DUCTS

(AND OPTICAL
PROPERTIES)

NPS Mixed layer Mod2l1 Functiorzl 3lock Diagram.

COMPLETED
PREDICTION

_/\

?

DISPLAY
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B. BASIC MODEL EQUATTIONS

Onca initial inputs have beer @mpade and the ver-=izal
s*ructure digi*ized by fit+ting straigh+* linzs <o apvrayima=e
the vertical profiles of +empera+ure ani humidi<y, Zuua<icns

1A, 1B, and 1C are used to calculate th2 flux scaliry peram=-

[17]

e-ers., The calculations ara based on “hz air-sea = 2mosrI3-

fon
ct
=
&
o
+
o3
(o]}
ir
T
D
i1
[N
.

~ure and specific hLumidity differences zana
The scaling parameters are <hen used ¢> =:s+ima+2 suzfacs
fiuxes of momentum, heat, and moisture in Zgua+iors 2, 28,

and 2C.

propertias by +he difference be<“wesn surfaces 3and Il-vzzZ:iion
fluxes scaled by inversion height. Egua=~icn 3B is us:i %o
przdict charnges in *+he iaversion haighz by aidirg <hs tlux
2t +he inversion scaled by the inversion jump, a reasurs of
“he s*zangth of “he irversion, 20 *he subsiiexc=. miuenion
3C models *he change in *the inversion juzp by ccmbining <%he
effec*s of surface and iInversion fluxes wich subsiderce and
“h=2 ckange <c¢cf *he inversion h2ight dzzaraired <0 zgua-ion
3B. This requires us= 0f +hs jradien+ »f the propac-y above

~he Zinversior.

17
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Flux Scaling Parameters:
Ug* = CdKU
T* = (8 - 90) Co%
g* = Ce®(q - qo)
Surface Fluxes:

g *

'
—
=}
-
=
-
(]

]
—
=
-
)
-
~—

]

U*T *

'
—
=
-/

Q
-

"

U*q*
Where:

Cd,Ce = s*ability

<
"

wird speed

]
—
(=]
-
x;
-
—

n

[}
~~
3
3
—
]

]
——
3
Q
=
"

(Wlx'c -

dXm/4+

-WTxX':

upwarcd *

DX (dhrdzt

P T VUL Y TR FEDT S Wy VIR T VN Iy Wy WY S S S Dottt cdetanit i

(14}
(18)

(1)

depeniznt draq cr2fficien:s

U*,T*,g*% = scaling paramasters of vzrtical *“urbulen+*
momentum, tsap. and moisture *ransfer

downward turbulent +ransfer of mcmen+un

urbulant transfar of hsza-+

upward turbul=nt =ransfer cf moisz=uce

Predictive Equations (general form):

WiX'i ¢« £(R)) / 1 (31)

- Ws) + £(R) (3B)

3 (DX) /€= = ¥x (dh/d+=Ws) = (W' X'o-W'X'I+£(R))/h (3C)
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Where:

im = ary well-mixed proparty: 8, 8v, or g

<O
]

potential <“emperaturcs

specific humidi+

o]
[}

WiX' = turbulent vertical +tranpsfer (flux) of X

5 subscrip+* "at +he surfaca"

"at +he inversion"

i subscript

h = mixed-layer dep*th (or inversion heigh+)

DX ckange in X across the inversion: (Xabovs
Ws = subsidence at top 2f inversion

¥x = vertical gradient c¢f X abovz inversio

o

f(R) = radiation factor

Pzfractivity Equa*ion:

M = 77.6 B/T + 6 X 10° (32/T%) + .157 2

Wwhere:
M = modified refractivis
P = a*mospheric pressurs ir millibars
T = temperature ir Kelvins

alzi+ude in me*ers

(3]
1]
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“iguze 3. Ver<ical S“ructure of 8, q and Corrssponding Y
trofils for a Typical Irveérsion (Mcdel
Simpiifica<ion 1s Dashed).

Figo 3 ZIllustra*es <he rela+ionship between verzical

Iistributicn c¢f +emperature and humidi#*y and <+he modifiad

'l

czfzactivizy, . M profilss are uszi 235 model ou+pu*
bzcause of <the case with whizh ducting infcrma*ior can he
ex*rac=2d fror *hem. The tcp 9f 2a duct corzssponds %o the

=2iqght above +*he surface wher2 *hz M value is a minimunm.
Th2 duct bases corresponds to the height a% which a vertical
line drawn dcwnward from the poin+t of minimum ¥ valus firs<

intersests 2 point of equal ¥ ani%s or th: sucface.

29
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C. SATELLITE DATA INFUT TO MODEL

Frovisior is made in the model for <inccrpora*ing fore-
cast wind and sea surface temberature changes during thse
prediction period. Although th2 mixed iayer is sensi<ive <o
SST, it is believed that accuracies of +/- 1°9C :in SST are

sufficient for —reasonable mod2l accuracy. S<swact (1981)

'
®

ports the <£following sa*elli:z2 measuczmsnt capability hz2s

be2ar achileved: NOAA -6 (VHRR) infrared radiometer: SST =zo

D

.69C (with nc clouds) ; SeaSat and Nimbus-7 microwavs rfadiom-
2-2ar (SMMR): SST to 1.0°C (with no rain, a2 RFI (radic fre-
quency interfererce), and >00 km from 1l2n3).

Sa*21lite SST could be usel in the flux scaling esgua<inn
(18) %o de=ermine 8o, Thres methods 3are currenzly used
aboard ship for SST determination: Bathythermographs, sea
water injection <temperature, 2and <+he ftbucke+/*hermome=e:!
me+thed. Nore of these yield the actual ssa surfacs "skin®
temperature which is *he relevan+* Juan*ity in +the determina-
~ion of stabili*y and turbulent hea<t anl moisturs fluxes.

Therefore, =sa*ellite measur=aan*s would 2ot only oroviie

m

cloud descriptions over broad arsas, bu+ would provide a

mears “5 ob*ain *h2 "skin" *emp2racure.

21




IIT. ARABIAN SEA CLIMATOLOGY AND SYNOPTIC
DESCRIPT ION
A, CLIMATOLOGY
Tae climatology of the nor-therr Arabian Sea is dominated

ty the summer (sou+hwest) ard winter (northesast) monsoors.
7ha data used in this study ware from Fa2bruary Jducing the
la++er part cf the northeast monsoon which is characterizazd
by light offshore winds averaging 5-10 knots, and normal
Hidley =irculation with the subtropical dJ=2t located rear 30

E ¥ a= =<he 200 mb level. Fig. 4 shows th=2 avsrage per cent of

.-_,.i; ~ime tha® elevated ducts occur during Fzbruary <o March In

h *ais rejyior.
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uency ¢f Eleva<t23 Duct_Ocg
ng, af*er Lammers et 2l (1

3. SYNOPTIC CONDITIONS

FNOC (Fle2t Numerical Oczanographic Csnter) products
ware uszl to Gescribe the syncotic situatisn during *he da*a
pariod. They were: Surface Analyses, 5)0 mb analysss with
memperature fields, 300 mb analysss, 230 mb wind fields.
Alsc, NOAA-6 sazellite photos were us=4 *» determine clonud
coverage of “Le area as well as %o confira j2t positions.

The syrcptic situation in the region from 6-23 Fsbruar
1980 was charactarized by a stable high pressurz2 suzface
ridge cver the Arabian peninsula and Acabian Sea, with low

pressurs2 *“roughs over the Rei1 Sea =o +“h2 wesz= and Indian

23
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csubcentinent to +he zast. The most significan< syno

change occurred £from 11 <to 14 February as an 8%)

noved across the northern par- of +he r=giorn. This

mb

low

tic

i{o}

iow

was

roz+hwest of the Persian Gulf a+ 30 degrzzs Nerth latitude

on 11 Februacy and tracked eastward, arriving over northern

India on 14 Fabruary. It was during %this brief psricd of

11-14 Fabruary *hat the minimim shipboard surface pressures

for the entize period were recordzd. Thz minimum record=d

sucface pressure was 1012.0 mb >n 1% February.

Table I lis*s cloud coverag2 cover “h2 immsdia*e area of

+he da*a. Low level stratus clouds wers cornfirmed only on

13 Pebruary ard trom 19 4o 21 Fabruary.

TABLZ T
Data Area Cloud Coverage 8-21 F=2bruary 1980.

DATE CLCUD TYPE PRESENT

8-11 clear with sca**sred ciccus

11-12 no satellita ccverags

13 low level siratus )

14-18 clear with scattered citcus

19-20 cirzrus and stratus .

<0-21 cirrus, stratus with mul<ilevel +>
*determined from NOAA 6 IR imagj=aTy




Ar attemp* was made to darive subsidence values fronm
syrop+ic scale wind fields by calcula*ing divergence =2+t var-

ious levels., It was roted that at uppsr la2vels, wind maxinma

[{H

or jet streams had a dramatic influenc or divergence pro-

files. Alttough the magni*udas of vertical motion sbtaired
in this manrer were incensista2n*t and highly variable, an
inzeresting and possibly significant obszrvation was mads.
The subtzcpical jet associzted wi+h 2he wind maxima dis-
cussed above is usually £fcund 2+ the nor<harn 1limb of +he

Hadley C211 (Fig. 5). It is a* this nor+h=2ra liab whers the

gr2a test downward motion or subsidence is found (Palmen arnd

“swton, 1969). Al+hough tals is a feaiture of +tha large
scale circula*ion, i+ seems evident *hat *he je+« does have
in sffect which should be cornsider=d in single s=z=ion

3gsessmants whenaver rossible.
Changes ir %*he subsidance rates calcila=ed by hindcas+*t-

ing and showr in Table II cor-=la*ted clossly wi*h changes in

~hs posi+ion ané s*rang+th »€ the upper level dJet strean.

- Juring the pexiod 6-9 Februacy there was 3z szeady decrease

. in subsidence ra=es f-om -.0070 <o -.0355 m/s. During *he
F-@

- same period <+<hLe tail of the 250 mb je~ max moved s+teadil
b.

- .

[ castwazd from a point due ror:h of the 32fa azea., From 6-11
i -

-

Ian
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Febr-uaty the 300 mb jst max shif+ed northward away from =h

14

TABLE II

Calculated Subsidence Ratzs

RUYN 1 2 3 4 5 5 7 8 9
DATE 6=7 6=-7 7-8 8-9 8-9 11-12 14-15 21-22 22-23
MZTHOD
3 ~.30 -.79 -.65 =-.60 -.55 =-.55 -.75 -.31 =-.50
Q + =-1.72 + -.39 -.06 -1.17 -.55 =-.41 =-,33
A _-Su -.u6 -1-10 + + -137 -.33 + -.50
* subsidence raztes ip zm/s. . _. . )
*% H hindcast, Q sp2cific humidi<y, A adiaba<ic

Fzom 9-12 February, subsidsnce rates remained az =-.0055
n/s. X .so, no change in s*rangth or posi=ion of “he 250 mdb
jst cccutred ketween 11 and 12 February.

3 supeiderce razse 2f -,0075 m/s was Jezermined for +he

caziocd Dbetw=2en 14 and 15 February whict was an increass
zsince <hz 12+h. The 300 mb j2t strengthzned and shif+ed <o

+he south toward the data area from 12-15 Februazy, 224 <he

250 mb jet irncreased in s*rength f-om 14-15 February.

Curing +rLe 21-23 February pericd, subsidenca <catas
increaszd fror =-.0031 =5 =-.005) m/s. Duriag *his perici,
25




+ha data arsa wi=h =he 307

mb jet weakening.

T"—-"-i Ml ."'-“'-.‘Tt-ft.:

L“

&

& teth the 3069 ab and <he 250 mb je< maxina moved closer =c

mb je* strengthening and =he 250

o Vertical
Ra'dna.tuve convection
30° sinking ~0°
1 [}
<> Qg_:’- —] C—% -112Kkm

Direct
1) Hadiey 5 Joen
Circulation
> T L—okm
Subtropical high Trad2 winds Heating

S Figqure 5. Hadlay C=11 and Subsropicel Jot ?2ositicn Showing

g I ATea A€ Mzxiaur Downwa>d Mozion, af-ez Palmer ard
Newton (19¢€9).
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IV. THE MODZL PERFOR

A. LUCT PREDICTION

Fach sounéirg was wun with IREPS to

A At e DU R

MANCE

es*tablish 3 bacseline

*5> assess +he model's ability <+to predic* charges in ductirg

condizions, It was =hen possible *o compare “he model pre-

dicted duct Leights with *hos2 observszi
pairs of scurndings wers examina23, with
by 24 hours. Two of =he ZU4 hour vperiods
spa+ially separa*sed scundings 2% *the eni
cna ocecaisicn, ore <¢f +*he s2cond sound
location 425 nrau~ical miles to ths2 sou

sounding.

The chbserved winds a= the star:t =zn

specify *he wirdi fcr *he preiiceion ps
t2mperature ¢+ +the latitude 2and lonait
soundirg and a% =he lati+tude and lorgis
sounding were alsc In*erpolated wizhin =

Suktsidence velocities wer2 deterni

such thi%t <%he predic*ed inversion heig

28

PPN S

. Seven differern<

w

ach palr separa+sd
h2ad 2 simultaneous,

5f “he pericds. oOn

ings was *aken z2* a

“hezzast of <+he firs=

d 2nd 0% <hs p=sriod
‘«hin <+he period <o
riad. Sea surface

13s of *he inizial

nie n£ ~he verifying

ic1.

(B

L2 o=
t

nzd by hindcasting

h% agreed with *ha+
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cbserved in *he verifying souniing. Pra2iicted

this Yhindcas*" subsidence are compared with IRE

P —————

ducts using

PS obsecvszd

dquc=s ir Table III . The 34S =2rrors o2f +“he model ace
appreoximately one half the eorrors of psrsis<ence. Persis-
“2nce is considered to be a '"prediction" o5f no chLange. I+
- is frequen=ly u3ed as a baseline against which predic«ions
El zre compared “o de*termine if <he pr2dictive me+thod thas
' merit, These —esults indicatz %+hat when subsidencs can bs
accura=ely es+imateid, the moiz2l's p=srfsomance is <cicarly
superior to persistance in predicting duc: bases and tops.
TABLE IIT
Compariscn ¢ Obszrved Duct Y2iaghts With Mndel Predic=ed
Heiqghss Using dindcast Subsidsncs Values.
B RN INITIAL VERIFYING MODEL
- NUMBZF SQUNDING SOQUND ING PREDICTION
b'—,"
- 1 788-933 473-877 345-740
5e 2 788-983 633-988 500-960
ﬁi 3 470-877 u6-504 0-370
"¢ 4 47-504 J=-135 0-179
I g 47-504 0- 304 9-158
" 6 z0 Juct 5-584 115-375
b 7 723-1031 2u8-569 0-495
i aré¢_ 0=-112
- 8 206-503 no iuc= 50-420
;o 9 ro duct )~ 258 0-250
~¢
ff RMS ERROKES: PREDICTION 2ERSISTENCE
5 TOP 173 364
- BASE 111 214
- THICKNESS 185 285
iq * heigh<s in me<+esars.
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Figure 6. Mcdel Prediczed Ducts (dashedL vs. Ob
{ T % ris>d 6=-8 F=bru

For a true predic*ive appliza<=ion, =2+ lzas® 3 sequential
scundingys are Tegulirad. Ths first and second soundinag

2nable “he es~imation 0f subsiiencz. The model is than ini-

~iazed from <he <second sounding usi

(5]

g +he subsidsrnce
cotained from *he first and s=cord. Th: =hi-d scunding is
used *to verify *he predic+ion. Glsason (1982) fcuri tha* 2
mz<hocd which is based on <he w2ll mixed spzcific humidi<y is
an accurate me+hod *o calcula*2 subsidenc2. However, assunm-

irg persis*erce in subsidence -i*es aposars =2 bs <hs best,

39




A steady decrease in subsidence ratss (Table IT) during
the firs+ week of the data sriod coincided wi¢th 2 steady

decrease iIn surface Fressure. Ths upper lev2l Jet s+*ream

[}

shif+ed away from the data arza 2and weakened during *his
psricd. This suggests that Jjudicious mo3dificaticn o5f per-
siSteﬁca-obtained suksidencs mayvy be appropriate in some
cases, especially when a *“rerd has been observed.

From three periodls having 3 sequen<ial soundirngs, Tablzs
IV and V shcw +*he results 9f predictions, In the firs+
pericd (Run rumber 3), an elevai*ed layer bzcame ==arly suc-
face based. The model predictiorn was £2r a surface based
éduc=<. Inr <he second pericd (Run number 8), a low elevatsd

i

[ED

=
1))

duc* became surface based. Th= mod2l pr c%isn matched

(1]

cbservazion rearly perfec*tly. In *he “hird case (Run rnumbs:c

9y, a surface bas=28 duc* form=3i whesn zhsr2 was no duct iri-

-i3lly. In *his case, =<he moial predic%zd =he forma+ticrn 2f
an eleva<ed duct. while *he predic=zd 3duc* *n <ha =hizi

case differed substartially in both h2igh= ard <+thickness
from +hz observed duct, “he model predic=isn was significan+
tecause the occurance of a duct was przdictad £room z2n ini

<ial non-duc=ing condition.

3
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For +his particular comparisor, +h2 absolute ercors

more neaningful *han rms errors.

fas

iczions are essentially on th2 mazk

s concantrated in the third. In *h

]

erzors are falirly evenly distributad.

TABLE IV

persis

tence cas=s,

Comparison cf Observed Ducts with Modsl Predic*+ed Duc*s
~=.

Assuming Persis=tant Subsidzn

RUN INITIAL VERIFYIUG MODEL
NUMBER SOUNDING SOUNDING ?REDICTION
3 470-877 46-504 0-350
u u6-504 J-135 N=-140
9 no duct 0-258 490-820

* haights in meters,
32




TABLZ V

Ezz2>- Analysis of Model Prziic*ion vs. Persistencs.

ABSOLUTE ERROR 3 RUN RMS ERROR
RUN MODEL PERSISTENCE MODEL PZXSISTEN
3 TOP 154 373 336 337
BASE 46 424 284 246
THICKNESS 108 51 75 240
4 TOP 8 369
BASE 47
THICKNESS 5 323
S TOP 562 258
BASE 4990 0
THICKNESS 72 258
* heighte in meters.

[#5)

. CLCUD PREIICTION

Th

B

cioud formaticn is predicted on “h=2 basis of ccncur-
rznt pradicticn of the lifting corndensatisn level (LCL) and
<he ZInve:zzior heigh+. If th2 ILCL is bzlow *he invarsion,

£ i+ is abovz, 10 clcuds azcur. Whzr model

’Al-

clcuds ocoury

QO

predic*icrs stowad no low levzal clouds £foraing, sateili<e

‘magery confirmed +there werz no lew lzvzl clouds 2nd <ha-«

thz sounding site either was <clear or showed sca*=ered high
cirzus clcuds. The formation of low lavzl s+*ra*us ciouis
was preiicted cn 3 occasions ovar the entire pariod, Stra-

“us clcuds were predicted to form at 2100 local +*ime 11 Feb-
ruary. The fi-s* satellite imagery availables following %his
time was at 0800 13 Fsbruary, and showed “he presence of lcw

Zz2vel s*ratus clcuds (Fig. 8).
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rigure 7. Mcdel Predic+icrn Shawi:g LCL Droppirnag Beneath “he
Irversion at 2130 11 F=zb.

Clouds weze predicted +% £5ra a+% 3500 15 February (25
hours into zhe 30 hour prediction). In *his case the LCL
dropped slightly below =he invsrsion, but less shacply “han
in +*he other cases. Satel lite imagery <€from 15 F=bruacry
shows no clouds (Fig. 10).

Sat=llite imagery shows “12 presence of low leval s=rCa-
*us c¢clouds eon =ae 2000 p=z35 19 Februa:s and ircreassi
amoun*s on *he 0800 20 Fabruacy pass. Althsugh 10 soundirngs
wsre available %o ini+ialize <h2 model prior *o “his ini=ial

formation of clouds, on “he naxt availibls mod=sl run clcuis

w

ware pradicted <“hroughout the period 3739 21 February <o

0700 22 February. Sa*ellite imagery confirm the presence of

e
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Fiqgure 8. XOAA 6 Satelli*e IR Imiqerg from _J80Q0 13 February
Showirng the Fresenc2 o7 ¢=rfa-ys Clouds.

toth cirrus &nd s=ra*us «cloiuiis or bozr +“he 080C ard 2000
passes on 21 February (Fig. 12'.
Although “he sa“=21li<e imajyear; =enalysis was by neces-

sity, subjective, =zome objer+<ivety was r2taired by cornficm-

ing the ini+ial aralysis wi-h =2 s=3cond aralysis by an
indeperient scucce. Bo<h znalyses 2agrs:d onp clecud ~ypes.

Since *he model <could be shown “o be incorcect cnly on cne

cccasion, <=he model's overall perfarmancs ia predicting *he

35
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Tiqure 10. NOAA 6 Sa%ellite IR Imagery from 15 Februacy.
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C. EXANINATION CF MOTLEL SENSITIVITY

=4
i

;sarvaticn ¢f sea surface tempazature (SST) and

Q
jaa

Surface

wn
m

wind car be cb*tained with an accuracy of +/- 19C and +/- 2

ot
Q
ct
o
7}
11}

kncts ra2spec-ively. To *es* the model ssnsi+tiviiy
ctossible measuremer- errors, suzccessive model runs wsre mads

wi+h SST 19C righer a2rnd lower than observ=13. *he effect of

&
u
<
W
|-
=
o
n
N

wind measurement er-Cr Was =valuated using win

waze than cemparaed with ducts predic%el by ac*ual observed
winds and SST=. Table VI contains ths *abula+ted rasul+s.

No+ing =ha< *MS =a2rrcer in duce

(7]

pecificaticns due =0 pcren-

=13l 33T meacsuremen= error ars approximately dcuble fthe RMS

1)

1

Ww

a

[N
-
th

]
"
B
(o]

T € *o roisntial wird m ursmen+< =rrcec, on2 migh=
czasorably corclude SST detsrminazion is the more critical
Cf “h& =Wo pearamsrters. I+ is Impsraz=ivs %o recognize thac
*he wird tasg a auch wider <rang2 of variabiliiy “hanr “he SST

ard accurate specification of bo=hx paramsztec-s 2Te Impor+ant

fov goecd modsl performance.
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Sensitivity of Model
RUN VERIFYING
NUMBER DUCTS
1 345=-74Q 40
2 500-960 7890
3 0-370
4 0=-170
5 0= 153
6 115=375 17
7 J-495 29
8 E£N=-42Q
9 0= 250
Combined RMS error: 3ST
114
104
107

t2mperature points to =

+ions.
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WIND
-27KTS
333-725
545-975
)-365
0-143
0-130
0-220
3-450
0-37)
0-19)

SST detsrmina-

-ure a* atou- 1 f=.}: ard “hz bucket and *hszrmome=

(gdet t2mpera-ure of top f£aw inches). Non2 of <%h

yiald *he se> suriace skin “2mpa2Tatuce which Is

necassary *c dete-mine t“he sucface fluxzs. Thege €flaxes,
“urn, drive the evolu+ion of *hz mixed lay=r, +he

ard +<hus ducting conditions of the lower atmecsphere.
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saubsidence was =-.0032 m/s (Tabie II} which resultzd in a

vatei dJuc- with the Zcp ax 740

D

predictad 395 me+ter thick el

reters 2levation and *he base at 345 gsztsrs. Subsidance was
varied from *hkis baseline valuz ani 4zviatiors in the prsz-
dic*ed duct height an? *hickness wers recorded. This pec:c-
*fcular sourdirg was chosen b2zaussz *he assecciated initial

and verifying ducts were elevata2d, whiich 3llowed <h2 varizd

|

th

subsidence tc affect +he positien >Ff ths sedicted duct ir

bo+h the upward and dcwnward dicec-icrns.

Deviations in the iuc+* predictions rczsultiag £oor subsi-

dence specification errors ¢f +/- .00:0 m/s ar2 245 m at the

t4

<op, 269 m a* *+he base, and Z5 m in *=hizknass (Table VII).

Errors resui+ing from assuming ps-sictanc2 ir duct heigh*s

1=
o

(Table III) are apprcximately =2gual t92 the erfers resul+ing

rh
1
(o]
8
n

subsidence sgecification 2rzor 2f +/- .0030 a/s.

The range 02 sutsidence =calculat23d during =hz shor+

pzTicd from 6 <o 22 ~February 1980 in the da*ta area was

40




ST T TR WS W WYL, YTy mWew VMmoo m —moo e vy W -:-,-jf~ﬁ,ﬁﬁ-*wwﬁﬁ—wﬁ.—_‘_ﬁ_‘_‘1

-.0030 *o =-.2075 =a/s or =-.00525 +,/- .0G22% n/s. Assumrin

zthis 20 be 2 normal range 9% variability and +he median
value, -.00525 m/s, tc be reprasenzativz ¢f ths climatclogi-
c21 subsidence, *hen the "cliima*clogical® value appears %o
be less +har the +/-.0030 m/s mazginal wu=ili+y crizerion.
This conclusicn, based or a lini<ed dama z=z=, Feems %o indi-
c2te *that a climatological subsidernce valaz would provide a
duc= heigh* forecast which, on the averags, Las scme skill

cver persistence

(o)
[} ]

a forecast 2f no changa.

rors will no%t bz confined <o subsidence

»
]

In rTeali-y,

» o*hzz Inpu:s such

W
(]

[ED

alone, but will be caused by z2rro:cs

N

wind and SST. Whiles S$ST, wind, and subsidernce errtuTs mayvy b

1}
o
E
o]
i
13
ot
o
‘T

~
=
' ]
"‘
H
o
1]

cffsertirg a* times, +here will be <fimss

additivs, Whaen all +he errocs 2z addizive, <4h2 sxpectsad
duct heighkt error £fo:r SST plus wind mzisureamsant @rrors are
163 m 2t +*he top z2nd 154 m a3+ ~he boet=<on (Iable Vi, Given
*he errors dua %o assuming parsistencz La duct heighis of

364 m at the *op and 214 m a- <the basez 3f +the duct (Tabls

IV), th2 difference of approxinatsly 207 a2 at -=he =op and 60
m a* *h2 base indicate “he maximum Iuc* h=ight eorror permis-

sible 3ue *¢ subsidence specifica%ion srror is, in “he m=arn,

130 m. From Tablie VI, +h2 sibsidenc2 spscification erce:

1
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expected to produce this 130 m 3uc% heigt: 2zror I 2pproxi-
mately +/- 0015 m/s.

Frcm *he cases (Table III) in whizh +*he tesw possibls
estimat2 of subsidence, <+he hin icas*t valiz, was used, *he
PMS modzl prediction error avarages 143 m less <han persics-

*ance =rrcr. I- will be shown la<er =h

(31

allowed to vary from *his "hest eszimazz", a deviz=.on of

about +/- .0017 m/s will produce <he 233i4ional 143 1 erroc

in height of cduc% top and Dbass necsssacy =¢ rende- “h¢ pra-
diction nc bet*er than persis+snce.
In corclusion, evaluations of thz m>3121 wiih <t:xa da+a

indicatz that with the expect=2d SST ard wind weasuremerns
errors, Subsidence must be specifiel o within +/- 3015 m/s
for the model to consis*ently ou*psrfora ovzrsistencs, Th=
cbservel range of subtsidence variablisy fzoam +hkis 1imited
data set cf +/- .0022% m/s =2£fZacxively zulzs ou* *hs uss cf

2 climatclogical subsidence as a viabls inpu= parare-sz,

42
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The first «consideration in tactical application =i +hs

model is the recogni+ion of its capabilizies and 1iapisa-
+iomns. I+ can be used “o estimate whan low <clouds or faog
E- can be expected *o form. I+ can be uszd %o estimates =he
ff expected position of low elevated and surface basszé duc=s
E. ba2low 1200 m over an 18 - 24 hour perind. However, i+ can-

; ro* predict info-mation on uppar level duc*s.

P.

%! The “actical significance of knowing up to 30 houcs in
s

advance <tha* visibility may be2 reduc2d 5 a low ceiling

- daveloped w:ill depend on curran* and planred cperations,

The rasults presented ipn Chapter IV B indicate “haz *he

o F
"
1]
oF
=
n
N
rh
(o]
O
.

model does well in predic+ing 1ow lsvel s

When fog or low level stra*us clouds 2re predicts=d, =:h

[{}]

£21llowing possible effects 52 owr and s2ns2my £orces ir =zach
warfare area should be consider=24:

(1) maneuverability restricted

(2) lost or reduced visual signalling capability

(3) reduced visual target letection/identificatiorn

e — (4) deqraded optical equipment performanca
;' including IR weapons and sa2nscrs

k

F (5) hampered £flight opera-ions £or carzier bassd
L

o

o

L

- b4

.

[
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aircraf+ and LAMPS
Tactical employment of Naval assets rzquires a knowlzadge

of the state of the environment if +hos: asse*s ars *o be

employed effectively. To that erd, IREPS (Intszgratszd
Rafractive Effects Prediction Systam) was desvelopzd. When

radicsonde data ar= input to IREPS, a rzfraciivi*y profile
is generated which is utiliz23 *o0 defin2 the 1location cof
ducts and to assess radar coverage, ESM 2nd communica<=ion
ranges.

Because scundings are normally taken only cnce o twice
daily from aircraf* carriers and the atmaospheric bourdacy
layer undergces change, ~herz exists a a1ee2d ¢ be able +*o
predict changes in the refractivity profile be*twesa souni-
ings. This prediction can bs critically impor=an*t 5 bat:ls
aroups in +*hte positicning of both surfacs ard air asse+sg,
and in *he intelligen< managszma2n“ of <ha IMNCON plan.

The duc* prediction capabiliity, as 32tailed in Chap=er
IV A, provides a significant planning *ocl. Tac+tical useage
0f +he duct rreidictions stems from the =ffecis c¢f duc=s on
EM propagation. Prediction of a surfacz based duct indi-
cates probable <extended ranges for +ransmi+*er-receivar

aa*enna pairs in *he duct and possibls hcles oz 3a2aps in

us
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coverage just above the duct fsr artennas in, near, >
the duct.

The predic*ed M profile may be used as an envircrmental
data set tc run IREPS and covarage diagrams genera<ed for
specific emit+ers. This prccedire was us2d with a hypothe*-
ical surface search radar urdzr observad refractivs condi-
tions and model predicted rafractive conditions. IREPS
varsion 1.7 (unclassified) was used to J=2r23ra%2 *he coverage
diagqrams. Radar- parameters for the hypothz%*ical radac were:
Antenna height 110 ft., antenna +*ype sin(x)/x, ver<ical bean
wid+h 109, eleva*ion angle 0°, fres spacs range 55 nau+ical
miles, and irequency 5 Ghz.

Clearly shown in Figs. 14 and 15 is *h= model's v2lue in

predic*ing *he occurance of 15w lavel 1Juc+s. Ths cadar
coverag: In Fig. 14 Is sigrif€icant in thz2* <the initial pro-

pigation cerditions were for sirface +<args* de*ec+iorns out
“0 about 25 rnm ard *he predictad condizions were for detec-
tions w2ll in excess of 100 nm. I'be przdicted propagazion
conditisors were in clicse agrszeman* with those observed.

Ar. example of how the mod21 migh+t be used cperationzlly

(1) radicsonde is launched@ and surfacz observa=ions

of SST and wind ace recorded.

us
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HEIGHT (ft)

Figure 13, itial Surface Search Radar Coverage 0420 7 Feb

In
80

HEIGHT (1t)
HEIGHT (ft)

.-'i Figure 14. Surface Scearch Radar Coverage 0323 8 Feb 80
‘ Based on Actual Souanding (1) and Model
Prediction ().
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HEIGHT (ft)
HEIGHT (ft)

Figure 15. Surface Search Radar Covar
Based on Actual Sounding (

ge J
¢ ) n
Pradiction (r).

a
b
ES

(2) radiosonde dat+a are inpu* %o IREPS and covsarage
4iagrems are ceneratead to make current assessments.

(3) radicsonde da+*a and surface obs2rva+ions are inpu%
“c the ¥NPS model and a 30 hour pr=diction iIs made.

(4) *Le predicted M profilz is input 2o IREPS and
redic*ed coverage diagrams ars ganerated.

(5) oreratioral plans, incarporating foc-=zcast duc*ting
effects, are rroposed.

(6) +actical decisions, using the snvironmen% *o the

advartage of the force, are maie.

48
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In a scerario similar to *hat obs2rved in <+the Arebhian
Sea 7 to 9 February 1980 wh=n an eieva:t=23i duc* became suc-
face based, many tactical consilerations are involvei. Sup-
pose the batile group wanted %5 avoid detection by an enemy
force in the region. Forewarned that surface based ductin
Wwas expected to occur in 12 o 18 hours 2nd +ha+*t JUHF radio
cransmissions, normally useful between ships only up %o 25
“2 30 rautical miles, could bz detected 3% ranges in excess
cf 200 nautical miles due to ducting, =zhz battle group com-
nander would be able *o impos= 3 more rastrictive EMCON coua-

1

) b

*icn in adequa+te time “c pravent hostile in“=2rcept of *he
Jroug's transmissions. Alternatively, if *the ba%tle grocup

~ommender expected <*c be oppos2d bty active surfaces search

radar, he could: initiate a preemptivs attack before his
rresenc2 was exposed; steam out of rangs; or, relax EMCON a=

'J.

the apprcpriate time.

For a bat%le group in a multithreat =nv

14
te
Q
B
®
o
-

early

threat deteciion is critical +» defeat thz +hrez* a: minimum
cost t0 the ba*+le grcup's offznsive capability. The 12 <o

18 hour advance notice of surface based duc+ting provides the
tac*ical planrer *he *0ol necessary to use his limited suc-

veillance assets with *he efficiency neszded for sus=ained

49
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. cpsratisrs ard *he effectivenass zaquirei for early *hrsa<
1! d2wection. Surface ships could b= posi:ioned in such a way
l‘-
E &s %o zak2 maximum advantage of the extsnied surfacs search
= radar ranges affcrded by the sarface bas=d duct. Aizbornrne
!l surveillance assets, freed from +*ask of surface surveil-
o lance, cculd corcentrate their efforts *>ward deteczing and
-
N

trackiny air targets. The net r2sult is increased force

L eZfectiverness, Depending on the bz<t*tls group's speed and
) the pickest stetion assigned, ¢the sirfacz ship mav require

several hours “o reach the assigned station, thus making ths
lead +ize prcvided by the prediction all *he more important.
The timinc¢ of war at sea strikes to <cocincide with prea-

dicted nccurrence of a surfacs based duct could give consid-

(1]
"
L
o
[
D

"

dvan+tzqge to the st-ik=s2 aircraf< by 2rabliang them <o
- 1ge pradicted holes “ust abova the duct <95 pernetrate eneny

suzveilla:ce zand to use *he Aduct for *argy24irg and jammirg.

In snuch a case, a 12 to 18 hour prazdictiosn provides time <o

r.':

L‘ rlan mission tactics, arm aircraf=, and conduct missicrn
p -

{

- .

5 briefs.

L"-

N

- When sonobuoy pat*erns are laid and nonitored by LANPS,
F§

P on2 constraint on placement of ‘he bouys is LAMPS' on sta-
. “io0on endurance. When a surfacz based duc: cccurs, soncbhcuvs
¥

¢

50
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can b monitored a+* greatar dJdistances. Prediction in

]

aivance of surfaces based ductingy provides *he lead #ime nec-

e

ary tc plar ard lay bouy pattezns at distances from ths

7]
h

’l.

battle group which take advantage of the a2x*ended moni*oring

rTange.
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YI. CONCIUSIONS AND RECOMME!

The Taczical Envimnnental Support Syst=2m (TESS), cur-
ren+ly unéer development, will incorporat2 various sateili<s
derived products, and sincle staticn assessment systems such
2s IREES ard *he NPS mixed 1layer mcdel. This will placse
state of the art environmental sensing ard predictivs capa-
bility at <thre disposal cf those who ne=i +he inforaation:
-he cpera*icral comnanders,

Based ¢n evaluations with a limited da*a set, *+he NDPS
model has been demonstra*ed +o perform well both in pres-
dicticens of lcw level clonud formation 2rl in predictions of

4 and suyrfac: basad ducts, Fur+her work is

g

low elavats

{

zequired to Cetazrmine a2 moiz2l's rang: of applicabili+y
bo+«h geographizally and ssasorally. I* is Dbelieved tha*

when subsiderce <c¢2n be specifield with ar accuracy of
+/-.0015 mns/s, =he model can bDps used %9 accura=ely forecast
ilcw level ducts, Two adiitional r=commenda*=ions are
detailei in the following paragraphs.

In tactical situa<ions wh2re the outzome may depend on

accuracy of duct predictions, 2 m2thod is needed +*5 verify

52
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the preiictior. & Tadiosonde lannch may bs Impractical dae

5 EMCON conditicrs, Anr zcooustic sounlsr can bs used 4o
msasure the height of =he inversion which, as shown in Fig.
3, correspcnds *¢ the *op ¢f <he duct. Davidson , et al
(1982), whilie conduc*ing marinz =2*mospharic bcundary layer
research, utiiized +h2 economiczal acoustic sounder on R. V.
ACANIA to monitcer inversion height. Using a combination of
dally radiosondes, NPS model duc=t predic*ions, and psriodic
acoustic sourdings =o track thz iIaversion heigh+% would pro-
vide Improved capapility tc use the =nviconment. I+ is

sounders be

=2
Iy
—
W
3]
o
(9]
(9]
=
ct
14

therefore reccmmsnded <+that si
installzd onr aircraft carriers.

Dezzrmining appropria*e *2myperatur2 and humidity pro-
£iles 43during initialization 2f +the wmodel iIs a possible

souzce of TTOr. There ars twoe schools 92f +*hought which

.J-

differ on the appropriate helght “cr thsz invarsion Zni%tiali-

[tH]

zation. Sounrding data <ypically show =hs inversisn as a
layer 100 to 200 ms*ers thick, walle “hz2 model requires a
single heigh*t to be specified. One school suggests that the
bot+om 5f the inversion layer is best whils *he second sug-

gests “hat *he midpoint c¢f the layer is mos* reasonable.

53
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Liuh Jut Ju qn ch o

a

The work in this +hesi

model predic+ions (Table IIT)

of the predicted duct heights 3are lowe
This s2ems tc :iIndicate thkat inversg

digitized a* +*he midrpoin+

bottom. I+ is recommended *hat further wory
ar=2a to establish a mcre objective mecz

The ¥NPS a*mospheric boundary layer mddsl
tha flset a predictive capability
+o0l. Consideraticn should b2 givern

“he fles+ for operational evalua+ion.

stand *he model assumptions in crdec

cabilizy in a given environmental sisuzsiun,
accurat2 subsidence estimates, ard the
face wind predictions precluiz mddel iastallation

where quaiified personnel are

of the lay=:

met+thod. The
+hat nearly alil
r than thcse observed.
cn  heigh*s should be
instead of =2t ths
be dene in “his
hsé >t digitization.
could p-ovide

-

and *actical planzing
to inrtrodueing it into

T~re need +*> underc-
=5 2s5sess model appli-
the need for

cajuirement £or sur-

o mcdel should be installed a+~ locations (aircrazf: carriers)
L whare “here are Geophysics Officers whs czin In+terpret eni
: use +h2 modeXl as a %00l along wi+k o9thaxr me+ecrslogical
g information.
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