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Two- and Three-Level Superfluoresence Calculations
and an algorithm for Optical Bistability

F.P. Mattar

Abstract

I.  Methodology
: omputational methodologies were developed to treat rigorously (i)

transverse boundary in an inverted (amplifying) media; (ii) to treat quantum
fluctuations in an initial boundary conditions in the light-matter interactions
problem; (iii) construct a two-laser three-level code to study light control
by light effect; (iv) construction of a data base that (a) would manage the
production of different types of laser calculations: cylindrical, cylindrical
with atomic frequency broadening, cartesian geometry; all of the above with
quantum mechanical initiation), (b) allow parametric comparison within the
same type of calculations, by establishing a unifying protocol of software
storage, of the various refinements of the model could be contrasted among
themselves and with experiment; (v) construct an algorithm for counterbeam

transient studies for optical bistability and optical oscillator studies.

A

II. Physics ;

A. Transverse effects were shown to be inherent to the problem of

superfluorescence. By refining the propagational model advocated by Feld,
we were able to simulate correctly Gibbs, et al's Cs data for the first time.
P The mean field approach was shown not to directly relevant to the Cs data.

The interplay of quantum fluctuations and transverse dynamic effects lead to

P

Fresnel variation of the time delay statistic in conformity with experiments.
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B. The previously studied as totally independent effects super-
radiance and swept-gain superradiance were shown to be strongly related to
and to evolve assymptotically from the first one to the second one. Output
energy stabilization was obtained by balancing the gain (from the inverted

medium) with the dynamic diffraction loss (from the finiteness of the beam).

C. The Study of three-level systems exhibited that injected coherent-
pump initial characteristic (such as on-axis area, temporal and radial width
and shape) injected at one frequency can have significant deterministic ef-
fects on the evolution of the superfluorescence at another frequency and its
pulse delay time, peak intensity, temporal width and shape. The importance
of Resonant Coherent Roman processes was clearly demonstrated in an
example where the evolving superfluorescence pulse temporal width T is
much less than the reshaped coherent pump width tp eventhough the two
pulses temporarily overlap (i.e., the superfluorescence process gets started
late and terminates early with respect to the pump time duration). The
results of the three-level calculations are in quantitative agreement with

observations in CO, pumped CHjF.




Collaborations:
(i) Physics
(a) two levels superfluorescence

Prof. Hyatt M. Gibbs (previously at Bell Lab, now at the Optical
Science Center at the University of Arizona)

Dr. Samuel L. McCall (Bell Lab)
Prof. Michael S. Feld (M.1I.T.)

Edward A. Watson (MSc. student under Prof. H. Gibbs who helped
implementing the fluctuations in the cylindrical program exported to
Arizona)

(b) two-level swept-gain superradiance and three-level pump dynamics
Dr. Charles M. Bowden (MICOM)

(ii) Numerics

Prof. Gino Moretti (Polytechnic Institute of New York) for the
Counter beam propagation.

(iii) structure software and system programming
- Richard E. Francoeur (Mobil International Division)

- Pierre Cadieux (system routine for data bases)

- Michel Cormier (user interface for data base)

- Yve Claude (pagination of the program to simulate on CDC the
virtual memory facility existing on IBM)
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Official Presentations at Meetings during the Tenure of the Contract

1 - The International Conference on laser 80, New Orleans, Dec. 30 (2
papers) (proceedings published by STS, MacLean, Virginia 1982).

2 - The International Conferences on Excited states and Multiresonant
Nonlinear optical processes in Solid, Aussois, France, March 81,
(Abstract digest, ed. by D. Chemla published for CNET by les
Editious de Physique, France).

3 - The European Conference on Atomic Physics, Heidelberg, April 81,
(Abstract digest ed. by J. Kowalski, G. Zuputlitz and K.G. Weber
European Physical Society Geneva, 1981).

4 - Los Alamos Conference on Optics, Los Alamos, 1981, Proceedings
published by the Society of Photo-Optic Instrumentation Engineers
(SPIE), Belligham, Washington 1981, wvol 288 pp. 353-363 and pp.
364 - 371.

5 - The Twelfth Annual Pittsburg Modeling and Simulation Conference
(May 1981), ed. W. Vogt and M. Mickle Proceedings published by
the Instrument Society of America, Pittsburgh, Pennsylvania.

6 - The International Conference on Optical Bistability Proceedings ed. by
C.M. Bowden, M. Ciftan and H.R. Robl (Plenum Press, New York
1981) p. 503 (invited).

7 - U.S. Army Research Office Workshop On Coupled Nonlinear Oscillators
Los Alamos Center for Nonlinear Series, 1981 (invited).

8 - The Fifth International Laser Spectroscopy meetings, VICOLS, (two
post-deadlines) Jasper, Alberta, Canada (1981), ed. by B. Stoicheff
et al. (Springer Verlag 1982).

9 - The Annual Meeting of the Optical Society at Orlando, Florida 1981
(two papers), see abstracts in J. Opt. Soc. Am 71, 1589 (1981).

10 - The Annual Meeting DEAP of the APS, NY, Dec (1981), 3 Abstracts. ‘

11 - The International Conference on Laser 81, New Orleans, Dec, 81 (1
o invited, 3 contributed), proceedings published by STS, MacLean,
- Virginia, 1982.

(] 12 - The Maxborn Centenary Conference, Edinburgh, Scotland, Sep 1982
= (3 papers), ed. by the Institute of Physics, U.K., proceedings to be
- published by SPIE, Belligham, Washington, 1983.

13 - The Fourth International Symposium of Gaz-Dynamic Lasers by M.
Onorato, the Polytechnic Institute of Torino (2 papers), Proceedings
in press.
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The XII International Conference on Quantum Electronics, Munich,
June, 1982 (1 invited paper, 1 contributed paper), see Appl. Phys.
(Springer-Verlag) June and Dec issues 1982.
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Refereed Papers from the work and methodologies developed during the
tenure of the research

1. Adaptive Stretching and Rezoning As Effective Computational Tech-
niques for Two-Level Paraxial Maxwell-Bloch Simulation; Computer
Physics Communications 20 (1980) 139-163, North Holland Publishing
Company (with M.C. Newstein).

Coherent Propagation Effects in Multilevel Molecular Systems; Pro-
ceedings of the International Conference on Lasers '80, December
15-19, 1980 p. 270-279 (with C.D. Cantrell, F.A. Rebentrost, and
W.H. Louisell).
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3. Swept-gain Superradiance in Two- and Three-level Systems with
Transverse Effects and Diffraction; International Conference on
Excited States and Multiresonant Nonlinear Optical Processes in Solids
pub. Les editiousde Physique, France (with C.M. Bowden).

4. Transverse Effects in Burnham-Chiao Ringing and Superfluorescence;
Proceedings of the International Conference on Lasers '80, December
15-19, 1980 (with H.M. Gibbs and Optical Sciences Center, University
of Arizoa, p. 777, 782 Tuscon, AZ).

5. Transverse Effects in Superfluorescence; Vol. 46, No. 17, p. 1123-1126
Physical Review Letters, April, 1981 (with H,M, Gibbs, S.L. McCall
and M.S. Feld).

6. Transient Counter-Beam Propagation in a Nonlinear Farby-Perot Cavity;
Computer Physics Communications 23 (1981) 1-17, North-Holland Pub-
lishing Company (with G. Moretti and R.E. Franceour).

7. Fluid Formulation of High Intensity Laser Beam Propagation Using
Lagrangian Coordinates; Computer Physics Communications 22 (1981)
1-11 North-Holland Publishing Company (with J. Teichmann).

8. Effects of Propagation, Transverse Mode Coupling, Diffraction, and
Fluctuations on Superfluorescence Evolution; SPIE Vol. 288-Proceedings
of the Los Alamos Conference on Optics, 1981, p. 353,363 by the
Society of Photo-Optical Instrumentation Engineers, Box 10, Bellingham,
WA.

9. Transverse Effects in Swept-gain Superradiance: Evolution from the
Superradient State; SPIE Vol. 288-Proceedings of the Los Alamos
Conference on Optics, 1981, p. 364,371 by the Society of Photo-
Optical Instrumentation Engineers, Box 10, Bellingham, WA (with
C.M. Bowden).
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11.

12.

13.

14.

15.

16.

Effects of Propagation, Transverse Mode Coupling and Diffraction on
Nonlinear Light Pulse Evolution; Optical Bistability (1981) Edited by
Charles M. Bowden, Mikael Ciftan and Herman R. Robl, Pub. Plenum,
NY p. 503,555.

Transverse and Phase Effects in Light Control By Light: Pump
Dynamics in Superfluorescence; Proceedings of the International
Conference on Lasers '81, December 14-18, 1981.

A Production System for the Management of a Results Functions Bank
and a Special Application: The Laser Project ; Published in the pro-
ceedings of the International Conference on Laser '81, ed. by C.B.
Collins (STS, MacLean Virginia 1982) pp. 1055-1115 (with M. Cormier,
Y. Claude and P. Cadieux).

Light Control by Light with an Example in Coherent Pump Dynamics,
Propagation, Transverse & Diffraction Effects in Three-Level Super-
fluorescence; IEEE International Quantum Electronics Conference,
Munich (1982), Abstracts Digest Appl. Physics Dec (1982) Springer-
Verlag (with C.M. Bowden).

Distortions of a CW Light Beam Propagating Through Gas: Self
Lensing and Spatial Ringings; Max Born Centenary Conference,
Edinburgh (Sep. 1982), (paper 36901), proceedings to be published
by SPlIlE,) Bellingham WA (1983) (with M. LeBerre, E. Ressayre and
A. Tallet). '

Coherent Pump Dynamics, Propagation, Transverse, and Diffraction
Effects in Three-Level Superfluorescence and control of light by
light; Physical Review A, Vol. 27, No. 1, Jan. 1983, p. 345-359 (with
C.M. Bowden).

Quantum Fluctuations and Transverse Effects in Superfluorescence;
Physical Review A, Vol. 27, No. 3, March, 1983 p. 1427-1434 (with

. E.A. Watson, H.M. Gibbs, M. Cormeier, Y. Claude, S.L. McCall and

17.

M.S Feld).

Coherrent Pump Dynamics, Propagation, Transverse, and Diffraction
Effects in Three-Level Superfluorescence and control of light by
light; Topics of current physicsL Multiple Photou Dissociation of
fgga)\torrﬁc Molecules, ed. C.D. Cantrell, Springer Verlag (In Press,
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REPRINTED FROM PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON LASERS '80, DECEMBER 15-19, 1980

TRANSVERSE EFFECTS IN BURNHAM-CHIAO RINGING AND SUPERFLUORESCENCE

F.P. Mattar*
Polytechnic Institute of New York
Brooklyn, New York 11201

H.M. Gibbs
Bell Labs
Murray Hill, NJ 07974

and
Optical Sciences Centert
University of Arizona
Tucson, AZ 85721

ABSTRACT

Dynamic diffraction coupling is examined in superfluorescence experiments using semi-classical model with
initial tipping angle. Effects of Fresnel number and of the radial dependence of initial polarization and
atom density on ringing, delay, and intensity are reported.

Semi-classical Treatment of Superfluorescence and Propagation Effects

Analytic solutions1 of superfluorescence pulse shapes have been obtained only by neglecting propagation
effects. Such solutions are somewhat academic in that all experiments so far use extended samples for which
propagation effects play a major role. Furthermore, a sample of volume less than 23 would experience_dipole-
dipole dephasing which would destroy SF or at least greatly modify it from the analytic descriptions.

Propagation effects can be taken into account fully in pulse propagation problems by numerigally inte-

rating coupled Maxwell-Bloch equations. Such semi-classicai cilculations have been carried out” and found
in good agreement with self-induced transparency experiments>S:" many years ago.

An identical semi-classical approach was taken in the first simulation of SF.5 sF begins by spontaneous
emission which requires a quantized field description. In a semi-classical model a purely inverted medium
does not radiate in the absence of an external electromagnetic field. Consequently, in order to apply the
semi-classical formalism to SF, the quantum initiation process was swept into a single initial polarization
tipping angle 8, or into a randomly fluctuating initial polarization.s More recent work has studied the
quantum fluctuations both theoretically® and experimentally.

The need to includg propagation effects in SF simulations was first shown by Skribanowitz, Herman,
MacGillivray, and Feld.? Their SF data in HF often contained pulses with substantial ringing in sharp contrast
with the sech? symmetrical single-pulse output predicted by the propagationless analytic solutions.
Skribanowitz et al. were influenced strongly by the work of Burnham and Chiao(3@) who predicted ringing when
small area pulses propagate through absorbers. In fact the Burnham-Chiao or McCall(3d) simulations for m-64
area pulse propagation in absorbers or for 6y area pulses in inverted media are identical to all of the early
SF simulations. Namely, the calculations were uniform-plane-wave one-way treatments. No transverse variables
were included. I.e., the following equations were numerically integrated:

u= (mo - w)_V - u/TZ' (1)
v = - (wo - wiu - V/Tz' - wcE (2)
W (w4 1)/T1 + vcE 3

3E + 1 3§ a . Z2munpv a)
dz ¢ at <

where u,v,w are the Bloch components of the pseudo polarization vector, E is the slowly varying envelope of
the electromagnetic field, n is the density of atoms with electric dipole transition moment p, « = 2p/A, and
T£ and T1 are the coherence and energy relaxation times, respectively.

*Work jointly suﬁported by the Research Corporation, the International Division of Mobil, the University of
Montreal, and the U.S. Army Research Office (Durham).
+Present address.
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Such simulations, which are just solutions of the sine-Gordon equation when relaxation is negligible,
predict very strong ringing where each ring can be 50% as intense as the preceeding ring. Ringing that
pronounced has never been observed. MacGillivray et al.> introduced a linear loss term -KE to the rignt
side of Eq. (4) to account for linear diffraction losses. A value KL = 2.5 reduced the ringing to that
observed, but the corresponding Fresnel number is 0.08 compared with their experimental value of order unity.
At any rate their simulations showed clearly that the polarization and electric field vary appreciably along
the sample, i.e., propagation effects are very important and a mean-field approximation is unjustified.

Initiation by Quantum Fluctuations

The Cs experi.mentsa provided much more quantitative data on pulse shapes and densities for SF under near-
ideal conditions. Attempts to simulate those data by uniform-plane-wave simulations were made by Gibbs §
vrehen8® and by Saunders, Bullough, and collaborators.” They found much more pronounced ringing and longer
(as much as twice) delays than observed. Relaxation, inhomogeneous dephasing, and diffraction were too weak
in the Cs case to account for these discrepancies. At that time the proper value of 6,5 was under discussion.
It was found that large 6,'s of order 1//uN did improve the fits substantially but not completely. (The
shape factor? u is typically 10-5.) It is now generally accepted from theoretical calculations and a small
area injection experiment10 that 8 = 2//ﬁ: That formula yields 6, = 10-% for the Cs experiment, resulting
in far too much ringing and too long delays. But determining the appropriate 6, was very significant; by
fixing that parameter, the need for other explanations of the ringing and delay-time discrepancies was
underscored. And the likelihood that two-way effects were very impprtant was greatly reduced because compli-
catedi two-way computations by Saunders, Bullough, Hassan, and Feuillade” as well as MacGillivray and
Feldll revealed insignificant reduction of ringing by two-way competition for 8, = 10-4. Only for very large
8o, of order 0.1, were two-way effects found to appreciably reduce ringing.

Those quantized-field studies of 6, led naturally to another significant numerical calculation, namely
a study of fluctuations in the output pulse shape as a result of the quantum nature of SF initiation. A
distribution of initial 65's consistent with the quantized-field results was used to initiate the usual
coupled Maxwell-Bloch simulations. The resulting distributioni? of delay times is in good agreement with
those observed by Vrehen’ and with an analytic expression for the variance, 62

These fluctuation results also reduced the discrepancy between experimental and simulation densities
for the same delay. It became clear that the data presented in Ref. 8 which simulations were trying to
reproduce, were selected for approximately minimum delay at a given denf&ty. It was estimated that the
average delay was about 30% longer than the pulses presented in Ref, 8. The density in the simulation
would then need to be 1.3 times higher, so that a 2X discrepancy is reduced to less than the +60% quoted
uncertainty in the density.

Transverse Effects

At this stage of the numerical simulations the primary discrepancy between the Cs data and the one-way
uniform-plane-wave computations with 6, = 2/N lay in pulse shapes. MacGillivray and Feld noted quite some
time ago, that a Gaussian inversion profile results in a distribution of delay times and that a Gaussian
average of plane-wave solutions predicts a highly asymmetric output pulse. The ringing is largely removed,
but the averaging of the large ringing results in a composite output with a tail much longer than observed.

Encouraged by the importance of dynamic transverse effects in self-induced transparency numerical
simulationsl3 and actual experiments,l4 we have allowed one transverse degree of freedom in SF simulations.
One must add to the righthand side of Eq. (4),

L1 2
g £ (5)

where V: = % g% (p g%),p = r/rp, rp is the radius of the initial inversion density at half maximum, L is

the sample length, and F ﬂr; /AL is the Fresnel number. E is, of course, complex so that phase variations

R . . R ;1
introduced bg diffraction can be included consistently. Thus, neither the mean-field approximation € no the
substitution” of a loss term for diffraction coupling is used, Instead, self-consistent numerical methods%S
are adopted which take into account fully both propagation and transverse (both sgat1al profile and Laplacian
coupling) effects. Thus our model possesses a degree of realism long hoped for.!

These transverse simulations are in much better agreement with the Cs data as shown in Fig. 1.17 Each
simulation density n, was adjusted to roughly reproduce the observed delay using &4 = 2/n 2L The inver-

(o}
sion density radial dependence was no(r) = n, exp[-(an)rZ/r;]. These transverse simulations fit the data
much better than the Gaussian average of plane-wave solutions for at least two reasons. First, the diffrac-
tion coupling between the minimum-delay center portion of the excited cylinder and the outer cylindrical
"shells” causes the delay times of the latter to be reduced. This allows more of the cylinder to emit at the

. same time; the overall delay is lengthened slightly, but the asymmetry is also reduced. See Fig. 2. Second,

relaxation included in Fig. 1 was found to reduce the asymmetry more than was anticipated from their rather
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(a) i \ theory (c) theory S
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\
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NORMALIZED OUTPUT POWER

(b) theory (d theory
n2=18 x10'0/cm3 n2=885x10'Ycm3
8,=1.37x10"4 \ 8,=1.96x10"4
experiment ~~---~ \ experiment ==~ --
n%=7.6x10'Ycm3 ) n2234%10'Yem3
1-D theory —-—
A\ n2312x10'Ycm?
603169 %104

0 o 20 30 40 O 0 20 30
TIME (ns) TIME (ns)

40

Theoretical fits to Cs data of Ref. 8a. The two experimental curves in (a) indicate typical
shot-to-shot variations. The 1-D curve in (b) is the fit of Ref. 8b to the one-dimensional
theory. F = nré/AL =1, L =2cm, Ty = 70 ns, Ty'= 80 ngec, A = 2.93lu, T = S51 ns,
8y uniform GausBian, inversion nO(r) = ng exp[-inZ(r/rp) ] °
4o}~
30
four

20
o
[+)

o]

a b

Total energy coherently emitted per unit atom in arbjtrary units, as a fungtion of time with
Fresnel number as the labelling parameter. 9, = 10°% for all radii, 1, = §nro 3n% AL = 0.046 ns,
and L = 5.23 cm. (a) Uniformly inverted cylinder: inversion constant out to p, nd zero beyond
with F = woo/xL. The output is accepted only out to p,. (b) Gaussian inversion cylinder with

F and ny(r) defined as in Fig. 1.
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long times of T. = 70ns and T,' = 80ns. Although there is still more of a tail in the simulations than
the data, the aéreement is rather good and far better than the uniform-plane-wave attempts.

The ratio of the simulation density to the experimental density ranges from 1.63 to 2.85 in Fig. 1. It
was mentioned before that the average delays for the experimental densities were about 1.3 times longer than
the selected pulses. One would then expect to use 1.3 times higher simulation densities in that case,
reducing the ratio to 1.25 to 2.2. The quantum calculations® actually yield 8, = (2/N) (En(2mN)1/8y1/2,
not just 2/¥N, which is a 9% correction, reducing the ratio to 1.14 to 2.0. Since the assigned experimental
uncertainties are +60%, -30% the agreement is fairly good. If one chooses 9y = 6//5, which agreed better with
the small injection experiment, the ratio ranges from 1.01 to 1.78, in still better agreement.

Burnham-Chiao Ringing

Fig. 3 illustrates that this model of SF predicts appreciable ringing if one observes the output with
a detector much smaller than the output diameter. This suggests that the single-pulse symmetric Cs SF
pulses have substructure in space and time which retains the strong ringing predicted by the uniform-plane-
wave approach. The extended cylinder of unit Fresnel number F does not emit its energy in one single cooper-
ative superfluorescence burst after all. In fact, simulations reveal that ringing is reduced by decreasing
F. This allows emission from the cylinder's axis to diffract to the outer cvlindrical shells in a shorter
distance. Consequently, F somewhat less than one may be better than F equal to one for single pulse emission,
contrary to the usual arguments.

-
>
5 3
k4 -~
o -
z 2
=
g 3
= a
o -
) i
'
L 1 Il Ji 1 1 1
0 50 100 150
1/1'R
e b

Figure 3. Energy as a function of (a) transverse cootrdinate o = r/ry and time and (b) only time after
integration over p. Notice that strong ringing is predicged for a2 small-aperture detector in
the center of the beam although very little ringing is in evidence after radial averaging.

8, = 2.38 X 10-4 exp(-pz/Z), i1p=49mns, F=1, L =22.4cnm, and transverse Gaussian inversion
profile. As F is decreased, ringing is washed out into smaller and smaller o.
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7A Future Work

- J It must be emphasized that this transverse simulation of SF contains approximations; strictly speaking

5 it is a solution of the propagation of a small-area uniform-plane-wave coherent pulse through an inverted

3 medium with a Gaussian transverse inversion profile. Experiments could be performed under such conditions

i and our semi-classical description should be complete. The transverse SF simulation should be extended to
explore more thoroughly the quantum and three-dimensional aspects of SF. Quantum fluctuations in the initia-

tion should be included in the transverse calculation to examine the fluctuations in output shape and delay.
The initiation should not be inserted as a homogeneous tipping of all the individual polarization vectors
phased to emit a plane wave in the forward direction. Ideally the initiation and calculation should allow
three spatial degrees of freedom so that transverse modes can compete. The strong ringing on axis, as
predicted above, may not persist with three-dimensional fluctuations. Two transverse effects previously
observed in Cs might gmerge. It was found at high densities, approximately for sample lengths longer than
the Arecchi-Courtensl® coherence length, that SF from a Fresnel-one sample fluctuates and shows little or no
correlation between the pulse shapes at two different transverse positions.l® And large Fresnel-number SF
is emitted over the full geometrical angle with only small fluctuations.
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Abstract

We discuss coherent propazatxon effects in vapors of polyatomic molecules under conditions of lultiplch
photon excitation, including the generation of new frequencies and the development of transverse effects
such as self-focusing and seif-defocusing. Wwe give a discussion of the adiabatic-following approxi-atson
for multilevel systems, and discuss the generation of new frequencxea in this limit as well as ip the limit
of an instantaneously-switched-oa pulse. o

introduction

The multiple-photon excitation of polyatomic molecules has attracted much atteation since'the demoust
tion of isopotic selectivity in the multiple-photon dissociation of BCZ, {1] and SF . [2] particularly
after these processes were showa to occur in the absence of collisions ?3] la the easuing debate [4] as
to the origins of the multiple-photon excitation and dissociation of polyatomic mclecules, little bas been
said about the possible influence of coherent propagation effects and other collective processes upon the
interpretation of the experimental measurements of energy absorptioa that have been carried out to date.
It has recently been suggested {5] that the generation of near-resoansat sidebands as the result of propsgs
in a sultilevel molecular gaseous medium may be respousible for a number of efiects that have previously
been ascribed to a hypothesized rapid intramolecular relaxation of energy, such as the observed pusping of
aearly all rotational states by laser pulses of modest intensity [6). Also, the receat discovery of stro
self-focusing in SF, under conditions of collisionless multiple-photon excitation calls into question most
of the measurements of energy deposition that have been reported in the literature to date [7]. Under
these circumstances we have chosen to review the current status of propagation calculations in multilevel
systems, both from the point of view of generation ot new frequencies and from the point of view of trans~
verse effects such- as self-focusing and self-defocusing. Following a brief introduction to the current
understanding of the energy levels of polyatomic molecules such as SF,, we summarize the derivation of the
Schrddinger equation for multitevel systems and the propagation equation for the optical electric field
under the slowly-varying-amplitude~and-phase approximation (SVAPA). We then discuss the generastion of new
frequencies and transverse effects in two limits: the limit of a rapidly-switchedon pulse and the limit of
an adiabatically-switched-on pulse. In the limit of a rapidly-switched-on pulse, sidebands acre gegerated
that are nearly resonant with all the molecular radiative transitions that are accessible from the initial
molecular state (5,8]; the sideband amplitude saturates at a constant value after a finite propagation
distance. In the limit ot an adiadatically-switched-on pulse, a sideband spectrum is generated by the
process of self-phase modulation {9]). Finally, we present numerical resuits concerning the generatioa of
new frequencies by a system that modeis some of the qualitative chacacteristics of SF6 irradiated by a
rapidly-switched-on pulse.

Practical applications where coherent propagation effects in multilevel molecular systems may be
important include laser chemistry and isotope separation, and the propagation of powerful laser beams
through the earth's atmosphere. In laser-induced chemistry and isotope separation the generation of addi
tional frequencies, whether for rapidly-switched-on pulses or adiabatically=-switched-on pulses, will resu
in @ reduction of isotopic or chemical-bond selectivity and an overall increase ot multiple-photon excita
Trausverse effects such as seif-tocusing or selt-defocusing will alter the volume illuminated by a laser
during multiple~photon absorplicn experiments and will thereby affect the calculation of the number of
laser photons absorped per molecule. On a practical scale, selt-tocusing may detine a fundamental limit
the oplical path length-that can be utilized 1n industrial laser chemistry or isotope scparation, and may
thereby limit the useful through-put of sn industrial plant. For the problem of atamospheric propagatios,

*
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the generation of additional frequencies will result in an increase of absorption and heuce a reduction of
transmission for pulsed laser beams with respect to that calculated for low-intensity CW beams. Self-focusing
and self-detocusing will, of course, have an important effecL on beam quality and the ultimate achievable
far-field irradiance.

Energy lLevels of Polvatomic Molecules

From the point of view of calculations of coherent propagation, the dominant feature of the energy
levels of polyatomic molecules is the splitting of these levels by vibrational and rotational effects [4].
Originally it was supposed that multiple-photon excitation of polyatomic molecules would be very difficult
owing to the geaeral tendency of the spacing of the vibrational energy levels of an anharmonic oscillator
to decrease with increasing excitation energy. However, early force-field studies of polyatomic molecules
such as SF. that possess degenerate modes of vibration indicated that the splitting of the degenerate
excited vigrational levels of these molecules by vibrational anharmonic effects could provide an important
compensation for the anharmonicity of the vibration, and thereby increase the probability for finding a
nearly resonant ladder of states for multiple-photon excitation {10]. These early calculations have recently
been strikingly confirmed by experiment [11). Rotational compensation of anharmonicity-~in other words,
the compensation of vibrational anharmonicity by a change of rotational energy-~has also been suggested as
an important factor in the occurrence of nearly resonant pathways for the excitation of polyatomic molecules
[{12]. The pathways for excitation to an excited state with three vibrational quanta in SF, are indicated
schematically in Fig. 1. In the numerical calculations reported in this paper, we shall use a model of the
excited states and transition moments of SF, that was recently reviewed by Cantrell, Letokhov and Makarov
{1(c)]. In this model we employ effective states |n2JR> that represent grouped states of the real SF6
‘malecule, with with energy levels given by . .

E(niJR) = nv, + n(n-l)X33 + [2(2+1) - 2n] Gy * ByJ(J*1) + B L. {R(R+1) - J(I*1) - 2(2+41) + 20] (1)

°C3
vherz n is the nusber of vibrational quanta; £ is the vibrational angular momeatum number; J is the total
aagular momentum of molecules; R is the rotational angular momentum of the molecular framework; B, is the
rotational constant of the ground state of the molecule; {. is the magnitude of the vibraticnal angular
somentum in uaits of h; v, is the molecular vibrational ftgquency corrected for anharmonicity; X,. is a
vibrational anharmonicity constant; aad 633 describes the anharmonic splitting. The traasition aguents ia
this model are : ’
8 x (/Y ><atfl § Il a*1, 2> W(2'2' 3" 1IR) )
adJR; n+l, LLJ'R . o1 ’ ‘
vhere <p..> is the dipole trfnsition moment rveported in the literature; W is a Racah coefficient; and the
reduced 2ltrix element <alj qlln’l, £'> is given in the review [1(c)]. A detailed account of other improved
sodels for the energy levels of SF6 for purposes of calculations of multiple-photon excitation will be
published elsewhere. :

Equations_for Propagation

The propagation of a plane quasimonochromatic electromagnetic wave may be described in the slowly
varying amplitude and phase approximation (SVAPA) by the equation

aé(z,t") k
;z = ® (3)

2
2n LM
vhere £==E'exp(i¢) is the complex electromagnetic field with envelope E' and phase ¢; z is the propagation

distance; t' = t-nz/c is the retarded time; n is the linear index of refraction; k=2nn/A is the propagation
constant; and : i

pe ] .
f=20v 2T, a~1,8 Pma;m~1,B ’ “

®,A,B

= (S+iC) oi? : (5)

s the'slwly varying complex polarization. The complex amplitude 0 is related to the real dipole moment
Per unit volume P=N<u>, where p is the molecular dipole operator, by the equations

P = 2Re(Dell) ' %)

'CCOOC#S;)‘,“( 7y .

where

2N
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and
{=kz-ut+9¢ 9)
=-uwt’"+0 - . (10)

In Eq. (4), the subscripts m asd A demote, respectively, the vibrationsl quantum number and the set of
remaining quantum numbers needed to specify the effective state. The amplitudes ¢ oA of the states |mA>
have been subjected to the transformation

~ ~imut'
€ar ¥ an © an

which results in the Schrédinger equation

a‘EM - i <4 - -
B0 C Byt ® § E Va8 Sae1,n ’g“m;-l,n u-1,8 : (12)
Ba =™ -E/8 ‘ - 3

vhich must be solved in order to calculate the polarization P. Eq. (4). Preliminary accounts of results
obtained by the self-consisteat numerical solution of Eqs. (3) and (12) have recently appeared [8] and a
more detailed discussion is in preparation.

Excitation of a Multilevel System by a Pulse with Finite Risetime

When all the detunings A, for m # 0 are large compared to the Rabi frequency f1(c)]

. ¢ o . (16)
ugu_ﬁll . | 1

then the amplitudes € , of the states |mA> that are connected by dipoie-allowed transitions with the imitial

(ground) state JOB> w3y be calculated by first-order time-dependent perturbation theory For an incideat -
pulse

E e'“' ‘ ' :
E(t) = 20re Qas)
1te o . .

which describes a laser pulse vith a risetime t, and a fall time y'l, an analytical expression for the
amplitudes of the states with ms=] may be.obtaingd provided that

0 <yey< 1. ' ' 16)
In this cage the solution of Eq. (12) ia fx.rst-order time-dependent perturbation theory for the initial

condition ¢ o * 1, c =0 (a20),

(t ) = — exp(iA t') f‘ exp(-ia t")l.l.A 038“ Jde” G17)

may be explicitly evaluated [8(a)] with the result

- M E 2t exp(id_.t')
() = (_-A,gy) i T (1)
- e
where

w2 n(A.A'iﬂto (19)

In the limit of a rapid rise (“uA' t°<<1) and a slow fall (yt°<<n,
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and the polarization beco-es (assuming that oaly m=l is excited)

" {u 1?2
@=2in% -L‘-g!’?- exp(is t') (21)

This is identical with earlier estimates based on the approximation of an ianstantaneously switched-on
pulse. In the opposite limit of a slow rise (l ' >>l) and a slow fall (yt <«<1),

eny E t.expltid ,t' - na )e)
IRIE mA,08°0"0 = =A ) (22)

wvhere ¢ = sign (A.A). and the polacization becomes
inNe 2 R -
P= —t-—-i. (“M,OBI Egtoexpl(ia  t'-na 4t )] . (23)

In other vords. the aopluude of the sideband at the frequency wel /8 is reduced .in this case by the
factor exp(-n . This general concluston for multilevel sysféns establishes an analytical foundation
for qualitat;vefe sxnxlar conclusions arrived at by numerical methods in the special case of a two-level
system by Eberly, Konopicki and Shore {13].

The Adiabatic-Following Agnr&xinntion for Multilevel Systems

For a general pulse (for which 1a_, | need not be large compared to u,), and in the sudden approximation,
in which the incident field £(0,t') is"0 for t' § 0, and-is €, for t'> 0, then at the entrance face of the
sedium (2 = 0) the Schrodinger equation (12) is (for-t'>0) thae of a system evolving under the influence of
a time-independent effective Hamiltoanian whose matrix elements are

134
L °-A Al nA .
ff -1 .
":A;(-m = () 5"n;(-—1)3 . (24)
In this csse it is natural to introduce the eigenvectors ,h> of “eff'
I o = A ' (25)

which ste known as the “dressed” states. In the sudden approximation, the molecular system is initially
(at t' = 0+¢) in that superposition of dressed states that results in the initial state just prior (t'=0-g)
to the switching on of the field E:

. w(0)> = £ <Ajp(0)>)n> . ' . (26)
A - .

Subsequently sach dressed state JA> evolves with the time dependence exp (iAt'), so that

caalt') = f exp Cimuc'~iAt')<mAlA><Ay(0)> . . @1

1a this case the macroscopic polarization induced by CXL ) is (at z=0, before
& is wodified by propagation)

®o,e) = Ai.e“.exp [i(A-A")e'] (28)
vhere
€ =28 2 I I .07 o(o)<--1 BIA'>A'| pD>  <aC)A><AlmA> _ 29)

m,A,B a,p C,D
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Eqs. (28) and (29) show explicitly the generation of sidebands at every frequency A'~ A for every possible
pair of "dressed” states A, A'. ) .

In the opposite limit, in which the detuaing 4 , is large compared to the reciprocal of the shortest
time in which the field & changes significantiv, tien the phase of the polarization P generated by the
medium quickly becomes the same as the phase of E. This statemeat, which is evident from the general
discussion of adiabacitity in the textbook of Laudau and Lifshitz [14], and from the calculations of Arecchi
and Bonifacio [15], and which has been discussed more recenily for a two-level system by Eberly, Konopicki,
and Shore (13], may easily be established by using the language of dressed states [8(a)]. When the field
is switched on adabiatically slowly on the time scale of the reciprocal of the minimum detuning, then the
system remains in that "dressed” state that is correlated with the initial eigerstate of the system ‘A > -
| (-=)> at infinite time in the past, i.e., with the initial cigenstate in the presence of a vanishiag
optical field. In this approximation the Schrddinger-picture amplitudes are

-iAot'-i-wt' :
L -
caalt’) = <nA|A0>e . (30)
(where Ao and IAO > are (adiahﬂ;ic) functions of t'), and the polarization in this approximation is
fo,e’) = 2iN . i ; <sAlAj><e-1,BIA > PaA;(-1)B . : (31)
5%y N .

‘Since the components <mA{A> of the dfessed-state eigzenvectors |A> in the basis
|mA> may be chosen to be real, the polarization given by (31) is pure imaginary. Comparison with (5) (with
$=0) shows that in this case S(t')=0, i.e., that )

P(0,t*) = C(0,t")cos ¢ , . . (32)

so that the macroscopic polarization adiabatically "follows” the field E(0,t') = E'(0,t')cos {. An explici
evaluation of the eigenvectors JA> and eigenvalues A for a two-level system shows that Eq. (31) is identica
in that case with the adiabatic-following approximation of Grischkowsky et al. For a two-level system the
dressed-state eigenvalues are :

A,1,.2 1/2 :
A, =52z 8%+ w?y . (33a)
@ *7°

where Q = poi'lzﬁ. The eigenvalue A (A,) is correlated with the upper (lower) level as E'+0. The eigenvec
correlated with the initial (i.e.,grsuna) state at E’'=0 is

<olr> = —J18L ) ~ ' ' (33b)
2 (Aiﬂ"lm . |
Jal A ;
<A = _—_ : (33¢c)
2 T [A§¢lnI21”2 : .

so that the polarization for a two-level system initialiy in tﬁe ground state is, in the approximatiomn of
Eq. (31),

a
. 2 . Q :
eg 2iN ——————— = - 2iNy (34)
(g 2?72 [aZeu?] 2 ‘

which is identical with Lhe adiabatic-followihg approximation of Grischkowsky et al. [16}. Thus Eq. (31)
defines an adiabatic-following approximation for multilevel systems. .We reiterate that this approximation

is valid only sufficiently far from resonance, i.e., when I(A“A) . ] 7 is small compared to the risetime of
E'(t'). A min

It is evident that in the adiabatic-following situation described by Eq. (31) no resonant sidebands
are generated. However, frequencies other than the incident frequency w will still be preseat in the tield
radiated by the system,

z
Ceas(zt) = —3 f@(z'.t')dc' : (35)
2n € 0
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due to the phenomenon of self-phase modulation [9,17]. Ia the adiabatic-folluwing limit it is pussible to

_ define the nonlinear susceptibility X(E') as follows:

oy o PCO,t') _ C(O,t') _ 2ReD(O,t’') (36)
X(E') = o) T E 0.t B0

where D may be read off from Eqs. (4) and (8). We note that X as defined in (36) contains all powers of
E'. Eq. (36) is not restricted in validity to a particulac order of perturbation theorv. However, under
some Circumstances one may expand the nonlinear index of refraction

o™ = (10x) 12 Gan

approximately in the usual way:
nut - a, * % nz(E')z
(38)

We shall report a detailed numerical calculation of nNL. n, and o, as functions of w in a separate publication.
However, we note here that for a system gf tength L the figld (35; radiated by the medium initially (for i
sufficieantly small z) grows as kL n,(E')", so that the Fourier amplitude of é at a detuning &w will be
iaversely proportional to the second derivative of [E'(t’')]" at the statioaaryssgase points:

-1/2

3 .
aw = -knzL(d(E') /dt')/2no

This is, of course, the phenomenon of self-phase modulation, which is well known in quasi-two-level systems
{17]. The bandwidth of frequeacies generated by self-phase modulation will exceed the original laser
baadwidth Amo provided that

(39)

2
d Y |
cad() = l;:TElE (c')]

2

kn,[E*]
1 d 2
— (—-—}, kL 2 1 ) (60)
= ac’ 20, max .

. Preliminary estimates made with Eq. (40) indicate that the bandwidth of frequencies generated by self-phase

modulation exceeds A"b under the conditions of most multiple-photoa absorption experiments performed to
date [9].

Transverse effects (self-focusing and self-defocusing) will occur in the case of a rapidly-switched-on
pulse (i.e., for nearly resonant excitation) for a multilevel system as well as for the two-level systems
that have been the subject of previous studies. We are now conducting numerical calculations of trans u.rse
effects in-pulse propagation for sultilevel systems, using previously developed numerical techaiques {i8].
One of these techaiques is a perturbation approach that correctly describes the initial self-focusing
behavior without the numerical complexity associated with a full coherent self-focusing calculation. The
pertucbation method uses two plane-wave pencils, one located on the axis of the (cylindrically symmetric)
beam, the other slightly off-axis and with smaller intensity. {t may be shown analytically that these
pencils move with different velocities, and that the initial self-focusing is directly attributable to this
difference of velocities.

However, ia the limit of a slowly-switched-on puise (i.e., for nonresonant excitation) the traasverse
effects associated with pulse propagation ia multilevel systess may be discussed using the nonlinear index’
of refraction, Eq. (37). Vhenever the expansion (38) is valid, then transverse effects may be calculated
using standard theoretical approaches that take (38) as a point of departure. We shall give a discursion
of transverse effects based on this approach in a future publication. Here we content ourselves with the
observation that the spatial growth rate a of the mode of the self-focusing instability with maxisum growth
rate [19]) is such that

al 21 . (41)
provided that
2
a,[E']

Zno

KL 3 1. : (62)

Self-focusing effects may be expected to play an important role whenever (42) is satisfied, as it appears
to be in many multiple-photon absorption experiments (7).

For a real molecular system subject to a thermal distribution of initial states, some molecules will
satisfy the criterion for rapidly-switched-on pulses and other molecules will satisfy the criterioa for
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adiabatically-switched-on pelses. Under these circumstances the calculation must be pursued along differ
lines for different classes of initial conditions. The dynamics of those molecules that are excited clos
to resonance must be described using the fuill Schrodinger Eq. (12), while the dynamics of molecules excit/

far from resnrance may be described by Eqs. (30)-(31). Calculations using this technique will be. reported
elsevhere.

Numerical Studies of Pulse Propagation in Multilevel Systems

Since Eqs. (3) and (12) are (formally) two ordinary differential equations in the different independs
variables 2,t', coupled by the (nonlinear) polarization sz,t'). the self-consistent numerical solution ¢
(3) and (12) may be obtained by essentially the same methods used for pulse propsgation in two-level systq

by Hopf and Scully [20] and Icsevgi and Lamb [21]. In broad outline, the method consists of integrating
(12) to find c_,(z,t") and eventually @(z,t') (Eq. (4)) as functions of t' for a given (fixed) value of
using the (known) dependence of 5(:,&') on t' at the position z. Eq. (3) is then integrated one spatial
step Az for each (discrete) value of t' to find the field € (z+Az,t*) as a function of t' at the new posi
zr0z. Equation (12) may nov be integrated to find cmA(z*Az,t') as a function of t' at 2+A2, and so on.

The choice of a numerical algorithm for the solution of equations such as (3) and (12) has been care
studied by lcsevgi and Lasb {21}, who found the modified Euler predictor-corrector method to be fast and
give acceptable accuracy. Since our problem involves substantially more time points (values of t') than
were employed by lcsevgi aod Lamb, we chose the slightly more accurate: Hamming predictor-corrector sethod

between results obtained with the Hamming and modified Euler predictor-corrector methods in the integrati
of (12) in test calculations were not significant. In all cases we used iteration to provide the initial

values at two successive temporal or spatial steps required to start the predictor-corrector algoriths
[21}.

[22] for the integration of (12), but retained the modified Euler method for (3). In fact, the difterenc%

The temporal and spatial step sizes h  and h_ were chosen to be sufficiently smal) that further refin#

ment did not significantly affect the soluEion. bt large enough to minimize computaiional time given the
desired accuracy. It may be shown that Eqs. (12) display an absolute instability for time-step sizes ht
such that . )

’ 8 L.s: b, > 1. ' ' : (43)

in comparison with that {e_, | is always <<1) imposes a maximum acceptable value of h that (for weak

The necessity to avoid this instability (even for the anplitude~z of a state for which ’A ' is so lar;g#

. fields) may be very small given the other physically relevant time scales ta the probles, such as (wh) ..

. For the molecular energy levels and laser frequencies used im our calculations, the choice

1 2n : : ;
ht tio—o- ‘-‘—.E . (6‘)

gave acceptable results without requiring too much computational effort at low values of - Typical
numerical results for the amplitude ICJIEO and phase o/ of a pulse

e, et <o
Ew,x) = .
Epy t' 20 . ’ (45)
are showa in Fig. 2.

In order to investigate the frequencies introduced into the pulse as the result of propagation, we
calculated the spectrum of the field radiated by the medium, Eq. (35). Since the field calculated self-
consistently is {(z,t'), and since Eq. (3) may be rephrased as the integral equation

Ez,e) =6

iae (8 + & (2,t") (46)
(where £rad is to be calculated using the self-consistently determined polarization P ), we see that

Crag (2t =&(z,e) =& (e 1)

Since the generation of sidebands 15 a non-adiibatic phenomenon, the autocorrelation G(t.,T) and its Fouri

inc
To caleculate the spectrum of dirad (z,t'), we have calculated the numerical Fourier transform of the auto-
-correlation function
-1 (%7 Et £
1] 1] L] .
G(to,T) 2T . rag (1) 2t 4T (68)
0

Lransform will depend on ty: We have chosen =Y in the spectrum ot Fig. 3, which corresponds to the same

conditions as in Fig. 2.
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Using this technique we have calculated the sideband spectra for systems consisting of twe, four, and
ten energy levels, as functions of the propagation distance z and the laser electric field En. and for a
variety of functional torms for the incident pulse & _ (t') [8(al]. The energy levels or- as fallows: (a)
tvo-level system: The levels (niJR) = (U0J,J,) and L2151 »Jg1,Jy) . Our numerical results ror this case
appear to be in gualitative agreement with ghe previously publxshe¢ calcuiaticns of Eberly, Konopicki and
Shore [13). A quaantitative comparison is impossible, owing to the fart that the vertical scale indicating
the magnitude of the Fourier transform of G(t,,T) was onitted from their Figs. 2-4. (b) Four-level system:
the levels (nJR) = (0,0, J oJo), and (1,1,J,R) with J = J Jg £ 1. This system is an example of a general
family of systems with a comnon lower level, and in which ;he upper levels are not radiatively connected
among each other. OQur calculations reported in Ref. 8(a) are the first calculations of which we are aware
that treat the general problem of transient phenomena in pulse propagation in this type of system. Earlier
pulse-propagation calculations on a three-level system with a common upper level pumped by a transition
from one of the two lower levels addressed primarily the problem of gain on the transition that was not
pumped initially (23]. The published calculation of distortionless.pulse propagation in a three-level
system by Higginbotham et al. [24] actually assumed two ot the levels to be degeaerate, thereby eliminating
many of the effects we wish to investigate. The investigation of pulse propagation in degenerate systems
by Hopf, Rhodes and Szdke [25] concerned an ensembie of two-level systems, and not a truly multilevel
system of the type considered here. (c) Ten-level system: the levels (ntJR) = (O,O,JO,JO); (l.l,J,Jo)
with J = £ 1; (2,0, J J ). and (2,2,3,J ) withJ=2J, =2, ..., Jy *+2. This is an example of a
geaeral tyge gf energy-level schene 1n wh;ch each level wx?h vibrationa? quantum number n is connected
radiatively to several levels with n' = n* 1. Our results reported in Ref. 8 and in Figs. 2-3 here are the
first published calculations of pulse-propagation phenomena in such a systes.
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Figure 2: The normalized amplitude and phase of a(z,t') for z = 50 cm, and for th

Figure 1: Schematic diagram of dipole-allowed transitions (indicated by arrows) that begin on a given

o n hten:&evel

;. 'thn in ls(g)l, Fg;. 1. Parameters age: <p° > = 0.388_?, N=35x10"cm", E

& @ ' (3,5 107V cm 7)), Xon = <2.56 cm ', G,.0% 0.303 em ), T.. =0, J. =68, v,Jc L wone s
5 21 33 13 33 0 2

L 946 ¢cm .

b

b

b

- 278

¢

sys tsn
= 107 sV




2000 4
4
1900 -
",: P
u % ooe]
- ~
‘--. a j
R e
i e
—y v — —— 1 YT
e st S 6 /AL A A P S A A A" A T

v [om*!)
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and the resolution of the aumerical Fourier transform is 0.44 cm
taken as zero in Eq. (48).

f:ical axis are (sV c-.l)z.
. The initial time to was

_M

Py P o o
[P VP DU VPR e Ja.

[PPSO U PO POwREs ws w1y

e ok ia



.Trrrr‘rr
A . .

Coe

. et

4 Mirl dve i as
«.'.z' . .

ke YY*I;'T'.T'T'.'""'

v [ L oo St e A r BAMIMALARIIL S
PGS NS .

International Conference
~ on Excited states
and Multiresonant nonlinear
| optical processes
in solids

Digest of Technical Papers

Aussois, French Alps
March 18-20, 1981

LES EDITIONS DE PHYSIQUE

Avenue du Hoggar
7nne Inductrielle de Conrtahesnf

CHP UL SO S N S VR, S . . Py P ¢ a PG W W SR

.....




5
- Swept-gain superradiance in two- and three-level systems
-with transverse effects and diffraction (*)
! F. P. Mattar and C. M. Bowden (**) _ .
Acrodynamics Laboratory, Polytechaic Institute of New York, Farmingdale, New York 11735, U.S.A.
{**) Research Directorate, US Army Missile Laboratory, US Army Missile Command, Redstone Arsenal,
Alabama 35898, U.S.A.
:‘ Abstract. — Results of numerical calculations using computational methods developed earlier to efficiently treat

. transverse as well as longitudinai reshaping associated with single-stream and two-way pulse propagation and
" generation effects in cooperative light-matter interactions, using the semiclassical model, are presented. Specifically,

the results are presented and discussed for the two- as well as three-level system for a traveling excitation for both

» Gaussian and uniform gain distributions. Conditions are established for lethargic and highly nonlinear soliton

- Summary. — Computational methods based upon
.jj'xc Bloch-Maxwell semiclassical model were developed
~-arlier {1] to efficiently treat transverse as well as
s>ngitudinal reshaping and diffraction associated with
"ingle-stream and two-way pulse propagation and
" - eneration effects in cooperative interaction between
- ae radiation field and a medium consisting of a
. ‘allection of two-level atoms. Results of the calcula-
-on are presented for pulse evolution as a function
[ propagation distance Z in the two-level system for
traveling excitation with both Gaussian and uniform
. ain distributions with a classical initial tipping angle
[ “istribution. We present the conditions under which
[ 1¢ system evolves from a superfluorescent condi-
.- on (2}, where the atoms are contained within a
hr0peration volume, 10 an asymptotic steady-state (3]
- r sufficiently large propagation distance Z where
L Hliton behavior is exhibited. The steady-st~.ic condi-
r -on is interpreted in terms of the asymptotic behavior
L **the principal mode pulse area and stabilization of the
k\urepuheshape.mmgrcamthmtm
¢own to occur because of multiple pulse generat.on
7 ud self-focusing Furthermore, it is shown that
" fraction plays a much greater role in the results for
- ¢ swept-gain superradiance regime [3] than for the
; ndnions for which superfluorescence occurs [2].
». ¢ results of our numerical calculations for the
“ymptollc large Z regime are compared with the
} :e-dimensional analytical results for swept-gain
~ perradiance [3).

"o Work Jowtly sponsored by the Reseurch Corporation, the

‘L ‘mmd Divsion of Mobil Corporation, the University of

mml the US Army Ressarch Office, DAAG29-79-C-0148,
: ™ Office of Naval Ressarch, NOOO-14-80-C-0174, and Battelle
, lumbus Laboratories contract DAAG29-76-D-0100.
J
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pulse evolution through the asymptotic large Z regime.

The numerical code was extended (1] to represent a
collection of three-level atoms in the presence of two
laser fields, consistent with the usual parity conside-
rations [4, 5). Results are presented for traveling
excitation corresponding to optical pumping for both
Gaussian and uniform radial gain distributions and
several different temporal functions for the excitation.
Superfluorescence is shown to occur for conditions
analogous to those for the two-level case [1] ; however,
two-photon (coherent Raman) effects play a strong
role in pulse delay and shape characteristics, as
predicted from earlier analytical work [4, 5). Pulse
evolution characteristics are shown to depend upon
the excitation temporal function dependence and
radial function dependence as well as temporal
duration and total area.

We show also in this case the conditions under which
the system evolves to an asymptotic, steady-state
condition at sufficiently large Z in terms of the prin-
cipal mode pulse area and total pulse shape stabiliza-
tion. As in the case of two-level swept-gain super-
radiance, strong self-focusing and multiple pulse
generation is indicated.

Finally, results for simulton [6] behavior in the
three-level system is presented with two injection
signals and also with one injection signal (the optical
pump) and a uniform tipping angle (determined from
a thermal population distribution) which allows the
second pulse to evolve. The latter conditions cor-
respond most realistically in the large (7] region with
experimental conditions for swept-gain superradiance
reported in the literature [7, 8]. Results of the calcu-
lation are presented and compared with the experi-
mental data.

-




Ban sack Sl M o ArEh CGA Sndh bl il sl St mash auidn -l ” v TE— e " o

60 F. P. MATTAR AND/C.JM. BCWDEN

References

(1] MATTAR, F. P.. Elfects of Propagation, Transverse Mode Coupl-  [6] Konopnicki, M. J.. Drummonp, P. D. and Eseay, J. H..

ing and Dinraction on Nonlinear Light Pulse Evolution, Theory of Lossiess Propagation of Simuitaneous, Difterent-
in Optical Bistability, edited by C. M. Bowden, M. Cif- Wavelength Optical Pulses, private communication.
tan and H. R. Robl (Plenum Press, NY, 1981), in press.  [7) EunticH, J. J., Bowpen, C. M., HowGaTe, D. W., LENNIGK, S.
[2] MatTaR, F. P, Gisss, H. M., McCaLL, S. L. and FeLp, M. S., H., RoseNBERGER, A. T. and DeTemPLE, T. A., in Cohe-
Trangverse Efects in Superfivorescence, submitted for rence and Quanwum Opiics, edited by L. Mandel and
publication. E. Wolf (Plenum Press, NY, 1978), Vol. 4, p. §55.
{3] Bonwacio, R., Hoer, F. A., MsvsTat, P. and Scutty, M. O., (8] Rosensercenr, A. T., DETemrte, T. A., Bowofn, C. M. and
Phys. Rev. A 12 (1975) 2568. SunGg, C. C., Superrddiance apd Swepi-Gain Superra-
[4] BowpeN, C. M. and Sung, C. C., Phys. Rev. A 18 (1978) 1558. diance in CHF, in Proceedings of Tenth International
5] Bowpen, C. M. and Sung, C. C., Phys. Rev. A 20 (1979) 2033. Quantum Elecironics Conference, 1978.




M

MM S AR

T

Computer Physics Communications 20 (1980) 139-163
© North-Holland Publishing Company

ADAPTIVE STRETCHING AND REZONING AS EFFECTIVE COMPUTATIONAL TECHNIQUES
FOR TWO-LEVEL PARAXIAL MAXWELL -BLOCH SIMULATION *

FP.MATTAR ** and M.C. NEWSTEIN ***

Polytechnic Institute of New York, Brooklyn, NY 11201, USA

The methods, developed in gas dynamics, which make possibie the detailed calculation of the coherent interaction of
short optical pulses with s nonlinear active resonant medium are presented. This paper extends earlier work by giving a
rigorous and self-consistent solution of the coupled nonlinear Msxwell-Bloch equations including transverse and time-
dependent phase variations. In addition, the onset of an on-resonance self-focusing and beam degradation were predicted
in absorbers and in amplifiers. To accurately handle such severe energy redistribution, dynamic nonuniform computational
grids were found to be necessary. The selffocusing resuit agrees very well with a previous perturbation treatment and with
recent experiments in sodium, neon and jodine, whereas severe beam distortion, when rigorously addressing the problem of

transverse boundary, was observed in high-power lasers utilized in inertial fusion experiments. The formation of dynamic self-

action effects is due to the combined effects of diffraction and the inertial response of the active medium.

1. Introduction

When an intense laser beam propagstes through a
resonant active medium, the absorptive and dispersive
properties of the medium affect the shape of the laser
beam profile, thus altering the characteristic structure
of the medium [1-6]. This modified matter will then
reaffect the field profile. The resulting cross-modula-
tion of light by matter and matter by light is a con-
tinuous self-sustained phenomenon.

The current research was undertaken in an effort
to answer detailed questions relating to the coherent
exchange of energy, nonlinear phase distortion, and
beam quality in high-power laser transmission; the
method was chosen to develop a suitable theory and
realistic numerical computer code based on close col-
laboration with experimentalists [6—20]. It is
believed that real-life experiments would depart from
the predictions of previous plane-wave analysis as
sketched in fig. 1. The interplay of diffraction cou-

* Work jointly supported by F.P. Mattar, the Research
Corporation, the Intemnational Division of Mobil, the
University of Montreal and the US Army Research
Office DAAG29-79-C-0148.

** Aerodynamics Laboratories.
*#* Electrical Engineering.
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pling and the medivm response will inevitably redis-
tribute the beam energy spatially and temporally
[21-23]. This transient beam reshaping profoundly
affects a devics that relies on this nonlinear inter-
action effect.

This modeling encompasses self-phase modulation,
dynamic longitudinal and transverse reshaping, and
coherent energy exchange in an inertial medium.
Effective mathematical transformations which are
consistent with the physics make attainable a hereto-
fore unachievable solution [24—-29].

Light propagating in free space experiences diffrac-
tion spreading which alters the beam shape [30,31].
In the complicated nonlinear problem, the interaction
intertwines the various parts of the beam; the beam
transverse dimensions change drastically. As the trans-
mission distance increases from the launching aper-
ture, one is inevitably faced with substantial numeri-
cal difficuities. For example, a numerical paraxial
code using a uniform, radial grid can suffer a serious
drawback which would make the cost of the calcula-
tion prohibitive. The number of points required
would need to be increased tremendously if the tran-
sient beam undergoes severe self-divergence or self-
convergence. It is therefore imperative that the trans-
verse mesh be sufficiently small to correctly sample
the oscillations of the field amplitude and phase.
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Coheremt Pulse Propagation If, for self-focused beams, a fixed, transverse mesh
is used, there may be in the vicinity of the focal
L. Usual Theory £ region a lack of resolution as displayed in fig. 2. A
10Im. T 8l nonanegligible loss of computational effort in the
* wings of the beam also occurs. In an effort to main-

‘Uniform Plane Wave' ————t

iL. Usual Experiment ¢

= Qiy) S gtoster

‘Gaussian’ ’

Fig. 1. The state of the art in coherent pulse propsgation is
displayed. The theoretical effort was restricted to & uniform
plane wave prior to the work of Newstein and colleaguss;
whereas the usal experiment was carried out using s Gaus-
sian besm. To simulate & uniform plane wave, the detector
dismeter was selected as small as possibie witen compared
to the Gaussian beam diametir.

Fig. 2. (s) Isometric representation of the besm cros-section
8 it experiences seif-focusing: The crom-section decreases as
s function of the propagation distance; (b) An isometric dis-
play of the time integrated fleld energy ss & fuaction of o and
0 to Hlusteate the resolution limitation associsted with uni-
form megh.

tain accuracy and efficiency, the governing equations
were integrated using a simple coordinate transforma-
tion which was revised at suitable intervals to sllow
the numerical grid to follow the pulsed-beam buhav-
jor. The mesh network will expand or contract
accordingly.

The interdependent nature of each aspect of the
problem requires 2 thorough comprehension of the

Ad=1.28

N\

Fig. 3. Two-dimensional prescribed rezoning for p and n. As
the beam narrows the density of transverse points and the
transmisgion planes increass imuitaneously.




Fig. 4. Self-adjusted two-dimensional rezoning for o and 9 to
follow more closely the sctual beam characteristics. The (nor-
malizing) Gaussian reference beam is redefined during the cak
culation.

televant physics. In setting up variable grids there is
an important factor to be considered: one must
address ariy transverse energy distribution while ana-
lyzing the longitudinal alterations (figs. 3 and 4).If a
variable longitudinal mesh, A7, is introduced without
carrying a variable, radial mesh, Ap, t0 handle large
increments along the direction of propagation, one
inevitably faces a steadily decreasing A step as the
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beam starts to break up. This effect will intensify to
such an extent that An crashes to an increasingly
smaller value and the calculation must be discon-
tinued.

It is noteworthy that the choice of Anand Ap is
restrictively subjected to the definition of the Fresnel
aumber [65]. The smaller the Fresnel number the
smaller must be the ratio [An/(Ap)?] so that the
numerical instability criterion obtained by linearized
theory, is always satisfied.

Besides the coordinste modification, a change in
the dependent variables is introduced in tems of
renormalizing factors (such as the reference beam
waist, wave-front curvature and field amplitude) to
extract the radial dependence of the phase front and
any important source of amplitude variation. As a
result of the phase factorization, the new dependent
functions vary more gradually in the new coordinate
system: what one calculates, therefore, is a deviation
from s reference Gaumian beam. As soon as the local-
ized computational mesh departs significantly from
the physical beam waist, the renormalization proce-
dur. is refreshed using pertinent moment properties
of the physical quantities. Thus, the grid can be
coarser, less extensive and more efficient.

Another msjor obstable is the cumulative memory
effect in the response of the medium to the laser
beam. For computational efficiency, the temporal
grid will be nonuniformily stretched as indicated by
either curve in fig. 10. In such an involved computa-
tion the calculational efficiency of the algorithm is of
crucial importance. A brute force finite difference
treatment of the governing equations s not feasible.

The adoption of nonuniform meshing techniques
defined in connection with aerodynamics problems
has proven to be very foresightful. These numerical
methods, designed by Moretti [25-29], discriminate
between different domains of dependence on differ-
ent physical parameters; a higher degree of accuracy
in the actual physical problem thus became feasible.

2. Physical background

The grest interest in understanding the transmis-
sion of intense ultra-short pulses through a non-
linear medijum is due to their application in laser-
induced energy release via fusion of hydrogen iso-
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top::.cm"l'luul pulasu(ommodm tobesom:hatno -iFVk+a§/an=?, ’ m
app e pumping (or other energy-exc pro- -
cetses) can occur during the puise. The resonant me- 31 =eW - (A0 +1/r1)? @
dium is thus lef? in a state of nonequilibrium after the and
pulse passes. When designing high power laser sys-
tems, one must verify that no beam distortion could AW[ar = -1/2(e*P+ P%) — (W - Wo)iTy , ®
evolve. Any departure from the desired uniform illu- where

i f uld t
mination of the target could prevent the fusion mech- € = Qulh) 1ye’ and Pa@)?’,

anism from taking place. One controls the cumulative
interplay of beam diffraction with the medium inertia
to avoid triggering the onset of any substantial self-
actioa phenomena.

This model iz readily deduced from the Maxwell—-
Bloch equations while taking into account the mutual
influence of the transient beam and the resonant two-
level atoms. The intense traveling electric field is
treated classically, whereas, the two-level system is
analyzed quantumn mechanically. In particular, the
medium response is described using the density
matrix formalism [6,31]. None of the simplifying
approximations (such as adiabatic following [17], or
rate equation [18]), is introduced; instead an exact
self-consistent aumerical approach is developed.

This first nonplanar study simulates more accu-
rately the experimental coafigurations than the pre-
vious restrictive one-dimensional theoretical attempts.
The model takes into account the interplay of diffrac-
tion, time-dependent phase, nonlinear atomic inertia
and initial matter and field boundary conditions.

This modeling, evoived from 2 close collaboration
with various experimentalists, can lead to a better
understanding of the basic cooperative effects in
light-matter interactions. Extensions of this study
may also help select optimum design configuration
for superfluorescence {38—43], optical bi-stability
{4147}, and double coherent transients [48—-52].
Further benefits may include the development of new
methods to generate ultra-short pulses as required for
optical information transmission and optical commu-
nication.

3. Equations of motion

In the slowly varying envelope approximation the
dimensionless semi-classical field-matter equations
(6,22,23] (which describe our system in a cylindrical
geometry with azimuthal symmetry), are:

E = Refe’ exp{i((x/c)z - wi)} ];
with
kfe=w

and

19 )]
Vie 'a—p'(na?)].

after applying L'Hopital’s rule, the on-axis Laplacian
reads:

Vie =23%/30% ;
and
P=iRe[? exp{i((x/c)z-xt)} ] .

The complex field amplitude e, the complex polariza-
tion density 7, and the energy stored per atom W, are
normalized functions of the transverse coordinate
p =r/ry, the longitudinal coordinate n = zayy, and
the retarded time r = (¢ — zn/c)/r,,. The time scale is
normalized to the input pulse length, 7, and the
transverse dimension scales to the input beam spatial
width 7,,. The longitudinal distance is normalized to
the effective absorption length {7}, (azsr) ™, where
wulN
Qqrr ’[ :h " ]fp ~ [=a'rp] @)

here, w is the angular carrier frequency of the op-
tical pulse, u is the dipole moment of the resonant
transition, V is the number density of resonant mole-
cules, and » is the index of refraction of the back-
ground material. The dimensionless quantities Ao =
(w ~ wo)tp, 7y % T /7y, and 7; = T3 /7, measure the
offset of the optical carrier frequency w from the
central frequency of the molecular resonance wy, the
thermal relaxation time T',, and the polarization
dephasing time T',, respectively.

Even in their dimensionless forms, the various
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quantities have a direct physical significance. Thus ?
is a measure of the component of the transverse oscil-
lating dipole moment (? has the proper phase for
energy exchange with the radiation field). In a two-
state system, in the absence of relaxation phenomena,
a resonant field will cause each atom to oscillate
between the two states, W= —1 and W = +1, at a Rabi
circular frequency fx = e/, = (u/h)e’. Thus e mea-
sures how far this state-exchanging process proceeds
in a fwhm pulse length 7,

The dimensionless parameter, F, is given by F =
A(aerr) ™! [(4nr2). The reciprocal of F is the Fresnel
number associated with an aperture radius 7, and a
propagation distance (asr)~!. The magnitude of F
determines whether or not one can divide the trans-
verse dependence of the field into “pencils”, (one per
radius p), which may be treated in the plane-wave
approximation. The diffraction coupling term and the
nonlinear interaction terms alternately dominate
depending on whether F> 1 or F<1.

As outlined by Haus et al. [19], the acceptance of
eq. (3), as describing the coupling of the material to
the electric field, implies certain approximations.

Eq. (3) shows that the product e P of the electric
field, e, and the polarization, ?, causes a time rate of
change of the population difference (i.e., in medium
energy) leading to saturation effects: inertial effects
are considered.

4. Energy consideration

From the field-matter relations (1)—(3) one ob-
tains the energy current equation:
+iF Vy(eVye® — e*Vre) + 3, = (e* P+ e?*),
V-l'-—2[3,W+(W- WO)/T]] N (5)

where, using the polar representation of the complex
envelope, we have

e = A exp[+i¢] , ©)
J,=A? m
and

Jr = 2FIA? 39/3p . ®)

The components J, and J7 represent the longitu-
dinal and transverse energy current flow. Thus, the

1
i

e e e w v
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existence of transverse energy flow is clearly asso-
ciated with the radial variation of the phase of the
complex field amplitude e. When Jy is negative [ie.,
9¢/3p > 0], self-induced focusing dominates diffrac-
tion spreading. Since 3¢/9p determines the direction
and speed of energy flow, it is reasonable to monitor
either a phase gradient or the transverse energy cur-
rent for a central diagnostic as the calculation pro-
ceeds.

One may rewrite the continuity eq. (5) in the labo-
ratory frame to recover its familiar form:

V-J=--a-[2W+ z A*]-zw‘%. Q)
or €T, (4

pet! T

$. Outline of numerics

The retarded time 7 refers to the actual arrival
time in a stationary frame of the front of the pulse at
the position z. This coordinate transformation, from
t to 7, fig. Sa, allows an accurate numerical scheme to
be developed for which the increment in n and 7 need
not be related in any special way.

Herein, the equations of motion are solved in the
near-field region of an optical pulse, initially Gaussian

eT
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Fig. 5. Graph (a) displays the retarded time concept;

(b) outlines the numerical approach: a marching problem
along n for the field simultaneously with a temporal up-
grading of the material variables along r.
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in both p and r. This amounts to a mixed initial
boundary-value problem. The initial configurations of
the laser beam and the resonant medium are specified
subject to certain conditions for r > 0 which must be
satisfled at all space points. Furthermore, the field
boundary condition at n = 0 is time-dependent. See
fig. 5b. For the numerical solution, a temporal-spatial
mesh of grid points is used to represent the pnr space.
At a given plane 7, the values of the various depen-
dent variables are obtained for all stations. This is
repeated until the desired propagation length has
been traversed.

The basic numerical algorithm consists of a com-
bined explicit/implicit method. The MacCormack
[24] two-level predictor~corrector, nonsymmetrical
finite-difference scheme is used to advance the field
equation along the direction of propagation, n, while
the modified Euler three-level, predictor—corrector
scheme is used to update the material variable in
time-tetarded time r. The mutual light-matter influ-
ence is a mixture of a boundary value (for advancing
the field) and an initial value problem (for calculating
the atomic responses) [9]. To improve accuracy and
speed up convergence, cross-coupling is accentuated.
With such steps, the scheme becomes as flexible as 2
strongly-implicit algorithm. The final field value,
rather than the predicted one as done classically
(6—10, 25, 20, 221, is used to correct the material
variable, and the final material values instead of the
predicted ones are used to correct the field. The
final variables are obtained as solutions of a set of
five, simultaneous, algebraic equations.

6. Details of numerical procedure

An outline of the numerical method is fllustrated
using two simplified equations that are representative
of the full set describing the propagation and atomic
dynamics effects. Here, the material variables are
denoted by M; either of the electric field variables is
denoted by F. Both variables are complex quantities
which are functions of the propagational coordinate,
1, the trangverse spatial coordinate and r, the
retarded time. With M,, the equilibrium value of M,
one can write the representative equations as:

aF
~iVFegom M, @3)

with

19 [ oF
ViF =2 {37 (p 8—;)}' (e2)]
Yo remom,, as)

subject to the initial and boundary conditions:

1. for r 2 0: F =0, M = M, known function to take
into account the pumping effects;

2. for n =0: F is given as known function of 7 and p;

3.for all nand r: [0F/3p] a9 and [3F/3p] PO max
vanish, with o, defining the extent of the
region over which the numerical solution is to be
determined).

The derivatives in (23) appear only with respect to
space variables; time enters only implicitly, through
the right-hand side temms. Conversely, the derivative
in (25) is a time derivative only, and the space influ-
ence is provided by the right-hand side terms. Thus
the equatin can be considered as somewhat vncot-
pled and ssparate integration procedures ate adopted.
We cannot be sure that the accuracy of the integra-
tion procedure is of the second order in An and Ap as
well as in A7 for the material variables, and similarly
for the fleld variable with respect to Ar. This algo-
rithm uses the two-level nonsymmetric, MacCormack
explicit predictor~corrector finite difference scheme
for marching the electric field F along n and the
three-level modified Euler scheme to integrate along r
the material variables. To ensure second-order accu-
racy in all space and time increment steps simulta-
neously for all the dependent physical, field and
material variables, the final field F instead of the pre-
dicted F is used to evaluate the final M; and the final
M instead of the predicted M, to correct the field vari-
able F. For simplification a quasi-linearization (see
Moretti’s treatment of the chemical kinetics problem
[26]) is introduced as follows:

FM = ~FM; + FM + FM; , (26)

where i means the “initial value™ and can reasonably
be denoted by the predicted values. This approach
follows readily the Taylor expansion of the product
FM:

FH = @3 +| = o) - )
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a
"‘[5;'! (FM)]‘(M -M)+... ea)

truncated at first-order terms.
Mathematically, this algorithm reads as follows:
with

FGAn, mAp, k At)= Flpy, (28)
LF =i VAF = (i/p){3/3p(oF)} , (29)
the predicted field can be written as:

Bo) =Flp o+ An[Mip - LTMp ), (30)

whereas the corrected field reads as follows:
Fitk=} (Pl Pk + noak - LPRRY)),
@31)

L¥ and LB are the forward and backward differ-
encing of the transverse Laplacian operator cylindri-
cal coordinates with azimuthal symmetry.

The material variables are integrated in the follow-
ing manner. The predicted values are defined as:

Bheor = Moy 4 2 A7 [FRiMml —~ Mk + Ml
’ (32)
while the corrected values are given by:

ks = % (Mln‘:lk + ﬂp;’kﬂ) +Ar{(- ﬁp;,lk+lﬁn:,lk*l)
+ F’n:llﬂ'l-ﬂn:lkﬂ + ﬁn{‘kﬂ”n’;'kﬂ
{1 AR A) (33)

Rearranging, one has

Pk =ay + by Pk + @Mk (34)-

Moy =az + baFinky + @M ker @3s)

which is a set of linear algebraic equations that can
readily be solved by straightforward elimination.

The numerical code has been tested systematically
by insuring the reproduction of analytical resuits of
problems such as free-space propagation {31]; Gaus-
sian beam propagation through lenselike media [32],
Bloch’s solution at the input plane for an on-reso-
nance real field [6] and coupled uniform plane-wave
calculations for an input 27 hyperbolic secant
[6—11]. Identical results were obtained solving these
problems expressed in the eikonal and transport
form [1], and the three-dimensional results have been
compared qualitatively and quantitatively with an
analytic perturbation in the reshaping region [22,40].

7. Importance of boundary conditions

When the laser beam travels through an amplifier,
the transverse boundary has an increasingly crucial
effect in contrast to the absorber situation. The laser
field which resonates with the pre-excited transition
experiences gain; whereas, the laser field which
encounters a transition initially at ground state, expe-
riences resonant absorption and losses. A more signifi-
cant portion of the pulse energy is diffracted out-
wardly in the amplifier than in the absorber [23].

In resonant, nonlinear, light—matter interactions,
the velocity profile is not uniform across the beam.
The intensity at a particular radius as well as the ini-
tial state of the transition dictates the distinct delay/
advance that the “pencil” will experience at a partic-
ular radius. Consequently, these boundary reflection
conditions tend to play s substantial role in the am-
plifier calculations and could obscure the emergence
of any new physical effects. Hence, acceptable results
are achieved only by carefully coupling the internal
points analyze . with the boundary points [27].

Special car: is required to reduce the boundary
effect to a minimum. By using nonuniform grids and
confining the active medium by radially-dependent
absorbing she.ls one can construct an effective,
relisble algorithm, locally consistent with the physics
of the problem: i.e., the boundary condition to be
discussed below is an absorbing surface. This condi-
tion represents an actual experimental approach in
which the laser amplifier is coated to circumvent any
spurious reflections.

Mathematically, this approach is implemented by
introducing a radially-dependent loss distribution.
The loss coefficients obey a Gaussian-dependence
peaking at the wall itself. Three forms of loss were
studied: Ohmic linear form, cubic Kerr loss, and
reduction in the nonLnear gain of the active medium.

For strongly amplifying media, the transverse
boundary could still cause computational difficulties
for self-diverging beams, because it is difficult to
select, beforehand, the functional location of the
boundary. An alternate approach to the problem
would be to extend the transverse grid to infinity as
displayed in fig. 6. In practice, the most effective
treatment of the dynamic, transverse, boundary con-
sists of implementing an absorbing surface while con-
currently considering an infinite physical domain and
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Fig. 6. (2) Non-uniform stretching of the transverse coordinate; (b) Contrast the Gaussian beam dependence with the noa-uniform

physical radfus,

mapping it on a finite computation region.
Hence, the desired transfonnation process for the
transverss coordinate is:

§ = tanh(fo) , 0<§<1, Ng>N,, (36)

i'(k"l)/Na» l<k<NBn (37)
PIREPTA R 38)
AT 5L )
o (2‘,) s 5) . @9
witt, . .
__ 1 [LeEvy
b= o i = eam]’ 40y

with o(V,) denoting the actual maximum radius
whers the active medium is still present. In the region
extending from o(V,) to o(Vp) there is no ampli-
fying medium; instead, there is an absorbing layer.

The mapping derivatives can also be defined ana-
lytically as follows:

3E/3p = f(1 - £*) = § sech?(8p) (412)

PR W S GHY TP SR U SP0 U W G-

and

R = 2841 - 1) (41b)
on axis:

Vhot oo (@1c)
The diffraction coupling term becomes:
-t K, #19)
with the on-axis contribution

[Vielpeo -%—3 (:_:), *,“‘.“0:7 (:e‘p)gf

In fig. 7, the a3t and second radial derivatives and
the Laplacian term are drawn. Fig. 8 contrasts in the
stretched radial coordinate system, the transverse
coupling and the electric field.

When using the above, the numerical domain sen-
sitivity and the dependence of the physical param-
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oR/dp

FIRSY WEIGHTING STRETCHING FACTOR

2nd WOIGHTING  STRETOING FACTOR

UNIORM MATHEMATICAL RADIUS - R

Fig. 7. This graph illustrates the dependence of the radial
mapping and the derivatives on the different parameters
versus the uniform mathematical radius.

eters on the boundary conditions can readily be
assessed.
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Fig. 8. This figure contrasts the Laplacian dependence for a
given Gaussian profile for various non-uniform radial point
densities.

8. Prescribed stretching

Proper handlinz of the differential equations of
motion is possible provided there are enough mesh
points to insure adequate resolution where phase gra-
dients change very rapidly. However, to keep the
computing costs at a minimum a nonuniform grid is
used.

It is defined by widely-spaced computational
nodes in the area most distant from the plane of
interest and densely clustered nodes in the critical
region of rapid change; the latter being in the neigh-
borhood of maxima and minima or, for multi-dimen-
sional problems, in the vicinity of saddle points.

Consequently, resolution is sought only where it is
needed. The costs involving computer time and mem-
ory size dictate the maximum number of points that
can be economically employed. In planning such a
variable mesh size, the following [28], must be kept
in mind:

{a) The stretching of the mesh should be defined
analytically so that all additional weight coeffi-
cients appearing in the equations of motion in
the computational space, and their derivatives,
can be evaluated exactly at each node. This
avoids the introduction of additional truncation
errors in the computation.

(b) To assure a maximum value of AT, the mathe-
matical grid step, the minimum value of A7, the

PP S A W YD S W ST 8
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physical time increment, should be chosenat
each step according to necessity. This means that
the minimum value of Ar must be a function of

the pulse function steepness.

(¢) The minimum value of Ar should occur inside
the region of the highest gradient which occurs
near the pulse peak.

For example, following Moretti’s approach, if T=
tanh(ar) (422) and « must be larger than 1, the entire
semi-axis 7 greater than zero can be mapped on the
interval 0 < T <1 with a clustering of points in the
vicinity of 7 = 0, for evenly-spaced nodesin r.

This mapping has several advantages. It introduces
into the equations of motion new coefficients which
are defined analytically and have no singularities. It
avoids interpolation at the common border of meshes
differently spaced. The computation is formally the
same in the ‘7" space as it was in the 7 space. Some
additional coefficients, due to the presence of the
stretching function, appear and are easily defined
by coding the stretching function in the main pro-
gram. By a proper choice of the function and by
letting some parameters (such as &, above) vary as
functions of the propagation distance according to
physical needs, the accumulation of points can be
obtained where necessary at apy distance of propa-
gation. In the laser problem, we use a slightly modi-
fied stretching function:

rer @I -T) - (42b)

where a is a stretching factor which makss points
more dense around 7., the centre of gravity of the
transformation. In particular,

&= Tuindowll08Nyp = 2) “3)

with N, is the number of uniform points in the
mathematical grid, and Tyipgow is the temporal win-
dow

Twindow ® (Tmax = Tmin) » (44)

7. i3 an arbitrary point used to define the centre of
transformation so that the change of the coordinate
will be optimum for more than one plane along the
directioa of propagation. Fig. 9 illustrates the trans.
formation and its different dependence on the par-
ticular choice of its parameters.

Note that a derivative of the mapping function
produced by the gradual variation along the ‘7" axis is
also defined analytically, namely 37/0T =
(@/2)(T(1 - T)] ™ (44b). In response the computa-
tional grid remains unchanged while the physical grid
(and the associated weighting factors) can change
appreciably.

Should one need ta study the laser field build-up
due to initial random noise polarization (for super-
radiance), or to an initial tapping angle (for super-

Fig. 9. Dependence of prescribed stretching and its derivatives on the point densities and the centre of transformation.
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fluorescence), one must utilize a different stretching
[66]. This stretching is similar to the one defined for
treating radial boundary conditions. The mesh points
are clustered near the beginning (small 7); their den-
sity decreases as 7 increases. Note that the Fresnel
number for the super-fluorescence simulation was
selected to be one {66], in accordance with present
experiments.

9. Adaptive stretching in time

As the energy continues to shift back and forth
between the field and the medium, the pulse velocity
is modified disproportionately across the beam cross-
section. This retardation/advance phenomenon in
absorber/amplifier can cause energy to fall outside
the temporal window. Furthermore, due to nonlinear
dispersion, the various portions of a pulse can propa-
gate with different velocities, causing pulse compres-
sion. This temporal narrowing can lead to the forma-

Eir

tion of optical shock waves. The quality of the tem-
poral resolution becomes critical. To maintain com-
putational accuracy a more sophisticated stretching
than that described in section 8 is needed. The accu-
mulation centre of the nonlinear transformation used
to stretch the time coordinate should be made to vary
along the direction of propagation. This adaptive
stretching will insure that the redistribution of mesh
points properly matches the shifted pulse (fig. 10).
Here the transformation (42) from 7 to T is
applied about a centre 1, which is a function of n:

r=1{n)+ glog 45)

1-T°
The stretching factor a could also be a function of n
(fig. 19b) with

T+ An) =1(n) + [1p(n) — Tp(n — AM)],  (46)

where 7p,(n) is determined from the previous plane
as the time at which the electric field on axis is
maximum, The time delay/advance accumulated in
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- the interval An
h At = 75x(n) - Tpiln An) @7 g
s measures the velocity of the peak relative to the
BN speed of light:
\ vic = 1/[c(Ar/An) + 1] . (@8)
: The equations are very similar to those of section
3, with an extra term added: f
de[ 3T] dr.
i - — =P, 49
-:F%.Hane*;;[ arl,, dn ? (49) :
The role played by the time coordinate is different. B —
Previously the field equation did not contain an expli-
citly dependent term. .
10. Rezoning

The main difficulty in modeling laser propagation
through inhomogeneous and nonlinear media stems
from the difficulty of preassessing the mutual influ-
ence of the field on the atomic dynamics and the
effect of the induced polarization on the field propa-
gation. Strong beam distortions are expected to occur
based on a perturbational treatment of initial trends.
One must normalize out ths critical oscillations to
overcome the economical burden of an extremely
fine mesh size. To insure such accuracy and speed in
the computation, a judicious choice of coordinate
system and appropriate changes in the dependent

Fig. 11. (2) The concept of the prescribed rezoning; (b) a
close-up of the non-uniform mapped grid of fig. 2b.

variables, which can either be chosen a priori or auto-
matically redefined during the computation, must be

sian beam propagating in a vacuum. Using Kogelnik
and Li’s notation [30], the Gaussian solution of the

considered (fig. 11) [33-37]. free-space (P = 0) equation
This procedure removes the necessity for sampling
the high frequency oscillations induced in the phase 2i3pe + Ve =0 (50)

by seif-lensing phenomena. The coordinate transfor-
mation alters the independent variables and thereby
causes the dependent variables to take a different
functional form. The new dependent variables are
numerically identical to the original physical ampli-
tudes at equivalent points in space and time.

The requirements of spatial rezoning will be satis-

is well known and may be written as:

e(p,n, ) =a(n. 7)™ exp {W(n. 7)

1 ikn
B p:(c’(n. " R, f))} ' ¢n

r fied by simultaneously selecting a coordinate trans-

3 formation (from the original coordinatespandntonew °  where

v coordinates § and z) and an appropriate phase and

b amplitude transformation. The chosen transformation ¥(n, 7) = arctan(n/ka3) , (2)
4 will share the analytical properties of an ideal Gaus a(n, 1) =adg sec ¥ , (53)
l®
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R(n,7)=ncosecy . (54)

The parameter g is the measure of the transverse
scale, and

ag =a(0, 1) (55)

is the width of the initial intensity distribution. The
parameter a shrinks or expands as the beam converges
or diverges. It is logical to require the transverse mesh
to vary as g varies. Therefore, the variable

g§=pla(n,1) (56)

is introduced (fig. 11). More specifically, stability and
convergence are assured if the ratio [An/(A0)?] is
appropriately defined, according to the Fresnel num-
ber chosen, and kept constant throughout the calcula-
tion.

Accordingly, one must introduce a new axial vari-
able z so that this parameter automatically remains
constant as p varies. This should increase the density
of 1 planes around the focus of the laser {ield where
the irradiance sharply increases in magnitude causing
a more extensive and severe field-material interaction
to occur. This is accomplished by introducing

z=y (57

and using a constant Az. This has the effect of
making the extent of real space related to the size of
the vacuum beam.

In terms of § and z the field equation now appears
as

1
—— [2i 3,¢ - 2if(tan z) 3pe + Vel =ic, , 58
a,(z)[:exs();e nel=ia (58)
where ¢, is 2 constant.

For the field and polarization envelopes, the vari-
ables B and S are defined as:

{;} = [a5! cos z]{g} exp [ﬁ 22-3 tanz - iz] ) (59)

The quadratic phase and amplitude variation have
been removed. The new field then takes the form:

{1/a*()} [213,B + VB + (2 - §*) B] =ic,S. (60)

B and S vary more slowly in their functional values
than their predecessors allowing the numerical proce-
dure to march the solution forward in a more eco-

nomical fashion by using larger meshes. They are
numerically treated in an almost identical fashion to
e and 7., Strongly nonlinear media require, however,
a more sophisticated approach.

11. Adsptive rezoning

The foregoing concepts may be generalized by
repeating the simple coordinate and analytical func-
tion transformations along the direction of propaga-
tion at each integration step. The feasibility of such
automatic rezoning has been demonstrated by Her-
mann and Bradley in their CW analysis of thermal
blooming [33] and by Moretti in supersonic flow cal-
culations [28,29].

In particular, the change of reference wavefront
technique consists of tracking the actual beam fea-
tures and then readjusting the coordinate system. An
adaptation of Hermann and Bradley’s technique to a
cylindrical geometry is presented herein.

The new axial coordinate = is defined, as before, as

z = arctan{nfka}) | 61)
and A
3z = (1/ka®) . (62)

Previously, the centre of the transformation where
the radial mesh points were most tightly bunched,
was at the focus (z = n = 0), Now the transformation
will be defined in terms of an auxiliary axial variable
2 as a function of z, which is calculated adaptively
in a way that reflects and compensates the changing
physical situation. The relationship z¢(2) will be

defined later in this section.
The radial coordinate £ is then defined similarly as
E=plagGze) (63)

with an auxiliary axial coordinate z; different from z.
For stability reasons, (Az;/A?) must be a constant.
From

= v ' (64)

this leads to:

ay(zg) = aggfcos 2y, (65)

dn = ka3 [tan(z + dz) - tan 2] (66)
= kad;[tan(z + dz;) — tan 5] , 67)
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which gives:
32y =a*laf, (68)
and also leads to an expression for dz:
tan(dzy) = a*tan(dz)/ {af + tan(dz)
x [a*tan z; - aftan z]} . (69)

This enables one to find appropriate values for a/a;.
oy is then defined by writing:

ag(zy + dzy) = agg/cos(zg + dz) . (70)
In this adaptive rezoning scheme, the physical solu-
tion near the current z plane is described betterby a
Gausian beam of neck radius ago whose focal point is
a distance z; away than by an initially assumed Gaus-
sian beam with parameters g, and z. With this trans-
formation the field equation (50) in terms of z and §
becomes

2i 3. +5—:— (Vhe - 2if tan 2Qge)] =icley?.  (71)

To removs the unwanted oscillations, new dependent
variables B and S are introduced by e = GB and P =
GS, where

G=a; exp{ % £tan z; i:‘} . (72)
All the values at the end of the previous interval

(n plane) are indicated with a subscript p. The electric
field e is given in the old representation ase = G,B,,

and ia the new representation as e = GB; where G, is
dependent on 2y, and G on zy, and B is given by

By =B expl+i(at® + 5¢*)] . (73)

The best match is obtained by requiring that ¢(3),
the phase of B, thould vary radially as little as possi-
ble.

#(@B) = 9(Bp) + #(Gp) - ¥(@)
=(af? +88 + )+ (J8Panzy - z)
- (Fuanzgzy,

where a is the curvaturs.

a and § are determined in a appropriate manner
from B, so that 2 new variable 8 has no curvature. It
is clear that the new value of z; at the present new
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plane under consideration is derived from the old
value by

Zg s arctan(Qa + tan zy,) , (75)
with the new neck radius ao;

Gog = age0s 2y (76)
The equation for B is then:

20845 (Mo +-B)8) =S, ()

By using this final differential equation, the new
equation varies /ess in its functional values than does
the original.

The instantaneous local parameters a and § of the
quadratic wave front are determined by fitting the
calculated ¢(£) of B, to & quartic in &; a reasonable
approach is that the intensity-weighted square of the
phase gradient: .

[B3 (3,008 + 88 + Y)]? § dt = minimum,  (78)
where ¢ is the phase of the fleld variable 8= 4
exp(—1y) [79]. The minimization of the phase gra-
dient is weighted by the beam intensity. Conse-
quently, the curvature at the highest intensity portion
of the beam contributes the most.

The following different moment integrals are
introduced

My= (878} £dt,  vu= [(BOVa0} ek,

(80)
using the relation
B*3y = -Im(B*3:8} , . (81)
7= —Im [ (B*3:8) £2"~V} £ dt, (82)

by taking partial derivatives with respect to the o's
and f’s, one obtains

a=<Myy; - Ma1)/E
and

B=M7a ~ My7\)I2E,
where

E=2M} - M\M3) . (83)
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The distinctive advantage of these stretching and
adjustable rezoning techniques stems, as suggested by
Moretti, from the fact that they automatically define
the mapping and all related derivatives analytically.

12. Numerical results

In this section are outlined basic results, obtained
with and without rezoning and stretching, and illus-
trating why the more sophisticated techniques
required less computational effort.

The first part of this investigation which dealt with
absorbing material led to the discovery of new physi-
cal phenomensa which promise to have significant
applications for proposed optical communications
systems. It had been shown that spontaneous
focusing can occur in the absence of lenses, and that
the focusing can be controlled by varying the medium
parameters. The second part of this analysis dealt
with amplifiers.

The dependence of the propagation characteristic
on the Fresnel number F~! associated with an effec-
tive atomic length, on the on-axis input pulse “area”,
on the relaxation times and on the off-line centre fre-
quency shift have been studied. Furthermore, partic-
ular care was exercised to ensure a perfectly smooth
Gaussian beam [23,54—59] thereby eliminating any
possibility of small scale self-focusing build-up
[60—63].

The effect of coherent self-focusing is llustrated in
fig. 12. The time integrated pulse ‘energy’ per unit
area is plotted for various values of the transverse
coordinate, as a function of the propagation distance.
Two orientations are shown to display the energy
redistribution as the laser beam is transmitted in the
nonlinear resonant absorber. The necessity of a non-
uniform mesh is quite evident.

The three-dimensional numerical calculations
[23, 56-59] substantiate the physical picture based
on time changes in the phase. It can be perceptually
visualized in selected frames from & computer movie
simulation of the numerical model output data.

In fig. 13 the isometric plots are drawn against the
retarded time for various transverse coordinates at
four specific regions of the propagation process:

(a) the reshaping region where the perturbation treat-
ment holds; (b) the build-up region; (c) the focal

Fig. 12. The energy per unit ares {/§ie(p, 0, +)i2dr} the flu-
ency is displayed as a function of the distance in the direo
tion of propegation for various values of the coordinates
transverse to the direction of propagation. To illustrate the
gradual inward energy flow the »/2 reorientation is also dis-
played. The longitudinal orientation illustrates the gradus:
boosting mechanism that the field energy experiences as it
flows radially towards the beam axis (while n increases). The
second angle displays the severe beam distortion in its cross-
section as a function of n.

region; and (d) the post-focal region. While in fig. 14
a rotation of isometric plots is displayed to emphasize
the radially dependent delay resulting from the
coherent interaction. Positive values of the transverse
energy current correspond to outward flow and nega-
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Fig. 13. Isometric plots of the absorber fleld energy and transverse energy flow, against the retarded time for various transverse
coordinates at four regions: (a) reshaping, (b) build-up region, (c) focal region, (d) post-focal region.

tive values to inward flow. The resuits of the top two
graphs in the right and left columns are also in agree-
ment with the physical picture related to the analytic
perturbation discussed elsewhere [23,65].

The burn pattern, iso-irradiance level contours
(against 7 and p) for different propagation distances
are shown in fig. 15. Severe changes in the beam

cross-saction are taking place as a function of the
propagating distance. At the launching front, the
beam is smooth and symmetric; as the beam propa-
gites into the nonlinear resonant medium the effect
of the nonlinear inertia takes place.

The general format for presenting three-dimen-
sional coherent pulse propagation in an amplifying
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Fig. 14. Isometric plots of the absorber field energy and transverse energy flow profile for various time slices at the four regions of
interest.

medium will be the same as for the absorber. regions of propagation and are constrasted with their
In the right hand side of fig. 16 the field energy is profile plotted in the left hand side of fig. 16 for

displayed isometrically against the retarded time for various instants of time. In fig. 17, one can see from'

various radii at the previously defined five critical the contour energy levels that the peak of the pulse is

rﬁ. "' 'T-
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Fig. 15. Absorber field energy contour plots for the four propagation regions of interest. Notice the temporal delay asociated
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Fig. 17. Amplifier field energy contour plots for the four propagation regions of interest. Notice the temporal advance associated
with the coherent exchange of energy between light and matter, as well as the beam cross-section narrowing.

advanced with respect to a frame moving with the figs. 18 to 20. Nonuniform radial stretching was

velocity of light. It is seen that the smaller area adopted during the computation. Isometrics of the

propagates slower than the larger areas. field energy and the energy current are plotted ver.
The effect of the radial boundary is illustrated in sus 7 for different radii in fig. 18 and versus p for

Fig. 16. lsomuric— plots of the amplifier field energy versus the retarded time for various transverse coordinates contrasted to its
profile for various time at distinct propagational region.
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Fig. 18. Isometric plots of the ampilifier fleid energy and transverse energy flow, against the retarded time for various transverse
coordinates at four regions: (a) reshaping, (b) build-up region, (c) focal region, (d) post-focal region, with stretched radial coordi-
nate for proper accounting of the transverse boundary condition.
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. Fig. 19. Isometric plots of the amplifier field energy and transverse energy flow profile for various time slices at the four regions
of interest, with stretched radial coordinate for proper accounting of the transverse boundary condition. No severe reflection or
abrupt variation in the field energy, at the wall boundary, is observed.
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Fig. 20. Amplifier fisld enargy contout piots for the four propagation regions of interest. Notice the temporal advance amociated
with the colierent exchange of energy between light and matter, as well as the beam crosssection narrowing, with stretched radial
coordinate for proper accounting of the transverse boundary condition. No severs refloction ot abrupt variation in the fisld
energy, at the wall boundary, is observed.

various instants of time in fig. 19. From the energy
current graphs, one discovers out that a focusing
phase is not an exclusive property of & resonant
absorber.

Fig. 20 displays the contour energy levels where
the enhancement of diffraction by the pre-excited
two-level atomic medium is clearly evident.
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13. Concluding remarks

Most features of the numerical model used to
study temporal and transverse reshaping effects of
short optical pulses propagating in active nonlinear
resonant media have been presented. The experiment
strives to achieve a rigorous analysis of this nonlinear
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interaction with maximum accuracy and minimum
computational effort. The applicability of computa-
tional methods developed in gas and fluid dynamics
to the detailed evolution of optical beams in non-
linear media has been demonstrated. By introducing
adaptive stretching and rezoning transformations, the
calculations improved considerably.

In particular, self-adjusted rezoning and stretching
techniques consisting of repeated applications of the
same basic formula were reviewed as a convenient
device for generating computational grids for com-
plex nonlinear interactions. The techniques are well-
suited for easy programming because the mapping
functions and all related derivatives are defined ana-
lytically as much as possible. Enhan.cement of speed
and accuracy was realized by improving the integra-
tion technique/algorithm which turned out to be
general and simple in its application compared with
its analogue, the two-dimensional Lagrangian
approach. Furthermore, this method has been applied
to a number of situations with and without homo-
geneity in the resonant properties of the atomic me-
dium. Note that the theoretical predictions defined
with this code, when applied to absorbing media,
were quantitatively sscertained [56,59] by indepen-
dent experimental observations in sodium, neon and
iodine, respectively [53,55,67], and recent indepen-
dent perturbational [60,61,63] and computational
analysis {62]. The design of the first of these experi-
ments dealing with sodium vapor, was based on
qualitative ideas, quantitative analysis and numerical

results obtained with the code described in this paper.

Although the topic of this paper has been most
widely received in optical radiation physics, we
believe that this methodolcgy, drawn from aero-
dynamics, will prove functional for a wide variety of
nonlinear time-dependent equations in such fields
as chemical kinetics and oil reservoir simulations.

14, Summary

The mathematical modeling of the coherent trans-
mission of ultra-short optical pulses ja a two-level,
atomic gaseous medium, which can sustain amplifi-
cation and/or absorption is presented. The main pur-
pose was to understand how inertial nonlinearity
affects the propagation of intense ultra-short light
beams. Previoualy, this effect had been intractable.

The results of this analysis served as a guide to
real-life, coherent light—matter interaction experi-
ments. The equations with radial and phase variations
included, are implemented using a two-dimensional,
time-dependent, finite-difference computer code with

two population densities, an inertial-medium polariza-

tion density and adaptive propagation capabilities.
The importance of dynamic transverse effects,
namely, diffraction coupling and a reflecting radial
boundary, in the evolution of both initial ground-
state and inverted media with different Fresnel num-
bers, has also been assessed.

Calculations using an Eulerian code predicted and
elucidated an on-resonance, transient, whole-beam,
self-lensing phenomenon in absorbers. This effect was
subsequently ascertained by experimental observa-
tions in sodium and neon. Conversely, calculations
concerning amplifiers depicted longitudinal pulse
break-up, which degraded beam quality, as substan-
tiated in high-power laser experiments. Significant
phase modulation and transverse spreading may
explain the mechanism that limits the useful output
of long amplifiers. Parametric computations illus-
trated that these self-action phenomena can be con-
trolled by tuning the various system parameters.

Accuracy and computational economy are
achieved simultaneously by dynamically redistri-
buting the computational Eulerian grid points accord-
ing to the physical requirements of the nonlinear
interaction. Evenly-spaced computational grids are
related to variable grids in a physical space by a range
of stretching and rezoning techniques. This mapping
consists of either an a priori coordinate transforme-
tion or an adaptive transformation based on the
actual physical solution. Both stretching in time and
rezoning in space alleviate the computational effort.
The propagation problem is then reformulated in
terms of coordinates that will automatically accom-
modate any change in the beam profile. This attempt
permits the construction of a computer code capable
of being physically mesningful at every mode point.

The dynamic grid obtained through self-adjusted
mapping techniques remaves the main disadvantage
of insufficient resolution from which Eulerian codes
genenally suffer. Furthermore, the advantages of grid
sensitivity are obtained while circumventing the tradi
tional impediments associated with the Lagrangian
methods.
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Transverse Effects in Superfluorescence
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Dynamic diffraction coupling is examined in superfluorescence with use of a semiclas-
sical model in which diffraction and transverse density variations are rigorously in-
cluded. The Cs data are correctly simulated for the first time.

PACS numbers: 42.65.Gv, 32.50.+d

Superfluorescence’ (SF) is the process by which
coherent emission occurs from an ensemble of
two-level atoms all intially in the upper state. An
important question in SF experiments is why the
output pulse is sometimes smooth, but at other
times exhibits multiple structure or ringing.
Strong ringing or pulsing has been observed by
several groups, including the initial HF-gas stud-
ies.? Recent Cs experiments,® however, never
show ringing at low densities, whereas at higher
densities, highly fluctuating multiple pulsing is
usually observed, and is believed to arise from
transverse-mode competition. Strong Burnham-
Chiao ringing’ is predicted by plane-wave models®
which neglect var‘ations transverse to the propa-
gation direction. We find that inclusion of trans-
verse effects, both spatial averaging and Lapla-
cian diffraction, substantially alters the one-di-
mensional Cs predictions,*® leading to greater
conformity with the Cs data.

The initial SF state is prepared by rapidly in-
verting a sample of three-level atoms by trans-
ferring population from the ground state to the
upper state with a short light pulse, creating a
cylindrical region of excited atoms.? SF pulse
emission subsequently occurs between this ex-
cited state and the intermediate state. There is
no optical cavity and stray feedback is negligible.

This study employs the semiclassical approach
to explore the influence of transverse effects,
using the average value® of the initial tipping an-
gle.*** Both longitudinal fluctuations® and trans-
verse flucutations, as influenced by diffraction,

will be discussed elsewhere.

Transverse effects are expected to influence
the pulse shapes in at least two ways, one of
which is spatial averaging. In SF experiments
the initial inversion density n,(r) is radially de-
pendent since the pump light pulse typically has a
Gaussian-like profile.” In the absence of diffrac-
tion this cylinder can be thought of as a set of con-
centric cylindrical shells, each with its own den-
sity, tipping angle, and delay time.®? The radia-
tion will be a sum of plane-wave intensities;
when the entire output signal is viewed the ring-
ing averages out, resulting in an asymmetric
pulse with a long tail.®

A second transverse effect, diffraction, causes
light emitted by one shell to affect the emission
from adjacent shells. This coupling mechanism,
which causes transverse energy flow, is more
important for samples with small Fresnel num-
bers F.

SF is inherently a transverse-effect problem
even for large-F samples since the off-axis
modes are not discriminated against. This work
is the first to correctly include this crucial ele-
ment,

Our analysis adopts the coupled Maxwell-Schré-
dinger equations, which fully take into account
propagation and transverse effects. Previous
approaches examined transverse effects in the
mean-field approximation'® or included a loss
term in the Maxwell equation to describe diffrac-
tion.**® Thus our model possesses a long sought
for degree of realism,!'’
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The simulations are based upon an extension of
a model'? which describes transverse effects ob-
served in self-induced transparency experiments.'?
For simplicity the influence of the backward
wave, which is negligible,'* is not considered,
and cylindrical symmetry is assumed. The equa-
tions of motion are'?

8¢/3z - i(4FL)'V i 2E=(492/0)@, (1a)
8@/37+®/T,=(p*/AmE, (1b)
m/3T+n/T,==-Re(PE*/N), {1c)

where ¢ and @ are the slowly varying complex
amplitudes of the electric field and polarization,
respectively, n is the inversion density, 7=t-2/
c is the retarded time, p is the transition dipole
moment matrix element, and T, and T, are the
population relaxation and polarization dephasing
times. Diffraction is taken into account by the
Laplacian term Vv 2¢=(1/pX8/3p)p3¢/3p, where
p=r/r,, with Fresnel number F=17,?/AL, 7, is
the radius of the initial inversion density at half
maximum, and L is the sample length, The
boundary conditions are 84/8r=0 on the axis (»
=0) and at r==, To insure that (1) the entire
field is accurately simulated, (2) no artificial re-
flections are introduced at the numerical bound-
ary r,>»7,, and (3) fine diffraction variations
near the axis are resolved, the sample cross sec-
tion is divided into nonuniform cells, and is sur-

(o)

( i, 8y, utiform,
i ii) ng Gowssian,
c' & uniform
g it} n°,9° Gaussion
a iving uniform,
4 8, Gaussion
m +
= 1
3!
a
w
N
3 !
z|
3
8l
2
o i
50 v/re 00 150

rounded by an absorbing shell.

Equations (1) are numerically integrated sub-
ject to the initial conditions n=n,cos86, and &
= un,sing,, which correspond to an initial tipping
angle 6, The initial inversion density in the ex-
periment is radially dependent; r dependence of
n, and/or 6, is allowed for in the computations.

Figure 1(a) displays results where spatial av-
eraging is present but diffraction is absent, by
setting F =« in Eq. (1a). In this figure the emit-
ted power of SF pulses is plotted for samples
with uniform and Gaussian profiles of n,(>) and
8,(r). First, we study ringing reduction due to
spatial averaging of independent concentric shells,
each emitting in a plane-wave fashion. The case
in which 6, and n, are both constant (curve i), the
uniform plane-wave limit, exhibits strong ring-
ing,“* In curve ii, in which n, is Gaussian {u,(7)
=nLexp| - In2(»/7,)*]} and ¢, is uniform, the
ringing is largely averaged out, resulting in an
asymmetric pulse with a tail. An essentially
identical result (curve iii) is obtained for the
case in which n, and 6, are both Gaussian {6,= 6,°
x exp[0.51n2(7/7,)*]}, showing that the ringing is
predominantly removed by a Gaussian n, regard-
less of the radial dependence of 6,. This is ex-
pected, since the output-pulse parameters are
all dependent only on |Ing,|.* As shown in Fig.
1(b), with uniform n, and 6, but with diffraction
included, the output pulse is almost symmetrical

NORMALIZED OUTPUT POWER

O

FIG. 1. (a) Normalized SF output power vs 7/Tg, Tg=M/4n%uin, L =3817o/3n,"A'’L. (7 is the same as that defined

in Ref. 5a. It appears smaller by a factor of 3 because it

uses the “partial” radiative lifetime 7, instead of the ob-

served one, T,,) 0,°=2%X10", T =T,=T,* =%, L/cT4=3.9, and F == (see text). (b) Same as (a) but with diffrac~

tion Included and uniform no(r) and 64(r).
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(a)

NORMALIZED OUTPUT POWER

(b)

NORMALIZED INTENSITY

FIG. 2. Influence of diffraction on SF pulse shapes. Parameters are the same as in Fig. 1(a), with ny, Gaussian
and 6, uniform. (a) Emitted power; (b) isometric graph of intensity for the F =1 case of (a).

and also nearly free of ringing for F <« 0.4.

Figure 2(a) studies the effect of diffraction on
the SF pulse shapes by varying F, with use of a
Gaussian n, as in Fig. 1(a), curve ii. Reducing F
curtails the oscillatory structure and makes the
output pulses more symmetrical, since the outer
portions of the gain cylinder are stimulated to
emit earlier because of diffraction from the inner
portions. Thus diffraction becomes more impor-
tant as F decreases.

Figure 2(b) is an isometric graph of the inten-
sity buildup for a sample with F=1. The radial
variations of intensity peaks, delay, and ringing
illustrate how different gain ghells contribute in-
dependently to the net power. Each shell exhibits
a different Burnham-Chiao ringing pattern. Ac-
cordingly, their contributions to the net signal
interfere and reduce the ringing. However, the
central portion of the output pulse should exhibit
strong plane-wave ringing. In fact, the ringing
observed in the HF-gas experiments? may have
been just that, since the detector viewed a small
area in the near field of the beam.

Figure 3 compares the normalized Cs SF data
of Refs. 3 and 11b (for which F =~ 0.7 with uncer-
tainty ranging from 0.35 to 1.4) to the theory (in-
cluding relaxation terms). The data were fitted
with use of a Gaussian n, and a uniform 6, with
nominal value® 6, =2(n,2nr,2L)"/?, n being adjust-
ed to yield the observed delays (1.6-2.8 times the
experimental n, values). However, in Ref. 3 the
curve published at each density was the one with
the shortest delay. The average delay is ~30%
greater at each density.'* Thus the effectite ra-

tios of our computed densities to the experimen-
tal ones range from 1.2 to 2.2, compared with the
+60%, - 40% quoted experimental uncertainties.
The quantum calculations® actually yield 6,=(2/
VM)[In(2N)"/#]¥/2, a 9% correction which further
reduces the range to 1.14-2.0. If one sets 6,=6/
VN, as suggested by the small injection experi-

[ —pem -

NORMALIZED OUTPUT POWER

TIME (ns)

TIME (ns)

FIG. 3. Theoretical fits to Cs data of Ref. 3. The
two dashed-line curves in (a) indicate typical experi-
mental shot-to-ghot variations. F =1, L =2e¢m, T,
=70ns, T»=80ns, A =2.931 um, 7y =551 ns, 6, is
uniform or Gaussian, and »,(r) is Gaussian. The
following give 8,°(f1t), n O(fit), » °(exp), with 6,° in
units of 10" /em' and n® in units of 10!%cm”: (a) 1.07,
31, 19; ®) 1.37, 18, 7.6; (c) 1.69, 11.9, 3.8; (d) 1.96,
8.85, 3.1. The broken-line curve {n (b is the one-
dimensional fit of Ref. 3b, with 6," = 1.69 and n 0 = 12,

1125




L Aen snan Aam sn ghe e NEas RO SNt s Soen M)

VoruMe 46, Numses 17

PHYSICAL REVIEW LETTERS

27 AeriL 1981

ment,'® the range is 1-1.8, in still better agree-
ment.

The calculated shapes are in good agreement
with the data, and are within the range of shot-to-
shot fluctuations [Fig. 3(a)]. The only discrep-
ancy is that the simulations predict more of a tail
than observed in the experiments. For compari-
son, Fig. 3(b) also plots the fit in Ref. 3b of the
one-dimensional Maxwell-Schrédinger theory.*
As can be seen, the present theory gives a more
accurate fit, illustrating the necessity of includ-
ing transverse effects. The pulse tails are fur-
ther curtailed by reducing F within the range of
experimental uncertainties''® (which used a 1/e
rather than a half width at half maximum defini-
tion of 7,). Note that often a Fresnel number F’,
defined as »,’/AL, is used; diffraction effects be-
come important when F’=1 (i.e., when F=0.36).

In conclusion, SF experiments are described
much more accurately by including transverse
effects. Our calculations do not include short-
scale-length phase and magnitude fluctuations in
8, which result in multiple transverse-mode
initiation of the SF process, leading to multidi-
rectional output emission with hot spots. This ef-
fect, which is expected to be important only for
large-F samples (since diffraction singles out a
smooth phase front in small-F samples), is under

study.
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By adapting Moretti’s self-consistent numerical approach to integrating the Euler equation of compressible flow, a uni-
fied complete temporal and spatial description of superfluorescence and optical bi-stability was undertaken. (The simula-
tion includes material initialization as well as refractive transverse and longitudinal field boundary conditions appropriate to
the cylindrical laser cavity). The respecting of physical causality in Moretti’s method was maintained; but by using an
improved deri-ative estimator at both the predictor and corrector levels, the overall accuracy was improved.

The phys:.al model includes nonplanar two-way Maxwell—Bloch propagation with spontaneous sources. The problem
of dynamic transverse effects as they relate to soliton collisions is addressed. The calculations are based upon an extension
of Mattar’s previous semi-classical model for diffraction and phase effects in self-induced transparency at thick optical
absorptions.

The computational algorithm relies on the use of characteristics, but is strictly a finite-difference scheme. This explicit
scheme involves the simultaneous integration along the time Jordinate for both forward and backward wave. However,
directional derivatives must be considered to appropriately takc into account the mutual influence of the two light beams
without violating the laws of forbidden signals. Particular case is exercised to mzintain at least a second-order accuracy
using one-sided approximations to spatial derivatives. Each forwz:d/oackward field derivative will be related to its respec-
tive directional history. A numerical approach in which the discretization is not consistent with these physical facts will
inevitably fail. Thus the numerical algorithm must discriminate between different domains of dependence of different
physical parameters.

The physical process can now be analyzed with a degree of realism not previously attainable. Significant agreement
with experimental observations is reported from the planar or time-independent analysis counterpart confined to the cen-
tral portion of the beam.

1. Introduction

The modelling of longitudinal and transverse coherent pulse reshaping that occurs when forward- and backward-
travelling beams interact coherently with a medium resonant to the pulse-carrier frequency and with each other is
presented. The physical system is characterized by a pulse duration much shorter than all the atomic relaxation
lifetimes and dephasing times. In addition, the field is large enough so that significant exchange of energy between
the light pulse and-matter takes place in a time that is short compared to a relaxation time.

- The response of the resonant medium is not instantaneous but cumulative (i.e., it is associated with the past

. ”' history of the applied field). Hence, the inertial response of the medium is not describlable in terms of an intensity-
= : dependent susceptibility. Instead it necessitates a more general functional of the applied field. The treatment dif-
[~ , fers from earlier theoretical and experimental studies where a rate-equation approximation was considered. Conse-
. ’ quently, a semiclassical formulism, similar to the one used by McCall and Hahn {1] in their analysis of self-induced
F ¢ transparency, must be adopted. The physical model is based on counter-propagating travelling-wave equations,

b derived from Maxwell’s equations including transverse [2,3] and transient phase variation [4], and a two-model

* Work supported in part by the Research Corporation, the Army Research Office, the Office of Naval Research and the Interna-
. tional Division of Mobil.

- The concept of this analysis was proposed at ICO-11 Madrid (September 1978) ed. J. Buescos, Proc. distributed by the Spanish
- Optical Society, Madrid.
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[5.6] version of the Bloch’s [7] equations describing a distribution of two-level homogeneously broadened atomic
systems. Furthermore, the simplifying mean-field approximation is not considered; instead, an exact numerical
approach that adapts computational methodologies gained in solving fluid dynamics problems is developed.

In the slowing-varying-envelope approximation, both the phase and amplitude variations of a linearly-polarized
field in the transverse direction are described by two scalar wave equations, one for each mode: forward-travelling
propagation. Each equation is driven by the appropriate polarization associated with the nonlinear inertial response
of the active medium. The dynamic crosscoupling of the two waves appears explictly in the two-mode analogue of
the traditional single-mode Bloch's equations describing the material system. The presence of the longitudinal
mirrors will further enhance the mutual influence of the two beams. Variations in polatization and population over
wavelength distances are treated by means of expansions in spatial Fourier series. The Fourier series are truncated
after the third or fifth harmonic. As McCall [6] and Fleck [S] outlined it. the number of terms needed is influ-
enced by the relative strength of the two crossing beams and the importance of pumping and relaxation processes
in restoring depleted population differences.

Counter-propagational studies have been previously considered for pulses with infinite transverse extent (i.e.,
uniform planes) by Marburger and Felber [8] in connection with nonresonant nonlinearities. Two-mode one-
dimensional analysis involving resonant interactions have been tackled by McCall [S], Fleck [6], Saunder and
Bullough [9], and more recently by Eberly, Whitney and Konopnicki {10]. However, restrictive assumptions were
made relating to the allowed form of the temporal field variations. Since the experimental arrangements often do
not satisfy the uniform plane-wave condition, the detailed nature of transverse behavior (using rigorous Laplacian
coupling) must be worked out. This present three-dimensional treatment assumes azimuthal cylindrical symmetry.

Furthermore, the interplay of diffraction coupling (through the Laplacian term), and the medium response
will inevitably redistribute the beam energy spatiall)f and temporally [11—14]. This transient two-stream beam
reshaping profoundly affects a device that relies on this nonlinear light—matter interaction effect. Several phy-
sical effects such as strong self-phase modulation, spectral broadening, self-steepening and self-focusing that have
been separately studied, combine here to affect the behavior diversely during different positions and times of
the pulse evolution. Due to the essential complexity of the governing equations of motion, only effective nume-
rical methods which are consistent with the physics can make attainable a heretofore unachievable solution.

An extension of an efficient numerical approach [15—17] was developed by Mattar to study the transverse
energy flow associated with beam variations in the single mode SIT problem. The latter code, which simulates
the rigorous interplay of diffraction (Laplacian term) and the inertial two-level atom (Bloch equation) response,
had led to the discovery of a new transient on-resonance self-lensing phenomenon which was subsequently veri-
fied in sodium [18], neon [19] and more recently in iodine [20] vapour in laboratory experiments. Accurate
comparison over a wide domain of physical dependencies was reported [21]. Consequently, the numerics of
diffraction and Bloch equations will only be briefly outlined.

In the standing-wave problem, the two waves are integrated simultaneously along ¢ the physical time: no retar-
ded time [22] (or Galilean) transformation as in SIT will be introduced.

To ensure proper handling of the two-stream effect, special attention must be exercised. For causality reasons,
as advanced by Moretti {23], only directional resolution for spatial derivatives of each stream (forward and back-
ward field) must be sought. This is achieved by using one-sided discretization techniques. The forward field deri-
vative will be approximated by a different set of points than those used for the backward field derivative. The
spatial derivative of the forward field is discretized using points which lie to the left as all preceding forward waves
have propagated in the same left—right direction. The backward field is approximated by points positioned to the
right. As a result, each characteristic (information carrier) is related to its respective directive history. Thus, viola-
tion of the law of forbidden signals is prevented.

Once the basic effects are observed and assessed using straightforward orthogonal computational meshes, non-
uniform grids which alleviate the calculational effort [24—28], will be implemented. (The nonuniform grid per-
mits greater point concentrations in the temporal and spatial regions of main interest.)

The prime goals of this study are to achieve an understanding of beam effects in soliton collision {29], and to
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relate this situation to the single stream SIT problem and to observations in super-fluorescence [30—33] and
optical bi-stability [34,35] experiments. Furthermore, one readily investigates the dependence of the counter-pro-
pagation transmission characteristics on pulse and beam shape, on the relaxation times, the resonance frequency
offset, the input pulse area(s) on-axis and, the Fresnel number, the mirror reflectivity, the initial tipping angle.
The outline of this paper is as follows: in section 2 are the standing-wave Maxwell—Bloch equations and the initial
and boundary condition. Section 3 presents the law of forbidden signals. The accuracy of the predictor/corrector
scheme is presented in section 4. The effect of improving the derivative estimator on the overall numerical scheme
is described in section 5, while section 6 presents the theory of approximating linear operators. In section 7, three-
point estimator formulae for the first derivative of a function are derived. Section 8 describes the treatment of
the longitudinal boundary condition. Section 9 presents the three-point estimate as an example for the four-point
estimator for the Laplacian of a function. Section 10 concludes the paper.

2. Equation of motion

In the slowly-varying-envelope approximation, the dimensionless field—matter equations are:

+ +
- iFvie’ +aaLT"’%e;‘-"11;"’(1’exp(—-ikz)>, 2.1)
. oe” -
-iFThe + - %ez— = +g™ (P exp(*ikz)) , @22)

with g* and g~ the nonuniform gain associated to the pump experienced by the forward (e*) and backward (e ™)
travelling wave. The quantities in the r.h.s. undergo rapid spatial variations; ( ) represents the spatial average of
these quantities over a period of half a2 wavelength

i) + )P+ +eT)), @3)
%?f*' WS = W)= —3(P+P )" +e7). 24
Equivalently

%gw (-i(AQ) + 131) P= W([e* exp(—ikz) + e~ exp(+ikz)] , 25)
W . _ige = _1(p,** ; - :

3 T (W€ — W)= —4(Pe"" exp(ikz) + Pe~" exp(—ikz) +c.c.), - (26)
with

e =Qurp/u)e* 2.7
P=(P|u), (28)
E* = Re {e* exp[i(wt 7 k2)] Q9)
and

P=Re{ip’ exp(iwt)} . (2.10)

The complex field amplitude e*, the complex polarization density P’ and the energy stored per atom are func-
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tions of the transverse coordinate

p=riry, Q.11
the longitudinal coordinate

Z = qupp2 2.12)
and the physical time

T=t/1p . (2.13)

The time scale is normalized to a characteristic time of the forward input pulse 7, and the transverse dimension
scales to a characteristic spatial width 7y of the forward input transient beam. The longitudinal distance is norma-
lized to the effective absorption length [37].

oGy = 8mwp? Nrp/nhe . 2.19)

In this expression w is the angular carrier frequency of the optical pulse, u is the dipole moment of the resonant
transition, V is the number density of resonant molecules and can sustain radial variations, and n is the index of
refraction of the background material. The dimensionless quantities

AQ={(w—wo)Tp, (2.15)
1 =Ty/rp,, (2.16)
7 =T,/7p, . .17

measure the offset of the optical carrier frequency w from the central frequency of the molecular resonance w,,
the thermal relaxation time T, and the polarization dephasing relaxation time T, , respectively. The dimension-
less parameter F (which is the gain to loss ratio) is given by

F=ag}/anr, (2.18)

and is the reciprocal of the Fresnel number associated with an aperture of radius 7, and a propagation distance
(ag})- The magnitude of F determines whether or not it is possible to divide up the transverse dependences of
the fields into “pencils” (one pencil for each radius) which may be treated in the plane-wave approximation.
The diffraction coupling term and the nonlinear interaction terms alternately dominate depending on whether
F<lorF>1.

The presence of opposing waves leads to a quasi-standing wave pattern in the field intensity over a half wave-
length. To effectively deal with this numerical difficulty, one decouples the material variables using Fourier
series [5,6] namely

P=exp(—ikz) 20 Pl ) exp(—i2pkz) + exp(+ikz) 20 Pgpay) exp(+i2pke) , (2.19)
p=0 p=0
W=Wo+ 23 [Wap exp(—i2pkz) + c.c. » (2.20)
p=1
with W, a real number. By substituting in the travelling equation of motion one obtains
3,Pi +Pi/ny = Woe" + Wye™ , (2.22)
a,P;’ +P;/Tz = WZC# + Wee™ , . (2.23)
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3Pps1) * Plapr1ylts = Wope' + Wap+1y €~ ,and (2.24)
i o Py +Pi /1, = Woe™ + Wie*, 2.29)
3,Py + Py /1, =Wye~ + Wse', (2.26)
3 Papery * Papeny/ta = Wz.pe_ + wz'(p+1)e+ ) (.27
9, Wo +(Wo — W§)/1, =—Y(e~"P[ +e*'P} +cc), (2.28)
3, W, + Wy/r, =—1(e~"Pl+e*"P} +e*P7" +e~P5"), (2.29)
3, Wap + Wap/1, =— (e~ Pl +e*Py,, te' Py, te P ). (2.30)
The field propagation and atomic dynamic equation are subjected to the following initial and boundary condi-
tions.
1. Initial
For 20,
et=0, (231)
Wo=Ws , (2.32)
a known function to take into account the pumping effects. For SIT soliton collision
P},.,=0, foralp, (2.33)
while for the superfluorescence problem
P(’zpﬂ) (2.34)
is defined in terms of a non-uniform initial tipping angle that reflects the radial variations of the atomic density —
its value can either be deterministic or fluctuating.

2. Longitudinal
Forz=0andz=L: e* and e~ are given in terms of a known incident function
€10 2.35)
and
. e (2.36)

of 7 and p. Should enclosing mirrors to delineate the cavity be considered in the analysis, one must deal with the
following longitudinal boundary equations

e =V(I-R)ey+VRe”, atz=0, 237
e” =1 —Ry) ey +VR,e*, atz=1L, (2.38)
where R, R; and (1 — R,), (1 — R;) are the respective reflectivity and transmitting factor associated with each
left and right mirror.

3. Transverse

For all z and 7 [3e*/9p] p=o and [3e*/3p] p=, max YaNishes. pmay defines the extent of the region over which
the numerical solution is to be determined. To avoid unphysical reflection from the transverse boundary, one
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r-vv—vf_,—rJ—v‘-v-
A .
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must, for amplifier calculations, use stretched (nonuniform) radial grids (i.e., consider a quasi-infinite physical
domain and map it on a finite computation region) and confine the pre-excited active medium by radially-
dependent absorbing shells [17]. Note that this condition represents an actual experimental approach in which the
laser amplifier is coated to circumvent any spurious reflections.

3. The law of forbidden signals

The concept of the physical law of forbidden signals and how it affects two-stream flow discretization prob-
lems was originally written by Moretti to handle the numerical integration of Euler equations. The method,
referred to as the A-scheme, was presented elsewhere [38]. However, since it represents the basis of our present
algorithm, we felt useful to summarize here its salient features.

In any problem involving wave propagation, the equations describe the physical fact that any point at a given
time is affected by signals sent to it by other points at previous times. Such signals travel along lines which are
known as the ‘characteristics’ of the equations.

For example, a point such as A in fig. 1 is affected by signals emanating from B (forward wave) and from C
(backward wave), while point A’ will be the recipient of signals launched from A and D.

Similar wave trajectories appear in our present problem, but the slopes of the lines can change in space and
time.

It is clear that the slopes of the two characteristics which carry the information necessary to define the for-
ward and backward propagating variables at every point, are of different signs; they A, 5, are numerically equal
to t¢/n. For such a point, A (fig. 2), the domain of dependence is defined by point B and point C, the two cha-
racteristics being defined by AC and AB, respectively, to a first degree of accuracy. When discretizing the partial
differential equations for computational purposes, point A must be made dependent on points distributed on a
segment which brackets BC, for example on points D, E and F of fig. 2. Such a condition is necessary for stability
but it must be loosely interpreted. Suppose, indeed, that one uses a scheme in which a point such as A is always
made to depend on D, E and F, indiscriminately (this is what happens in most of the schemes currently used,
including the MacCormack method). Suppose, now, that the physical domain of dependence of A is the segment
BC of fig. 3. The information carried to A from F is not only unnecessary, it is also untrue. Consequently, the
numerical scheme, while not violating the CFL stability rule, would violate the law of forbidden signals. Physic-
ally, it would be much better to use information from D and E to define A, even if this implied lowering the nomi-
nal degree of accuracy of the scheme. In other words, to say that a given scheme, using points D, E and F, has a
second-order accuracy is meaningless since a wrong scheme has no accuracy whatsoever.

In two-wave propagation problems treated by relaxation methods, the need for a switching of the discretization
scheme in passing from forward (advanced) to backward (retarded) points is evidently related to the law of for-
bidden signals.

The sensitivity of results to the numerical domain of dependence as related to the physical domain of depen-
dence explains why computations which use integration schemes such as MacCormack’s [40,41] show a progres-
sive deterioration as the AC line of fig. 2 becomes parallel to the T-axis (A, = 0), even if A, is still negative [38].
.. The information from F actually does not reach A; in a coarse mesh, such information may be drastically diffe-

: - rent from the actual values (from C) which affect A. On the other hand, since the CFL rules must be satisfied and

-4
.
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Fig. 1. Fig. 2.
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F is the nearest point to C on its right, the weight of such information should be minimized. Moretti’s A-scheme,
relying simultaneously on the two field equations. provides us with such a possibility.

Every spatial derivative of the forward field is approximated by using points which lie on the same side of E
as C, and every derivative of the backward scattered field is approximated by using points which lie on the same
side of E as B. By doing so, not only is each characteristic related with information which is only found on the
same side of A from which the characteristic proceeds, but such information is appropriately weighted with factors.
These depend on the slopes of the characteristic so that the contribution of points located too far outside the phy-
sical domain of dependence is minimized. A one-level scheme which defines

de* 3z = (e} - ep)laz, (forward wave) , 3.1
de™[3z = (e} — eg)/Az, (backward wave) , (3.2

is Gordon’s scheme [42], accurate to first order. To obtain a scheme with second-order accuracy, Moretti con-
sidered two levels, in a manner very similar to MacCormack’s [40] . More points, as in fig. 4, must be introduced.
At the predictor level following Moretti’s scheme one defines

3¢ */dz = (2eg — 3ep +eg;) Az, (forward wave) , 3.3)
0¢ ~foz=(eF —ep)lAz, (backward wave) . X))
At the corrector level, one defines

ez =(, — Eyllaz, (forward wave) (3.5)
and

3é~[az = (—28 5 + 385 + & )lAz . (3.6)

It is easy to see that, if any function f is updated as
f=r+fraT (3.7

at the predictor level, with the T-derivatives defined as in (2.21) and the z-derivatives defined as in (3.3), (3.4) and
as

f(T+AT)=L(f+f +frAT) (38)

at the corrector level, with the T-derivatives defined again asin (2.1),(2.2), and the z-derivatives defined asin (3.5),
(3.6), the value of f at T+ AT is obtained with second-order accuracy. The updating rule (3.7) and (3.8) are the
same as in the MacCormack scheme.

At the risk of increasing the domain of dependence, but with the goal of modularising the algorithm, we have
used three- and four-point estimators for each first and second derivative, respectively. We have also extended
Moretti’s algorithm to a nonuniform mesh to handle the longitudinal refractive (left and right) mirrors: the same
one-sided differencing (to satisfy the law of causality) is used for both predictor and corrector steps. Neverthe-
less, we derived, using the theory of estimation, conveniently presented by Hamming [43], second order deriva-
tive estimators at both the predictor and corrector levels. As a result, the overall accuracy of Moretti’s scheme
was increased.
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4. Order of error for straight-line predictor/corrector

We consider the following predictor/corrector scheme as suggested by MacCormack
predict: Faer =fa*8Fd .1
correct: fn+ =%(fn+| tfat Sf,;ﬂ) , @42

where £ indicates predicted, f corrected and f exact values. Assume that the derivative estimator for prediction
has an error of order p and that for correction of order ¢, so that:

f =f, +O(5P) 4.3)
fasr =frer +O(5°) | 44)
where O(5%) is a sum involving terms in & to the power i or higher. Combining (4.1) with (4.3) and (4.2) with
(4.4) we get:
predict: ﬁwl =fn + 8/ +O(6P*), ' 4.5)
correct: fast =%[};+l +fn +8f14 +OGY] . 4.6)
- The Taylor series expansion for f,., is:
'; . 8
- j =fn+6fn+?fn +O(53). 4.7)
u Combining (4.7) and (4.5) we get the predictor error €, as follows:
- - 52 .
2 €ner =fast ~Fart 2fat fo+ 5+ O() —fa —8fn + OE"")
= (%'-\) 52 +0(8°""). (4.8)
Thus
€ =00?), forallp>1. 4.9)

Consider now the corrector error:

~ p: 52 " g 5 [ +
€ntt =fat1 —fne1 =Jn +8f;+?j;l +0(53)— %fn +1 —%fn "2' far1 +O(&¢ l)

=4+ U - M) 8+ 2865 L 1p #5724 06P™)] +0GEY)

2
=(L2f:)5 +-fé'£52 +O@E) +0(6") . (4.10)
But
favi = fa+ 8fn +0GY). @1
Thus

fn=fan Y5 o _Sn g2
( 3 )s 26 +0(56%) . (4.12)

P T D W DR WP Sy Ny S a




S Bres Se S b Jees sreb Aban S A Mot Mehe St e Mnfecibute Jint Met " VW ——— T LaSah S s M Sy ot e SRR S SN ST Rl |

F.P. Mattar et al. | Counter-beam propagation in a cavity 9

Whence
€nsy =07 +O(E ") + OB ) (4.13)
or
Epsy =O@B™INGLAHY (4.14)
Thus the order of error for the predictor/corrector is the minimum of 3,c+ 1andp + 1. If ¢ = 2 and p = 2, their
Table 1
Comparison table between weighting coefficients for derivative estimators using Hamming’s estimation theory and Moretti’s law
of forbidden signals
.. Hamming:  fn =fn+06) ~Fp=fn+0(?)
N Moretti: fn -—f-‘"— § +°(52)’*fv:=fn——"‘l‘5+0(5
p
b Moretti Hamming
- - Predictor
L -
- 1
favl = fn+8f+ = ~ 2+0(5%) Tnet =fn* 85+ 0(6%)
' -
b - " 2
~ - ~ f
E f""=f"+6fn*_2i 874067 fn+|—fn+1=‘?62+0(53)
= ~
- Inet = a1 = 2f"52 +0(%)
ﬁ Corrector
. . - ~, . 5
.! faer = 5Un L+ fnt fny) faed ~fn = ;'fn+_2_fru'+ o(s?)
1 fn 3 : 5. 3
L fm»l st =it _f +205% 0(8%) +Tf'l+’2‘ n+l + 0(8°)
o
. 5 -
h +ifnr = f'n+l+&_ 82+ 0(s%)
2 4 - 5fy - 5 +0(52)
fn -84, _—.5 +0(%) =(M..f£)5 _£52+o(53)
. 2 2
- 5 d "
L. (n+l fn) ( J )6 ro(¥) =(£_£1)52 + oY
P - ] - 4 2 2
: but
b
b, , R L s s
. Inni =ttty *?f,, +0(7) =03
Fé
Eﬂ
- - (.fl. R 52 + 0(83)
b 2 4
‘ S
v- =‘ fnﬂ f" )62 00(63)
b 4
b
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10 F.P. Mattar et al. [ Counter-beam propagation in a cavity

second-order errors effectively cancel out. From the above, it is clear that for maximum accuracy with the
straight-line predictor/corrector, the derivative estimators for both prediction and correction should guarantee
at least second-order accuracy. Anything above second-order accuracy, however, will not necessarily improve
the results.

5. The effect of prediction error on correction error for a weighted formula estimator of the correction derivative

We investigate derivative estimator formulae of the type:
o= Loy folsi): (5.1)
4

Let § = max/{lx;y; — x;1) and assume

fa=fi+0(9, (5.2)

so that (5.1) has error c.

In applying a straight-line predictor/corrector with such an estimator for the corrector, we observe that the
error in the estimated corrector derivative, since it based on predicted values, will also depend on the error of
prediction. From (4.9) we know that the error in predicted values is O(52) for any reasonable derivative estima-
tor. Thus we may write:

Fae1 () = farr (x) + O(6?) . (5.3)
Applying formula (5.1) to (5.3) we get:

ooy = ?a,fn,.(x.)= Z‘Jaffm(x,)+0(s=). (5.4)

Thus, using (5.2):
far1 = fuer + OB +O(?) = frpy + O™ (5.5)

Therefore the effective error of the corrected derivative cannot be increased beyond 2 for a straight-line correc-
tor. It makes no sense to use a formula of type (5.1) with ¢ > 2. From the theory of estimation, conveniently
presented by Hamming [43], this means that only three weighting factors a; , &3 , &3 need be used. See table 1
for comparison between weighting coefficients.

6. Approximating linear operators

Letx =(x,, X3, X3, ..., X ), X; < X; for i # . Consider the function f and let f{x) and W be the column vectors

flxy) Wy
fixz) W21

fx)=| fAxy) |, W={ws |. 6.1
f-'(xm) ;Vm

Let L be a linear operator. We scek a vector W such that:

f=W-fx)+0E™),

b

¢

S

]
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b
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where & = max; (Ixp, — x;1),i=1, ..., m — 1. We approximate f by a polynomial Py of order m — | which agrees,
exactly with fat points x;, X3, X3, ..., X pp

Px(x)=,_=21 Lim(®) fx;) » (6.2)

where L;,, are the Lagrange polynomials for x. It can easily be shown that
f(x)=Px) +R(f, X:x), 6.4)

where the remainder term R(f, X; x) is

_ m) m
R(f, X;x) =’(—m(,°l “. (x - x;)) <O(B™), (6.5)
s
for some 6: x, <8 <x,,. Let \;; be the coefficients of L;,, so that
m-—1
Lim(x)=2J Ayxt, (6.6)
i=0
yielding
m m-—1
f)=22 fx) 20 Mg + RS, X;x) . 6.7)
j=1 i=0
Applying L to both sides of (3.7), we get
m m-—1
Lf(x)= 20 fix) 20 NjLx' + LR(f, X:x) . (6.8)
=1 =0
Define the column vector M,, as:
1
x

Mm(x) = Xz ’

xm

and let A,,,(X) be the matrix of coefficients of the Lagrange polynomials on X. Then (6.8) may be rewritten as:

LAX) = (Am(X) - LMy ()T - f(X) + LR(f, X 3x) , (69)
where superscript T represents the matrix transpose operations. We propose the vector
W= An(X) - LM,,(x) (6.10)

as our weighting vector. Note that this vector is independent of the function f.

Eq. (6.9) represents a formula for estimating a linear operation on a function given the function’s values at a set
of points. Unfortunately, little can be said at this point about the error term LR(f, X, x) for arbitrary L. Let us
concentrate our attention now on derivative operators. In this case:

d g4 (F0)
?ERU’X"‘)'dx( m! :[I;(x"x"))
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LI me+ do m)gy L
=;n_|:j( l)(3) n (x - x)) + ¢ )(9) n (x - xl)]

m-1 j
[f(mﬂ)(g)don (x —xp) +10) {” (x - x,)+Z_; n(x x,)}] 6.11)

since 0 is in general a function of x. Let us further restrict ourselves to cases where x = x,, for some k. If we assume
that F™™(0(x;)), f™* V(6(xx)) and (d /dx)| x=x, are defined, then the first term above cancels yielding

& R0 Xy ~LoEN [ 4, - 2+ 25 H(xk—x,)] (612)

=1 i=t

If k = 1, then all the terms under the summation sign will vanish yielding:

WA CIEND)] n x

4 —x), (6.13)

_R(f X )‘x—xl

d ™6x,))
3o R X3y =71 kﬂq oy -

X ‘) . (614)
The absolute value of this error term is clearly < O(6™ ). Thus if m is the order of approximation of formula
(5.7), then m — 1 is the order of approximation of formula (5.9) for the first derivative operator. Similarly, it can
be shown under suitable conditions on 6(x) and f¥(6(x)) that

d”? . m-—n
|a? RG. %:x0)|  <oemm). (6.15)

x=xk

7. A three point estimator formula for the first derivative of a function

From the results of section 6, we know that a three point formula of type 6.9 should yield an error of order
2. To define the Lagrange coefficient matrix, define the fundamental polynomials as:

3
wi(x) = FI;ll x-xp). 7.1)
Then the three point Lagrange coefficient matrix is
(" X3X3 —X3 — X3 1 W
T (xy) T (xy) 7y (xy)
Xy x -X; - x 1
As 7’21(":) "zl(xz) 3 m(x2) 7.2
XX —X; = X3 1
\ T3(x3) m3(x3) m3(x3) )

Let Dy, D, and D, be the weighting vectors of formula (6.10) for the derivative at points x;, x, and x3, respec-
tively. Since

d 0
E;Ma(x)= Zfr (7.3)
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0 T X1
AS' 1 J f xz l’
2x; X3
or
0
Di=As - 1J,
2x

which yields the forward, central and backward differencing estimators, respectively,

D =(2x|-x2—x3 xn-xz)
! m(xy) m(x3)/’

we have

d
d—x'f(x)l =

X=X

Xy — X3
my(x2) '

D =(-"z—x3 2X; — X3 — X3 xz—xl)

: m(xy) ’ my(xz) m3(x3) ’
D _(xa-xz X3 — X sz“xl—xz)
3 ‘\ ’ s - .~ I

m(x,) my(x2) m3(x3)

To simplify the expressions, we introduce the following

83=x3—X3, 8=4(x3-x,)=4(5,+5,),
1(6, ) 5, 1(52 ) 5,
=2 ) a2, +1 122 )220, 41,

P 2(51 "52 ptl, P E30G, _’6, 2p; +1

8;=x3—-xy,

The fundamental polynomials then become:

m(x)=(x; = x3)0x; —x3)=6,(5, +5,;),
m3(x3) = (x3 — X )(x3 —x3) = (8, +63) 8, .

The weight vectors for our estimation formulae then become:

R =( —25, -8, 5, +5,
YoAs, (8, +82) " 8,8,

My(x3) = (x; —x1)(x; —x3)=-8,6,,

(6, +6,)° 51)

el
T8, 48,)8,) 8,48, 8, 8,8, ' &

: 2 1
=5(G+202), 20, + 142420, 41, - (1+20) =5 (<G +2), 2+ (01 +02), ~ G +01)) ,
D =( =5, 5; — 8, 8, )
TNGG 8 616, (61 %65)5;
l 62 6%—821 81) l 1 .
) VLT WL A it A -
6|+82( 5] ’ 5]81 ,81 6( (i pZ)’pZ pl"f+pl),
D =( 5, 5, +8, 5, +26, )
NG, (5, +83)" 8,8, 1 (B, +82)5,
1 (82 =G t8) 6,) 1, 3
3.5V 5. a5, Y, ) slate), +to1+p2), 3+01).
=6|+53( 5, 5,5, 2 52 8((5 p2), —(2+p,+py), s+py)

CHaN A ame oo st g rr‘—{
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(74)

(7.5)

(7.6)

.7

(7.8)

(79)

(7.10)

(7.11)

(7.12)

(7.13)
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8. Treatment of longitudinal boundary

When treating any point within the cavity or at either longitudinal boundary (where a partially reflecting mirror
is situated) there is no problem. But, for example, at z = 0, ¢* is determined by eq. (2.35) and not through pre-
vious predictor/corrector formulae (7.11)—(7.13) as only e~ is calculated at z = 0 in that manner. However, for a
point one increment (§ = Az) from the left mirror, one encounters difficulties calculating the forward wave. The
second needed point, which is vital to the formulae. would fall outside the cavity. An identical difficulty arises
from the counterpart backward wave with respect to the right hand mirror. The field traveling from the right is
defined at z = L by eq. (2.36).

To deal with this situation one has to modify the predictor/corrector schemes so that an increment §? is used
instead of 8. The loss of that second point, which reduces the accuracy of the derivative estimator maintains near
the mirror the same order accuracy. One must compensate this loss by locally reducing the mesh size.

9. A three point estimator formula for the Laplacian of a function

We seck a weighting vector L = (2;) such that
3

X
X . x3

—_———
ax?  xox
Because of the linearity of all operations, this may be rewritten:
Vi, =1D-f(®) +1D - A¥), ' (9.2)

where D is the weighting vector for the first derivative derived in the previous section, and 2D is the weighting vec-
tor for the second derivative. To find 2 D, we note:

D] xy =] 0], 9.3)
b 4 2

so that our equations become, using the notation of the previous sections:

vif

1)])T
. 2 -2 2
(A3 2D{x2H -(61(81+8,)’ 8,8, (8,+52)52)

X
2 82 ( 5, 52) 8, ) 4( P2 ( Pl*‘Pz) pl)
== (1+2, —2+2+2) 2r1)== (1+2 [2+2_22), 1+21), .
5’( 5, 2 5, 8,/°8, 52 ! 2 2 2 ! 2 64

Note that this formula is independent of x. Combining (9.4) with previous results, we get the following weighting
vectors for our Laplacian:

o3 - o) 22 ) -

O A
== 1 —=—)+2 (1 - —), —(+2|[1+—|+2 (1 — ~(—
L=% ! 2(2»:, 7 e Kt Gl Chnd Aavul Lz § KRR Py

F o) Coofz) (432 -5)
+=1+—), —(2+2—)+ -
2( /)’ 2 22!:3 2 . x,//°

+£2l (1 _561_)) 9.5)
oo
2

(1 +£—2—)) , (9.6)
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) )

If we introduce the variables

=ﬂ=l(§i_ ‘ 9.8
n=773% 1) ’ - ©8)
P2 1(5'2 )
=—===|—-1), 9.9
255771, ©9)
6 1
d=-2-=§'(51 +52). (9.10)

The formula simplifies to:

: ( o ( d) ( : ( : )) o ( 3 ))
= _——— —_— —N2=-2— 4+ + —— ——— ] —— s 9.11
L, 7 1 27 +ry|l 0 ., 2 21“_l (r,+r)) 1 =) 1 27, r, 1 ©.11)
1 1d d d) ( d)) 1d ( d ))
=— ——— —_— ) + ]+ —_ —_— +—]1, 9.
Lg P (1 2x1 +r; (1 * ), (2 " (1 2 r; |1 X , 1+ 2%, il %2 ' ( 12)
! l1d d) ( d ( d )) 3d ( d ))
=— +—_—+ o] - + 22—+ + —— do—— +—1]). 9.
L3 FE (l 2X3 ry (l 3 , 2 2x3 ("1 rz) 1 X s 1 2x3 r 1 X ( 13)

It should be noted that, since the Laplacian involves a second derivative and only three points are used, the above
formulae will lead to error term of first order in § (or d).

This section can be readily extended to a four-point estimator. The details of the derivation can be found in ref.
{44].

10. Concluding remarks

Most features of the numerical model used to study temporal and transverse reshaping effects of short optical
pulses counter-propagating in a nonlinear Fabry—Perot entry have been presented. The derivation of the differen-
cing formulae was summarized. The experiment strives to achieve a rigorous analysis of this nonlinear interaction
with maximum accuracy and minimum computational effort. The applicability of Moretti A-scheme developed in
gas dynamics to this laser physics problem has beén demonstrated. Extension of his method to nonuniform grids
were carried out. To facilitate the legibility, maintainability and portability 'of the program, as well as the imple-

. mentation of further extensions of the planar wave theory, structural modular programming techniques have been
used. The resultant code is concise and easy to follow. Results of this algorithm will be presented elsewhere.
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The complete mathematical modeling of nonlinear light-matter interaction is presented in a hydrodynamic context. The
field intensity and the phase gradient are the dependent variables of interest. The resulting governing equations are a gener-
alization of the Navier —Stokes equations. This fluid formulation allows the insights and the methodologies which have been
gained in solving hydrodynamics problems to be extended to nonlinear optics problems. To insure effective numerical treat-
ment of the anticipated nonlinear self-lensing phenomena, a self-adjusted nonuniform redistribution, along the direction of
propagation, of the computation points according to the actual local requirements of the physics must be used. As an alter-
native to the application of adaptive rezoning techniques in conjunction with Eulerian coordinates, Lagrangian variables are
used to provide automatically the desired nonlinear mapping from the physical plane into the mathematical frame. In this
paper we propose a method suijtable for the solution of the described problem in one-dimensional cases as well as in two-
dimensional cases with cylindrical symmetry. To overcome the numerical difficulties related to the inversion of the Jacobian,
an analytical algorithm based on the paraxial approximation was developed.

1. Introduction

When sufficiently strong optical beams propagate through nonlinear media, significant self-action phenomena
[1] can occur and the propagation characteristics are significantly altered from the vacuum propagation [2]. In .
particular, self-lensing associated with the nonlinear index of refraction of the medium appears. The correspond-
ing nonlinear beam distortion due to the nonlinear interaction can be rigorously solved only by using appropriate
numerical methods since the equations are far too complicated to be handled by any known analytical techniques.
Should the beam focus along the direction of propagation, its transverse dimensions will drastically change at
the focal point from what it was at the aperture. It becomes necessary that the transverse dimensions of the three-
dimensional grids shrink/expand in size as the focal point is approached/passed [3-8,17].
For the nonl:near interaction, the actual desired shrinkage/expansion of the transverse mesh cannot be guessed
a priori; it must be locally determined by the solution to the problem itself. It is therefore necessary to have the

* A numerical algorithm associated with the hydrodynamic analogy of quantum mechanics was previously developed by the
same authors, using explicit finite differencing methods in Eulerian coordinates as well as splitting and self-adaptive rezoning.
The paper was presented at the Second International Symposium on Gas Flow and Chemical Lasers, Western Hemisphere
(1979) held on 11~15 September 1978, at the Von Karman Institute of Fluid Dynamics in Belgium.

** Partially supported by the Research Corporation, the Army Research Office, the Office of Naval Research and the Interna-
tional Division of Mobil. Present address: Laser Spectroscopy Laboratory, MIT, Cambridge, MA, USA.
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2 F.P. Mattar, J. Teichmann | High intensity laser beam propagation

three-dimensional space grid changing concomitantly with the actual beam shape and size and the local wave-front.
To avoid oscillatory behavior associated with the decomposing of the electric field into its real and imaginary
parts, it is necessary to describe the field using the modulus and the phase [9—~12].

The present paper deals with the hydrodynamic analogy {11,12] of the problem of nonlinear propagation.

In this approach, the evolution of the beam is interpreted in terms of a flowing fluid whose density is propor-
tional to the gradient of the phase. This description allows the treatment of more slowly varying dependent
variables and yields equations of motion that are similar and equivalent to those obtained by the method of mo-
ments used for the average description of the beam propagation characteristics [1,13—15]. Furthermore, this
scheme could allow even larger and coarser marching mesh sizes if it were used simultaneously with an auto-
matically adaptive nonuniform rezoned coordinate system. The set of governing equations thus obtained is a
generalization of the Navier—Stokes equations [16—18] that describe a compressible fluid subjected to an internal
potential which depends solely and nonlinearly upon the fluid density and its derivatives. This internal potential
is often referred to as the quantum mechanical potential.

A further transformation of the dependent variable, namely the use of the natural logarithm of the density, is
also introduced [17] to simplify the numerics. To generate an effective and reliable computational code with
modest storage requirements, one usually introduces mapping techniques which consist of various function and
coordinate transformations. An alternative method to this systematic is the adoption of Lagrangian coordinates.
The Lagrangian approach [19] operates with the displacement of a fluid element, following the temporal evolu-
tion of its trajectory. In this way, one easily finds the evolution of the phase and the energy in the plane trans-
verse to the direction of the beam propagation. Hence, the system of Lagrangian trajectories corresponds to the
automatic self-adaptive nonuniform rezoning and mapping techniques used in the usual Eulerian system; it
should also ensure an optimum redistribution of the computational points during the calculation in the various
regions of interest. Furthermore, the number of equations is reduced (in comparison to the Eulerian description),
and the coupling between the different variables is strengthened, thus accelerating the rate of convergence of the
algorithms.

The organization of this paper is as follows: section 2 presents the equations of motion. Section 3 is devoted
to the energy conservation and the motivation for an identification of physical variables. Section 4 introduces
the fluid description. Section S reviews the method of moments. Section 6 summarizes the proposed algorithm
based on the Lagrangian formulation. Section 7 presents the conclusion.

2. Equations of motion

For the class of problems describing the propagation of optical signals, the slowly varying envelope approxi-
mation is usually adopted, namely [1]

Er, 0= Rete(r, ) exp[i(%z - wot)]}, ' (1)
where z designates the propagation direction. Assuming that the complex amplitude e(r, r) changes by a small
fractional amount, temporally in the optical period 21r/w, and spatially in the optical wavelength 2mc/wy, the
field equation becomes first order in z and ¢ and reduces, for a linearly polarized light, to the quasi-optics equa-
tion

i ¢ ) no 9
. ——— _vz R +...-———-e = ez R 2
2(00 No Té aze c ot 1I 'e ( )

Here, n is the linear index of refraction of the background material, ¥ is proportional to the nonlinear part of
the refractive index n,, n = no +n,lele. The differential operator V4 is the transverse Laplacian in Cartesian
coordinates. The time scale is normalized to a characteristic time 7, of the input pulse and the transverse dimen-
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sion scales to a characteristic spatial width r;, of the input pulse. The input beam is supposed to have azimuthal
symmetry. By introducing a moving frame of reference,

n=z, 7=t~ (ne/0)z €))
the quasi-optics equation (2) reduces to the nonlinear Schrodinger equation:
i ¢ a
—— —Vie +—e=1yletje. 4
- 2wo no e ane vietie @)
3. Energy relations

By multiplying eq. (4) by e and adding the complex conjugate, one obtains (with y = v, + iv2)

i ¢ 9
— —(eV%e" —e°Vie) +—le? = o 5
ou e (eVie —e"Vte) 3 le*l = 27,1l &)
or equivalently
Vi« Jr +3J,/3n=27,le*|, (6)

where J, = le*| = 4%,

Jr = (2wono) eVr « (eVye” — e" Vre) = (c/nowo)[4* (V19)].

In the last relation, the polar representation of the complex envelope was used:
e = A exp(ip), )

where 4 and ¢ are the real functions of coordinates.

The components J, and Jy represent the longitudinal and transverse energy density flow. Thus, the existence
of the transverse energy density current is related to the transverse gradient of the phase ¢ of the complex field
(7). When Jt <0 (i.e., V3¢ <0), self-induced focusing dominates the spreading due to diffraction [20]. The
choice of the intensity 42 and the gradient of the phase ¢ as new variable is physically enlightening and elimi-

nates most of the oscillatory phase difficulties [2] associated with the use of real and imaginary parts of the
electric field.

4. Fluid description

Let the nonlinear polarization on the r.h.s. of eq. (4) be written as
PNL = (xy +ixp)e = xnpe, (8)

where xg and x; are real functions of A. Using eq. (7), one obtains from eq. (4) the transport the the eikonal
equations (19 = koc/wo) [21]:

9 4mwd
k‘,;’;m +Vp« [A%Vr¢) =~ = 2 y14?, )

3 A - ViA]_4nrwh
uoaw[(vw)’— . ]= ==

Az cz XR- (10)

The transport equation (9) expresses the conservation of beam energy over the transverse plane. When x; =0, the
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total power is conserved aiong the direction of propagation. The eikonal equation (10) describes the evolution of
the surface of constant phase. It has the form of the Hamilton—Jacobi equation for the two-dimensional motion
of particles having unit mass and moving under the influence of potential [1] given by

V= J_.(va)A-l ;21 (ll)
T3 T n XR >

if ko, 2 is regarded as time coordinate and ko,X. kg, as spatial coordinates. Furthermore, if one adopts A% and
V16 as new dependent variables, the equations of moticn become similar to the continuity and momentum
transport equations of ordinary hydrodynamics.

By defining
v=ko'Vip, p=4> (12)
and supposing x; = 0, egs. (9) and (10) can be written as
dv 1 - 72
—+ @ Vp)v==—s V[p~V3(V? +==(V1p), 13
an (v-Vp)o 7 VT [0™'"2(V? Vb)) ko (V1p) (13)
)
2P+ V1 (pv)=0. (14)
on

These equations are the momentum and continuity transport equations of a fluid with a pressure P = (V3v/p)\/p.
It should be emphasized that this pressure depends here solely on the *“fluid density” and not on the *“velocity™.
Eq. (13) can be rearranged into

0 1 1
E(P v)+ V- (pvv) ‘-"‘2;&; Vo [%(Vzrpﬂ —E(VTP)(VTP)] +'Z‘-§ P(Vyp), (15)

where { is the unit tensor.

5. The averaged description of wave beams in nonlinear media, the method of moments

The existence of constants of motion and conservation laws, even in a limited number, is very useful for
obtaining insight into the dynamics of the self-action phenomena associated with the propagation process. To
analyze the nonlinear quasi-optic propagation, Viasov et al. [13] extended the method of moments, originally
developed in connection with the transport theory. In this theory the problem of finding a certain distribution
f(§) is replaced by that of determining the moments M,, = [ £"f(¥) d of this distribution, which are usually
more easily calculated than the function f(¥) itself. Knowledge of all the moments allows the use of known
methods to reconstruct the form of the function f(%). A simple expression for estimating the width of the dif-
fracted beam is derived in terms of the zero, first-order moment and second-order centrifugal moment integrals
of the incident field. These moments are integrated over the full beam cross-section and are, therefore, functions
of the propagation coordinate only. The theory of moments only holds when the susceptibility is a function of
lel?, (i.e., when the nonlinear index of refraction is a cubic or fifth-order power in the field).

The starting point of the method of moments is the recognition that the existence of a hierarchy of conserva-
tion equations [13,15]

) )
—=—V' —_— = 2Vo —— = . .
ar J, a:’ cve.T, ™ [T(T)]=-V-Q, (16)

implies a relation between the conserved quantities and the time derivatives of the moments of w. Here, w is
scalar, J and Q are vectors and T is a symmetric tensor of second rank having the trace Tr(T). The first three
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moments of w are defined as follows:

w= [avw, S=%derw, (Qere)? =-;7fdw=w. a7
v 1 4 Vv

The integrals are taken over the volume in which the field quantities are defined, and r is the position vector.
Using the Gauss theorem, it can readily be shown that

— =5 =73 @)= 0.

In deriving these results, it was assumed that
nJ=n+Q=n-T=0

on the closed boundary Z with normal # of the volume V, If £ is at infinity, all integrals converge. It thus follows
that

W=W,, S=So+v-t and (Ql)=0}+2t+c,f?, (18)
where 8, = 8(=0), Qo = Q(t,) and

1 I 1
o=Wo;[dVJ|t=o, g ;[dVr-Jlt:o, cz———u—l;!dVTr(T)lt:o.

The relations (18) have a simple physical meaning: the energy W of the field is conserved, the energy center §
moves along a straight line with a constant speed v and the square of the effective radius of the bunch, Q%,

- varies according to a parabolic law (for t = oo, Qg¢¢ = ). It can readily be verified that the conserved quantities
satisfy
(] 9*
o—a—t;,derw and e3=y Vdeﬂw. (19)

The hierarchy of conservation laws is satisfied by Maxwell’s vacuum equation when W is the density of electro-
magnetic energy, J is the Poynting vector and T is the Maxwell stress tensor.

Using the transformation (7) and introducing the fluid quantities (12), one obtains for the quasi-optics equa-
tion (4) wheret +»n,V—>Vyandy, =0

w=p, J=py,

! 1 Y2
Tag = ~ s [(Vap)(Vap) ~ PUaU +;k—%' 8ag(Vin) + % éapp’]. a,B=x,y,

1
TH(T) =% [(V}p) - 407  (Vro)* — 2kdp(v+ v) + 2ko73p0°],

: . 1 - 2

' Q=27 (Vr{Vr * (ev)] - (V10)(V1 * v) + v[(V}0) - 67! (V1p)? — 2khp(v - v)]} "“’;7292 : (20

o The equation of the effective beam radius is now
Qs = Q% +2c1m +can® (¢29)]
with the following constants of motion:

.--.. Wo = fda p|ﬂ=0

) z

¢
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1
2 -
% = Wo }:fdo '2pln=o

1 v

T — . \;‘
€= !dgr PV, o o
/

&2 = f do (Vo) — 107 (Vro)? — 2k3p(v - v) + 2v:k00%}, . (22)

wo 2%

The beam quantities (20) verify the conservation relations (16). The invariant ¢, is related to the transverse
energy current. In terms of amplitude and phase, the integrand is 4%(# * V1 ¢). This shows that when the trans-
verse current of energy, which is proportional to the transverse gradient of the phase ¢, is negative (V3¢ <0),
self-induced lensing dominates diffraction spreading. It should be pointed out that these results only are valid for
a nonconfined beam of finite power. The integrals in the x, y plane around the outside boundary of the beam
cross-section can only vanish if both e and Ve vanish. This is not possible on a finite boundary unless e
vanishes everywhere. For a finite beam the boundary should recede to infinite. In the numerical solution it is
necessary to introduce 2 perfect conducting wall. The surface ir: :2¢-uis remain finite, although small. For this
reason numerical solution will disagree with the average mean square radius calculated from the method of mo-

: ments by a small finite difference.

- A similar hierarchy of moments was derived via the quasi-particle approach [22]. An alternative to the

o Schrodinger picture [13] discussed here is the Heisenberg picture proposed in ref. [23]. Although both methods
- give the same expectation values, the Heisenberg picture is believed to be simpler.

p The method of moments as outlined here represents a local check to the numerical analysis giving the average

estimate for quantities related to e*.

o
AN 6. The Lagrangian formulation
o Let us summarize the fluid equations taking the quasi-optics relation (4) with the nonlinear polarization term

in the form (9). One has for x; # 0 (nonzero gain or absorption)
i::. —a-p.',v .-(pu\z_lxp p[lv+(u- V )U] =_l.—pv [p-llzv2(pl/2)+x ] (23)
- an T Sk, NP an T T T ri-

The second equation can be rewritten as

9
- ‘. p[gu +(v- VT)U] 4k2 Vr{pVi(n p)] + = 2k2 VIXxr
. or, by analogy with usual “fluid” equations, as
= d ]
. —+(v V¥ = VP +—— ViXR,
¢ P[an (v-Vr) T 2k’ TXR (24)
T where the scalar function P is defined as
= [pV (In p)]. (29)

‘ To elaborate the appropriate computational code, we transform egs. (23) and (24) into the Lagrangian coordi-
nates [19].
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The two hydrodynamic equations (23) may be rewritten in the Eulerian coordinates (); = 0) in the form

D D
—p+pVr-v=0, —v= VP,
Dn pVT pDn T

. where D/Dn =9/07n + v « Vr is the Eulerian derivative describing the motion of the fluid element in a given point
of the laboratory frame of reference. Let us transform eq. (23) into Lagrangian coordinates in which the observer
moves with the fluid element. In this way, the local derivative 3/dn becomes equal to the total derivative D/Dn
although the new coordinates will be related to the initial position of the fluid element [24].

6.1. The one-dimensional case

Let X, n be the Eulerian coordinates and X = X, (n = O define the Lagrangian coordinate X . The speed v is
defined in the one-dimensional case as v = 3.X/d7.
The transformation relations are as follows:

: L

X=XXo,m)=Xo+ [ dnfu(Xo,mL), m=mp. (26)
0

It thus follows that

L_(a)()" 3 b 9 9X 0

ax \ax,) ax," amg om omox

The first equation (23) gives for x; =0

ap ( X )" a X
— p —— — — 0’
anL \dXo/ 09X, omy
which integrates to the mass conservation law
P = Po(3X/2X,)™. (27)
The second equation (24) transforms with the help of (27) into
X d 1 (ax )" 9
—=——2PFP+ - 28
Poomt X 25 P%\ax,) axy % (28)

Using eq. (27), the scalar function P reads in Lagrangian coordinates

Pk P () - ()

and eq. (28) gives, using eq. (29),

S FX__L (ﬂ)"(é’_{)[z(ﬁ)“(a_’{)’_(é’_{)]

- i akd | \axo/ \axi/i™\ax,/ \ax3 X3

- o) ) (GG - () () - Gl 23) s

F 4 +(axo) [7 axo/ \axi/\ax3 \oxe ax’) ax} aXo) Xy \R (30)

The system of fluid equations (23) reduces to a single equation in X which has a second-order derivative in
variable 7 and derivatives in X up to fourth order.
3 For a nonlinear media with a nonvanishing x, the first equation (23)

2 oy Dy
anPU prp—

ax? T Pax¥ Tk, P

e ———— _ ¥ m
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is transformed into

2]
am L \Vax,/] 'k M

which by integration gives

nL
90X 1
= - dny .
P(axo) Po exP{ko([ nL Xl}

With this dependence of p on 7, the second equation (24) reads

ny 2 -1 nL
1 32X 2 1 (aX) ( ) 1 , }
— o — —— ——— —— — d .
Po exv{koaf dny X‘}an aX0P+2k%,p° axs) \ax,xe exp koof ngx[

6.2. Two-dimensional case in cylindrical geometry

In cylindrical coordinates, the system (23) reads

1

i v 9 ‘-_.(m)——l
P U te P = PXt,

2 2 1 af12 [ 3. N.»p 3
—u, +v - —|r= +=—= —Xgr.

"(an U o "’) Wl sl " ”)J} 25 or X

Introducing the Lagrangian variables rop, n1

re=rgfoL, ML), ME=TL,

we find the solution of the first relation (38) in the form (for x; = 0)
or, r

pEp °(a » ) e
ToL TE

Let us define the fluid “pressure” by analogy with previous cases as

9
- {pé [ gt p)]}.
The scalar P is explicitly
rapelon) [om) () - Gre) () ()
4kg " \orgL dro/ \rgy dro/ \ordL/ re\ardy
Finally, the eq. (36) becomes
3rg 1

oo ) () ) G - (22) G
ani 4k} dror/ \drg/ redl\org/ \org dro/ \orgL/

] T N o)
rg \Org/ \org droL aror/ \ord J\ord )™ “\or ) \ord,

(ar..;) (a‘rg) 1(a r5)+_2_(355_)2 1_(ar5 )" a’rg‘]}+ 1 (arg)' 3
droL/ \orge) rt\org/ reg \ard, rg \drgL (ar?,,_, %3 \orgL)  argL X

oot nbnellon ol el el ST I YOUC WP N S PN WY UDUFYPE  W N W

€18}

(32)

(33)

(34)

(36)

(37)

(38)
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In the case of the imaginary part of X, X3 # O we have by analogy with eq.(32)

atrg FoL )" RN | I /g )" )
— = — e —— —_— — | — —_— i 39
ant (po rg exp ko 5[ dnu xine) oroy d 2k} \a’oL droL XR 39)

Details of the two-dimensional case in Cartesian coordinates can be found in ref. {25].

The evolutional equations (30) and (38) are rather complex dus to the presence of the inverse displacement
gradient Jacobian Jj;. In order to obtain the evolutional equation more accessible to numerical analyvsis, we limit
ourselves to the paraxial approximation, assuming that the beam convergence or divergence, respectiv-ly, due to
the nonlinear polarization remains small. Let us introduce the Lagrangian displacement § [26]

aX; of;
x=xo+&, €lxol, Jij=mo— =8+ 40
[1] g |§| I 0' if aXOI i aXol ( )
The value of any function (field) defined on x, resulting from the displacement § may be expanded in power
series of & either in form of Eulerian expansions defined at x(n), either in form of Lagrangian expansions defined
at xo(7). Introducing the Eulerian expansions

P(X) = po(x) + 81 0(x) + 82p(x) + ..., V(X)=vo(x) +8,0(x) +E;0(x) + ...

into the system (23) and expressing the first and second order changes 8 as functions of the displacement §, we
obtain the following hierarchy of evolutional equations [24]. (We assume 3/07vo = 0, X; = xr = 0):

1
Oth order: (vg * V1)vo = o™ Vi (o3 Vipl'?}; 41
]

Ist order:

E +200- Vp)E +®o V1)((vo* V)& — (& * Vx)uol + ([o - V3)§ — (& Vr)vol * Vrlve

= 2 V(652 (V1  (o®)] Vhob™ — 63 VR 165 Vr - op)] s @2)
2nd order:
. o g
(& V)& +(vo - V1)§ — (& * Vr)uo] + & aXoiua(iX’oi

+ {[(&* Vr)vo] * V}[& +(vo* V)&~ (§° Vr)vol + {(§- V)& + (o - V)& — (& * Vr)ve] * Vr}vo
3%v,

azl;o
+4(vo VT)E:Eimﬂ{[&Eim] V-r}vo

1 3t;
% Vr {pa”’ [[Vr * (Po8)] Vi [05" 2 V1 * (0oB)] + po[ﬁi—aﬁa—i +(Vr -g)’] V3po

¥ 5 ; g
+ [z(a- VD[V * (o8] ~ ki g ~ 200 det 5;‘;;] V’Tp.,] +p5 V4 [pe,n [_(vT %

_ % _afL] a3y, . 172 3o ’2 (aii )] .
3Xo; 3Xo; 205" (& V)Vr * (poB)] + 00 Eiﬁj———‘axmaxw‘fZPf, det %)) | (43)

for dispersive media x; # b, xR # 0 and the integration of the first equation (23) results in

p= po(det I exp[(l/ko) jl dn' x,]. (44)
0

S
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10 F.P. Mattar, J. Teichmann [ High intensity laser beam propagation

The r.h.s. of the second evolution equation should then be completed by an additional term

_k’ {Vrxr = (V1 - §)Vrxr}. (45)
In case of an azimuthally symmetric beam we introduce cylindrical coordinates assuming that the azimuth ¢ is

ignorable. Then

detJ =L -ir-—
ro org

Under the assumption of the paraxial approximation, r = ry + £ the hierarchy of evolutional relations reads
Ga =xr =0):

"°’airo”°’ % aio {" Ol : 3 "m} (46)
£ 2vo,gg‘+ u(’,,g%g Vork :; vor + vo’(aio E)(g—o”w)— E(%uo,)z

ok 2 (22) +(g7;:a)+2g¢:o 2 20,2 Lo, @
zBr—o[z" vor af' - aa"r‘;’] 3 a R (z"’_a:%_)

[pug- a3 s%’;][s‘*vo‘r e B T

1 22
=33 ai lpo”’[[dW(poS)]—lpa”’ div(pot)] - 200 r,[ o"? ——{dw(pog)]

uzi _3_E =1/242 3 Po 172 5 172 3E 2]
+ 00 ro 3ro * 4 ’% +po f% +P0/ (aro)
£ ot

o e ot ) 2

A generalization of these equations for the dissipative case, x; # 0, xg # O is straightforward.

In the two methods presented, the set of starting transport equations is combined, via the Lagrangian displace-
ment X on £ in the case of paraxial approximation, into one equation for X or §, respectively. This equation [egs.
(30) or (38), eqs. (47), (43) or (47), (48)] is further elaborated using a suitable differencing scheme. The virtue of
the present analysis consists in the fact, that only one variable has to be calculated. This differs our method from
Lagrangian analysis, carried out in the past [24].

7. Conclusion

By writing the paraxial scalar wave equation in a conservation form, one finds that it has the structure of the
hydrodynamics equation. On the basis of this analogy, the intensity of the laser beam, lel?, can be interpreted as
the density p, while the phase, ¢, as the velocity potential (v = grad ¢) of a hydrodynamic flow process subjected
to a pressure, which — in contrast to classical hydrodynamics — depends on derivativés of the fluid density.

It is noteworthy that this hydrodynamic approach to intense laser propagation in nonlinear media removes the
rapid numerical oscillations encountered when the field is described by its real and imaginary parts: the new
independent variables change much more slowly.
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During the nonlinear interaction, significant reshaping and beam distortion take place. To achieve accuracy and
efficiency simultaneously, one must resort to nonuniform grids which self-adjust according to the local require-
ments of the physics. Thus, the Lagrangian description — as opposed to the Eulerian description, which would
have required mapping and adaptive rezoning techniques — is adopted.

The continuity and velocity equations reduce to only one evolution equation for the Lagrangian displacement.
The resulting governing equation involves derivatives 8r/dr¢ up to the fourth order. To overcome the numerical
difficulties associated to the inversion of the Jacobian, an analytical algorithm valid in the paraxial limit was
further presented.

The object of this communication was to illustrate a novel transfer of effective computational techniques
gained in fluid and aerodynamics to optical physics [8] by emphasizing the fluid equivalency. The main goals of
this study were to (1) propose an algorithm which is totally consistent with the subtle physics requirements; and
(2) to readily gain additional physical insights in this essential nonlinear light—matter interaction.

It is noteworthy that a recent independent research effort also dealt with the hydrodynamic analogy in a
Lagrangian description for nonlinear propagation in the atmosphere. However, an explicit algorithm was adopted
[26].
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Abstract

Results of numerical calculations are presented and analyzed for pulse generation and subsequent stabili-
zation in large propagation distance z , for a collection of two-level absorbers which are swept-excited by
an impulse inversion along the z-direction at the speed of light in the medium. The calculation is performed
using the coupled Maxwell-Bloch formalism and for the conditions that Tp =Ty , T2 > > 1., g/k> > 1, where
Tz is macroscopic dipole moment dephasing time, Ty is the longitudinal relaxation time for the absorber, 1.
is the characteristic superradiant cooperation time among the absorbers and g/ is the linear gain, g , to
diffraction loss, ¢, ratio. Results of the calculation for nonlinear pulse evolution and propagation for one
spacial dimension (planar case) is compared with the results for the comparable case where transverse mode
coupling is included.

Introduction

In 1975, Bonifacio, Hopf, Meystre and Scully‘(hereafter referred to as BHMS) predicted the conditions for
which steady-state pulses having characteristics of superradiance (intensity .p?, temporal width . 1/p , where
p s the density of absorbers, and pulse envelope varying in time as hyperbolic secant with characteristic
delay of the peak from the excitation) can be generated in swept-gain amplifiers. They obtained and analyzed
steady-state solutions of the coupled Maxwell-Bloch equations in the retarded time frame in one spacial di-
mension z in the 1imit 2z - » , for the initial condition that impulse inversion occurs at v = 0, where v = t
- z/c, in the retarded time. Exact analytical results under these conditions were obtained by BHMS for hom-
ogeneously-broadened systems for two special cases, T2 < < Ty and T} = Ty, where T; and Ty, are the transverse
and longitudinal atomic relaxation times, respectively.

1
Subsequent theoretical work which followed the initial work of BHMS addressed to the quantum mechanical as-
pects of pulse buildup from noise and the role of spontaneous emission in the small signal regime for a sys-
tem with small Doppler width? and for a homogeneously-broadened system.’ Further theoretical work analyzed

the effects of coherent pumping, for the excitation, on pulse buildup, both numerically® and analytically:®7

The first reported detailed experimental study of swept-gain superradiance®’ was for C'Jz-pumped CH3F.

Since Dicke's initial predictions for the circumstances under which a macroscopic volume of atoms can
radiate collectively (collective, spontaneous relaxation), a large amount of theoretical and experimental
effort has been devoted to the subject of superradiance.’ Experimental arrangements for the study of super-
radiance has been identical with that for swept-gain superradiance.?s!" Even though the two phenomena stem
from entirely different physical processes, the same physical model should account for both, each being a
limiting case essentially in terms of the iength of the active volume of atoms. Indeed, the first reported
experimental study of swept-gain superradiance® also constituted a study of the evolution from superradiant
response of the system through swept-gain superradiance as a function of the length of the active volume
along the propagation axis.!® The experimental results indicate a continuous transition from conditions
supportive of superradiance or superfluorescence through swept-gain superradiance in the asymptotic regime
of large propagation length z,

In this paper we analyze numerically, and interpret analytically, the evolution of the response of a
collection of two-level absorbers to swept impulse excitation, from the small volume, superradiant regime,
through the asymptotic, steady-state propagation at sufficiently large pro?agation distances 2, We also de-
termine the effects of transverse mode coupling on the pulse generation'!'*!'?  and propagation.!?

*ork partially supported by ARO, ONR, Battelle, University of Montreal, and Research Corporation,
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The model is presented in the next section and the analytical results for swept-gain superradiance in the
planar regime obtained previously by BHMS' are briefl¥ reviewed. A comparison is made between conditions
for the observation of single pulse superfluorescence'® and swept-gain superradiance.! Results of the nu-
merical calculations are presented and discussed in Section III for the evolution of pulse area with propa-
gation distance z for the single spacial dimension. The evolution from superradiance to steady-state
swept-gain superradiance and their connection is explicitly analyzed and discussed. Results for a compar-
able case incorporating transverse mode coupling with a Guassian gain profile are presented and compared
with results for the planar, one spacial dimension calculation. It is shown that the effects of self-focus-
ing can be much more important in the swept-gain, steady-state condition than for the particular correspond-
ing conditions for superradiance. The results of our calculation are summarized in the last section and
future work connected with these results is outlined.

II. Coupled Maxwell-Bloch model for swept-gain superradiance

BHMS showed® that if a volume of two-level absorbers is gain-swept at the speed of light in the active
medium by a traveling impulse excitation, a solitary pulse is generated from noise amplification in the
amplifying medium and reaches a steady-state at sufficiently large propagation distance z, provided the
gain, g, to loss,« , ratio satisfies the condition g/c > 1. The solitary pulse is characterized by super-
radiant-1ike features with respect to pulse shape, intensity, temporal width, and delay of the peak of the
pulse envelope from the impulse excitation.

They considered the coupled Maxwell-Bloch equations in the retarded time frame, which is a frequently
used model for pulse propagation and generation in nonlinear media,

P _ P

i —Tz (2-1)
__aA =S - - .A— -
9T eP T] (2-2)
9 _ - -
3¢ P-xe. (2-3)

In the above equations, P is the dimensionless macroscopic transverse polarization per atom, 4 is the inver-
sion for the two-level atom, T2 and Ty, are the dephasing and relaxation times for the polarization and atom-
ic inversion, respectively. The thiré equation,(2-3), is the linearized Maxwell equation'’ in the retarded
time frame in the slowly varying envelope (SVEA) and rotating wave approximation for the pulse envelope E.
Here, the electromagnetic field envelope, £ , is normalized to give the Rabi frequency!s ¢ ,

u E
= 9 -
€= % (2-8
where pg is the matrix element of the transition dipole moment between the pair of atomic energy levels and
E is the electromagnetic field envelope which is a function of the propagation coordinate z and retarded
time t ,

t=t-2z/c. (2-5)
The other quantities involved in Eqs. (2-1) - (2-3) are
2

< . 3 2 ,

G--'Fz--ﬁ—_l% (2-6)

where g is the gafn and A is the wavelength of the carrier frequency of the single mode radiation field en-
velope, p is the atomic density and v, s the spontaneous atomic relaxation time. The loss term in (2-3)
defined by <« is the linear Toss which arises because of diffraction as well as other dissipative processes.
BHMS considered the steady-state solutions of (2-1) - (2-3), i.e., the solutions under the condition
e(z+m,7) = 1im Je(0.1)e™ % + & 3 dz* e'K(z'z ) P(z‘,r)} (2-7)

z-ofn
and the initial condition
af{t=0) =1, (2-8)

Equation (2-7) leads immediately to the adiabatic relation between the field and polarization,

e(ze,1) = S:- P(z+m,1) . (2-9)
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This last expression can be used to eliminate P from (2-1) and (2-2) and steady-statz solutions are found by
solving the resulting pair of nonlinear differential equations.

Exact analytical results were obtained by BHMS for two distinct cases, T2< <7 and T2 = T]. For
T, < <T

2 1
e{t) = ?:- sech —z: {2-10)
where )
-1
T; = T2 [(g-x)/t] (2-11)

For g >>«, we see from (2-10), (2-11), and (2-6) that the intensity I of the steady-state pulse, I ~ E2,
varies as the density squared, I ~p?, whereas (2-10) and (2-11) indicate that the width t$ varies inversely
as the density 15 ~ 1/p. Also, from (2-11) the pulse width is always less than T, whenever g > «. For

T, =T,:

2 1°

The set of equations (2-1) - (2-3) reduces to the generalized sine-Gordon equation’

2
37¢(E,2) ale,z) _ s
SE3s + K 32’ = q sin ¢(£&,2) (2-12)
where
gx (- (2-13)
is the reduced time and
N S
LT
The angle ¢ is the Bloch angle,
= 9
€= ¥ (2-14)

%n the asymptotic regime, the space derivative term in (2-12) vanishes and the resulting solution, using
2-18), is

elt) = L e secn L £(t) - E] (2-15)
Tg Tg 0
where
kT
2
g 7 (2-16)
and the time delay between the impulge excitation and the peak of the steady-state pulse Eo’ is given by
Eo =1 log [Fot %¢o] . (2-17)

Here, ¢, is the initial Bloch-angle at v = 0 to account for quantum noise which drives the atomic excitation
away from the completely inverted metastable state.

Again, from {2-15) it is seen that the intensity I ~ p? whereas the pulse width T~ V/o . It was shown'
by BHMS that such pulses will evolve provided g/ > 1. The area of the pulse 8 is defined as the Bloch angle
¢ at infinite time v , and is obtained by ir egrating (2-14). From (2-12) in the asymptotic regime, i.e.,
neglecting the first term on the left,

tan 36 = (tan %¢o) % (2-18)

Thus, given an initial Bloch angle 4,, for g/« sufficiently large, the area 9 approaches n , i.e., as large
as it can be for a single pulse. The threshold for 6 - m was determined to be

. 1
{g/‘(]threshold ~ 109('5;) . (2-19)
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Any further increase in the gain-to-loss, g/, does not increase the pulse area since it is saturated above
threshold. However, from (2-15) the intensity continues to vary as the square of the density and the pulse
width as inverse density.

The criteria, therefore, for the generation of steady-state pulses is that the active medium be swept-
excited at the speed of Iight in the medium and that g/k > 1. The resulting pulses have characteristics
of superfluorescence1 , although for different physical reasons. The major difference in realizing the
two phenomena is that to produce superfluorescence the medium responds as though it were uniformily excited,
i.e., the atoms are contained within a certain cooperation volume, whereas for swept-gain superradiance,
the medium "sees" an impulse excitation traveling at the velocity of 11ght in the medium. Table 1 compares
the conditions for single pulse superfluorescence in the mean field limit'*, with the corresponding con-
ditions for pulse generation in swept-gain superradiance in the asymptotic regime. It is to be pointed out
that the essential phys1ca1 difference between what has been called superfluorescence‘“ and what is termed
swept-gain superradiance' is that the atomic relaxation for the former occurs by collective, spontaneous
relaxation®, whereas for the latter, individual atomic relaxation occurs by stimulated relaxation due to
pulse propagation in the medium.

Table 1. Comparison of Conditions for Superfluorescence in Mean Field Approximatior with Swept-Gain
Superradiance in Asymptotic Approximation

Superfluprescence Swept-Gain Superradiance
Mean-Field Approximation Asymptotic Approximatien
ngt) = aP(t) - x7e(t) —35%5412- = oP(z,1) - xe(z,1)

T= t-2/c
. Je 9€
KE>>R K'€>>§—Z-
' . K
P = —&-S P = T].—e
tE<Tc<TR<TD<T1,T2,T5 g/x > 1
T = L/C = (o)
E E
8nt T
Ty = —-—%— T = __g
R sl s g
1 - Y
Th = TR Tog ( 92) Eo TS lag {cot 1¢o]
0
1
= s -
T = (r T ) T (TE )

Here, tg s the characteristic superradiance time'* for z = L, tp is the delay time!* of the pulse peak from
the excitat1on and Tc is the cooperation time correspondlng to the cooperation length ., T = c2c. Note
that for L = lc, TR = Tec. Tp is the delay time of the peak of the superradiant pulse from the impulse ex-
citat-on.

We have calculated the evolution of pulse area for swept-gain superradiance as a function o1 propagation
distance z according to the relations (2-1) - (2-3) for the conditions Ty = T2, g/x > log {1/¢) and for
TR <« Tp where Tp is the characteristic superfluorescence time. Thus, we have determined the evolution of
pulse area from the superfluorescence regime (small z) through the asymptotic swept-gain regime (large 2z).
These results we compare with corresponding calculations taking into account transverse mode coupling and
diffr?ction for a Gaussian gain profile. 1In this case, the Maxwell equation (2-3) takes the three-dimen-
sfonal form

-1 2 e _
- 1T23' Vgt 4 5oz 4P {2-20)

where d = radial function describing nonuniformity of gain profile, n= za , and
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is the Beer's length dependent Fresnel number relevant to propagation effects. Here r, is the Gaussian gain
width at half maximum. The transverse effects arising from (2-20) are related to the planar case using
(2-3) by taking the linear field loss « in the latter to be entirely diffraction-loss, i.e.

= A
k=3 (2-22)
where A = nrg . Thus, the Fresnel number JF, (2-21), is
- 9 -
4.4 (2-23)

the gain-to-loss ratio. The results of the calculation and related discussions are presented in the next
section.

III. Numerical results for propagation and transverse effects: Evolution from superfluorescence to
swept-gain superradiance

First we present the results of numerical integration of (2-1) - (2-3) for the initial condition (2-8)
and for Ty = T2. We have also chosen the values for the system parameters such that the superradiance co-
operation time,!®r. , satisfies the condition tc << T2 (see Table 1), where L = ct. is the maximum Tength of
the sample over which the atoms can cooperate to produce superradiant emission. Also, the gain, g , to loss,
« » ratio, g/c > >log (1/¢0),(see (2-19)), so that results of the last section predict steady-state pulses
of area 6 = w , Eq. (2-18),

The absolute pulse area |8| ,
lo] = .E-hz[dr (3-1)

is shown as a function of propagation length z in Figure 1. There are three distinct regimes evident in the
pulse area, |8] , propagation evolution. These are determined by the characteristic times for the system Tp
(Table 1), and g, (2-16).

The first regime, characterized by the smallest values of the propagation distance z, shows a rapid rise
of the pulse area, {3-1), with propagation distance z. The area proceeds in z through 19| = m , correspond-
ing to single pulse buildup, to values |g| > v , which eventually corresponds to subsequent ringing, and
finally peaks out at |8] = 3w . This behavior is described by the sine-Gordon equation (2-12), with the
values of the parameters used in the calculation (see Figure 1). We have, for this particular small z re-
gime,

39 -
kSt << asin ¢, (3-2)
so (2-12) becomes
2
O S
7 - ¢ sin¢ : (3-3)

where, from (2-13), £ > t since in this case T/Tp < < 1. This is just the Burnham-Chiao propagation
equation!? , which yields the well-known solution for pulse buildup from gain with subsequent undamped
ringing.

From (2-6) and Table 1, we have

a = _1—-2_ (3-4)

2¢c T,

where 1. is the Arecchi-Courtens superradiant cooperation time '* which corresponds to the superradiant co-
operation length z = %,% = ¢7., the maximum length over which the atoms can cooperate collectively to
produce superradiant emission. Equation (3-3) yields

2/8,
£ - 5%: J‘ & sin ¢ . (3-5)
[s]
Here,
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v = 1/tc = z/% and 8 , as in (3-1), is related to the Bloch angle ¢ , by 8 = ¢(t= z/c), Thus, the initial
pulse buildup in Figure 1 is governed by the superradiance time tg (Table 1) where 1 ~z-} and TR= T¢ when
2z = ¢, and in this particular case, &c = 2.68 cm. The region corresponding to 0 < ?el < we call the
single pulse superradiant regime, z < %, which is subsequently followed by Burnham-Chiao ringing. This
initial superradiant pulse buildup occurs in this case because t, < < Tp.

After several diffraction lengths K-], the area (3-1) reaches a maximum and then decays as e % to the
asymptotic steady-state 6 = m pulse predicted analytically in the last section, and shown in Figure 1. This
regime is governed by the characteristic time tg, (2-16).

The results shown in Figure 1 exhibit the pulse area evolution from pure superradiance,|8] < w, through
Burnham-Chiao ringing, each governed by tp, to pulse area instability which subsequently decays by linear
field loss k to the asymptotic steady-state n pulse. The necessary and sufficient conditions for evolution
from superradiance to w-pulse swept-gain superradiance are that g/ > log 1/¢o > 1, T << TZ‘

The effects of changes in the value of the linear field loss ¢ , all other parameters remaining the same,
are shown in Figure 2 for four other values of « and, hence g/x. It is seen that asymptotic stability in
the pulse area is reached for lower z values the higher the value for the loss « , as one would expect. Also,
the higher Toss and lower gain-to-loss reduce the amplitude of the pulse area instability peak, again as one
would expect. This further suggests that the transition from superradiance to asymptotic swept-gain super-
radiance can occur without intermediate ringing {1f (xc)-!< <t

When transverse effects are taken into account in the calculation, Eq. (2-3) is replaced by (2-20). The
transverse mode coupling is generated through the first term in (2-20), and its contribution is governed by
the Fresnel number F-, (2-21) and (2-23). This is not the conventional Fresnel number used in discussions
of superradiance and superfluorescence!?, but it is the one which is meaningfull? throughout the entire pro-
pagation regime. Generally, the larger the Fresnel number £ , (2-21), the less the importance of contribu-
tions from transverse effects, (2-20), i.e., large 4 means more nearly plane wave propagation behavior.

We use the values of the parameters and the conditions which gave rise to the one-dimensional results of
Figure 1, but choose the cross-sectional area A for a Gaussian initial gain profile from (2-22) and the value
of « used to obtain the results of Figure 1, where rp is the radial Gaussian width for the gain distribution,
and obtain the calculational results shown in Figure 3. Here, we show the pulse area (3-1) as a function
of propagation distance z and radial dimension o . Energy which intersects the boundary p = pPpax is ab-
sorbed in the calculation; thus diffraction as well as transverse mode coupling is explicitly treated in the
calculation consistent with the conditions imposed by (2-20), (2-21) - (2-23). Thus, the calculation giv-
ing the results shown in Figure 3 is the three-dimensional extension of the calculation which gave the re-
sults shown in Figure 1. The pulse area {3-1) as a function of z for the on-¢xis mode is displayed in Fig-
ure 4,

It is noted by comparing Figures 1, 3, and 4 that the transverse effects almost completely wash-out the
instability in the pulse area buildup which occurs in the one-dimensional calculation, Figure 1. Further-
more, Figures 3 and 4 indicate a different kind of pulse area instability at higher z values which is due
to self-focusing. The qualitative effects of self-focusing on pulse propagation can be seen in Figure 5.
The results of the three-dimensional calculation indicate, therefore, that a true steady-state may not
exist, at least in the sense of the analytical predictions of Section II.

Similar one-spacial dimension calculations for pulse area evolution in sw§gt-gain superradiance, but
under the influence of lethargic gain conditions, have been reported by BHMS °,

Iv. Summary and conclusions

We have demonstrated the pulse evolution in one-dimensional propagation from ;upgrf1uorescence to asymp-
totic swept-gain sugerradiance for ideal conditions supportive of superfluorescence'“!® and m-pulse swept-
gain superradiance. The results are shown in Figures 1 and 2. Transverse effects tend to wash-out the
early pulse area instability which occurs for the one-dimensional case as seen by comparing Figures 1 and 2
with Figures 3 and 4. However, as noted in Figures 3 and 4, the pulse area shows an instability in the
asymptotic region of large z when transverse effects are taken into account. Th's evidently arises from
self-focusing, Figure 5. Thus, in this case, a true steady-state does not exist due to transverse mode
coupling effects.

This work is in process of being extended?°»2! to the calculation of the effects of coherent optical
pumping and propagation as well as transverse effects for three-level systems®:’ for three-level super-
fluorescence and swept-gain superradiance and coherent pulse shaping due to specified pulse injection and
propagation in three-level systems,
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Figure 1. Pulse area 6 = { |eldT vs. propagation dis-
tance z for numerical integration of Egqs. (2-1) - (2-3).

Values for the parameters uied in the calculation are:

g =291.6 cm™ ], K=

60cm!,g/c = 112,15, Ty=T2=70
¢ = 9.42 X 10-4,1¢ =

89.4 psec.

Pulse area 9 vs.
and radial dimension p for numerical integration of

Figure 3. propagation distance z
Egs. (2-1), (2-2), and (2-20).
eters used are those of Figure 1, with the Fresnel
number & chosen according to (2- 223) and a Gaussian
initial gain profile determined from (2-21),{2-22).
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Figure 2. Pulse area8= ! [c|dt vs. propagation
distance z for numerical integration of Eqs. (2-1)
- (2-3). values of the parameters used are those
of Figure 1 except for x: 1)x= 5.2 cm-!, g/x =
56.08; 2) x = 10.4 cm-1, g/« _= 28.04; 3) « = 20.8,
g/k =14.02; 8) k = 41,6 cm-1, g/k = 7.01,
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Figure 4. Pulse area 8 vs. propagation distance
z for the on-axis mode. Values of the parameters
are those of Figure 3.

Figure 5. Temporal and radial dependence of
pulse intensity at large 2,
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Effects of propagation, transverse mode coupling,
diffraction, and fluctuations on superfluorescence evolution

Farres P. Mattar
Department of Mechanical and Aerospace Engineering
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Brooklyn, New York 11201

Spectroscopy Labaratory, Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract

Using proven computational methods developed to efficiently treat transverse and longitu-
dinal dynamic reshaping associated with single-stream propagation effects in cooperative
light-matter interactions, a realistic superfluorescence (SF) theory was constructed in close
collaboration with experimentalists. A semi-classical model based on the Maxwell-Bloch equa-
tions (which rigorously encompasses diffraction, :ransverse density variations and inhomoge-
neous broadening) is used. Furthermore, the medium initiation is stimulated by a coherent
pulse of an area 9_ which varies radially, propagates along the rod axis and tips the indi-
vidual Bloch vectors over an angle 6_ from its upright position. This effective initiation
is treated in using either (a) an hoﬁogeneous average tipping angle or (b) instantaneous
longitudinal and transverse fluctuations. The Cs datas are correctly simulated for the first
time. "

Important remark

At this time, T wish to express my appreciatioun and give credit to Gibbs, McCall and Feld
for their many contributions in the form of numerous relevant discussions, preparatory ana-
lytical work and help in selecting details of realistic models based on their close contact
with laboratory results. In addition, Dr Gibbs' participation in carrying the calculations
accelerated the rate of progress in my research. Let me take this occasion to thank Dr. Gibbs,
Dr. McCall and Dr. Feld for their encrgetic and enthousiastic collaboration.

Introduction

Superfluorescence1 (SF) is the process by which coherent emission occurs from an ensemble
of two-level atoms all initially in the upper state. An important question in SF experiments
is why the output pulse is sometimes smooth, but at other times exhibits multiple structure
or ringing. Strong rigging or pulsing has been observed. by several groups, including the
initial HF gas studies-. However, recent Cs experimentsJ never show ringing at low densities,
whereas at higher densities, highly fluctuating multiple pulsing is usuallv observed, belie-
ved to arise from transverse mode competition. Strong '"McCall/Burnham-Chiao™ ringing” is
predicted by semi-classical plane-wave models with initial tipping angle?, which neglect
variations transverse to the propagation direction. On the other hand, simplified propaga-
tionless analytic solutions based on the mean field theory (MFT)0 of SF pulses have resulted
in a symnetrical sech? single pulse output. However, such solutions are somewhat academic
since all the experiments so far use extended samples for which propagation effects play a
major role. Alternatively, when the effective tipping angle is analysed, using quantum
mechanics’, several featurcs of the obscrved pulses are successfully explained. However,
the theory is again far from being complete as several other features, such as the absence
of ringing remain unexplained. That is probably as was noted3.,7,10,15 hecause the one-di-
mensional model was unrealistic. Specifically, transverse effects are expected to influence
the pulse evolution in at lecast two wavs: (a) spatial averaging of radiaticn evolving pla-
narly in concentric shells each with its own density (hence, its own initiation and own
delay); and (b) dif{{raction coup?ing which induces communication betwcen adiacent shells.
The first mechanism describes very large Fresnel number F while the sccond one is very
important with small F samples, Inclusion of transverse effects substantially altered the
one-dimensional Cs predicfionsbh, lecading the ereater conformitv with the Cs data.

The initial SF state is prepared by rvapidly inverting a samplc of three level atoms by
transferring population from the ground state to the upner state with a short light pulse,
creating a cvlindrical region of excited atoms<. SF pulsc cmission subsequently occurs
between this excited state and the intermediate state. There is no optical cavity and stray
feedback is negligible.,

*

This work was supported in part hyv F.P. “attar, the Rescarch Corporation, Mobil 0I1 (Corpe-
ration, the University of Montreal and the U.S., Armyv Rescarch and National Science Foundation.
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This research employs the semicliassical Maxwell-Bloch approach to explore the influence

of transverse effects, using both the average value4,°3@ and statistics’ of the initial t%p-

ping angle4,53, The latter part of the study encompasses both longitudinal fluctuations

%nd transverse fluctuations in the initiating spontaneous emission, as influenced by dif-
raction.

Transverse effects are expected to influence the pulse shapes in at least two ways, one
of which is spatial averaging. In SF experiments the initial inversion density, n,(r), is
radially dependent since the pump light pulse typically has a Gaussian-like profile.8 In
the absence of diffraction this cylinder can be thought of as a set of concentric cylindri-
can shells, each with its own density, tipping angle and delay time?. The radiation will
thus be a sum of plane-wave intensities; when the entire output—s&gnal is viewed the ringing
averages out, resulting in an asymmetric pulse with a long tail.!

A second transverse effect, di4{4raction, causes light emitted by one shell to affect the
emission from adjacent shells. This cross-coupling mechanism, which causes transverse ener-
gy flow, is more important for samples with small Fresnel numbers F.

Furthermore, SF is inherently a thansvense e¢§fect problem even for large F samples since
the off-axis modes are not discriminated against. This work is the first to correctly in-
clude this crucial element.

Our analysis adopts the coupled Maxwell-Bloch equations, which take fully into account
propagation and transveri? effects. Previous approaches examined transverse effects in the
mean field approximation or included a loss term in the Maxwell equation to describe dif-
fraction.2,5,12 Thus, our model possesses a long sought after degree of realism.l3a

Equation of motion

The simulations are based upon an extension of a modell4 which describes transverse ef-
fects observed in self-induced transgarency experiments.ls For simplicity the influence of
the backward wave, being negligible,l6 is not presently considered, and CX%iTqrical symmetry

b

is assumed. Relaxat}on of its simplification will be discusses elsewhere The equa-
tions of motion areld:
3t .1 2, - P . : . dial d it
R+ - A - P (with g, the nonlinear gain, sustaining radia ensity (1a)
24 T variations)
P 2
3= /Ty = b= ¢n (1b)
an n
- + = - Re(&EP*/HK) (1)
A

where £ and P are the slowly varying complex amplitudes of the electric field and polari:za-
tion, respectivelv, n is the inversion density, tv = t-z/c is the retarded time, u is the
transition dipole moment matrix element and Ty and T, are the population relaxation and po-
larization dephasing times. Diffraction is taken into account by the Laplacian term

a2 . 13 36, where o = r/rp, with Fresnel number F = ﬂré/AL, T, radius of the initial
T o - a W (pg—p‘)

inversion density at half maximum, and L = sample length. The boundary conditions are

32/3r = 0 on the axis (r=0) and at r = ©»., To insure that (1) the entire field is accurate-
ly simulated, (2) no artificial reflections are introduced at the numerical boundary r >>r_,
and (3) fine diffraction variations near the axis are resolved; the sample cross-section i
divided into nonuniform cells, and is surrounded by an absorbing shell.

Equations (1) are numerically integrated subject to the initial conditions n = n, cos 8,,
Pzueiv:= un, sin 85 (cos & « i sin ¢), which correspond to an initial tipping angle &,
and a phase (horizontal tilt) angle ¢. The initial inversion density in the experiment is
radially dependent: r-dependence of n, and/or 65 is allowed for in the computations.

Numerical results. Figure la displays results where spatial averaging is present but

diffraction 1is absent, by setting F = @ in Eq. (la). In this figure the emitted power of

SF pulses is plotted for samples with uniform and Gaussian profiles of ng(r) and 95(r) {? is
constant). Here, ringing reduction due to spatial averaging of independent concentric
shells, (each emitting in a plane-wave fashion), is studied. For a given ¢, the casc of 9,
and ny both constant (curve i), the uniform plane-wave limit, exhibits strong ringing.4.5

In curve ii, in which ng is Gaussian (ng(r) = n§ exp(-Inl(r/ry)°)) and 25 and ¢ are uniform,
the ringing is largely averaged out, resulting in an asymmetric pulsc with a tail. An
essentially identical result (curve iii) is obtained for ny and 3, both Gaussian (¥g = 20
expl 0.5 1n2(r/r)%]), showing that the ringing is predominantly romoved by a Gaussian ©°
ne regardless of the radial dependence of 9,. This is expected since the output pulse
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parameters are all dependent only on [2n e°|.9 As shown in Fig. 1b, with uniform n, and 8,
but with diffraction included, the output 1s almost symmetrical and also nearly free of
ringing for F < 0.4.

Figure 2(a) studies the effect of diffraction on the SF pulse shapes by varying F, using
Gaussian ngy as in Fig. 1(a), curve ii. Reducing F curtails the oscillatory structure and
makes the output pulses more symmetrical, since the diffraction coupling between the minimum-
delay center portions of the excited <cylinder and the outer cylindrical shell causes the
delays of the latter to be reduced. Consequently, outer shells are stimulated to emit ear-
lier. This allows more of the cylinder to emit at the same time; the overall delay is
lenghtened slightly and the asymmetry from the Gaussian average is reduced. Thus, diffrac-
tion becomes more important as F decreases.

Figure 2(b) is an isometric graph of the intensity build-up for a sample with F = 1. The
radial variations of intensity peaks, delay and ringing illustrate how different gain shells
contribute independently to the net power. Each shell exhibits a different Burnham-Chiao
ringing pattern. Accordingly, their contributions to the net signal interfere and reduce
the ringing. However, the central portion of the output pulse should exhibit strong plane-
wave ringing. In fact, the ringing observed in the HF experiments? may have been just that,
since the detector viewed a small area in the near field of the beam.

Figure 3 compares the normalized Cs SF data of Ref. 3 and 13b (for which F ~ 0.7 with
uncertainty ranging from 0.35 to 1.4) to the theory (including relaxation terms). The data
were fitted using a Gaussian ng and a uniform 8, with nominal value’ 85 = 2/ ng nral, ng
being adjusted to yield the observed delays (1.6 to 2.8 times the experimental ng vaYues).
However, in Ref. 3 the curve published at each denigty was the one having the shoatest delay.
The average delay is . 30% greater at each density!’. Thus, the e§fective ratios of our
computed densities to the experimental ones range from 1.2 to 2.1, compared with the #60%,
~40% _quoted experimental uncertainties. The quantum calculations actually yield 8, =
(Z/\r%)[ln(Zn)l/ﬂll/z, a 9% correction which further reduces the range to 1.14 - 2.0. Should
one adopt Gibbs and Vrehen's decision to set 6, = 6/ n following the small injection experi-
mentl6 =~ the range is 1 - 1.8, yet closer agreement. The calculated shapes are in good agree-
ment with the data, and are within the range of shot-to-shot fluctuations (Fig. 3(a)). The
only discrepancy is that the simulations predict more of a tail than observed in the expe-
riments. For comparison, Fig. 3(b° also plots the fit in Ref. 3b of the one-dimensional
Maxwell-Schrodinger theory®. As can be seen, the present theory gives a more accurate fit,
illustrating the necessity of including transverse effects. The pulse ggils are further
curtailed by reducing F within the range of experimental uncertaintiesl (which used a
1/e rather than a HWHM definition of r_ ). Note that often a Fresnel number F' defined as
“r2/AL" is used; diffraction effects bgcome important when F' = 1 (i.e., when F = 0.36). If
oné includes inhomogeneous broadening, one finds that the tail is further reduced as dis-
played in Fig. 4. The reduction of T3 from ~, to 300 and 32 nsec (for graph. 1, 2 and 3
respectively) shortens the delay, reduces the asymmetry and depresses the tail.

The dependence of the delay measured by the peak location, the pulse width and the peak
intensity on the Fresnel numbers F, the radiation time and the tipping angle are illustra-
ted in figure 5.

One can examine fluctuations in the calculations eitherl directly (a) by allowing both
in-phase and out of phase components of P to vary randomly according to a normal distribu-
tion or_(b) through the concept of the tipping angle by includiqg statistics’a, in
8 = 9, og X)** (with x is a uniform random number) and in ¢ ‘C(varving randomly from 0 * 2n
in a uniform fashion). An ensemble of these calculations is carried out to simulate shot-
to-shot experimental situations; the input 8, of all these individual segments obeys a
Gaussian statistics distribution. Their selection is such that their number can be kept
to a minimum/¢,

One finds that those fluctuation calculations ascentained the importance of including
transverse effects. The influences of a quantum initiation in the transverse simulation
Clearly appear in the delay reduction, the pulse symmetrisation and the tail curtailment.
F}gure 6 outlines those statistics results in both planar and non-planar geometries.
Figure 7 contrasts the situation in average initial tipping angle with the guantum statis-
tics.

[¢] . .
In summary, transverse effectsls’l' are crucial for an accurate description of super-
fluorescence.
* p = F I P exn (-(T,* (Lw))?)
> 2
** One needs to he careful in not uplating the value of a8, aleng := {as was accidently intro-

duced into the program hut corrected hy I'.'. Gibbs and E. ¥atson); otherwise, 3, fluctuates
in a random walk instead of a Gaussian wav.
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In future work,counter beam propagation in the SF evolution needs to be »er1f1ed16 The
initiation and’ ca;culatxons should allow three spatial degrees of freedom (i.e., two trans-
verse dimensions!‘, so that transverse modes can compete. Furthermore, the efqut of pump
dynamics and reshaping need to be rigorously assessed as outlined in reference --.

Conclusion
The results provide the first complete explanation of the absence of ringing, and for the

first time, quaptitative agreement (within measurement uncertainties) with the definitive
Cs experiments °
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Figure captions

Figure 1. Normalized SF output power vs. T/Tp, Tp = KA/472u2n® L = 87t /SnOOXZL. e°° =
2%10°%, T = T, = T§ ==; L/ctg = 3.9, (a) F = = (see text). (b) Same as Ta) but with d¥f-
fraction included and uniform ng(r) and 6,(r).

Figure 2. Influence of diffraction on 8F pulse shapes. Parameters are the same as in
Fig. la, with ny Gaussian and 8, uniform. (a) Emitted power; (b) Isometric graph of inten-
sity for F = 1 case of Fig. 2a.

Figure 3. Theoretical fits to Cs data of Ref. 3. The two curves in (a) indicate typical
experimental shot-to-shot variations. F =1, L =2 cm, Ty = 70 ns, T, = 80 nsec, X = 2.931y,
18 = 551 nsec, 8, uniform or Gaussian, ny(r) is Gaussian. The following give 89(fit),
n§(fit), n3(exp), with 63 in units of 10°* and n§ 10'°/em®: (a) 1.07, 31, 19; fb) 1.37, 18,
7.6; (c) 1.69, 11.9, 3.8; (d) 1.96, 8.85, 3.1. ?he broken-line curve in (b) is the one-
dimensional fit of Ref. 3b, with 69 = 1.69 and n§ = 12.

Figure 4. The effect of the inh8mogeneous broadening is clearly illustrated T,* in graph
(a) for Burnham-Chiao ringing (the value T,* in curve 1 is infinite while it is 300 ns in
curve 2), and is illustrated in graph (b) for the Cs experiment (T,* = =, 300, 32 ns for
curves 1, 2, 3 respectively). The power output curve is more symmetric, the peak appears
sooner, and the tail is reduced furthermore.

Figure 5. The output power characteristics are the delay (temporal peak location), the
peak power (maximum) and the temporal width {[/t p(t) d tJ / €/ p(t) d tJ}. They are plotted
as a function of the inverse Fresnel number for two different tipping angles with infinite
relaxation times in graph (a) for large gain typical to the Burnham-Chiao ringing case with
relaxation times included, and in graph (b) for the Cs data in graph (c) versus the square
logarithm of the tipping angle for uniform, Gaussian and super-Gaussian densities. Graph (d)
displays the dependence of the output power curve characteristics as a function of T (equi-
valently, the inverse square gain) for various relaxation times namely Ty, Ty = (w,m?;
(70,80); (60,80),

Figure 6. The initiation is simulated using non-uniform random statistics instead of the
average tipping angle. Both vertical tipping angle 85 and horizontal phase angle ¢ are be-
ing varied at each and every grid point. 6_ obeys a normal probability distribution as sug-
gested by Glauber & Haake (7a) and Schuurmans, Polder and Vrehen (7b); whereas ¢ varies
uniformly between 0 and 27 as suggested by Hopf (7c). An equivalent fluctuation calculation
can be carried out by allowing directly a random variation for both in-and out-of-phase com-
ponents of the polarisation p. Graph (a) and (b) display the uniform plane wave theorv for
random tipping angles and for random p respectively., Graph (c) represents, for a uniform
plane wave calculation, an isometric comparison between the output pulse of the various seg-
ments of the statistical ensemble at a given propagation length (note that the axes are Tt
and NBruns). Graph (d) represents the histograms of the tipping angle 8 fluctuation and of its
phase angle ¢, Graph (e) represents the histogram on characteristics of the output pulse for
a planar simulation with 37 segments (NBruns=37): in curve (i) the peak location (delay); in
curve (ii) the magnitude of the pulse peak; and in curve (iii) the pulse width., The result of
our delay fluctuations confirmed Haake et al's planar calculations. Graph (f) compares the
mutual influence of diffraction and inhomogeneous fluctuation in the tipping angle 6 and its
phase angle ¢, Graph (g) displays the isometrics of the output intensity and the associated
global histograms for the various segments of the statistical ensembles summarized in Graph
(£). Graph (h) duplicates the situation in Graph (f) but with a random P instead of random
© x ¢; the tail curtailment is maintained. Note the random variation in peak magnitude, peak
location and pulse with, The combined effect of diffraction and statistics shortens the delays,
curtails the tail and makes the puke even more symmetric as experimentally observed in the Cs
data.

Figure 7. The output power is contrasted for various situations where statistics are present
directly through p (Irand = 3) or through 8 and ¢ (Irand = 2) or are absent (Irand = 0); pla-
nar and non-planar analyses are represented through Idimen = 1 or 3.
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EFFECTS OF PROPAGATION, TRANSVI-iRSE MODE COUPLING AND DIFFRACTION ON

NONLINEAR ‘LIGHT PULSE EVOLUTION

F.P. Mattart
Aerodynamics Laboratory, Polytechnic Institute of
New York, Farmingdale, New York 11735

Abstract: The effective computational methods developed to
efficiently tackle transverse and longitudinal reshaping associated
with single-stream and two-way propagation effects ia cooperative
light-matter interactions, using the semi-classical wmodel are
described. The mathematical methods are justified on physical
grounds. Typical illustrative results of propagation in resonant
absorbers, amplifiers and superfluorescence systems are presented.

I. INTRODUCTION

This paper reviews the unified mathematical methods developed
for three-dimensional simulation of several physical phenomena pre-
viously studied independently. The same basic algonthn with some
alterauons will simulate both superfluorescence!’® and optical bi-
stability3’4. With extra modifications, it can also analyze four-
vave mixing® and phase conjugation® systems. Further applications
inc‘]i.ude two-way Self-Induced Transparency’ and Soliton Collision®
studies.

The proposed model evolved as a result of close collaboratzon
with the expermentaluts, H.M. Gibbs® 23, §.L. McCallll ™13 3pd
recently, M.S. Feld!3, enhancing the rate of progress in the re-

fwork jointly sponsored by the Research Corporation, the Inter-
national Division of Mobil Corporation, the University of Montreal,
the U.S. Army Research Office, DAAG29-79-C-0148 and the Office of
Naval Research, N0QO-14-80-C-0174.
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search and leading to a better understanding of basic cooperative ‘
effects in light-matter interactions. Quantitative analyses in |
= superfluorescence were obtained and are being developed in optical
R bistability.

- The model encompasses propagation that includes rigorous dif-
- fractionl®'15  time-dependent ghase variation, off-resonancel® as
well as nonuniform excitation!? and transverse and longitudinal
boundary conditions!®. (An additional control probe-beam is being
developed?!,)

The adoption of proven computational techniques, developed by
Moretti?2™24 ip aerodynamics, to solve prcblems in the laser field,
is justified by the analogy between fluid and wave propagation
problems described. The laser beam evolution can be interpreted ia
terms of an equivalent flowing fluid?% whose density is proportion-
al to the laser field intemsity, and whose velocity is proportional
to the gradient of the field phase. This description allows for
the treatment of more slowly varying dependent variables and yields
to governing equations of motion, which are a generalization of the
Navier-Stokes equations2®. 1In the fluid formulation, the equiva-
lent fluid is compressible and is subjected to an internal poten-
tial, depending solely and nonlinearly upon the fluid density and
its derivatives; this is called the "quantum mechanical potential.”
Furthermore, the field scalar wave equation mathematically cor-
responds to a complex heat diffusion equation with a non-uniform
functional source; while the Bloch equations, in a rotating frame,
are structurally similar to the torque equation??. For two-way
problems, the simultaneous set of quasi-optic field equations (one
for each traveling wave) play the same preponderant role as Euler
equations in shock calculations for fluid dynamics problems.

Quite different effects, i.e., self-lensing?®, self-phase
modulation2?®, self-spectral broadening3? and self-steepening3!,
previously studied separately, combine here to modify the pulse
behavior diversely at different positions and times. For example,
the interplay of diffraction couplirg through the Laplacian term
and the inertial response of the non-uniform pre-excited medium
will inevitably redistribute the beam energy spatially and tempo-
rally32, This transient one- or multi-beam transverse reshaping
will profoundly affect the performance of aay device that relies
upon it. Specifically, this pragmatic, three-dimensional analysis
helps in the interpretation of recent experimental results in
superradisnce, superfluorescence, optical bistability and active-
mirror amplifiers for laser-fusion. It also accounts for deviations
and departures between recent experimental observations and predic-
tic s of planar wave theory (see Fig. (1)).
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To circumvent excessive memory requirements while insuring

adequate numerical resolution, one must resort to nonuniform
=
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meshes. In this large computational problem, the calculational
efficiency of the algorithm chosen is of crucial importance. A
brute force, finite difference treatment of the governing equa-
tions is not feasible. Instead, by using the details of the
physical processes to determine where to concentrate the computa-
tional effort, accuracy and economy are achieved. For example, if
for self-focused beams, a fixed transverse mesh is used, a lack of
resolution (see Fig. (2)) may result. A non-negligible loss of
computational effort in the wings of the beam will also occur.
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Coherent Pulse Propagation Fig. 1. The state of the art

. in coherent pulse propagation
1. Usual Theory € is displayed. The theoretical
—_—— effort was restricted to a uni-

1 Dim. &=£(p) form plane wave prior to the

work of Newstein et al; where-

Y, ]

'Uniform Plane Wave' as the usual experiment was
carried out using a Gaussian
II. Usual Experiment beam. To simulate a uniform

a2 plane wave, the smallest possi-
t=t(p) &P ¢ ble detector diameter was se-
lected as compared to the Gaus-
s@an beam diameter (i.e.,
=, (.e., ddetector <« dbeam)

In particular, evenly-spaced computational grid points are
related to variable grids in a physical space by adaptive stretch-
ing (Fig. (3)) and rezoning (Fig. (4)) techniques. This mapping
consists either of an a priori coordinate transformation or an
adaptive transformation (Fig. (5)) based on the actual physical
solution. Both stretching transformation in time and rezoning
techniques in space are used to alleviate the computational ef-
fort. The propagation problem is thus reformulated in terms of
appropriate coordinates that will automatically accommodate any
change in the beam profile34 40

'Gaussian'

Fig. 2 (a) Isometric represen-
tation of the beam cross-section
as it experiences self-focusing:
The cross-section decreases as
a function of the propagation
distance; (b) An isometric
display of the time integrated
field energy as a function of p
and n to illustrate the resolu-
tion limitation associated with
uniform mesh.
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The resultant dynamic grid removes the main disadvantage of
insufficient resolution, where uniform Eulerian codes generally
suffer. Furthermore, the advantages of grid semsitivity can be
obtained by either using adequate rezoning and mapping in Eulerian
coordinates or by simply using traditional Lagrangian me-
thods*1’42, Thus, the convenience of moderate memory requirements
can be combined with the desirable numerical resolution should one
rezone the grids. The techniques due to Moretti33 will economi-
cally generate precise results. Although this appears surprising
because of the mesh coarseness, his technique succeeds because it
discriminates intelligently between the different domains of the
critical physical parameters.

q Figure 4. Two-dimensional prescribed

//// rezoning for p and n. As the beam

narrows the density of transverse

/// points and the transmission planes
(” increase simultaneously.

Rl
i

\\ »
N

Fig. 5. Self-adjusted two-dimensional
rezoning for p and n to follow more closely
the actual beam characteristics. The

(normalizing) Gaussian refereace beam is V///
redefined during the calculation.
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For the two-beam analysis, our approach relies on one-way
nonsymmetric discretizations of the longitudinal and transverse de-
rivatives as well as nonuniform grids. Numerical instrumentation is
unavoidable. The role of characteristics as information carriers
is emphasxzed and therefore the law of forbidden signals cannot be
violated43. The physical subtleties of the nonlinear problem can
be adequately implemented.

Interactive graphic software was developed to simplify the
physics of extraction from these complex codes. Structural modular
programming techniques are used, making the program easier to read,
maintain and transport as well as for further extensions and gene-
ralizations of the planar wave theory. The resultant code is
deceptively simple and easy to follow. This mathematical modeling,
motivated by Gibbs' and McCall's experimental work, is engineering
physics in its purest sense: its main goal is to obtain a numeri-
cal solution to and insight into a real physical problem, instead
of reaching a neat analytical solution to an idealized problem of
limited applications.

II. SIT/SUPERFLUORESCENCE EQUATIONS OF MOTION

In the slowly varying envelope approximation, the SIT dimen-
sionless, semi-classical field-matter equations!® (which describe a
system in a cylindrical geometry with azimuthal symmetry), are:

-iF Ve + gﬁ =p (1)

af/ar = eW - (iaQ + 1/, (2)
and

W/t = -1/2(ex P+ ef*) - (W-W)/1, : (3)
where

e= (2p/h)tpe', and = 2/m) ¥, (4)

E = Re[e'exp{i(x/c)z-uwt)}]; (5)

with W® the equilibrium value of W, subjected to the initial and
boundary conditions. -
1. for T > O: =0, W=W, , P =ﬂ knowﬁ function to take

into account the pumping effects or the initial tipping
angle.
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2. for n=0: e is given as a known function of T and p;
3. for all n and t: [ae/ap]p=o and [8e/3p]p=pux vanishes

(with p ax defining the extent of the region over which
the numerical solution is to be determined).

with k/c = w | (6)
and V.f.e = | %gi(p g% )]; (7)
after applying l'Hopital's rule, the on-axis Laplacian reads:
=g ¥ (®)
ap?
P =i Re[F' exp{i(x/c)z-kt}]. 9

The complex field amplitude e, the complex polarization deasity ’,
and the energy stored per atom W, are normalized fuactions of the
transverse coordinate p = t/t.p, the longitudinal coordinate n=zx

@oger and the retarded time t = (t-zn/c¢)r. (see Fig. (6)). The

time scale is normalized to the full width half maximum (FWHM)
input pulse length, T_ and the transverse dimension scales to the

input beam spatial width r_. The longitudinal distance is normal-
ized to the effective absorption length,** (aeff)-l where

e = [ﬁ-:—!]tp » [ (10)

v Here, w is the angular carrier frequency of the optical pulse,
S M is the dipole moment of the resonant transition, N is the number
t‘ density of resomant molecules, and n is the index of refraction of
F - the background material. The dimensionless quantities An:(w-wo)tp,

T = '1‘1/tpv, and T2 = 'I‘z/tp measure the offset of the optical car-

rier frequency w from the central frequency of the molecular reso-
- nance w , the thermal relaxation time T;, and the polarization
:‘ dephasing time Ta, respectively.

Even in their dimensionless forms, the various quantities have
- a direct physical significance. Thus o is a measure of the compo-

) nent of the transverse oscillating dipole moment (p has the proper
phase for energy exchange with the radiation field). In a two-level
system, in the absence of relaxation phenomena, a resonant field
cause each atom to oscillate between the two states,
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W=-1 and W=+1, at a Rabi frequeancy fR = e/2tp = (u/h)e'. Thus e
measures how far this state-exchanging process proceeds in rp’

31
‘ ? 02 ¢
! L @—®
;
g L L

S X R .
. .. P

)

ALONG
{CONSTAN

ALONG

red (CONSTANT®)

¢, c*h,crth
(a) (b)

Fig. 6. Graph (a) displays the retarded time concept. Graph (b)
outlines the numerical approach: a marching problem along n for
the field simultaneously with a temporal upgrading of the material
variables along T.

-1
The dimensionless parameter, F, is given by F=A(aef£) /(Anr;).
The reciprocal of F is the Fresnel number associated with an aper-

-1
ture radius rp and a propagation distance (aeff) . The magnitude

of F determines whether or not one can divide the transverse
dependence of the field into "pencils" (one per radius p), to be
treated in the plane-wave approximation.

As outlined by Haus et al*5, the acceptance of equations
(1-3) implies certain approximations: eq. (3) shows that th
product 'e‘p' of the electric field e and the polarization J;
causes a time rate of change in the population difference leading
to saturation effects. Inertial effects are considered.

III. IMPORTANCE OF BOUNDARY CONDITIONS

When the laser beam travels through an amplifier, the trans-
verse boundary- has an increasingly crucial effect compared to the
absorber situation. The laser field which resonates with the
pre-excited transition, experiences gain; the laser which encoun-
ters a transition initially at ground state, experiences resonant
absorption and losses. A greater portion of the pulse energy is
diffracted outwardly in the amplifier than in the absorber*
Consequently, these boundary reflection conditions play a substan-
tial role in the amplifier calculations and obscure the emergence
of any new physical effects. Acceptable results are achieved only
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by careful&y coupling the internal points analyzed with the bouad-
ary points 7, Special care is required to reduce the boundary
effect to a minimum such as using noa-uniform grids and confining
the active medium by an absorbing shell.

In practice, the transverse boundary is simulated by imple-
menting an absorbing surface and mapping an infinite physical
domain onto a finite computation region (see Fig. (7)). Im Fig.
(8), the first and second radial derivatives and the Laplacian term
are drawn. Figure (9) contrasts in the stretched radial coordinate
system, the transverse coupling and the electric field. The oumer-
ical domain sensitivity and the physical dependence on the boundary
conditions can be readily assessed.

(a) (b)

Fig. 7. Graph (a) shows non-uniform stretching of the transverse
coordinate. Graph (b) contrasts the Gaussian beam e dependence
with the nonuniform physical radius p. Both graphs are plotted
versus the uniform mathematical radius R.

LR IR AL A A e . aan |

21 L end el 3

LI | 1

Fig. 8. This graph illustrates the dependence of the radial
mapping and the derivatives on the different parameters versus the
uniform mathematical radius: First weighting stretching factor
dR/3p; 2nd weiéPting stretching factor, 92%R/3p®; weighted dif-
fraction term, VTpR.
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LJ Fig. 9. This figure con-
trasts the Laplacian depen-
dence 'f' for a given
Gaussian profile 'e' for
various non-uniform radial
point densities.

IV. PRESCRIBED STRETCHING

The numerical grid is defined by widely-spaced computational
nodes in the area most distant from the plane of interest and by
densely clustered nodes in the critical region of rapid change; the
latter being in the neighborhood of maxima and minima, or for
multi-dimensional problems, in the vicinity of saddle poiats.
Resolution is sought only where it is needed. The costs involving
computer time and memory size dictate the maximum number of points
that can be economically employed. In planning such a variable
mesh size, the following must be kept in mind:

(A) The stretching of the mesh should be defined analytically so
that all additional weight coefficients appearing in the
equations of motion in the computational space, and their
derivatives, can be evaluated exactly at each node. This
avoids the introduction of additional truncation errors in the
computation.

(B) To assure a maximum value of AT, the mathematical grid step,
the minimum value of At, the physical time increment, should
be chosen at each step according to necessity. This means
that the minimum value of At must be a function of the pulse
function steepness.

(C) The minimum value of AT should occur inside the region of the
highest gradient which occurs near the pulse peak.

For example, following Moretti's approach,3? if
T=tanh(at) (1)

and a the stretching factor must be larger than 1, the entire semi-
axis 1 greater than zero can be mapped on the interval 0 < T <1




s T A 4 S e A S T
- v ¥ Y ® T R

52 F.7.MATTAR

with a clustering of points in the vicimity of t_ = 0, the ceater
of gravity of the transformation for evenly-spaced nodes in t.

. This mapping brings new coefficieats into the equations of
e motion which are defined analytically and have no singularities.
It avoids interpolation at the common border of differently spaced
meshes. The computation is formally the same in the "I" space as
it was in the "t" space. Some additional coefficients, due to the
stretching function, appear and are defined by coding the stretch-
ing function in the main program. A slightly modified stretching
function is used in the laser problem. Figure (10) illustrates the
transformation and its different dependencies on the particular
choice of its parameters.

~
(2]
~’

~
s pugmy < r~2— g 2;2’

LLE 2 T Ty

vy v 7 T T yvTv

b\'\
N

Fig. 10 Dependence of prescribed stretching T and its derivatives
91/3T on the point densities and the center of transformation
_versus the uniform computational T.

S The derivative of the mapping function produced by the gradual
b varistion along the "T" axis is also defined analytically. Ia
}v} response, the computational grid remains unchanged while the physi-
: cal grid (and the associated weighting factors) can change a lot.

g

e Should one need to study the laser field buildup due to ini-
- tial random noise polarization (for superfluorescence), or an
- initial tigging angle (for superradiance), one must use a different
:ij stretching®“. This stretching is like the one defined for treating
e radial boundary conditions. The mesh points are clustered near the
iii beginning (small t); their demsity decreases as T increases.
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V. ADAPTIVE STRETCHING IN TIME

As the energy continues to shift back and forth between the
field and the medium, the pulse velocity is modified disproportion-
ately across the beam cross-section. This retardation/advance
phenomenon in absorber/amplifier can cause energy to fall outside
the temporal window. Also, due to nonlinear dispersion, various

portions of a pulse can propagate with different velocities, caus-

ing pulse compression. This temporal narrowing can lead to the
formation of optical shock waves. To maintain computational accu-
racy, a more sophisticated stretching is needed. The accumulation
center of the nonlinear transformation is made to vary along the
direction of propagation. This adaptive stretching will insure
that the redistribution of mesh points properly matches the shifted
pulse, Figure (11).

Fig. 11 Adaptive stretch-
ing with different ceaters
of transformation.

1 N

Here, the traansformation from t to T is applied about a center
T, which is a function of . The stretching factor a could also be
a function of n.

The field equation is similar to those of Section II, but
contains an extra term:

dt
“iF V3 e + 3¢ + g-; [-g{-]tc 7= =P (12)

The role played by the time coordinate is different: an ex-
plicitly time-dependent term is now included.

VI. REZONING

The main difficulty in modeling laser propagation through
inhomogeneous and nonlinear media stems from the difficulty of
pre-assessing the wmutual influence of the field on the atomic
dynamics and vice versa. Strong beam distortions should occur
based on a perturbational treatment of initial trends. One must
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normalize out the critical oscillatioms to overcome the economical
burden of an extremely fine mesh size. To insure accuracy and
. speed in the computation, a judicious choice of coordinate systems

and appropriate changes in the dependent variables, which can
- either be chosen a priori or automatically redefined during the
computation, must be considered (Figure (12))33740,

- This coordinate transformation alters the dependeant variables
» and causes them to take a different functional form. The new
f‘ dependent variables are numerically identical to the original
2 physical amplitudes at equivalent points in space and time.

- The requirements of spatial rezeaine will be satisfied by
. simultaneously selecting a coordinate transformation (from the

Dr_"—'—z

< dodadnndemdemnded

" (a) v (b)

Fig. 12. The concepts of prescribed rezoning are shown in Graph
(a); Graph (b) is a close-up of the nonuniform mapped grid of
Fig. 2(b).

original coordinates p and n to new coordinates £ and z) and an
appropriate phase and amplitude transformation. The chosen func-
tion transformation will share the analytical properties of an
ideal Gaussian beam propagating in a vacuum.

Since the parameter a, the measure of the transverse scale,
shrinks or expands as the beam converges or diverges, it is logical
to require the transverse mesh to vary as "a" varies. However, to
assure stability and convergence, the ratio [An/(Ap)?] must be
defined according to the chosen Fresnel number and it must be kept
. constant throughout the calculation. Accordingly, a new axial
“ variable, 2, must be introduced to keep this parameter constant as

p varies. This should increase the density of n planes around the
focus of the laser field where the irradiance sharply increases in
magnitude causing a more extensive and severe field-material inter-
action to occur.

If the quadratic phase and amplitude variation are removed
from the field and polarization envelopes, the new field equation
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varies more slowly than its predecessor; thus, the numerical pro-
cedure allows one to march the solution forward more economically
by using larger meshes.

VII. ADAPTIVE REZONING

The foregoing concepts may be generalized by repeating the
simple coordinate and analytical function transformations along the
direction of propagation at each integration step. Figure (5) and
graphs (13a) and (13b) illustrate this self-adjusted mapping in
planar and isometric graphs.

The feasibility of such automatic rezoning was demonstrated by
Moretti in his conformal mapping of supersonic flow calculations34,
and by Hermann and Bradley in their CW analysis of thermal bloom-

Fig. 13. Graph (a)
illustrates the self-
adjusted rezoned grid;
Graph (b) shows the
usefulness of adaptive
two-dimensional map-
ping through isometric
representation of the
field fluency.

ipgas. In particular, the change of reference wavefront technique
consists of tracking the actual beam features and then readjusting
the coordinate system. The new axial coordinate z is defined as
before. Previously, the center of the transformation where the
radial mesh points were most tightly bunched was at the focus
(z=n=0). Now the transformation is defined in terms of an
auxiliary axial variable z, as a function of z, which is calculated

adaptively, in a way that reflects and compensates the changing
physical situation.

In this adaptive rezoning scheme, the physical solution near
the current z plane is described better by a Gaussian beam of neck
radius a§0 whose point is a distance z§ away than by an initially

assumed Gaussian beam with parameters 3, and 2. In addition, to
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remove the unwanted oscillations, new dependent variables are
iatroduced without quadratic and quartic radial dependence in the
phases of the pulse and polarization envelopes. By minimizing the
local field phase gradient the relationship between the auxiliary
zg and z is obtained. Thus the rezoning parameters are determined

appropriately from the local field variable at the preceding plane,
so the new variable at this present point has no curvature. Note
that the new equation varies less in its functional values than the
original. The numerical computation is significantly improved.
Notably, the instantaneous local rezoning parameters of the quad-
ratic wavefront are determined by fitting the calculated phase of
the local field to a quartic in the ncnuniform radius. More speci-
fically, the intensity-weighted square of tue phase gradient inte-~
grated over the aperture is minimized. Consequently, the curvature
at the highest iatensity portion of the beam contributes the most.
Various moment integrals of the local field variable and the local
transverse energy current will be introduced, to specifically
evaluate the adjustable rezoning parameters.

VIII. NUMERICAL RESULTS

Thig section outlines basic results in SIT, obtained with and
without rezoning and stretching, and illustrates why the sore
sophisticated techniques required less computational efforts.

The first part of this investigation led to the discovery of
new physical phenomena which promise to have significant applica-
tions for proposed optical communications systems. It had been
shown that spontaneous focusing can occur in the absence of lenses,
and that the focusing can be controlled by varying the medium para-
meters. The second part of this analysis dealt with amplifiers.

The dependence of the propagation chararteristics on the Fres-

nel number F  associated with an effective medium length, on the
on-axis input pulse "area," on the relaxation times and on the
off-line center frequency shift, has been studied. Furthermore,
particular care was exercised to ensure a perfectly smooth Gaussian
beam (see Figure (10)) thereby elxmxnatxng any possibility of
small-scale, self-focusing buildup*®

The time-integrated pulse "energy" per unit area,
T .
fle(p,n,t')lzdt, the fluency, is plotted for various values of the

transvetse coordinate, as a function of the propagation distance
(see Fig. 14).
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Fig. 14. The longitudinal orientation shown in the left-hand
figure illustrates the gradual boosting mechanism that field energy
experiences as it flows radially towards the beam axis (while n
increases). The second orientation displays the severe beam dis-
tortion in its cross-section as a function of 1.

The three-dimensional numerical calculations substantiate the
physical picture based on a perturbational study <~ the phase
evolutionl®’15, It could be visualized using selecteu frames from
a computer movie simulation of the numerical model output data. In
the left-hand curves of Figure (15) the transverse emergy current
is isometrically plotted against the retarded time for various
transverse coordinates at four specific regions of the propagation
process: (a) the reshaping region where the perturbation treatment
holds; (b) the buildup regions; (c) the focal region; and (d) the
post-focal. region. The field energy is displayed for the specific
regions in the right-most curves of Fig. (15). A rotation of the
isometric plots is displayed in Figure (16), to emphasize the ra-
dially dependent delay resulting from the ccheren% interaction.
Positive values of the transverse emergy current correspond to
outward flow, and negative values to inward flow. The results of
the reshaping and buildup regioas in Figures (15) and (16) agree
with the physical picture related to the analytic perturbation dis-
cussed elsewhere.

The burn pattern, iso-irradiance level contours (against T and
p) for different propagation distances are shown in Figure (17).
Severe changes in the beam cross-section are taking place as a
function of the propagating distance. At the launching front, the
beam is smooth and symmetrical; as the beam propagates into the
nonlinear resonant medium, the effect of the nonlinear inertia
takes place.
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The general format for presenting three-dimensional coherent
pulse propagation in amplifying medium will be the same as for the
absorber (see Figs. (18) to (21)).

t% Fig. 15. Isometric plots of the absorber field energy and trans-

L.- verse energy flow, against the retarded time for vavious transverse

o coordinates at the four regions of interest.

;?{

b}ﬂ IX. TRANSVERSE EFFECTS IN SUPERFLUORESCENCE

b

- With the help of Gibbs, the outstanding question dealing with

F& the strong reduction (and elimination) of ringing observed in the

F low-density Cs [2] experiment from the amount predicted in the
one-dimensional calculations [1(b)] was resolved. This was accom-
plished by developing a rigorous two-dimensional theory of Burnham-
Chiao ringing [1b] and superradiance and superfluoresceace (SF) in
a pre-excited thick medium using a semi-classical formulation [le]

T which includes one-way propagation effects as in SIT. The initia-
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tion of the SF emission process is characterized by a tipping angle
SR. When the small signal field gain aeffL/Z (or equivalently, the

characteristic radiation damping time L of the collective atomic

system) is sufficiently large, 6,, the ratio of the length L to the
coherence length L , and the Fregnel number J (equal to area/AL)
completely charactérize the system behavior. However, L/L_ is not
a critical parameter as predicted by the mean field theory.

TR

-~ E

(d)

Fig. 16 Isometric plots of the absorber field energy and trans-
verse energy flow profile for various time slices at the four
regions of interest.

-4
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Fig. 17. Absorber field energy contour plots for the four propaga-
tion distances. Notice the temporal delay associated with the
coherent exchange of energy between light and matter, as well as
the beam cross-section narrowing.

Neither the mean-field approximations‘d, nor the substitution

of a loss term to account for diffraction coupling‘c,2°d, are
considered; instead self-consistent methods similar to those devel-
oped for SIT studies are adopted3?’%®, The numerical simulation
takes fully into account both propagation and transverse (spatial
profile and Laplacian coupling) effects.

The previously reported promounced SF ringing for plane-wave
simulation is reproduced for uniform input profile. The reduction
of ringing is studied for various radial profiles for the gain
3R=aeff[ctR] (equivalently, the population inversion) and the small

input pulse area 6R11'13.

The ringing reduction can be explained by two physical mechan-

isms: (a) a shell (t%g‘) mode132(d); spatial averaging of uncoup-
led planar modes, each assoc¢iated with a particular shell and sub-
jected to both a distinct GR and a radiation time. Radial averag-

ing by a Gaussian gain profile of very large 7 eliminates most of
the ringing, resulting in an asymmetric pulse with a long tail; and
(b) a rigorous diffraction coupling: through the Laplacian term,
the adjacent shells interact, causing the field energy to flow
transversely across the beam from one region to another.

When diffraction coupling is considered concomitantly with
radial variations of GR and 8x (i.e., of tR), the ringing is more

subdued (see Fig. (23)). In other words, reducing 4 of a Gaussian
profile does reduce the asymmetry (in better agreement with the Cs
data) since the outer beam portions are stimulated to emit earlier
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(a)

(b)

(c)
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(d)

Fig. 18. Isometric plots of the amplifier field energy as a func-
tion of T and p for two orientations m/2 apart at four locations
along the propagation direction.

by diffraction from the inner portion. Thus, the effec. of the

Laplacian coupling is small for large J but becomes progressively
greater at about JF < 1.
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M
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D =

Fig. 19. Amplifier field energy contour plots for the four propa-
gation regions of interest. Note the temporal advance associated
with coherent exchange of energy between light and matter (the
smaller area propagates more slowly than the larger one), as well
as beam cross-section expansion.

Fig. 20. Isometric plots of amplifier field energy and transverse
energ,; flow against retarded time for various transverse coordi-
nates at four propagation regions studied for absorbers. Stretched
radial coordinate was adopted for proper accounting of transverse
boundary condition. When these results are compared with those for
an absorber, it is evident that a focusing phase is not restricted

to the absorber, but develops also for the secondary pulses in am-
plifying media.
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Y
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(b)

Fig. 21. Amplifier field energy contour plots for four propagation
regions of interest with stretched radial coordinates. No severe
reflection or abrupt variation in the field energy, at the wall
boundary, is observed. The enhancement of diffraction by pre-
excited two-level medium is clearly evident.

(1) Shell (only

Gaussian av.)
(2) diffraction
coupling

Fig. 22 Contrast the time dependence of the energy after inte-
grating over p for the shell model (where BR and T are both radi-

ally dependent) and the diffraction model (where the Laplacian
coupling is r1gorously’;resent) for two populat1on inversions: (a)
Gaussian g = g, exp(-p®], and (b) saturable inversion g = g, for

p<pb;s=s°exp[p2] for p, < p < p

max’

: — (1) T=0o
3 4 eee (2) F=1.0
; (3) g=0.69
[ (a)
3
. \
[ = T
E. Fig. 23. Total energy per atom as a function of time with JF as the

Y
.

labeling parameter. R= 0.046 ns and I./Lc = 1.95. SR =3x10

for all radii. (a) Superfluorescence of uniform cylinder or small-
area pulse propagation through uniform gain cylinder; (b) Uniform
small-area pulse propagation through Gaussian gain medium.
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Computer results representing the SF of uniform and nonuniform
cylinders (i.e., small-area pulse propagating through a uniform
Gaussian gain cylinder) are respectively displayed in Figure (24a)
and Figure (24b) for different JF . In Figures (25a) and (25b),
this initial small-area GR is now radially dependent. Figures

(26a) and (26b) duplicate the physical situation in Figures (24a)
and (24b), but for a smaller initial polarization. The universal
superfluorescence scaling law is seen not to hold; the calculated
pulse length is much more sensitive to the magnitude of OR in the
transverse case than it is in the planar case.

The ringing predicted by this two-spatial-dimensional theory
agrees more with experimental observations than that predicted by
the uniform plane-wave counterpart. Detailed isometric graphs of
the field energy buildup show, in Figures (27a), (27b) and (27c)
qualitative agreement in peak intensity and peak delay with the
ring (shell) model [lc]. Figure (28) illustrates the elimination
of ringing under conditions similar to the low-density Cs data for
different radial density distributions. Figure (29) contrasts the
dependence of the radial gain onm a typical ¥ by various GR; Figure

(30) illustrates the dependence of the radial gain on a typical OR
by different J. Figure (31) shows the effect of varying Tp on

this output intensity. Various small-scale ripples were introduced
in the gain profile (see Fig. 31). .

(a)

Fig. 24. (a) Propagation of small-area Gaussian profile pulse
through uniform cylinders (1:R = 0.046 ns, I'/I‘c = 1.35 and GR =

3 x 10°3 on-axis). (b) Superfluorescence with Gaussian radial gain
(tg = 0.046 ns, L/L_ = 1.35 and 8y = 3 X 10 2 on-axis).

Ringing is largely removed by a gain medium of & = 1, result-
ing in an asymmetric output pulse with a long tail. It now seems
that a larger QR, see Fig. (33a) (unlikely, according to measure-

ment of feedback d.-.ffects and estimates of Raman effects during the
excitation pulse?”), or smaller T (perhaps 0.4 consistent with the
range 0.35 < F< 1.39 of ref. 1(a) which used a 1/e rather than a
balf width half maximum (HWHM) definition of rp), see Fig. (33b),
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(b) — Q1

Fig. 25. Same parameters as in Fig. 23 but with a smaller GR = 10°4:

(a) Small area propagation in a uniformly inverted cylinder. (b)

Small-area propagation in a Gaussian inversion cylinder.

Fig. 26. Isometric representation of
the field energy versus p and t, for
(a) uniform inversion and pre-exci-
tation; (b) radial 0; (c) Gaussian
inversion profile. Notice that
strong ringing would be seen by a
small-aperture detector in the center
of the beam although very little
ringing is in evidence after radial
averaging.
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Fig. 27. Comparison of pulse shapes for situations where L/L
similar to the low density Cs. Relaxation terms were not
included in this analysis. Note the asymmetry assocxated
wlth an atomic beam of F= 1. (a) n=1.9 % 1011 cm 3;

= 2.64 B 1074, (b)n=1824a101°cm3 8, —137x
104, (c) n=11.9 x 1049 9-169><10‘ (d) as=
8.75 x 10 4; 8,=1.96 x 10 “4.° Time is measured in nsec.
! 1
(a) (b) (1) uniform
3 (2) Gaussian
(3) super-
1 Gaussian
T T
Fig. 23. Contrast of the total emergy per unit atom (versus time)

Cm @md

for different radiation damping time oY for a chosen

7 =0.7 and a uniform 8 = 3 x 10°3 (for different
inversion profiles.
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Fig. 29. Contrast
of the total en-
ergy per unit
atoms (versus time)

®) o for different in-

‘10

u§ versions (1) uni-
iform

form, (2) Gaus-
sian (3) satur-
able Gaussian,
and for particu-
lar tipping angle

T profiles. QR-IO

non-uniform T
0 46 ns and L L
=1.95. J=6&

(b) 8,=10"

u§1form

e

- .

b an o)

R

p. <«

"—v-‘ L ant e

PP O P AP

Fig. 30. Contrast of the total
energy per unit atom (versus
time) for different radiation
damping time T for a chosen

F=0.7, and a f1xed tipping
angle 6R = 3x103 - 8g = 100,

125, 150, 17s.

Fig. 31. Display of small-
ripple effects in the Gaussian
inversion of the cylinder on the
total energy per unit atom (ver-
sus time) for JF=0.7, 1

= 0.46 ns, and L/I.c = 1.95.
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1. 3.1416986E+01 Fig. 32. (a) Emphasizes
2. 3.142535E+01 the effect of large QR
3. 3.1510173E+01 versus small 6, on the
4. 3.2358377E+01 the pulse shape asymmetry
» and the ratio of the cal-
db=n+ GR culated pulse length to the

delay of the peak. (b) En-
(b) hancement of the effect of
small on the pulse shape
asympetry.
Jz=w®, 2.76, 0.7, 0.4.

(a)

(a)
\)
\ (c)
\
\\
™ i, 3 :
o] 10 20 30 40 0 10 20 30 40
TME (ne) TIME (ns)

Fig. 33. Comparison of experimental and three-~dimensional theoret-
ical superfluorescence pulse shape for several densities N in aa
atomic beam of 2.0 cm length. The model encompasses rigorous
radial dependence of N, tR and GR, diffraction (through the Lapla-

cian) and relaxation times. F=1, L =2 cm, T,=70n0s, T, = 80

ns, A = 2,931y, t(0) = 551 nsec, Gaussian and inversion; in the
following columns are the on-axis inversion denmsity n in units of

103! cm™3, n of the experiment in the same units and 8, in 1074

radians: (a) 3.1, 1.9, 1.07; (b) 3.1, 7.6, 1.37; (¢) 1.2, 3.8,
1.69; (d) 0.885, 3.1, 1.96.
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! Fig. 34. Comparison of planar waves
{curve 1) with three-dimensional cal-
culations (curve 2) of the super-
fluorescence for the Cs experimental

(a) data. Note the lack of agreement
between the two theories with respect
to the ringing while much consistency
occurs between diffraction calcula-

1 tions and experimental observations.

s ﬂ'

(b) (c) (d)

is needed to reduce the asymmetry and pulse width. But when re-
laxation terms are also included in the analysis and the densities
are adjusted within quoted experimental uncertainties, a rather
good agreement, (cee Fig. (34)) is obtained between theory and
experiments for a unity J. These radial effects explain why the
observed ringing in superfluorescence is less than that predicted
by plane-wave simulations (see Fig. 34). Extensions of the present
simulations to two-way propagation and random fluctuation of the
tipping angle are planned. The agreement with experimental obser-

vations should be improved. [Recently, Bonifacio et al‘d also re-
ported the suppression of the ringing by using coupled-mode mean-
field theory. However, their model does not encompass the propa-
gational effects substantiated by both experimental observation and
rigorous three-dimensional Maxwell-Bloch analysis.]

. X. FLUID DESCRIPTION
Consider the polar representation of the field

e = A exp (+i¢) (13)

AP NE W LI M 4 WP U S U WG 3 1l P S PSS N SURUURIR. S
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with A and ¢ real amplitude and phase. Also let the nonlinear
polarization of the RHS of equation (1) be written as

PL = (xg *+ i xpde + xye, (14)

where XR and Xy are real functions of A. Using equation (13), one

gets from equation (1) the transport and the eikonal equations
(n° = koc/wo)

4row?

2_ a2 . [A2 =. 0 2
K b A% + O, A vT¢] = 2 Xp A% (15)
A~V%A 4mw?
9 2 . - 0
2k, an o+ (V) o = XR (16)

The transport equation (15) expresses comservation of beam energy
over the transverse plane. When X = 0, total power is conserved

along the direction of propagation. The eikonal equation (16)
describes the evolution of the surface of constant phase. It has
the form of the Hamilton-Jacobi equation for the two-dimensional
motion of particles having unit mass and moving under the influence
of a potential*? given by

1 2 -1 2n

VEeoe—— « (¢ A - 20
pov; (V7A) X Xg

] [+]

if kozz is regarded as time coordinate and koxx’ koyy as spatial
coordinates. Furthermore, if one adopts A2 and V.0 as new depen-

dent variables, the equations of motion becomeTsimilar to the
continuitgsand momentum transport equations of ordinary hydrody-

namics25'2€, By defining
-1
x=k V.o, and 17
p = A? (18)
and supposing Xp = 0, equations (15) and (16) can be written as
3y - Y2
IR VA R ROV Ut (19)
g% + Y+ (P = 0. (20)

N . L. . P L g S S W S
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These equations are the momentum and continuity transport equations
of a fluid with a pressure

- P = (% ¥P)/VP))- (21)

It should be emphasized that this pressure depends here solely on
. the "fluid density" and not on the "velocity". Equation (19) and
{ (20) can be rearranged into

3 _1 1 .
5 (P0) + Vp-(pe0) = povr [ 5(V30) L
o

1 Y2
where I is the unit tensor.

XI. EQUATIONS OF MOTION FOR OPTICAL BISTABILITY

In the slowly varying envelope approximation, the dimension-
less field-matter equations* are

+ +
*
-iFV2e” +§°— + ze— = +g" < P* exp(ikz)> (23)
T 2
-iFV2e” +§5: - e = +g <P exp(+ikz)> (24)
T "53¢ ° 3z g xp

with g+, g- as the nonlinear form of the gain experienced by the

forvard (e') and backward (e”) traveling waves associated with the
pump. The quantities in the R.H.S. undergo rapid spatial varia-
tions; <+-+> spatial average of these quantities with a period of
half a wavelength

9P . =10 . +, -
St * (-i80) + 17 )P = + {W(e" + &0} (25)
-1 - -

Herl (W =-1@ +P) (") (26)
" Equivalently,
: ) . -1 + . - .
- 5t * (-i(aD)+12 )P = W[e exp(-ikz)+e exp(+ikz)] 27
b -
k! *As an aside, the nonlinear interface bistability efféct*(‘),
g though potentially important, is not considered.




coordinate
p=r/r,, (33)
the longitudinal coordinate
- t
z=0,..2 (34)
and the physical time
T =t/t.. 35
/tp (35)
In the standing-wave problem, the two waves are integrated simul-
- taneously along the physical time, as contrasted to S.I.T. retarded
- time.5¢ Otherwise the physical parameters and variables have the
o same meaning.
‘,. The presence of opposing waves leads to a quasi-standing wave
s pattern in the field intensity over a half-wave length. To effec-
tively deal with this numerical difficulty one decouples the mater-
ial variables using Fourier series!3:19 pamely,
[ + ®
»} . P=exp (°1kz)p§°P (2p+1) X0 (~iZpkz)texp (+1k2)p§°P (2p+1) 2P (+12pk2)
- (36)
@
W=W + I ([W, exp(-i2pkz) + c.c.] (37N
o p=1 2p
4
b -
U
-r—.
&A ----- B SR S M D RS T SR PR uDY SR I T S S WP - _l
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g% + tIltwe-W) = %(Pe+*exp(ikz) + Pe°*exp(-ikz)+ c.c.) (28)
with
et = (pr /et (29)
P = (p'/2p), (30)
E = Re{etexp[i(mt + kz2)]} (31)
and
P = Re{i p' exp(iwt)} (32)

The complex field amplitude et, the complex polarization density p
and the energy stored per atom W are functions of the transverse
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with W a real number. Substituting in the traveling equation of
motion, one obtains

+ + - + -.

3, P, + PI/‘I:2 =We +We; (38)
+ + _ + -

at P3 + P3/t2 = We ¢+ We (39)
+ + - + -

3t P(ZP*I) + P(2P+1)/t2 = sze + WZ(P+1)e ; and (40)
- - - - * +

3t P1 + PI/T.2 = Woe + er (41)
- - - - w* + 4
- - I * +

3 Prapen) * Prapr1)/ T2 = Wopt * ¥p(pe)® (43)

- . l ok _ - +* _¢
AW+ -W)/1 = - 5(eT Pl + e P +c.c.) (44)
= o 1. =% ¢+ +k & +, ~* - oo
ath + wz/t1 = i(e P1 + e P3 teP te P3 ) (45)
+ 4+ + _o* % %

= o Y =Fpt
athp + sz/t1 = 2(e Pl +e P

The field propagation and atomic dynamic equation are sub-
jected to the following initial and boundary conditionms:

pt1 t e P2p+1 +e P2p+l)(46)

1. INITIAL:

for t>0
=0 (47)
V=W, (48)

where Wﬁ is a known function to take into account the pumping

effects. For S.I.T. or solitomn collision

Plope1) = O for all p (49)

while for the superfluoresceance problem

e aaa oo
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b 4
(2p+1) (50)

is defined in terms of an initial tipping angle eR.
2. LONGITUDINAL

+ - . .
For z=0 and 2zL: e and e are given in terms of a known
incident function

€10 (51)
eqr (52)

and

of T and p.

If enclosing mirrors delineating the cavity are used in the
analysis, one must observe the longitudinal boundary equatioas

e’ = Ja-Ry) ero * R e at z =0 (53)
e = J(I-R3) ery + JRo e’ atz=1 (54)

where Ry, Rz, (1-Ry) and (1-Rp) are the respective reflectivity and
transmitting factor associated with each left and right mirror.

3.  TRANSVERSE

For all z and T [aeilap] and [3et/3p]p= vanish. The

p=0 Pmax
previously described transverse boundary conditions (Section II)
apply here for each of the fields.

It is noteworthy that the presence of the longitudinal mirrors
will enhance the mutual influence of the two beams. Variatioas in
polarization and population over wave-length distances are treated
by means of expansions in spatial Fourier series, which are trun-
cated after the third or fifth harmonic. The number of terms
needed is influenced by the relative strength of the two crossing
beams and by the importance of pumping and relaxation processes in
restoring depleted population differences.

t

XII. CONdEPT OF TWO-WAY CHARACTERISTICS

An easy way to visualize the mutual influence of the two coun-
ter-propagating beams is to imagine their respective information
carriers in the traveling wave description.

L

For a light velocity normalized to unity (¢/n = 1), by intro-
ducing

y
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=1 -1
£ = 3 (t-2) and n= §(t+z) (55)
or equivalently
=n+f . ad  z=n-t, (56)
one obtains the new derivative as
9 _ 1798 2] 9 _1/ _23 (57)
woi(mem) = moi(H-f
Consequently
-] 9 _9 9 _ 3 _23
a—t- + 5; - rn » ﬁ gz‘ - s'g . (583)
The field equation reduces to
- + .
gg— = V24P g%- = iv2e*ept . (58b)

This means that the field is integrated along its directiomal
characteristic path. With the polarization having a dynamic func-
tional dependence on the total field the full Bloch equations are
required. Furthermore the twc oppositely traveling waves must be
integrated simultaneously.

= p¥},.. 2 et ) (59)

An example of one of the material (Bloch) equations is

apy ap* . + 4+ -
'E' +—5— + Yy P = S, (B], .. BE BT PRt eT) (60)

By identifying as outlined in Courant and Hilbert {[SO], the charac-
teristics variable, namely

£ =£(s) and n=n(s) , (61)
or equivalently
£ = §°+s and n=n,-s . (62)

one obtains

- Py L. P P - - St M — PP VOIS . W
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3¢ _ 8 - .
5§ =+ 1 and 5y = -1 (63)
which simplifies the Bloch equations as follows:
or,
PRI L (64)

which can be rigorously54*3S integrated to give
s+4s

B (s*4s) = P (s)exp(-As/ys) + f {exp[-(s-s')¥]S,(s")ds'} . (65)
s

Illustrating the method of solution (see Fig. (35), arrows
indicate integration paths for reducing differential equations to
finite difference equations. Paths AB are used for Field Equa-
tions, and while Paths CB are used for Material Equations.

XIII. THE LAW OF FORBIDDEN SIGNALS

The effect of the physical law of forbidden signals on two-
stream flow discretization problems was applied by Moretti to the
integration of Euler equations24’43,

For causality reasons, only directional resolution for spatial
derivatives of each stream (forward and backward field) must be
sought. This is achieved by using one-sided discretization tech-
niques. The spatial derivative of the forward field is discretized
using points lying to the left as all preceding forward waves have
propagated in the same left-right direction; while the backward
field is approximated by points positioned to the right. As a
result, each characteristic (information carrier) is related to its
respective directive history. Thus, violation of the law of for-
bidden signals is prevented.

In any wave propagation problem, the equations describe the
physical fact that agy point at a given time is affected by signals

T Fig. 35. Illustrates the
8 ‘ two-way characteristic and
ot - the basis of the computa-
AT P tional algorithm.
A c A
AZ=CDT/n
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sent to it by other points at previous times. Such signals travel
along lines known as the "characteristics" of the equations. For
example a point such as A in Figure (36) is affected by signals
emanating from B (forward wave) and from C (backward wave), while
point A' will receive signals launched from A and D. Similar wave
trajectories appear in the present problem, but the slopes of the
lines can change in space and time.

Fig. 36 Displays the role of character-

T, A Al . istics as information carriers.
3 L
8 (o D Z

The slopes of the two characteristics carrying necessary
information to define the forward and backward propagating vari-
ables at every point, are of different sign and are numerically
equal to *c/n. For such a point A, Figure (37), the domain of
dependence is defined by point B and C, the two characteristics
being defined by AC and AB, to a first degree of accuracy. When
discretizing the partial differential equations, point A must be
made dependent on points distributed on a segment which brackets
BC; e.g., on points D, E and F in Figure (38). This condition is
necessary for stability but must be loosely interpreted. Suppose
that one uses a scheme where a point A is made dependent on D, E
and F, indiscriminately (this is what happens in most schemes cur-
rently used, including the MacCormack method). Suppose now, that
the physical domain of dependence of A is the segment BC of Figure
(38). The information carried to A from F is not only unnecessary;

A Fig. 37. Illustrates the

T et P concept of the law of for-
[ - ' nl bidden signal for two-stream
3 c F with characteristics of dif-

ferent sign.

Fig. 38. Illustrates the
concept of the causality

+ -
Tt %:;”1:;;71 e for two-stream flow with
‘ characteristics of same

(identical) sign.

O
o
O
m
n
N

it is also undue. Consequently, the numerical scheme, while not
violating the Courant-Friedrick-LevyS4 (CFL) stability rule, would
violate the law of forbidden signals. Physically, it is much
better to use only information from D and E to define A, even if
this implies lowering the nominal degree of accuracy of the scheme.

sl - - - PUDAY S G Sy . M G W UL V. o - P — -
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The sensitivity of results to the numerical domain of depen-
dence as related to the physical domain of dependence exglains why
computations using integration schemes, like MacCormack's®2, show a
progressive deterioration as the AC line of Figure (38) becomes
parallel to the T-axis (A,;*0), even if A; is still negative. The
information from F actually does not reach A; in a coarse mesh,
such information may be quite different from the actual values
(from C) which affect A. On the other hand, since the CFL rules
must be satisfied and F is the nearest point to C on its right, the
weight of such information should be minimized. Moretti's A-
scheme, relying simultaneously on the two field equations provides
such a possibility. Every spatial derivative of the forward field
is approximated by using points lying on the same side of E as C,
and every derivation of the backward-scattered field is approxi-
mated by using points which lie on the same side of E as B. By
doing so, each characteristic relates with information found on the
same side of A from which the characteristic proceeds also such
information is appropriately weighted with factors dependent on the
characteristic's slopes, so the contribution of points located too
far outside the physical domain of dependence is minimized.

A one-level scheme which defines

8e+

5= (eg - eg)/Az (forward wave) (66)
gg: = (e; - eE)/Az (backward wave) (67)

is Gordon's scheme [53], accurate to the first order. To obtain a
. scheme with second-order accuracy, Moretti considered two levels,
o in a manner very similar to MacCormack's. More points, as in Fig.
- (39) must be introduced. At the predictor level following Moret-
ti's scheme one defines

<7
e
.

0

Sear s M-

~t

e gg- = (2e£-3e5+e2)/Az (forward wave) (68)
X ae’ - -

iij 5%— = (eF-eE)/Az (backward wave) (69)
ij::j

b4 o

N A 2 2

T M A N P

b: oT Fig. 39. Displays
-F, L - the computational
s 5 & F z grid for the A-
T » » scheme.
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At the corrector level, one defines

“+
g;. = (ZX - E;)/Az (forward wave) (70)
and
de”  _ ~= Pl
5. < ('ZeA + 3eN + CP)/AZ (1)

It is easy to see that, if any function f is updated as

’f=f+ft At (72)

at the predictor level, with the t-derivatives defined as in (23)
and (24) and the z-derivatives defined as in (68) and (69) and as

f(t+At) = % (f+'f“+ftAt) (73)

at the corrector level, with the t-derivatives defined again as in
(23) and (24), and the z-derivatives defined as in (70) and (71),
the value of f at 't+At' is obtained with second order accuracy.
The updating rule (72) and (73) is the same as in the MacCormack
scheme.

At the risk of increasing the domain of dependence, but with
the goal of modularizing the algorithm, three- and four-point
estimators were used for each first and second derivative respec-
tively. Moretti's algorithm was also extended to non-uniform mesh
to handle the longitudinal refractive left and right mirrors: the
same one-sided differencing is used for both predictor and correc-
tor steps. Nevertheless, the weiﬁyts derived, using the theory of
estimation, (presented by Hamming®3), have improved the order of
accuracy of the spatial derivative estimator at both predictor and
corrector levels. In particular, the derivative estimators are of
second order instead of first order as in Moretti's A-scheme.
Specifically, these weights are derived using a development in
terms as a sum of Lagrangian polynomials at a set of points. As a
result, the overall accuracy of Moretti's predictor/corrector
scheme was increased® from second to third order. Either forward
or backward longitudinal derivatives at both predictor and correc-
tor stages are given for the point X1y Xy and Xq 2s:

[H%1%;"Xq X "¥g "1"‘2> )
D, =| ’ ' (74
1 N nlixli nzixz) n31x3)
D = x2-x3 2x2-x1-x3 x2-x1 (15)
2 n &) Mylxy) 0 Aylxy)
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. D. = ("3“‘2 X37X, 2"3"‘1"‘2) (76)
? ’

3 Ty (xy) ny(%y) my(x3)
; 3

with m.(x) = 1 (x-xi) an

J i#j=1

: Here Dl’ Dz and D3 represents forward, central and backward differ-
,r‘ encing estimators for the (first-order longitudinal spatial) deri-

vative.

XIV. TREATMENT OF LONGITUDINAL BOUNDARY

When treating any point within the cavity or at either longi-
tudinal boundary (where a partially reflecting mirror is situated),
there is no problem. For example, at z = 0, e is determined by
equation (53) and not through previous predictor/corrector formulas
(68-71), as only e is calculated at z = 0 in that predictor/cor-
rector manner (68-71). However, for a point one incremeat (6=Az)
from the left mirror, one encounters difficulties calculating the
forward wave. The second needed point, which is vital to the
formulas, would fall outside the cavity. An identical difficulty
arises from the counterpart backward wave with respect to the right
hand mirror. The field traveling from the right is defined st z =
L by equation (54).

To deal with this situation one has to modify the predictor/

corrector schemes so the increment "62" is used instead of §. The
loss of that second point reduces the accuracy of the derivative
estimator. To maintain the same order of accuracy near the mirror,
one must compensate for this loss by reducing the mesh size.

XV. NUMERICAL PROCEDURE FOR SHORT OPTICAL CAVITY

An alternate procedure to carry out the computatiom is to
integrate the field along the longitudinal propagational distance.
This approach is particularly attractive for a short cavity. It
was developed with the help of McCall53? as an attempt to relax the
restrictive relation between the temporal t and spatial meshes 2z
and r. It is presently being implemented and will be outlined
here.

v The reflecting effect of the partially refracting mirror caa
! be built into the determining equations. Forward and backward
field and polarization terms will appear explicitly as driving
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sources in each traveling field equation (see Fig. 40). One can
readily contrast the two physical situations of long and short
cavity. To illustrate the methodology the diffraction is neglec-

ted. For no reflection, the fields are described by
z
& e+(t+At,z) = e+(t,z-cAt) + J'Adz' P+(t+At - z_cz_l , 2') (78)
N z-cAt
:‘ which applies if z > cAt. Also
o ' . ) ztcAt  _ gog!
- e (t+at,z) = e (t,ztcAt) + [ dz' P (tat + ==, z') (79)
- z

applies if L-z > cAt. For one reflection, the fields are obtained by

+ r + z-2'
e (t+At,z) = JT'eIo(t+At -z/c) + [dz' PT(t + AL -, 2')
0

cAt-z

+ .A!?(t,cm:-z) + yR f dz' P (trAt- i:—z-'-, z')  (80)
0

whenever 2z < cAt, and if L-z < cAt, then one reflection

e (t+At,z) = ’ﬁ-eIL(t*At - L%z') + Jﬁ'eis e+(t,2L-z-cAt)

L - -
+ fdz' P (t+At+§?z—' , 2')
z

.o L
+ K e‘:LJ' dz;tf(uA: - ___ZL-z-z' , 2') (81)
[ . ~2=C

In all of the above it is assumed that cAt < L (so that two re-
flections cannot occur in time At). To correctly include the
influence of diffraction, appropriate weighting coefficients must
be used as summarized below:

(1) For no reflection-correct by % V%.(e*cAt), % V%(e-cAt)

E‘ (2) For one reflection-

~. ' (a) Term ,/"l'_e]:o only propagates z (cAt > z) so correct only by
: %
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z
(b) Term [ dz' P’ goes a distance of an average of (%)z; correct
0
Z g2
_ by 5 V1
:‘ (¢) Term e (t,cAt-z) goes a distance of cAt; full correction by
t : cAt-z
. cAt-z  _ -
L‘ (d) Term R [ dz' P~ goes CAZ’ Z 4+ 2; correct bya distance of
. cAttz vzo
- 2 T
g

(e) Term JT goes flL goes a distance of (L-z); correct by
(1/2) (L-2)V3

(f) Term Ji'eiB e’ goes full distance; correct % cAt V%

(g) Term [ dz' P~ goes a distance of E%E ; correct by

3 (L-2) v2

(b) Term Jﬁ'elp f dz' p¥ goes a distance of LE—ElESQE on the
2L-z-cAt

average; correct E:E%EAE V%

and similarly for aany time correction.

Instead of the usual predictor/corrector weighting of 1/2 for
each of predicted and corrected values, a more complicated proce-
dure must be used.

1
L

3

T Y
oW
v

XVI. TWO-LASER THREE-LEVEL ATOM

An extension of the SF calculations presented in Section IX
should include such pump dynamics and its depletion on a three-
level system similar to the model suggested by the Bowden et al®?®
The simulation of the dynamic interactions of two intense, ultra-
short laser pulses propagating szmultaneously through a gas of
three-energy level atoms was considered®?. The rigorous diffrac-
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tion and cross-modulation interplay of the two laser beams with the
inertial response of the doubly resonant medium is studied using an
extension of the numerical algorithm developed for SIT anmalysis.
It is expected that by altering the pump characteristics, one
encodes information in the pulse that evolves in the nonlinear
media resulting in a light by light control. An intermediate study
will be Double Coherent Transients®!’62, Another benefit of this
study would be an analysis of Wall's®3 scheme for optical bistabil-
ity in a cohere.tly-driven three-level atomic system. However,
some material equation modifications must be made as the novel
mechanism relies on the nonlinear absorption resonances associated
with a population trapping, coherent superposition of the ground
sublevel. When one defines dimensionless variables in a parallel
manner to SIT, the physical problems are described by the following

equations: tpa and tpb are the pulse B of laser a and laser b
respectively. Q is the quadrupole slowly varying eavelope.
-iF V3 €ab T 20 %,b T %a,b Fab (82)
with
= 1/2 :
8y,p = (Ma/bp) (1o, /7)) (83)
= i - i *
atra =e, Wa 1(AQa)Pa Pa/t2a t3e Q (84)
= - - I
3th =e Wb I(Aﬂb) Pb Pb/t2b 3 e, Q (85)
= -3 i - -
9.Q = ~i[(8Q,+20)]Q + 5 (e, P -ey P.) = Q/T, . (86)

_ i, * ko . 1, * %
atw a Z(ea Pa + €, Pa) (wa w:)/tla * Z(eb Pb + ®b Pb) (87)
__1. * ko e 1, * %*
atw b= 2(eb Pb te Pb) (Wb Wb)/tlb + Z(ea Pa te, Pa) (88)
If one uses the identity

Vot W =W, (89)

a further equation (not absolutely necessary) is introduced:

%y = * 1/‘[(°:Pa*eapa) * (e:Pb+°bP:)] - (i W) /T (90)

when W:’b and W:b are the equilibrium values of wa,b and wab’

subjected for infinite relaxation times to a conservation of proba-
bility
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3 12,12 + 1B,12 ¢+ Q1% + (¥ + W + W2y} = zewo. (91)
Equivalently:

12,12 + 12,12 + 1012 +.2/3(2ein2,)
120 1y 124 117 ¢ 230 i D . (92)

=P ,i ab,i

a,i
Figure (40) illustrates W, w, and W, as a function of time
for a particular radius in the reshaping region.

J = 4
”ne3l
=0, NS0, ml‘
1.9 T r— ™ T
| ¥ o -~ -
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S 9 ] 10 13 20
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Fig. 40. Contrast of the material energy for a double self-induced
transpareacy calculatiom.

Numerical Refinements

If the two laser beams which propagate concomitantly are se-
verely disparate from each other, the normal stretching technéque
must be generalized into a double stretching transformation®?” to
ensure that the nonuniform temporal grids simultaneously match the
two different pulses. No spatial rezoning is as yet designed.

Prescribed Double Stretching

Due to the esseatial noanlinear nature of the cooperative
effects associated with a coherent light-matter interaction, dif-
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ferent speeds are associated with pulses of different strengths.
So particular attention must be given to deal effectively with two
concomitant longitudinal speeds (ome for each laser). Mathemati-
cally this is

T=at +b sin wst

T
3 - a+h ws cos mst

and is shown in Fig. 41. Evenly spaced grid points in T are clear-
ly related to non-uniform variable grid points in the physical time

T.
T Fig. 41. Displays the pre-
I scribed double
. : stretching.
|
t— T’j :
b T ——a] !
Te2 i
Wy 0 n/2 n an/2 2n
B cos mst 1 0 -1 0 1
ii 9T/ a+ bms a a- bm' a a+ bws
L’ ‘

For wt =, 9T/3t is minimum.

Several noteworthy facts must not be overlooked, i.e., (i) w,

is related to the frequency of oscillations; aad (ii) the steepness
of the slopes must depend on the conceantration points.

The various stretching parameters are given by
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- aT aT
a=1/2 [5?Imax * 5?lmin1

. far aT
b= {1/2 ws} L§?lmax - 5?lmin]

ws(tcz - tcl) =2n = we Ty = 2n

1f 4 increases, we decreases - a smaller frequency yields to a
larger b, if Ly decreases, w increases - a larger frequency yields
to a smaller b parameter.

To ensure monotonicity of the function T in t (so that multi-
valued possibilities are excluded), an important condition which
must never be violated (see Fig. 42), is

.

s T = -
g = 53lnin = (a-bw>0

Fig. 42. Displays the 1li-

' <0 mitations on the parameter
T 90 choice to the double stretch-
ing transformation.

T

Adaptive Double Stretching

Following the spirit of adjusted stretching for a single
pulse, described in Section V, the sampling frequency w_ cam vary
along the direction of propagation n. S

Prescribed Triple Stretching

For a correct treatment of the pulses propagating concomi-
tantly while one of the two lasers may have broken up into two
small pulses, successive double stretchings are applied

Step 1 {=4A x% + Bx
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= = Ax> + B
from X = Xy, {= §° = Ax; + Bx,
2
= = = +
X = %y, 4 28, Ax3 + Bx,
and x=0,§=0.

Cl = CZ = §2 = C3 =0 - Cl

- 2 _,2
et A= go(x3 zxz) and B = co(zx 2 X 3) ;
one 855 " X%y (x)7%5) DENERN)
Step 2 Y=af +b sin w 4
Cumulative step’ Y= a(sz + Bx) + b sin w (Ax2 + Bx)
Y, = a(2x A+ B) + bu_ (2Ax + B) cos (Ax’ + B)

= (28x + B) (a + bu cos (ax? + B)) .

The coefficients are readily found (see Fig. 43).

Fig. 43. Illustrates a pre-
scribed triple stretching.

XVII. CONCLUDING REMARKS

Most of the features of the numerical model used to study
temporal and transverse reshaping effects of single and multiple
short optical pulses propagating concomitantly in active, non-
linear, resonant media have been presented. The calculations
strive to achieve a rigorous analysis of this nonlinear interaction
with maximum accuracy and minimum computational effort. The appli-
cability of computational methods developed in gas and fluid dy-
v namics to the detailed evolution of optical beams in nonlinear
> media have been demonstrated.

3 By introducing adaptive stretching and rezoning transforma-
! tions wherever possible, the calculations improved considerably.
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In particular, self-adjusted rezoning and stretching techniques
consisting of repeated applications of the same basic formulae were
reviewed as a convenient device for generating computational grids
for complex nonlinear interactions. The techniques are well-suited
for each programming because the mapping fuactions and all related
derivatives are defined analytically as ouch as possible. Enhance-
ment of speed and accuracy was realized by improving the integra-
tion technique/algorithm which was general and simple in its appli-
cation compared with its analogue, the two-dimensional Lagrangiam
approach*?,

This method was applied to a aumber of SIT situations with and
without homogeneity in the resonant properties of the atomic medi-
um. Note that the theoretical predictions defined with the single
stream SIT code, when applied to absorbing media, were quantita-
tively found®® by independent efPerimental observations®%, and
recent independent perturbational®® and computational analysisS7?.
The design of the first of these experiments dealing with sodium
vapor, was based on qualitative ideas, quantitative analysis and
numerical results obtained with the code described in this paper.
More recently, King et al also reported®® the experimental observa-
tion in iodine atomic vapor of the coherent on-resonance self-
focusing. This is a novel manifestation of the phenomenon as it
deals with a magnetic dipole instead of an electric dipole moment.

Also, the severe beam distortion and on-axis pulse break-up,
when the problem of transverse boundary is rigorously addressed,
was observed in high power lasers used in Laser Fusion experiments.

With the help of Gibbs and McCall, we have resolved thc magor
discrepancies between planar calculations (as done by Hopf et al®?)
and the Cs exgerimental observations. The main sources of these
discrepancies®? were the occurrence of transverse effects in the
experiments and the uncertainty in the tipping angle values.

Optical bistability shares with the previous SIT and SF the
same basic physical features; however, the initial and boundary
conditions are different and complicate the problem. Nevertheless,
the similarities predominate; therefore, a unified numerical des-
cription with some modifications can apply to all these problems.
This new computatiomal approach, based on the concept of absolute
consistency of the numerics with the physics, should be successful.

ADDENDUM

An alternate solution to eliminate rapid oscillations from the
two-mode Bloch equation without recourse to harmonic expansion
could be to adopt Moore and Scully’! multiple-scaling perturbation
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expansion. They have applied the techniques of multiple-scaling

El perturbation theory, described in hydrodynamics textbooks, to the
’ free-electron laser problem and the pico-second tramsient pheno-
. mena.

b
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TRANSVERSE AND PHASE EFFECTS IN LIGHT CONTROL BY LIGHT:
PUMP DYNAMICS IN SUPERFLUORESCENCE

F. P. Mattar*

Mechanical and Aerospace Engineering Dept., Polytechnic Institute of New York, Brooklyn, NY 11201
and Spectroscopy Laboratory, Massachusetts Institute
of Technology, Cambridge, MA 02139

and
C. M. Bowden

Research Directorate, US Army Missile Laboratory
US Army Missile Command, Redstone Arsenal, Huntsville, AL 35898

and

Y. Claude and M. Cormier
Dept d'Imformatique, Université de Montreal, Montreal, PQ, Canada
Abstract

Calculational results and analysis are presented and discussed for the effects of coherent pump dy-
namics, propagation, transverse and diffraction effects on superfluorescent (SF) emission from an optically-
pumped three-level system. The full, co-propagational aspects of the injected pump pulse together with the
SF which evolves are explicity treated in the calculation. It is shown that the effect of increasing the
injection signal area exhibits a similar effect on the evolved SF delay time as either increasing the gain,

or F-l, (F is the Fresnel number per effective gain). All else being equal, it is demonstrated that altera-
tion of the temporal as well as radia) shape of the injected pump pulse has a profound effect upon the shape
of SF as well as the sharpness of the rise of the pulse, its delay time, peak intensity and temporal width.
For conditions of sufficiently large gain and large injection pulse area, SF which evolves and the propa-
gating pump pulse eventually occur in the same time frame (overlap). It is shown that under these condi-
tions the SF can be significantly temporally narrower than the pump and of significantly larger peak inten-
sity. Thus, by choosing the shape of the injected pump envelope and/or its area, the SF shape, delay time,
peak intensity and temporal duratiom can be altered. Thus, deterministic control of the characteristics of
the evolving SF pulse is demonstrated by selecting appropriate characteristics of the injected pulse signal
at a different frequency.

Introduction

Superfluorescence[1] (SF), is the dynamical radiation process which evolves from a collection of atoms
or molecules prepared initially in the fully inverted state, and which subsequently undergoes collective,
spontaneous relaxation[2]. Since Dicke's early work{2], much theoretical and experimental effort has been
devoted to this subject[3].

With the exception of the more ‘recent work of Bowden and Sung{4], all theoretical treatments have dealt
exclusively with the relaxation process from a prepared state of complete inversion in a two-level manifold
of atomic energy levels, and thus do not consider the dynamical effects of the pumping process. Yet, all
reported experimental work[5-10] has utilized optical pumping on a minimum manifold of three atomic or
molecular energy levels by laser pulse injection into the nonlinear medium, which subsequeantly superfluo-
resces.

It was pointed out by Bowden and Sung[4] that for a system otherwise satisfying the coaditions for
superfluorescent emission, unless the characteristic superradiance time{1], tR’ is much greater than the

pump pulse temporal duration, Tp’ i.e., LY > > tp’ the process of coherent optical pumping on a three-level

system can have dramatic effects on the SF. This is a condition which has not been realized over the full
range of reported data. Also, Bowden and Sung's analysis was restricted to the uniform plane wave regime;
it cannot account for the inevitable spatial and temporal beam energy redistribution (as in physical
system). Transverse fluency is associated with radial density variations and diffraction coupling, it leads
to communication among the various parts of the beam.

In this paper, we present calculational results and analysis for the effects of coherent pump dynamics,
propagation, transverse and diffraction effects on SF emission from an optically-pumped thnree-level system.
The full, nonlinear, co-propagational aspects of the injected pump pulse, together with the SF which evolves
are explicitly treated in the calculation. Not only do our results relate stroungly to previous calculations
and experimental results in SF, but we introduce and demonstrate a new concept in nonlinear light-matter

* Jointly supported by the US Army Research Office DAAG29-79-C-0148, the Office of Naval Research
N000-14-80-C-0174, and Battelle Colombus
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interactions, which we call light control by light. We show how characteristics of the SF can be controlled
by specifying certain characteristics of the injection pulse.

Equations of motion

v i'rrA

. The model upon which the calculation is based is comprised of a collection of identical three-level
atoms, each having the energy level scheme shown in Figure i. The 1 «* 3 transition is induced by a coher-
ent electromagnetic field injection pulse of frequency w nearly tuned to the indicated transition. The

. properties of this pumping pulse are specified initially in terms of the initial and boundary conditioms.
e The transition 3 +> 2 evolves by spontanecus emission at frequency W, It is assumed that the energy level

e spacing is such that € > €,y >> g, so that the fields at frequencies wy and w can be treated by separate

wave equations. The energy levels 2 «* 1 are not coupled radiatively due to parity consideratioas, and
spontaneous relaxation from 3 <> 2 is simulated by the choice of a small, but nonzero initial transverse
polarization characterized by the parameter oo ~ 10-4. Our results do not depend upon nominal deviations of
this parameter. The initial condition is chosen consistent with the particular choice of ¢°, with nearly

all the population in the ground state, and the initial values of the other atomic variables
chosen consistently[4,11].

We use the electric dipole and rotating wave approximations and couple the atomic dipole moments to
clasical field amplitudes which are determined from Maxwell's equations. The Hamiltonian which describes
the field-matter interaction for this system[4] comprising N atoms, is,

3 N . .« N . . -i(wt - k°r.) <y . i(wt - k°r,) . N . .
- (G _ ()p(d) =237 | o) () SRS AT (3) g(3)
H=A4 1:1 jfl Ceifer T 3 jfl (@ Ry3" e Q7 Rz e 1-3 jfl (wg”" Ry
~ifwt - k °r.) . . ifwt -k °r.)
X e O ToTT g g e e €Y,

The first term on the right-hand side of Eq. (1) is the free atomic system Hamiltonian, with atomic
level spacings srj’ r = 1,2,3; j=1,2,...,N. The second term on the right-hand side describes the interac-

tion of the atomic system with the fluorescence field associated with the 3 «> 2 transition, whereas the
last term on the right in (1) described the interaction between the atomic system and the coherent pumping
field. The fluorescence field and the pumping field have amplitudes Q(J) and wéJ), respectively, in terms
of Rabi frequeacy, at the position of the jth atom, Ej' The respective wave vectors of the two fields are k
and ko and the carrier frequencies are w and W, It is assumed that the electromagnetic field amplitudes
vary insignificantly over the atomic dimensions and that all of the atoms remain fixed during the time frame
of the dynamical evolution of the system.

The atomic variables in (1) are the canonical operators [4) Rﬁi) which obey the Lie algebra defined by
the commutation rules [12-14]

(m) _(n), _ o(m) (m)
[Rij » Rge’l = R 89300 ~ Roj 1y )

ik mn

i,j, = 1,2,3; m,n = 1,2,...,N. The Rabi rates, Q(j) and uél) are given in terms of the electric field
amplitudes E(J) and EgJ), respectively, and the matrix elements of the transition dipole moments, () and

32

g 3y by
: gd) )
= o) . 32
; o i (3a)

() _ "o 31
b HIR = —T— , (3b)
X where we have considered only one linear polarizstion for the two fields and propagation in the positive z
3 direction.
[‘ It is convenient to canonically transform (1) to remove the rapid time variations at the carrier fre-
et quencies w and w_ and the rapid spacial variations in the wave vectors k and ko. We assume that the field
f envelopes Q(J) and uéj) vary much more slowly than the periods w.1 and wo-l, respectively. In the trans-
3
3
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formed representation, we are thus dealing with slowly varying field amplitudes and atomic operators. The
desired transformation U is unitary and is described in ref. 12.

iy =UH u!

The equations of motion for the atomic variables are calculated from the transformed Hamiltonian ac-
cording to

i R‘J) = [, R‘J)} (5)

This set of equations constitutes the equation of motion for the density operator ¥ for the system in the
slow-varying operator representation. By imposing the canonical unitary transformation, we, in fact, trans-
formed to a slow-varying operator representation which is consistent with the slowly-varying enveloped
approximation to be imposed later om in the Maxwell's equations coupled to the hierarchy of nonlinear,
first-order equations, (5).

The following hierarchy of coupled ncnlinear equations of motion is obtained for the atomic variables:

Rg%) - % (ol Rg%) + oF (D) Rég)] N % wés) wR(J R(J) Yll[R(J) R(e)] . (6a)
Rgi) - - % (e’ Rgg) o) (J)] - ¥y, [R(J) . R(e)] , (6b)
ﬁgi) z - % wéJ) R(J) wh(l) R(J)] - 711 [Rgi) R(e)] , (6¢)
Rgi) = i803) Rgg) . % o ) [Rgg) (J) +1 m;(]) R(J) Y, g;) , (6d)

55) = 5 R, - % ) g R, + ul,(zj) Ryl - v, R(J) , (60)
Ri;) = 1a08) ng) + % i) R, - % wéJ) [R(J) (J)] gg) ) (6£)

In Eqs. (6), we have added phenomenological relaxation Yqq and dephasing yt and taken these to be uniform,
i.e., the same parameters for each tramsition. For the diagonal terms, ki » the equilibrium values are

designated as R(k)' the same for all atoms.

Since the equations (6) are linear in the atomic variables Réi), they are isomorphic to the set of

equations of motion for the matrix elements of the demnsity operator {. We shall treat the Egqs. (6) from
this point as c-number equations. Further, we assume that all the atoms have identical energy level struc-
ture and also, we drop the atomic labels j, so it is taken implicitly that the atomic and field variables
depend upon the special coordinates as well as the time.

It is convepient to introduce a new set of variables in terms of the old ones. We let

ke = Rk " Ryp v k>2, (7a)

Ry=3 W, +iv,) ., k>t , ) ' (75)
where Ukl’ vkl’ and wk2 are real variables, and Ukl Ulk’ an = VQk’

Q=X+ iy , (7¢)

we = Xo + iYo . (7d)

where X, Y, Xo and Yo are real variables.
The resulting equations of motion for the real variables {sz, u

(e) 1

K2 sz} are

g =1 - - - -
Wiy T3 X UgpWaod » {X Vg = Y Vo - vy Wy W5 ) (8a)
Wy = (X Uy - W} ¢+ 3 (XU, - YV, } -y [We.-w®)] (8b)
32 32 kY REREE BRLPS DU PAE SEER SPLAEY S PR
1
Ugy = = 8V3, = XWy, + 5 (X Uy = ¥ Voqd = v Uyy s (8¢c)
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Ugp = Slyy + Wiy = 5 (X 0y + ¥ 0] - ¥ Vg, (84)
N TR L IR N (8e)
A R L /TR CNY R AN A (86)
Uyy = 8Vyy = 3 [X0g = Wy ) = 3 [X Uy - Y Vel = vl (8g)
Uy = -SUy - g XV # VUL g (XY + Y U) -y Yy (8n)
In obtaining Eqs. (8), we have made use of the imvariemt, tr ¢ = I,

1= Rgi) + Rgg) + Rgg) . 9)

It is noted that I = 0 is satisfied identically in (6a)-(6c) for ¥y, * 0. For v, # 0, the condition (9)
together with (6a)~(6c) constitutes the statement of conservation of atomic density, i.e., particle number.
The Eqs. (8) are coupled to Maxwell's equations through the polarizations associated with each transi-

tion field. It is easily determined that the Maxwell's equations in dimensionless form in the slowly-
varying envelope approximation and in the retarded time frame can be written in the following form

-1 2 -X 2 Y -U
uF Tof g0} +— o }=af{ 311}, (10a)
P P Yo anp xo V31
-1 2 -X ) Y, . -U

In the above equations, we have assumed cyliandrical symmetry, thus the transverse Laplacian which accounts
for diffraction coupling is:

1 3 )
=19 9 11
o~ p 3p (p 3 ) (11)
The first term on the left-hand side in (10a,b) accounts for transverse communication effects across
the beam with normalized radial coordinate p = r/r_ where r is the radial distance and rp is a character-

istic spatial width. In (10), np =2 uesf where uesf is the on-axis effective gain,

s s
2
H
16,24
- o 31 T
Yeff = “nd c {p (12)
)

w

where { :p } are characteristic times for the system, N is the atomic number density (assumed longitudinally
s

homogeneous) and n is the index of refraction (assumed identical for each transition wavelength). The
quaatity

a= NO (13)
o
governs the relative radial population density distribution for active atoms and is taken as either Gaussian
with full width tp or uniform, in which case rp corresponds to Ppax = 1. The Gaussian distribution would be

associated with an atomic or molecular beam with propagation along the beam axis. For the cases treated
here, it was found that there is no significant difference in the results for a uniform density distribution
with injection pulse of initial radial width at half maximum, L and a Gaussian radial density variation

with LA tp. For the latter case, the effective gain g is appropriately adjusted such that both the

eff

radially integrated gain and the total effective gain, L, remain invariant between the two cases, where

8ot
L is the length of the medium in the direction of propagation. 1In obtaining (10-13), we have extended
Mattar et. al (14) Theoretical analysis for two-level SF. Equations (10) are writtea in the retarded time,
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t, frame where T = t-nz/c. From this point on, - in Egs. (8) is taken to be : = 3/3t. Finally, the first
factors on the first terms in (10) are the reciprocals of the "gain length"” Fresnel numbers defined by

N 2
Moot nr
b F = ——-—ll’— , (14) ;
' Ps Ap Befs |
‘r -
,{1 where
: "egf
S
=58 1
Beff T (15)
pS ‘S

It is seen from (10) that for sufficiently large Fresnel number, F, the corrections due to transverse ef-

:: fects become negligible. Note that F corresponds to a gain to less ratio. The "gain length" Fresnel num-
; bers F are related to the usual Fresnel numbers = ntﬁ/AL, where L is the length of the medium by

; ¥/F = Bt L. (16)

T‘ i.e., the total gains of the medium. Ian the computation, diffraction is also explicity taken into accounmt
[ by the boundary condition that p = Ppax corresponds to completely absorbing walls.

t The initial conditions are chosen to establish a small, but nonzero transverse polarization for the
! 3 <> 2 transition with almost the entire population in the ground state. This requires the specification of
- two small parameters, £ ~ 10'“, for the ground state initial population deficit, and 6 ~ 10-& for the tip-
- ping single for the initial transverse polarization for the 3 <> 2 transition. The deriva’ion for the
‘i! initial values for the various matrix elements is presented elsewhere [12], and the results are as follows:
b

2

i Wy =2¢€-1 (17a)

i Wy T E e
- Usp =0 (17¢)
¢ v, = eb (179)

s - .

- Uy, = m sin op (17e)
- V31 = m cos @p (17£)

" U1 =-275 (178
_ Vo =20y, . (17h)

where m = cos-1 (2¢-1) and the phase op is arbitrary, and we have chosen the phase °s to be zero.

Numerical Results

TYITITITEYY

Calculational methods applied to this model and discussed elswehere[13,15] were used to compute the
effects on SF pulse evolution for various conditions for the injection signal, thus demonstrating control of 1
the SF signal by control of the input signal. Some examples follow.

pAA o
1

v

v
(I

v
-

In Figure 2 is shown the transverse integrated SF pulse intensity vs. retarded time t (curve 2) to-
gether with the transverse integrated pump pulse intensity vs. t (curve 1) for a gain and propagation depth
chosen so that the pulses temporally overlap. Under these conditions the two pulses strongly interact with
each other via the nonlinear medium, and the two-photon process (resonant coherent Raman - RCR) which trans-
fers population directly between levels 2 and 1, makes strong contributions to the mutual pulse develop-

)

- ment{4]. The importance of the RCR in SF dynamical evolution in an optically-pumped three-level system was
o pointed out for the first time in reference 4. Indeed, in the extreme case, the SF pulse evolution demon-
strated here has greater nonlinearity than SF in a two-level system which has been prepared initially by an
impulse excitation. What is remarkable is that this is an example where the SF pulse temporal width L is
much less than the pump width tp’ i.e., the SF process gets started late terminates early with respect to
% the pump time duration. Pulses of this type have been observed[16] in C02-pumped CH3F.
b~

Figure 3 is a comparison of the radially integrated SF pulses at equal propagation depth for three
different values for the input pulse radial shape parameter v, where the initial comdition for the pump

transition field amplitude Xo(p) is X (p) = XO(O) exp [-(r/rp)v]. Since all other parameters are identical

)
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for the three curves, this shows that the peak intensity increases with increasing v whereas the temporal
width and delay time decreases. Also, it is clear that the SF pulse shape varies with v. In connection
with each of the SF curves shown, there is less than ten percent overlap with the injected pulse. These
results thus demonstrate the control of the SF shape, delay time, peak intensity and t:mporal width by
control of the injection pulse radial shape. In Figure 4, we contrast for different v (as in Fig. 3) iso-
metric of the pump and superfluoresance outputs to display the importance of spatial profile (v=1,2,3:
exponential, Gaussian and hyper-Gaussian).

The effect on the SF pulse of variation of the input pulse temporal shape parameter 0, is shown in
Figure 5 which compares SF pulses at the same penetration depth as given in Figure 3, for two different

values of g. Here Xo(p) = XO(O) exp [-( %—)U]. It is seen that the variation from a Gaussian, 0 = 2, to a

super-Gaussian, 0 = 4, temporal input pump pulse shape causes almost a factor of two increase in the peak SF
intensity with a significant reductiorn in temporal width and no discernible shift in the time delay. This
situation is in marked contrast with that shown in Figure 3 for the effect of pump radial shape variation.
As in the previous case, there is less than ten percent overlap between the SF pulses and the pump pulse.

Figure 6 shows the SF pulses at equal penetration for various values for the initial temporal width tp

of the injected Gaussian m-pulses. All other parameters for the pulse propagation are equal. Again, there
is less than ten percent overlap between the SF pulses shown and the pump pulse. Thus, reducing the initial
temporal width of the injection pulse causes a shift of the SF delay time and temporal width to higher
values, and a decrease in the SF peak intensity.

Figures 7 and 8 illustrates the Fresnel dependence of the SF buildings. Figure 7 represents the radi-
ally integrated output SF energy while Figure 8 displays isometrically, versus T and p, the SF energy. As
the initial spatial width of the injected Gaussian pump increases r_, the associated Fresnel number de-

creases, the delay strengthens, the SF peak intensity reduces and the SF pulse gets more symmetrical.

The effect on the SF pulse of the on-axis area of the Gaussian pump pulse is shown in Figure 9 for the
same penetration depth as for Figure 3. It is seen here that the effect of increasing the initial on-axis
area of the pump pulse is to decrease the SF pulse temporal width and delay time and to increase the inten-
sity. As before, the overlap in this case between the SF and pump pulses is less than ten percent.

Figure 10 illustrates the dependence of SF output on the shape (form) of the input pump pulse whether
it is full Gaussian pump, half-front Gaussian or reflected-half Gaussian. The shorter delay and the
stronger SF output are associated with the full Gaussian followed by the reflected-half Gaussian pump and
the (rising) front half Gaussian pump respectively.

In Fig. 11, the effect of varying N, the atomic density, on the SF build-up is shown. Note that N
enters in the definition of ueff then in F_ . The more dense N becomes, (the larger is the effective gain),
Py s

the more intense is the SF build-up and the shor*er becomes the relative delay. Thus, the overlap between
the SF and the pump pulses increases with N. rurthermore, the nonlinear contribution of the two-photon
effects increases significantly.

Conclusion

We have shown here eight ways of shaping the SF pulse by controlling corresponding properties of the
injection pulse in coherent optical pumping on a three-level system, where propagation, transverse effects
and diffraction are precisely taken into account. We have demonstrated also, in Figure 1, the highly aon-
linear effect of generation of an SF pulse of much narrower temporal width and larger peak Rabi rate than
the pump pulse under conditions where the two pulses completely temporally overlap after suitable propaga-
tion and pulse reshaping. An additional significant nonlinear to the SF emission in this case is due to the
competing two-photon process with the direct process[4]. We have thus demonstrated by numerical simulation,
the nonlinear control of light at one frequency with light of another frequency.

By changing the material characteristics such is the dipole moment of species oft the associated transi=

tion frequency, one finds that the SF pump dynamics are modified [12]. The effect of increasing them is
similar to the effects associated with augmenting N.
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FIGURE CAPTIONS

Figure 1. Model three-level atomic system and electromagnetic field tunings under consideration. For

the results reported here, the injected pulse is tuned to the 1 « 3 transition.

Figure 2. Radially integrated intensity profiles for the SF and injected pulse at Z = 5.3 cm penetra-

tion depth. The injected pulse is initially Gaussian in r and T with widths r, = 0.24 cm and

t. = 4 nsec, respectively, and initial on-axis area 8 = n. Further, (83-51)/(83'82) = 126.6;

gp =17 cm-l; g, = 641.7 cm-l; Fp = 8400; Fs = 2505; T1 = 80 nsec; T2 = 70 nsec, where Tl and
T2 are taken to be the same for each transition.
Figure 3. Radially integrated intensity profiles of SF pulses at a propagation depth 2 = 5.3 cm for

three different values for the input radial shape parameter v. The injected pulse is ini-
tially Gaussian in t, and has radial and temporal widths as for Figure 2 with initial on-axis

L. F = 2960; F_ = 7017, with all
s P

other parameters the same as for Figure 2. Here, curve 1, v = 2; curve 2, v = 3; curve 3,
v = 4, (see text).

area 0 = 2n. In this case, gp =z 14.2 cm-l; g = 758.3 cm_

Figure 4. Isometric SF intensity (t versus p) at a propagation depth Z = 5.3 cm for three different

values for use input radial shape parameter . This figure complements Figure 3.

Figure 5. Radially integrated intensity profiles of SF pulses at a propagation dept Z = $.3 cm for two

different values for the input pulse temporal shape parameter 0. The injected pulse is
initially Gaussian in r, and has radial and temporal widths as for Figure 2 with initial
on-axis area © = 3n. In this case, g = 641.7 cm'l; Fs = 2505 and all other parameters are

the same as for Figure 3. Here curve 1, 0 = 2; curve 2, 0 = 4 (see text).

Figure 6. Radially integrated iatensity profiles of SF pulses for five different values for the tempo-

ral width, t_ of the injected signal: curve 1, ¥ = 4 nsec; curve 2, tp = 3.3 nsec; curve 3,

tp = 2.9 nsec; curve &4, tp = 2.5 nsec; curve 5, tp = 2.2 nsec.

Figure 7. Radially integrated intensity profile of SF pulses at a propagation depth Z = 5.3 cm for five

different values of the spatial width r_of the injected pump (thus of the associated Fresnel

number): curve 1, F= 0.69; curve 2, J= 0.403curve 3, F = 0.24; curve &4, F =0.17 and
curve 5, ¥= 0.10.
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Figure

Figure

Figure

Figure

11.

Contrast of SF (top line) and Pump (botton line) Energy isometric versus T and p at a propa-

gation depth Z = 5.3 cm for different values of the Pump Fresnel number (associated with the

initial spatial width of the injected signal): curve 1, & = 4.0; cucve 2, F= 2.26;

cg;ve 3, J =1 .0; curve 4, T=0.69; curve 5, JF= 0.40; curve 6, = 0.27 and curve 7,
= 0.10.

Radially integrated intensity profiles of SF pulses for three different values for the ini-
tial on-axis injection pulse area 8 ; curve 1, ep = M; curve 2, 8 = 2n; curve 3, 8 = 3n

All other parameters are the same as for Figure 2, except for g = 291.7 cm”! and

Fs = 1138.7.

Radially integrated intensity profile of SF pulses for three different form of the injected
pump: curve 1, front half Gaussian form; curve 2, full Gaussian and curve 3, reflected half
Gaussian.

Radially integrated intensity profile of SF pulses for three differeat atomic density N.
From curve a to curve d, the density ratios are: b/a = 1.4, c/a = 1,8, d/a = 2,2,
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A PRODUCTION SYSTEM FOR THE MANAGEMENT OF A
RESULTS FUNCTIONS BANK AND A SPECIAL APPLICATION:
THE LASER PROJECT
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Dept. of Mechanical and Aerospace Engineering
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and
Spectroscopy Laboratory
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Cambridge, Mass. 02139, U.S.A.

ABSTRACT

This document presents the system developed to support the numerical laser
modeling project at the Universite de Montreal in conjunction with: the Polytechnic
Institute of New York. This tool represents a mechanism for practical parametric
simulation studies of real-life experiments in quantum Electronics. The goal of
this system is to offer a reliable, adaptable and easy tool to the production and
study of laser simulations, a study mainly done through drawings and comparisons
of functions. Organized around SIMRES and DATSIM type files, this system en-
compasses software packages which control file access, application programs and
the very laser programs. The SIMRES files are self-descriptive and can store
in the same direct access file all the information relative to a simulation.

The SIMRES package is used to generate a SIMRES file while the XTRACT package
permits the reading of the information stored on a SIMRES file. The DATSIM files
regroup on one file, permanently located on disk, a summary of the SIMRES files
(because of their size these must be filed away on a magnetic type). The DATSIM
package permits the reading and the writing procedures of the DATSIM files. This
document alsc presents three of the principal application programs: the DEFPARM
program which helps the user to construct parameter games for the simulation pro-
grams, the DESRES program which plots the simulation results, and the SYNTH

program which makes the comparisons. Finally, the document presents the different
laser programs.

* Jointly supported by F.P.Mattar, the U.S. Army Research Office, the U.S. Office
of Naval Research, the U.S. Science Foundation Research Corporation, Battalle
Colombus Lab. and the Canadian Defense Research Establishment at Valcartier.
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I - INTRODUCTION

The laser aumerical modeling project began over three vears ago at the University of
Montreal. A first produczion system, which nermitted generation of laser simulations and
graphic representation of the results was then set up.

This first system was based on a fixed structure of the result cfiles, and the programs
using this structure were conseauently not very Iflexible.

Eventually, new needs appeared (catalogs and commarisons) and their iaplementation
made the system more complex and less efficient as these new possibilities could not always
be adequately integrated. Finally, new models were introduced to the system for which the
fixed format was not adequate.

A sacond systsm, more flexible and more nowerful, was undertaken in May 1981. The
object of this document is to present this new system. It consists, on the one hand, of
a nucleus, made of general nackages, which nermits the creation and maninulation of result
files consisting of functions of arbitrary dimensionality; and on the other, of a set of
arograms adapted to precise tasks (graphic renrensentation of the results, comparisons).

The order of the sections goes from the general to the particular.

Section two presents the cbjectives which oriented the design and implemenzation of
<he systenm.

Section three gives a comprehensive view of the system.
Section four presents the different packages forming the nucleus.

Section five presents the programs which generate the various products (drawings,
catalogs) of the lassr modeling project.

The conclusion returns to the objectives dresented in section two and discusses to what
extent they have been attained.
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I - OBJECTIVES

The design of the different packages composing the production system for the laser
numerical modeling project has Seen elaborated from the following gecals:

modularicy

flexibilicy
reliabilizy

efficiency
transportabilicy
adequate documentation

2.1 MODULARITY

Modularity implies that a job is divided into tasks and that execution of a given task
is confined within a set of routines.

By proceeding, such a task is isolated from the rest of the program. The use of .
packages is modular since they are indenendent from the programs and can therefore be used
in various ways in various prograams.

2.2 PLEXIBILITY

Flexibility is the aquality of a sof:tware which not only aaswers a precise need bdut
also adapts to a2 range ot similar problems.

Software products must therefore be given a maximum of generality and flexidbility in
view of current and future needs. Id=ally, a software should handle the general case.

But in reality, it is often neither possible nor desirable; and restrictions are
necassary.

In such cases, flexibilicy is then measured by the facility with which the software
can be modified in order to bypass its limitations or restrict their impace.

2.3 RELIABILITY

Reliability combines two m2ajor aspects.

The first aspect is that a software must give the control back to the operating system
only if it wishes to do so. This means that a software must orevent conditions (such as
memory overflow) where the omerating system would otherwise force it to stop.

The second aspect is that when a routine or a program does return results, these must
be correct; otherwise no results are sroduced and an errvor message is returned.

2.4 EFBICIENCY

When designing a software, the limited and often costly resources given by an operating
system, often shared by many users, must be taken into account.

Techniques which minimize factors such as computation time, memory requirements and
disk access ire thus essential. Moreover, reduced use of the resources may have a positive
impact on the turnaround time, and then again, the: optimisations will directly benefit
the user. . . ’

2.5 TRANSPORTABILITY

It is often difficult to produce perfectly transportable software nroducts. Neverthe-
less, techniques can be used o increase software transportability. Thus, machine dependent
and installation dependent features must be banned. In some cases, it is impossible to do
so (such as in I/0 routines) and critical actions must bde isolated in routines which can
easily be modified to adapt to other environments.

2.5 ADEQUATE DOCUMENTATION

Three types of documenzation are necsssary o describe 2 given system adequataly:

b

o Comments within the source code are necessary %o maintain and modify the sofstwarse.

4

I A separate technical nanual complements the internal documentaticn with a higher level
1) description ziving the overall design philosophy and indicating the zlobal structure and

- — interdependencies between the various nracedures or programs.

Finally, a user's guide is needed to indicate clearly how the software is to be used.
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ITI - A COMPREMENSIVE VIEW OF THE SYSTEM

The system supporting the laser modeling project has been developped an a pair of COC
CY3ER 173 computers at the Centre de Calcul of the Université de Montréal. It consists of
programs and packages written in FORTRAN IV. The three major tasks accomplished by the
system are:

- generation of simulation results, .
drawings of the results of an individual simulatien,
comparisons of results between simulations.

3.1 GENERATICN OF RESULTS

The study of lasers is done with programs simulating the spacial and temporal evolution
of a laser impulse, in conformity with a given numerical model. Initially, there was only
one program which was using a single laser cylindrical model. Eventually, with developments
in the physics theory, the initial model was imoroved (it now takes into account Doopler
effects, oscillatory phenomena, ...) and new models were developped (l-laser model, Cartesian
model). There are now many laser simulation programs, each being the startiag point of a
data-base of results associated with the model.

Each simulation is controlled by a set of varameters defining the material and the field
through which the laser impulse propagates. These parameters are given to the laser programs
as FORTRAN NAMELISTs. For each model, simulations are identified through a unique number.
This number is- inciuded in the NAMELISTs as a special parameter. The results of a simulation
are written on SIMRES type files (SIMulation RESults). Each file is identified through a root
to which a suffix is added; the root corresponds to the identifier of the program which pro-
duced the simulation, and the suffix is the simulation number. ¢

SIMRES files contain general information (name of the originating program, version number
of the program, creazion date of the file, ...), the list of the simulation parameters, and
the results of the simulation. The way results of a2 simulation are handled can be summari:zed
in the following manner:

- The programs evaluate functions of varying dimensionality and the parameters of the
sinmulation determine at what points these functions must be evaluated.

- Values of the functions are kept in SIMRES files for a given sample of esvaluation points.

As can be seen, all the information relative to a2 simulation is kept on a single entity,
i.e. the SIMRES file. In this basic scheme (NAMELISTs, simulation programs, SIMRES files),
DATSIM type files and the program DEFPARM were added. The program DEFPARM (DEFinition PARa-
Meters) is used to assist the user in writing NAMELISTs. It is an interactive program which
allows the user to describe a simulation of a family of simulations by using a compact syntax,
and in return produces the corresponding NAMELISTs. Although this program may not be sssential,
its advantage is to relieve the user of the chore of writing often repetitive NAMELISTs.

It also avoids trivial errvors such as syntax errors in NAMELISTs and errors in parameter
lames. ’

The smergence of DATSIM files is linked to a context of intense production. Moreover, to
be efficient at a production level, it is necessary that any information concerning any given
produced simulation be aviilable. SIMRES files being too large and too numercus o0 be all kent
on disk, a mechanism has been laid to transfer data between disk and tape. This archival sys-
zem is essential, but it considerably slows the access to information. To be efficient, we
ngst th:n compromise and keep on disk some high priority informacions concerning all produced
simulations.

The informations are gathered in a data base consisting of DATSIM type files (DATa SIMul-
ation). DATSIM files contain, for every simulation produced by the arogram:

- general informations, identical to those on SIMRES f{iles,
- values of the simulation parameters,
- evaluation points and values of the functions used in comparisons.

The program MAJDTS (Mise-A-Jour-undate, DaTSim) reads usefulninformations on a SIMRES ZSile

and writes them on the SIMRES filie. It is noteworthy that the information zontained in the
DATSIM file is used by the program DEFPARM to get the aumbers 0 be assigned o new simulations.

¢ The configuration of the system, as regards to the production of simulations is given at
igure 3.1.

The suffixes 1CFS, ICFS, 1PS, 1P4S refer 20 the different laser nodels (these will be
explained :in Section 3).
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Consider model 1CFS (l-laser Cvlindric Trequency Statiszics model). The program DEFPARM
takes the specifications from the user, validazes them and writes on the file SXICFS (Sizul-
ations 2o be a2Xecuted) the data needed to produce the simulations requested. Then, the program
LRICFS (LaseR) reads the 1ippropriate cdats on the Sile SNICFS, zenerates the simylation and
produces a SIMRES file whose identifier is LRICFS (no) ((no): simulation nunmber).

¢ LRI1C?S {no) gives the pnrogram MAJITS the information needed to ragister

finally, the ¢ n : . :
< ile DTICFS (DaTsim) which contains 3 summary of the simulations carried

31
the simulation on the
out with the zodel ICF

P
3

3.2 DRAWINGS OF A SIMULATICN

The study of the simulation results requires graphic support in order to visualize the
profiles of the functions svaluated by the simulation programs. The program DESRES (dessin-
drawing, simres) has been designed to offer such assistance, This program can be used either
in batch or interactive mode.

Drawings needed ars specified by using a syntax whose structure is similar to that of a
program and allows inner loops on simulations, functions, selection criteria, etc. The user
can thus indicats in a short way what drawings he wishes t3 have.

The commands given by the user ire analysed by the program DESRES, which breaks them up
in single units, using the package XTRACT. The SIMRES files then give all the informaticn
needed to identify and produce the drawings. There are Zour types of drawings availabla:

- 2-dimensional representation of a function,
- 3~dimensional representation of a function,
- l-dimensional projection of a 3-d representation.

The I-D projections and the level curves are performed by the program TRASURF (CACM
sept /73).

Figure 3.2 presents the portion of the system which carries cuz the producticn af
drawings.

3.5 COMPARISONS QF RESULTS BETWEEN SIMULATIONS

The program SYNTH (SYNTHesis) has been desizned to allow comparisons of results between
simulations. A comparison is done by superposing on one drawing 2-dimeasioral representaticns
of either functions coming frem different simulations or functions for which each point comes
from a differsnt simulation. The program SYNTH is a powerful cool; it can be used in both
incteractive and batch mode and its scope includes the three following applications:

- Comparison inside one simulation.

- Comparisons between simulations of a same model, bringing out =he vole of certain
-

parametsrs in . or more laser models, and the role each laser plays.

- Comparisons between the different models to demonstrate their impac:. The user speci-
fies the work to be done zither by defining the shjects td be compared and the comparison
¢rizeria or by indicating where to search for the objects to be compared and how to orgaai:e

.the comparison. In this last case, part of the search procedure needed rfor the definition

of the comparison is done »y the SYNTH program.

After validating and accepting the reauest, the SYNTH program 3roduces the necessary
headings identifying the comparison (by isolating the Jixed parameters from the variable ones)
then effects the drawings corresponding to the camparison.

The running of a comparison requires all the information needed at the same time on one
disk. It is at this level that the DATSIM files are useful as they give access td the para-
meter list of all the simulations already produced and to certain functions often used in the

comparisons. Nevertheless, the data on the DATSIM files are not always sufficisnt, the user
[ therefore nust revert to the archival procedures of the needed SIMRES files.
y This structure is presented in figure 3.3.
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IV - THE PACKAGES

The packages are the lower level of the system. 3eside answering a particular applica-
tion, their role is to solve a problem in a general way. Each package is made up of several
procedures accomplishing a precise task. The packages presented here are the following:

- SIMRES : generation of the SIMRES files;

- XTRACT : operation of the SIMRES files;

- DATSIM : generation and operation of the DATSIM files.

4.1 THE SIMRES PACXAGE

The SIMRES package aims, on the one hand, to keep on one single file all the information
relative to a simulation and on the other, to orovide self-descriptive files, or files that
carry the necessary information to describe their organization. By proceding this way, the
integrity of the information is insured (all data relating to one simulation is concentrated
in one file) and the system is given a greater flexibility when faced with changes (the orga-
nization of the file varies, the key is in its description).

4.1.1 DESIGN OF THE RESULTS FILES

The different simulation models describe the evolution of a laser pulse in a space of a
dimensions. The value of n, the number of dimensions, depends on the model. To each dimen-
sion corresponds an axis identified by a name and by units. The simulation programs results
are functions defined on the reals:

TN LU,

i
where i

1,2,...,M (M = number of functions)

< -}

A

di < N (N = number of dimensions of the simulation space).

For instance, in the 1CFS model involving a 4 dimension space defined by the STASTIC,
- ETA, RHO and TAU axes, the O POWER function depends on the STATISTIC, ETA and TAU axes
(N = 4 and dp powgr = 3).

gy Y vy
il

The functions assessed by che simulation programs correspond to continuocus phenomena.
But the fact of using a computer makes it important to make them discrete. Thus, the points
at which a function has to be assessed is determined by associating them to a sampling grid.
When only one sampling grid is used for all the functions, it can be said that this grid
constitutes the discrete space in which the simulation evolves.
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It would be very costly to keep, for each value of a function, the value of its points
of assessments. It is thus of prime importance to find a more compact method to describe the
sampling grids.

The simplest sampling grid is the linear orthogonal grid which can bYe described by giving
for each of the axes that make up that grid, a starting point, an increment and the number of
points on the axis. Figure 4.1 shows such a grid.
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- However, the linear orthogonal zrid offers little flexibility. Thus, in order o follow
more adequately the phenomenon under study, there would be a2 need for a grid where the dis-
tance between the points, instead of being uniform, is smaller in certain areas than in others.
This will define a finer grid where the phenomenon is more interesting. Such a grid is said

to be "nonlinear orthogonal' and can be described by keeping for each of the axis the value

of the chosen point: see figure 4.2.

ST

Moreover, there may be a need for a grid even more adapted to the phenomenon under study,
- for instance for a grid without the constraints of orthogonality. In this case, the coordi-
L‘ nate of the grid associated to an axis depends on the value on that axis and possibly on the

values on other axes. A grid in CRN can thus be described by N sampling functions fey, fes,...,
b . fen 2ach of these functions depending of an axis or on several axes for its assessment. Wwhat
) is stored to describe the grid is then the values of the functions. Thus, in figure 4.3,

which illustrates a nonlinear orthogonal grid, the sampling grid fey, depending only on the Y
axis, is completely described by a 7 points vector iand the function fe,, depending on axes
X and y, is described by a matrix of "x7 points. ’

f‘ . This last method is the most advantageous and thus, it is the one most used here.

& in fact. this method permits the description of grids as zeneral as possible while avoiding
the redundancv of the information at the level of the values of the points on the axes. For

' this method, the use of space is proporzional o the "complexity" of the sampling functionms.
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The definition of 1 sampling grid often requires that the points be sufficiently close
together and sufficiently numerous to assure the stability of the numerical techniaues used.
Thus, it is possible o store more informacion than is required to visualize the phenomena.
Even more, it is possible that the results files may not De kept on the same disk unit:
for instance, the complete Carsesian laser model assures four functions for more than a
hillion points (7 goints for the STATISTIC axis x 300 for the ETA axis x 95 for the X axis
x 95 for the Y axis x 64 for the TAU axis) whizh is far bYeyond the space capacity of a disk.

It is thus essential zo reduce the volume of data to be put cn file. This is done hy
introducing a selection mechanism which chooses those points of a sampling function for
which the data is effectively heing stored. This selection is done by specifiying the number
of the starting point and an increment in number of points. This simple way of proceding,
together with an as precise a grid as is resquired gives enough flexibility to make a perti-
nent choice of data for storage.

4.1.2 USAGE OF THE STMRES PACXAGE

The procedures of the SIMRES package create the SIMTMP files (SIM for simulation and
TMP Sor temporary) which will later be converted to SIMRES files. These proceasdures are:

- SIMDEB : initialization of the package;

- SIMAXE : definition of the axes;

- SIMECH : definition of the sampling functions;

- SIMFCT : definition of the functions;

- SIMSEL : definition of the selectors;

- SIMVAL : writing of the values;

- SIMAVC : positioning of the selectors;

-~ SIMFIN : end of processing.

Figure 4.4 is a diagram showing the sequence of the package procsdure calls and the uses of
the special parameters, that is: those which identify the axes, the sampling functions, the
results functions and those which build the dependencies between the sampling functions and
the axes, between the results functions and the samnling functions. All this is explained
more fully in the following paragraphs.

The SIMDEB prccedure initiali:zes the writing process of a SIMTMP file and records the
identification and the main characteristics of the sinmulation. The parameters of the proce-
dure are the following:

- ULSIM : unit number of E/S associated to the SIMTMP file;

- ULPRNT: unit number of E/S associated %o the print file;

= IORI : name of the program creating the SIMTMP file;

- IVER : program version;

- NOSIM : simulation naumber;

- NBAXE : axes number;

= NBECH : number of the sampling functions;

- NBFCT : number of results functions.

Figure 1.5 shows an example of a program when 3 functions in a 2 dimension space is assessed.
For this example, the call corresoonding to SIMDE3 would h»e the following:

CALL SIMDEB (1,5, 'SIMUL', 'l.0', 1, 2, 2, 3)
The SIMAXE procedure is used to declare each of the axes defining the simulation space.
The order in which the ixes are declared determines the order in which the SIMVAL procedure
will receive the values of the functions. The nrocedure receives in parimezer the following
information:

- IDAXZ : the axis identifier;
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- NPTAXE: the number of noints of the axis;
- UNITAX: the MKSA units used for the graduation of the axis (meters, seconds, ...);

- EXPUNT: the exponent affecting the units, for iastance: if UNITAX = 'seconds' and
EXPUNT = -6, we have microseconds;

- FACUNT: the multiplying faczor affecting the units.

The received information is recorded in the SIMTMP files. In exchange, the procedure ini-
tializes the NUMAXE parameter (number of the axis) which identifies the axis in the SIMRES
and DEPAXE (axis dependency) package which will mark the dependency of a sampling function
with regards to an axis. It is important to note here that the value given to the DEPAXE
parameter is in the vower of two, thus the dependencies can be combined by addition. For
example, the calls for SIMAXE will be the following:

SIMAXE ('x', 7, 'METERS', -2, 1.3, NUMAXX, DJEPAXX)

SIMAXE ('y', 8, 'METERS', -2, 1.0, NUMAXY, DEPAXY)

The SIMECH declares to the SIMRES package the sampling function. The procedure rsceives
in parameter:

- IDFECH : the identifier of the sampling function;

: the number of the axis to which the function applies;

« DEPAXS : dependency in term of the axes of the sampling function, DEPAXS 2 ':{ }DEPAXE
ke ll k

where k corresponds to the axes of which depends the function and (i} is the

body of available dependencies for the axes.

In exchange, the procedure initializes the NUMFEC parametsr (number of the sampling function)
which identifies the sampling function when recording its values and the DEPFEC parameter
(dependency of the sampling function) which will be used to mark the dependency of a results
function as to a sampling function. In the example, the calls to SIMECH would be:

SIMECH ('XFC', NUMAXX, DEPAXX + DEPAXY, NUMFCX, OEPFCX)
SIMECH ('YFC', NUMAXY, DEPAXY, NUMFCY, DEPFCY)

The SIMFCT procedure defines a results function (as opposed to a sampling function). The
procedurs receives in parameter the identifier of the function (IDFCT) and its dependency in
ternm of sampling functions (sum of the value type DEPFEC fedback by SIMECH). The NUMFCT pa-
rameter returns the number of the function: it is the number that must be used in the calls
to SIMVAL to identify the values of a function. Thus, in the example used here, the three
functions would be defined as follows:

SIMFCT ('ENER', DEPFCX « DEPFCY, NUMFEN)
SIMFCT ('PBAKX', DEPFCY, NUMFPX)
SIMFCT ('PEAKY’, DEPFCX, NUMFPY)

The procedure SIMSEL changes the value of lack of selectors of an axis for one or several
Zunctions. By their absence, all the noints of an axis are selected. The parameters of the
SIMSEL pnrocedure are the following (there is no exit parameters):

- TABFCT : vector containing the numbers of the functions;

DIMTAB : give the number of elements in TABFCT;

NUMAXE : number of the axis for which the selectors are to be changed;-

DEBSEL : number of the first selected point;
- INCSEL : increment for the selected points.

It must be noted that changing the selectors of an axis affects oaly those functions whose
numbers have been received dy SIMSEL. Thus, in our example, the following call:

SIMSEL (NUMFEN, 1, NMAXY, L, 2)
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implies that the values of function ENER will bYe kept only for 1 of 2 points of the Y axis,
but this does not zouch the PEAKX function which also depends on the Y axis.

The SIMPAR procedure allows the addition to the SIMTMP file of the simulation parameters;
in that way, the data needed t> identify the simulation always comes with the results. The
procedure receives the following information:

NAME : parameter identifier;

TYPE : complete code giving the type of the parameter (0 for complete, ! for real, ...).;

YVALUE : list of values of the parameter (vectorial parameters are allowed):

NBELEM : number of elements in VALUE array.

Thus, in ocur example, there will be the two following calls:
SIMPAR ('PHI', 1, 20.0, 1)
SIMPAR ('THETA', 1, 35.0, 1)

The SIMVAL procedure writes the values of the sampling functions or results functions.
The SIMRES package awaits the values of the functions in an order which is induced by the
axes declaration, the last declared axis varies first. As there is no order among the func-
tions, and as each function can evolve at its own rythm, it is expected that the values of
a same function are dispersed in the SIMIMP file. It is thus necessary that the SIMVAL
procedure precedes each block of values by a label identifying the function and the length
of the block. It is also the SIMVAL procedure which controls the application of the selec-
tors (thus it may happen that SIMVAL is called and that nothing is written on the SIMTMP
£ile). The parameters of the procedure are the following ones:

< NOFCT : number of the sampling or result function;

- TABVAL: list of values;

- NBVAL : number of values in TABVAL.

Figure 4.6 gives a valid scenaric for one example showing the use of the SIMVAL procedure.

The SIMAVC procedure was conceived to make pre-positioning and in that way contravene
the order imposed by the writing of the values of the functions. The procedure changes the
context of the required functions by replacing the numbers of the last points of the axes
that have been recorded by numbers entered in varameters. This "skip” is noted in the SIMTMP
£ile by a special label., Thus this nrocedure avoids loading the SIMTMP file with unusable
values where it is impossible to correctly assess one or several functions. The parameters
of this procedure are as follows:

- TA3FCT : list of functions numbers for which the context is to be changed;

- NBFCT : number of functions;

- TABIND : list of the numbers of the points on the axes for each declared axis;

= NBIND : number of values in TABIND.

The SIMFIN procedure, which has no parameter, must be called on %o tarminate the genera-
tion of the SIMTMP file. This procedure adds an end of file mark to the SIMTMP file.

4.1.35 CONVERSION OF SIMTMP TO SIMRES

The SIMTMP file is a sequential file in which the position of the values associated to
the different functions depends on the order in which they are written. The dispersion of
the information in the SIMIMP file makes the search for the values of a function quite long
and complex. The SIMNET program (SIM for simulation and NET for cleaning) has thus been
created to convert a SIMTMP file to a direct access file in which the vaiues cf a same func-
tion will be in consecutive locations. This new file rformat is the SIMRES format.

Figure 4.7 shows the functioning of the SIMNET program. it is possible zo create a file
where the values of 2ach function are pooled because the SIMRES srogram knows the number of
values of each function and can thus assess the locations where the writing is to >e nade.
For this, a memory zone is divided in as many buffers as there are functions on the SIMTMP
file. The size of each bHuffer is Jdetermined in such a way as ¢ minimize the number access
. to the disk. The program reads the SIMTMP Sile sequentially, acols the "bits3'" of functions
- §?w;2§ ;ggropria:s butfer and, when the buffer is rfull, it is written at its place :in the
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The size of the memory zone required for proper functioning has made it necessary <o
opt for a special conversion program rather than directly writing the resulets in zhe SIMRES
format. It has thus been deemed preferabls to have a program using a large working area
during a short time spread, rather than adding this time to simulation programs already
quite loaded and using already toco much time.

4.2 THE XTRACT PACKAGE

The XTRACT package allows the extraction of information from the SIMRES file. The
package procedure can be divided into three sub-groups. The first sub-group includes the
EXTDEB procedure which initializes the XTRACT package. The second includes the procedures
which extract the descriptive information, that is the information written by the SIMAXE,
SIMECH, SIMFCT and SIMPAR procedures. These are procedures that work more or less aione.
Finally, the procedurss of the last sub-group extracts the values of the function of a
SIMRES file, that is the information written by the SIMVAL procedure. These procedures
are interdependent and they follow a rigorous sequence.

1.2, THE EXTDES PROCEDURE

The EXTDEB procedure initializes the package and opens the SIMRES file on which the
other procedures will work. It is thus essential to call the EXTDEB procedure before trying
to extract any information from the SIMRES file. The procedure gets as parameter the name
of the SIMRES file and the number of logical unit of E/S associated to the printing file.

In exchange, the procedure gives the following information: the name of the program gene-
rating the SIMRES file, the version number of this program, the sequential number of the
file and the computer on which this file has been generated.

4.2.2 PROCEDURE OF EXTRACTION OF THE DESCRIPTIVE INFORMATION

This sub-group is composed of the following procedures:
« BXTTIM : gives the date and the hour of the generation of the SIMRES file;

- EXTNOM : gives the axes identifiers, the sampling functions, the result functions
or of the parameters;

EXTAXE : gives the characteristics of an axis;

EXTZCH : gives the characteristics of a sampling function;

EXTFCT : gives the characteristics of a results function;
. = EXTPAR : givss the characteristics of a parameter.

[t is important to note hers the pariicular tole played by the EXTNOM procedure, which nrovides
the identifiers of different objects (axes, functions, parameters). The characteristics of
those objects could be later called up by the appropriats procedure.

The running of esach procedure is relatively easy. The input parameters identify the
needed informstion. This information is extracted from the SIMRES file and returned to the
caller through the output parameters. Figure 4.3 gives a list of the parameters of each
of nrocedures of this sub-group.

4.2.3 PROCEDURE FOR THE EXTRACTION OF THE RESULTS FUNCTIONS

The procedures which extract the values not only locate and retrieve the information on
the SIMRES file bHut they also have a mechanism which splits the data to be extracted in sub-
groups or pages. At this point, the extraction loop allows the routine to receive data page
by psge. This mechanism has three steps.

The first step consists in establishing the field of extraction, i.e. the set of eva-
luation points for which a value of a given function is needed. This specification is done
by indicating the name of the function and by giving, for each of the axes on which the func-
tion depends, a list of selecticn intervals. Each selection interval is defined by the aumber
of the first and the last point of the interval and by an incremeant. The special vaiue, in
this case 0, allows us to choose all the points of an axis. For instance, for function A
which depends on axis X, we can choose the points 1 zo 20 by sets of 5 aad she points 22 2o
30 by sats of 2. The order of the presentation of the axes is important because it inducas
the nesting order of the extraction loons. Moreover, the choice of the selection incervais
must take into account the paints for which the requested function has been assessed and
written in the SIMRES files.

The second step estabiishes the segmentation of the extraction field and the specifica-
tion of the tuples configuration needed. The segmentation of the extraction field is dcne
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by giving the number of axes that mus: vary to form a page. These varying axes are always
the last to be declared, and they are called the internal axes. [t is thus the external
axes, those left aside, which will define the loops extracting the different pages. Figure
4.3 gives an example showing che extraction field and the sagmentation of a function.

The information fedback by an "slementary” extraction has a list of tuples of the form
(<value of the results function>, <value of the sampling function 1>, ..., <value of the
sampling function M>) and a list giving, for each non-identified axis in the tuple, the vaiue
of the point where the extraction has taken place. In the case of orthogonal grids, the
tuples must be composed of the value of the function followed by the value of the internal
axes points. The list of the axes points should give the value of the external axes points.
Thus the varying data is separated from the fixed data, this avoids redundancies. However,
this is not always the case. In fact, when the grids are not orthogonal, it is possible
that even the internal axes may have different points for each of the values of the results
function. In order to hold the possible different cases and to permit a maximum of €lexibi-
lity, the XTRACT package works either by the explicit smecification of the composition of a
tuple or by a specification by default where all happens as if in an orthogonal grid. The
explicit specification of a tuple is done by giving a list of the axes for which we need the
values of the point in the tuple. In this case, the identification of the points of the
other axes is done when possible in the list of the axes points (i.e. as this list gives
only one point per axis, if 1 axis varies, the value is indicated as 1E300). Figure 4.10
shows the example of figure 4.9 and the organization of the tuples and the list of axes
points.

The third and last step consists in calling the extraction procedure as many times as
needed by the segmentation. The role of the package here is to control the evolution of
the loops dealing with the external axes, to retrieve the data making up a page on the SIMRES
file and to organi:te the tuples and the list of axes points according to the required confi-
guration.

One optiaon of the XTRACT package gives as an added information the minimums and the
maximums of the functions and axes making up a tuple.

Indispensable for graphic applications, this piece of information can easily be obtained
if the minimums and maximums can be assessed on one page. But this is not always the case.
There may be a need for the minimums and maxiznums for a larger set of values: for exaaple,
for the field of extraction or even for all the SIMRES file. In these cases, the application
program must make a special extraction run to assess the ainimums and maximums. This task
has therefore been given to the XTRACT nackage which will do it in the most efficient way.

In terms of application, hy obtaining the minimums and maximums, it is possible to
establish a2 scale to express the values obtained in the tuples. The XTRACT package can
assess the minimums and maximums on three specific fields defining three types of scales:
the global scale, the local scale and the standard scale. The global scale is defined
by all the values whether selected or not from an axis or a function. The local scaie is
defined by the values of an extraction page. And finally, the standard scale is defined
by the field of extraction either by taking the whole field or by taking a sub-set of this
field. In this latter case, the sub-set is delimited by an axis, and each time the counter
of the axis is incremented (i.e. there is a change of point), the minimums and maximums of
the points covared by the interior axes must be reassessed. Figure 4.11 gives an example
of the different scales.

The EXTRAC, EXTSEL, EXTDEF and EXTTU? procsdures show how the work described above can
be processed. - .

The extraction process starts with the EXTRAC procedure. This procedure specifies the
function from which we would like to extract the values. It gets in parameter the identifier
of the function. It outputs NBAXES a complete parameter giving the number of axes on which
depends the function and I[ERR indicating, and if it exists, the number of the detected ervor,

Second, the BXTSEL defines the field of extraction. A call on the EXTSEL procedurs
indicates for an axis on which the function depends, the number of the points for which we
need the values of the function. This procedure must be called NBAXES times and the order
in which the axes are presented is important for the definition of the extraction loops.
The procedure receives the following parameters:

- NAME : the axis identifier;

- SELAXE : list of selection intervals, one selection interval is made up of either
3 values (the first selected point, the last selected point and an iacre~
ment) or the value N (all points are selected);

- NBSEL : Zives the number of intervals in SELAXE.
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The procedure outputs ths following daza:
;!i - NPTSEL : indicates the total number of points chosen on the axis;
Lij - FIXE : the boolean value which is realized if the value of the points on the axis
T does not depend on other axes, i.e. if the grid is orthogonal in relation
%o that axis;
- [ERR : in case of errcr, writes the number of the error.

Third, comes the EXTDEF procedure which defines the configuration of a page, the compo-
sition of a tuple and the type of scale needed. The nrocedure receives the following data:

- NBDIM : defines the cut by giving the numher of axes that must be made to varv to
obtain a tuple page (the innermost axes vary first);

L\

tq; TABAXE : explicitly specifies the contents of a tunle by giviang the list of axes which
h make up the tuple. This chart is only used if NBAXE > n;
S

3

-

NBAXE : if this parameter is less than 9, then the option by default is applied and the
tuples are made up of the value of the function followed by the deepest NBDIM
axes. If not, then the tuples are made up of the value of the function and of
the NBAXES axes declared in TASAXE;

.. TYBECH : is a chain of characters which gives the type of the requested scale. The
r" possible values are: none, global, local, standard;
b

AXEECH : specifies, in the standard scale case, an axis which limits the scope of the
scale: i.e., the field of the standard scale is then defined only.on the axes
deeper than that axis.

The procedure outputs NBEXT the number of pages necessary to cover all the field of extraction
and IERR indicating if an error has been detected.

Finally, it is the EXTTUP which carries out the extraction of the information and the
computations of the scales. Usually, this procedure should be called up NBEXT times so that
2ll the field of extraction is covered. The parameters of this procedure are the following:

- TABVAL : the array containing the tuples. For a given extraction, the struciure of
the array is TABVAL (DIMTUP NPT%, «+es NPTy) where DIMTUP is the number of
the value making up the tunie, NPT; the number of points selected on the
deepest axis, ..., NPTy the number of points selected on the least deep axis
making the page;

DIMTAB : input parameter giving the total dimension in number of TABVAL words;

TABIND : gives the numbers which identify the non-varying axes;

TABVAX : gives the value of the points on the non-varying axes;

DIMIND : input parameter giving the dimension of the TABIND and TABVAX arrays;

TABECH : array giving the minimums and maximums for the function and the axes making
up the tunle;

DIMECH : input parameter giving the number of TABECH columns (there is always 2 lines,
one for the minimum and, one for the maximum);

P

- IERR : indicates the presence of an error.

Figure 4.12 shows the call secuence of the EXTRAC, EXTSEL, EXTDEF and EXTTUP procedures.
As can be seen, it is possible to define the cut of a field of extraction, the configuration
of the tuples and the type of required scale and then to restart the extraction of the values.

4.3 THE DATSIM PACKAGE

oot K&

i when a group of entities (or objectr) have the same informacion fields, the DATSIM package
- stores these fields, or a sub-set of these fields, in a same direct access file thus creating
g a kind of data bank. In this data bank, the model, that is: the necessary information needed

t0 operate the file, specifically the descrintion of the fields of information, is kept in the

. file heading. The recording of the data bank is made up of the information field of one entitv. 4
- 8y giving a sequence number to the Jdifferent entities and an identifier to the different infor- :
: mation flelds, it is possible to construct keys which will identify in a unique manner :he 1
differsnt recordings.
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in the DATSIM file, an entity can then have as many recording as there are information
fields. Whea applicable however, the DATSIM package avoids an excessive proliferaticn of
recordings by defining a3 value by default for an information field. At this moment, all the
active entities (an entity may be non-active) of the data bank must have the same information
fields. I£ the recording of an active entity dces not show ud in the data bdank, then it has
a2 value by default.

In the context of the laser modeling project, the DATSIM package keeps on disk a summary
of the SIMRES files. It is thus possible to concentrate in one £file, information which would
have been otherwise dispersed in several files and only a small part of this informaticn would
have fit on disk (the major part of the SIMRES files would be filed away on magnetic tape).

The summaries of the SIMRES files produced by a2 laser simulation program are regrouned in
a same DATSIM data bank. A simulation is an entity at the level of the data bank, and the
simuylation sequence number (which is also the SIMRES file number) identifies the recordings
belonging to a same simulation. The information fields written in the DATSIM files are:
some general information on the simulation, the parameters of the simulation and the values
of the results functions usually iaplicated in a comparison.

The components of che DATSIM nackage can be divided into two sub-groups. The Zirst is
made up of programs which generate and modify a heading of a DATSIM file. The second sub-
group is made up of the procedures that allow the cunning in reading and writing mode of a
DATSIM file.

4.3.1 GENERATION AND MODIFICATION OF A DATSIM FILE

The generation phase of a DATSIM file is done in two steps. First, the generated file
holds in its heading only thes data needed for an empty DATSIM file. Next, the description
of the data that can be recorded in the file is added to the heading. It is preferable to
write from the beginning the descrintion of all the information fields, however it is also
possible to make additions to an already operational DATSIM file, that is: a file which
contains other data than the descriptive ones.

The DATCRE generates the base of a DATSIM file. This program reads in the input filas
the generic name of the entities composing the data bank, namely the name of the simulation
program producing the SIMRES files which feed the data bank. The base of a DATSIM file
includes the identifier of the current version of the DATSIM package, the generic name of
the entities, the sequence aumber of the last entity for which data has been recordel, that
is 0, and the number of information fields described in the heading, which is also 0.

The DATEDI program adds to a DATSIM £ile heading the description of the information fields
that can be recorded in the files. The input file of the DATEDI nrogram include, in first
line, the command ADD or MODIFY. This command indicates to the JATEZD!I program whether it is
2 first addition to the heading (command ADD) or of a subsequent addition (command MODIFY).

The description of the different information fields is found later in free form in the input
£ile. This description includes the field identifier, the field class, the tyve of values
of the field (complete, real, boolean, chain of characters), the number of values by default
that follow (possibly 0), and finally the list of values by default (possibly empty). The
information field class is an identifier known by DATSIM (through an interchangeable table)
which allows the pooiing and the organization of the information.

For security reasons, the DATEDI! program procedes by two runs. In the first run, the
data is validated. If no error is detected, then the program runs ‘the data one more time
and writes the data in the heading of the NATSIM file. This way, it is possible to avoid
situations where an error invalidates work already done. Figure 3.13 gives an example of
data for the DATZDI program. It is to be noted that the number of values by default in no
way fixes the number of the values associated to a field: the same field could include
a2 varying number of information from one sntity to another.

4.3,2 OPERATION OF A DATSIM FILE

The procedures that run a DATSIM file ars:

- DATDE3 : starting of a DATSIM file;

- DATNCM : returns the list of indentifier of the information fields;
= DATINF : returns the characteristics of an information fieid;

= DATLIR : reading of a recording:

- DATECR : writing of a recording;

DATACT : activation or non-activation of an entisv;
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- DATFIN : closing of a DATSIM €ile.

The information and the snacs necessary for the manipulation of a DATSIM file are con-
centrated in a control hlock entered as a parameter at the different nrocedures of the
package. This way, an anplication program can work on several N'TSIM £iles at the same
time on the condition of having a control block for each file.

Following is an overview of the oneration of each of the package procedures.

The DATDEB procedure is called uoon to start a3 DATSIM file and to initialize the control
block associated to this file. Any attemnt to work with a DATSIM file without starting first
with DATDEB will be an error. The procedure will then receive as parameter the name of
DATSIM file to be started, the control block, and the size in number of words of the control
block (the suggested size is 2510 words). The nrocedure returns part of the information
composing the hase of the heading, in other words, the generic name of the entities making
up the file, the sequence number of the last recorded entity and the number of fields des-
cribed in the heading.

The DATNOM procedure obtains the list of the information fields identifiers. This list
is taken from the DATSIM file heading. The narameters of the procedure follow:

[‘ - DATBLK (input) : control block of the DATSIM file;

L}E - TABNOM (output): chart containing the information fields identifiers;
-~ DIMTAB (innut) : size of TABNOM;

- NBNOMS (output): number of identifiers nlaced in TA3NOM.

Ti! The DATINF procedure obtains the characteristics of an information field. The parameters
of this procedure ars:

-~ DATBLX (input) : control hlock of the DATSIM file;

- NOM (input) : idintifier of field of which we need the characteristics;

= CLASSE (output): class of information;
= TYPE (output) : type of value of the information field;

- TABDEF (output): chart giving the values by default (if there are no values by default
for the field, the chart will he empty);

- DIMTAB (input) : size of TABDEF;
- LGDEF (output) : number of elements placed in TABDEF;

- IERR (output) : gives N if there are no errors, if not, it gives the number of the
error.

The DATLIR procedure reads the recording of a DATSIM file, that is, it gives access to
- the values contained in the information field of a given entity. If the entity exists (i.e.
- if its sequence number is smaller than the number of the last recorded entity in the file)
and if it is active, the procedure assembles the key (entity number and field identifier)
and orders the reading of the recording. I[f the recording exists, then all it does is to

Eﬁ transfer it to the caller. If not, then the procedure verifies if there is a value by defaul:
. - for the field, and if it faids one, it returns it. In case the data required does not exist
= at all, an error number i3 returned to the annlication program. Figure ¢.14 shows schemati-
Q{ cally the running just described. The narametsrs are as follows:

;3-2 - DATBLK (imput) : contral block of the DATSIM file;

;! - NUMSIM (input) : entity number (in this case, it is a simulation number);

- NOM (input) : field of information identifier;

& O
+
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T

- TABVAL (output): field of information values;
= DIMTAB (input) : size of TABVAL;
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DIMVAL (output): number of values read and returned in TABVAL;

- IERR (output) : gives 7 if chere is no error. If not, it gives the error number.
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The JATECR procadure can add a recording to a DATSIM file. First, the procedurs veri-
fies if the entity at hand is new, in zhis case it must update the number of the last recor-
ded entity in the file. If it is an already recorded entitv, it must see 1f it is active,
as there should be no aczess to the information field of a non-active entity. If all works
well until this step, then the nrocedure checks to see if there is 1o values by default for
the requested Field. If none exists, then the recording is written in (in some cases, it will
be a rewriting). If however there is a value by default, then there must be a comparisen
hetween the values by default and zhose received for the field. If they are equal, nothing
is writzen in the file, and cthe previous re=cording is deleted. {f they are not equal, then
the recording is wricten into the file or the srevious recording is replaced by the new one.
Figure 4.15 shows schematically how this is done. The different parameters of the procedure
are as follows:

- DATRLK (input) : control block of the DATSIM file;

- NUMSIM (input) : entitv number for which an information field is to be written;

- NOM (input) : information field identifier;

- VALEUR (input) : chart containing the field values;

- DIMVAL (input) : number of values in the VALEUR chart;

- IERR (output) : gives 0 if there are no errors, if not, gives the number of the error.

The DATACT procedure specifies the state of an entity in the DATSIM file, in other words,
an entity can be active or non-active. The recordings of a non-active entity cannot be re-

treived but they are not destroved. Thus by reactivating a non-active entity, we can have
dccess to its recording: The narameters of this procedure are as follows:

DATBLK (input) : control block of the DATSIM file;

NUMSIM (input) : numher of the entity that has to be modified;

ACTIF (input) : boolean parameter with its..true valuas if the entity is active, and
its false value if it is non-active.

[ERR (output) : gives 0 if there are no errors, if not, gives the number of the ervor.

Finally, the DATFIN procedure terminates the operation of the DATSIM file. It is impe-
rative to call the DATFIN procadure because the buffer associated to the DATSIM £if( aust be
cleared. Tae only parameter of this procedure is DAT3LX, the control block of the Da/SIM file
that is to be closed.
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FIGURE 4.5 - CONTEXT DEFINITION TO ILLUSTRATE THE USE OF SIMRES PACKAGE PROCEDURES IN A PROGRAM

REAL ENERY (8),
PEAKX,
PEAKY (8),
AXEY (8),
AXEX (7),

<Bstablish axis Y>
call SIMVAL (NUMFCY, AXEY, 8)
DO 10 IX = 1.7

<Escablish a column of axi X»>
call SIMVAL (NUMFCX, AXEX, 3)
D0 20 IY = 1,8

ENERY (IY) = ...

20 continue
¢all SIMVAL (NUMFEN, ENERY, 3)
PEAKX = MAX (ENERY, 3)
call SIMVAL (NUMFPX, PEAXKX, 1)

<asses partial PEAKY>

10 continue
call SIMVAL (NUMFPY, PEAKY, 1)

FIGURE 4.6 - USE OF SIMVAL PROCEDURE
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Procedurs

EXTTIM

EXTNOM

EXTAXE

(1) The order of the elements is that in which they have bHeen declared.

Parameter

DATE (output)
HOUR (outnut)

XIND (input)

TABNOM (outdut)
DIMTAB (input)
NBNOMS (output)

NAME (input)

UNITS (ocutput)
EXPO (output)
FACT (output)
PESCL (output)

NAME (input)
AXEREP (output)
AXEDEP (output)
DIMDEP (input)
NAME (input)
ECHDEP (output)
AXEDEP (output)

DIMDEP (inmput)

NAME (input)
TYPE (OUTPUT)

TABVAL (output)
DIMTAB (input)
NBVAL (output)

Descrintion

Date of generation of the file
Hour of generation of the file

Indicates which identifier is nseded
AXE = AXES

ECH -~ sampling functions

5CT - results functions

PAR = narameters

List of identifiers

Size of TABNOM

Number of identifiers put in TA3NOM

Axis identifier

Type of units of the aixis

Exhibitor affecting the units

Factor affecting the units

Number of resolution points on the axis (not to be
mistaken with the number of selected points)

Identifier of the sampling f.nction

Identifier of the axis associated to =he funccion
300lean array giving the dependencies of the
function as to each of the axes (1)

Dimension of AXEDEP

Identifier of the resulcs functions

Soolean array in which the I eiement indicates whether
the function depends on the ith sampling func:icn
Boolean array in which the [ element indicates

if the function denends on the Ith axis

Nimension of ECHDEP and AXEDEP

Ideatifiar of the parameter

Code indicating the tyme of parame:er (C:
1: actual,

‘falue of the parameter {(can be a vector)
Dimension of TABVAL

Number of effective value in TABVAL

cemplete,

——ry————
. :

FIGURE 4.8 - PARAMETERS QF THE PROCEDURES EXTRACTING DESCRIPTIVE INFOR

TIONS FROM A SIMRES
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as needed

EXTRAC ( NOMFC, NBAXES, IERR )

NBAXES times 17

EXTSEL ( NOM, SELAXE, NBSEL, NPTSEL,
FIXE, IERR )

33 nseded 3

EXTDEF ( NBDIM, TABAXE, NBAXE, TYPECH,
POSECH, NBEXT, I[ERR )

‘ NBEXT times af

EXTTUP ( TABVAL, DIMTAB, TABIND, TABVAX,
DIMIND, TABECH, DIMECH, IERR )

FIGURE 4.12 - CALL SEQUENCE OF THE PROCEDURES PRODUCING THE RESULTS FUNCTIONS EXTRACTION

ADD
NBRUNS BASE CCMPLETE 1 1
JSAVE BASE COMPLETE 1 300
MSAVE BASE COMPLETE 1 32
KSAVE BASE COMPLETE 1 64
c1 BASE REAL 1 0.08
TBRHO BASE REAL 1 4,236669
GV 3ASE COMPLETE 1 1 :
" PHIO BASE REAL 1 5.1417817
e AKAP PHYSIQUE REAL 0
- ESKA PHYSINUE REAL 0
DATE TEMPS  CHAIN 0
S ETAPTS AXE REAL H 1.0 2.0 3.0 4.0 5.0
e RHOPTS AXE REAL 3 0.0 n.1 0.2 0.3
b DUREE SYNTH REAL ]
e ENER SYNTH  REAL 0
NS FIGURE 4.13 - EXAMPLE OF DATA FOR A DATEDI PROGRAM
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V¥ _« APPLICATION PROGRAMS

This section deals with the programs in the system that go beyond the frame of appli-
cation in the laser model building project. These are the DEFPARM, DESRES and SYNTH programs
created to treat in a Zenersl way a specific application. These also use the SIMRES, XTRACT
and DATSIM software. All the examples in this chanter derive from the only source we have:
the laser model building project.

o 5.1 THE DEFPARM PROGRAM

{C? The DEFPARM program is an interactive tool which defines the FORTRAN NAMELISTs. A pro-
' gram generation of the NAMELISTs is a good way to validate them (syntactically) and to avoid
. certain trivial errors. DEFPARM is a program of general application but by referring to the

laser modelbuilding project to describe its operation, the explanations will be more concrete.

- In the DEFPARM program, the NAMELISTs are defined by statements that follow a specific

. synzax. A set of statements establishes the parameters of a group of simulations dealing with
a particular phenomenon. These simulations differ only by the value of a limited number of
parameters, all the other parameters being fixed. It is because of these fixed parameters
that the information can be condensed and the svntax made more concise.

A statement specifies the value or values associated to a block of parameters. A block
of parameters is made of one parameter or a group of interdependent parameters (varying
conjointly). For example, A * 0 shows that a3 parameter has a given value. [f the parameter
is to be given several values or that there be a simulation for each of these values, the
values are separated by a comma, A = 0,1,2. To specify that a group of parameters are inter-
dependent, forming one whole, parenthesis are used. The values associated to the parameters
are also put between parenthesis. The order of the elements in such a group i{s of major
importance, and the order of the parameters induces the order of the values. Moreover,
there aust be as many values in each group of values as there are parameters in the reference
group. Thus the following group of marametsrs can be defined as: (A,3) = (0,1), (1,1).

Vectorial parameters are put between brackets and the different values are separated by
a comma: thus A = (0,1,2) or B = (1]. The specific values of the parameters need not have
the same number of elements; thus: A = (1,2], (1,2,3], (1,2,3,4]. But the order of the
values is important as it corresponds to the order of the elements in the vector.

The statements are ssparated by semi-colons and an enmpty statement ends the specifica-
gionlog acgrogplof simulations. The following specifications can be written as: A 3 1;
1,2 0,15

The syntactic cards corresponding to the above mentioned syntax are shown in figure 5.1.
It is possible to go from the specification of a family of simulations to the exhaustive lists
of parameters of each simulation forming this family by making a Cartesian product between
the values given to the parameters, or a group of parameters, by the different statements.
Thus, the specification:

A*1,2;
2
’

(8,C)
Dt

0,0), (1,1);

can create eight simulations (only-.the changes in the values of a parameter are noted in the
following list).

Number A B c D
- 1 0 S
s 2 1
" 3 1 1 -1
: : 1
- & S 2 0 0 -1
K 6 1
i 7 1 1 -1
vt 8 1
P There are Sour principal steps to the execution of the DEFPARM program. The first step
b, is initialization. 7The user indicates for which simulation program he needs the NAMELISTs.
v, The DEFPARM program will find in the corresmonding DATSIM file the number of the last encoded
'@ simulation and of the possihle parameters for the simulation. The DEFPARM program will thus
b know which number to give to the new simulation and can verify the parameter identificators
s that the user could eventually give it.
B
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The second step is the specification of the simulation families. This can be done in
two optional parts: first: the DEFPARM program will provide the specification of another
s;mulation. second, the user will give his own parameter specification. I[n other words,
the user can:

1 - define nothing,

2 - define a base with the parameters of another simulation,
3 - give his own specification to a simulation family,

4 - define a base and add to it his own specification.

Figure 5.2 illustrates the second case and figure 5.3, the third case (the fourth case
is a grouping of the second and third cases). It is important to note here that the data
given by the user are in free form and that the errors found on a line will be flagged for
correction.

The third step is a correction phase which can be repeated as often as necessary. Firse,
the program lists, in a2 condensed form, the values of the parameters for each defined sinmula-
tion, then it asks the user if he needs to corrsct these values, (this is in fact the only
kind of correction allowed). If the user wants to get into the correction mode, the program
will question him on each group of parameters. The Krogran writes the group of parameters,
using the same input syntax and the user answers sither by a semi-colon (list of empty values)
to indicate no correction or by a new list of values which will replace those held by the
program. The correction phase will end either when all the groups of parameters held by the
program have been run for the user or when the user writes a period instead of a list of
vilues. The orogram will then list the new values of the parametsrs for each of the simula-
tions and again offers the user the correction phase. This procedure is repeated until the
user has finished his corrections. Figure 5.4 shows the correction phase associated to the
data entered on figure 5.3. i

Finally, the fourth stsp is the production of the NAMELISTs Fortran and the storing in
the appropriate DATSTM file the number of the simulation of the data is has just produced.
figure 5.5 gives the NAMELISTs products for the specification of figures §.3 and §.3.

$.2 THE DESRES PROGRAM

The DESRES program generates the drawings of the functions stored on SIMRES type files.
It reads the specification of the drawing, validates it and, if no error is detected, executss
it. The program can function in both the interactive mode and the batch mode.

The drawing specification is done by a special language using all the possibilities of
the XTPACT software. This language separates the information necessary for the definition
of the drawing into four levels: program, simulation, function, drawing. In here, the
information is interleaved, that is: if the information is the same for all levels, it is
not necessary to redefine them to give other drawing specificacion.

The user must give the name of the program which has produced the SIMRES files to be
drawn. This identifier will be the prefix used to build the SIMRES files identifiers to be
localized. Followins is the interaction between the user and the DESRES program (what the
program writes is underlined).

PROGRAM: LRICFS

For the simulation, the user specifies a list of simulation numbers to be drawn. These
numbers will he the suffixes needed to retrieve the SIMRES files. The syntax of this lisc
of numhers conforms to the following rules: a list of numbers is made of any sequencs of
numbers and of sets of numhers separated by a comma and, finally, a set is defined by two
numbers separated by a dash. Thus for SIMULATIONS: 1.5, 10,12, what is needed is simula-
tions 1,2,3,4,5,10 and 12.

for a function, the user indicates which function must be drawn and specifies the field
of extraction, that is, the set of evaluation points for which the value of the function on
the SIMRES files is to be extracted. The function to be drawn is specified by an identifier.
The field of extraction is specified by giving the list of points to be selected on each of
the axes defining the function. These points must evidently coincide with those stored on
the SIMRES files. A list of points is made of a sequence of point labels and of selection
sets separated by commas. A selection set includes the label of the first chosen point,
the label of the last chosen point and, optionally, of an increment. If this increment is
absent, the default increment is used: its value is 1. The special symbols § and « used
instead of the label point signify the first and last points stored in the SIMRES files
respectively. Finally, the key word TOUS (ALL) can be used instead of a list to signify
that all the points of the axis present in the SIMRES files are selected. For example:

FUNCTION: ENERGY
= wmE

CT STAT = TOUS (ALL)
SELECT Eix * (1,71,10),76,101
SELECT RRO = (1 ,e,2

BLEGT TA0 = ($,e)
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For the drawings, the user must indicate the scale and kind of drawing needed. The
scale is specified by indicating one of the following identifiers: GLOBALE (the scale is
for the whole file), LNCALE (the scale is for a given drawing), STANDARD (the scale is for
the extraction field). [€ the chosen scale is the STANDARD scale, the user zan also add,
hYetween narenthesis, the name of an axis to limit the scope of the scale to the axes within
this axis. For instance, if a function depends »n the STAT, ETA, RHO and TAU axes, and if
the scale is limited to the standard scale on the ETA axis, this scale will be evaluated
for the £TA, PHN and TAU axes only and there would be as many standard scales as there are
noints on the STAT axis. Section 4.2 gives more details on the nature of the differenc
scales. The kind of drawing is indicated hy the following identifier: PLOT 3D (surface
drawings), PLOT 2D (curve drawings), CONTOUR (level curves) and PROJEC (2 dimension projec-
tion of a sub-array of curves describing the surface of a 2 variable function). The kind
of drawing requested will induce a segmentation on the extraction field. Thus, one action
can produce several plots; that is as many plots to empty the extraction field. An example
of scale specification and type of drawing follows:

SCALE: STANDARD
DRAVNING: PLOT 3D

The DESPES program will loop at the deevest level, that of drawing, then ask the user
to specify a scale and a tvpe of drawing. To get out of a level: enter an empty line or
write the key word FIN (2¥0). The user goes to the other level and here, it is possible to
define this level or getting out of i:. Figure 5.5 shows a complete example of a specifica-
tion for the DESRES program.

In the interactive mode, the DESRES program analyzes the user’s request and indicates
as soon as possible the syntactical errors (data in the wrone format) and the invalid spe-
cifications (the requested function does not exist ...). The program then asks the user to
hold some specification in order to continue its execution. When it is a submission by
batch mode, when an error is detected, the ruaning is stopped but the syntactical analysis
can continue.

To execute 3 drawine specification, the SIMRES program must first localize the SIMRES
files t3 be treated. These files are opened one at a time and the information showing
the function to be plotted, the field of extraction, the composition of the tuples and
the type of scales is given to the XTRACT software. This information recovered by the
EXTTUP crocedure is processed by the appropriate plotting procedure (PLOT 3D, PLOT 2D,
CONTAU?, PROJFC). The program repeats this operation until all the requests have been
fulfilled or until a nan-retrievable errar occurs.

Figures 5.7 to 5.11 show the different graphic output of the DESRES program. Figure
5.7 shows the list of parameters identifying the plotted simulation. Figure 5.8 shows the
plot drawn by PLOT 3D for a 2 variable function. Figure 5.9 shows the curves set by the
CONTOUR procedure for the same function. Figure 5.10 shows a projection of this function
as produced bv PROJEC. And £inally, figure 5.11 shows the plot preduced by PLOT 2D for a
function which varies as o one axis. .

S.3 THE SYNTH PROGRAM

The SYNTH program permits the synthesis of the information of many distinctive simu-
lations in order to study a specific phenomenon. This synthesis is done by selecting the
pertinent simulations’ necessary to draw out a specific phenomenon and by comparing one or
several functions of these simulations. In its final version, the SYNTH program should
allow the user to svecify the phenomenon to be studied with the help of a predicate
(studying the effect of a parameter in function of another, or studying the effect of
such or such a model). The SYNTH program would find which simulations will satisfy the
predicate. However, for a first version (still being developed), it is better to ask the
user to identify the simulation to he compared. The SYNTH program thus verifies the
validisy of the comparison, makes up the headings identifying the work done and makes
the comparisons.

There are three possidble fields for comoarisons:

- inside one simulation,
- between specific simulation produced by a same model (same simulation program),
- between simulation producsd by different models.

With comparisons done inside the same simulation, it is the variation of an axis which
will provide the criterion for a comparison: it is the positicn on the axis which is stu-
died. 0Often, the comparison wiil deal with the repetitive axis, in other words, an axis
which does not define the space of the simulation but which induces repetition of the stored
information: this is specifically the zase with the models with several lasers (where a
"laser'” axis will store information on the different lasers) and the model including stazis-
tics (where a2 "snatistic” axis will store the different repetitions of the simulation).
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The comparisons of simulations produced by the same model permits the study of the effect
of parameter variation on a given model. For instance, it is possible to study the effect of
a parameter by choosing simulations that are distinguished from each other only by the diffe-
rent values given to this parameter.

The comparison of simulations produced by different simulations brings out the impact of
the models. This type of comparison is very complex as the different models do not necessa-
rily use the same parameters. The SYNTH program must thus use equivalence tables between the
parameters af the different model to iudee the validity of a comparison and to make up a valid
heading.

The functions <o be comvared can either be vectorial (a simulation produces a curve) or
scalar (a simulation produces a naint on a curve). The vectorial function can be used with
the three types of comparison. According to the case, the curves of the comparisons are thus
identified by the varving axis, by the distinguishing parameters, by the changing model. The
scalar function can be used only in comparisons with simulations produced by a same model.
Thus, the effect of a group of parameters can be studied in terms of another. In this case,
the simulations providing the points of a curve are distinguished from one another by a group
of parameters A defining the horizontal axis of the comparison. The comparison thus involves
several curves distinguished from one another by a group of parameters B, group 3 does not
include any of the parameters of A.

The specification of the required type of comparison is done in two steps: first, by
indicating which function is to be compared and which are its selectors, second, by indicating
the simulations involved in each comparison making up the series. A series is a group of
comparisons which have logical bonds and which make up a more or less exhaustive study of a
given phenomenon.

In the first step of the specification af a series of comparisons, the user must indicate
the identifier of the rsquired function. Next, the user must indicate the name of the axis,
its type and the specification of the selected points for each of the axes on which the func-
tion depends. There are four gossible types to characterize an axis and each type is shown
by a letter (5, G, C or M). The specification of the select2d points is done by a list of
point numbers, and a set of selection separaced by commas (in fact, it is the same syntax of
the DESRES program, cf. section 5.2)." This first step is ended when the user writes a semi-
colon instead of a name of axis. For instance:

The S type indicates an axis used to select points of evaluation of the function to be
compared. This is the "by default” type, and the symbol S can be omitted. Thus, the func-
tion O POWEP is selected for all the points on the TAU axis evaluated at point 1 of axis
STAT and at point 71 of axis ETA (what the SYNTH program writes is underlinred):

FINCTION N POWER
— SIAT

S,1
ETA = §,71
TAU =
’
The G type corresponds of an axis giving many comparisons, that is providing comparisaons
for each of the points selected on the axis. Thus, the following specification:

FUNCTTON N POWEP
STAT = 1
ETA = G,61,71
TAU = »

indicates that 2 comparisons of the function O POWER are needed, one for point 61 on the ETA
axis and another for point 71.

Type C corresponds to a comparison axis, that is, the impact of this axis on the function
to be compared. There can be only one comparison axis for a given function. For instance,
the specification: FUNCTINN 0 POWEP

StAr * C (1,7,1)
ETA = 71
TAUY =

indicates that the comparison contains the function O POWER seven times, once for each of the
points selected on the STAT axis.

Finally, type M shows that the user would like to compare the arithmetic mean of the func-
tion rather than the function itself. When M qualifies an axis, it means that the arithmetic
n;an of the function for the points selected on the axis must be evaluated. Thus, in the case
° X
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SUNCTION 0O POWER

31 2 M,(1,7)
ETA = 71
S e

TAU

the user must compare the average of the seven function ¢ POWER selected on the STAT axis.

By analy:zing the specification of the first step, the SYNTH program is already able to
know some of the user's intentions and thus to determine which informations must be provided
at the second step. 1In other words, if a type C axis is already known, the SYNTH program
will automatically know that the comparison is done inside the same simulation and will ex-
pect only one simulation number per comparison. Moreover, if the specification of the points
selected determine a scalar function (i.e. FUNCTION WIDTH STAT = M,(1,7) ETA = 71), the
SYNTH program will conciude that the user wants to study the impact of a group of parameters
on another group of parameters. In this case, the SYNTH nrogram must ask the user to specify
2 list of parameters. Each of the parameters on this list will be used one after the other
to define the points of the horizontal axis (axis x) which corresponds to the different
simulations that make up the curves to be compared. For instance, in the following case:

PARAMETERS FOR AXIS X: T3PHO, FARUSKA, INVFRNL

The program will produce three saries of comparisons, one using the values of the TBRHO para-
meter to form axis x, another using the FARUSKA parameter and finally one using the INVFRNL
parameter.

. The second major step for the definition of the work to be done comes when the series of -
comparisons are specified. A series includes one or several comparisons making up a logical
whole, that is studying the same phenomenon. The SYNTH program produces a heading for each
series of comparisons, showing the changes of parameters, of models, or of points on the axes
for each of the involved simulations.

Depending on the kiad of study, a comparison is made up of one or many simulations, and
each simulation is identified by a model and a simulation number (one or sevaral blank spaces
separate the two elements). In order to avoid a2 repetition of the name of the amodel, the
§Y§Tﬂlprograa lets the user define, at the beginning of a series of simulation, a model by

efault. .

To end a series of comparisons, the symbol period is used. At this moment, it is pos-
sible to redefine another series using the same function specificaticn, or even to return
with another point at the level of function specification.

What happens after this identification by "model by default' depends on the type of
comparison that the user requires.

If the comparison deals with the same simulation, the program asks the user to indicate
the simulation used for each comparison. The following examnle illustrates a series of these
comparisons showing the variations produced by the STAT axis.

FUNCTION O POWER
T = C,(1,7)
ETA = 71 .
TAU = »
MODEL BY DEFAULT: LRICFS
- _—'S'N‘U'EKTTW N: 100
STMOLTION: 101
SINULXTION: 102

STAOLATION:
MODEL BY DEFAULT:
fUNCIION:

rial functicn, the SYNTH program will ask the user o give the numbers (at least two) of the
simulations making up each comparison in the series. In the following example is defined a
series of two comparisons involving three simulations, then 2 series of one comparison invol-

ﬁ‘ When the comparison studies the impact o< certain parameters or of the model on a vecto-
e
L ving three simulations of different models.

- FUNCTION O 20wER

- Sia: 2 M,(1,7)

’-l- & 2

{ TAU =

O ;

. MOT , BY DEFA™ ': LRICPS

9 At .8 100,101,162
e TALUNS: 119,111,112
5:1 LUINN .
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MODEL BY DEFAULT: LPICFS
i : : 100,LR1PS S,LR1P4S 2

Summl LU.“S:
MODELTSY JETAUL::
rc.‘c ! IU& H
Finally, when the comparison involves a scalar function, the SYNTH program asks the user,
first, to indicate the simulations making up the curves., then to indicate which curves make
up the comparison (it is possible to Jdefine one curve only). The following example shows a
series of two comparisons involving three and two curves respectively.

FUNCTION: WIDTH (pulse width)

2 M,(1,7)
ETA = 71

MODEL BY DEFAULT: LRI1CFS
STHULALTUNS MARING UP? THE CURVE

. ’ »
¥Z7: 103,104,105
¥3: 106,107,108
FT: 109,110
FS: 111,112
L2 X
CURVES MAKING UP THE COMPARISON
sl 1,4,9
¥2: 4,5

3 .
STODEL BY DEFAULT:
= rUNCTION

rF : .

By and large, the SYNTH nrogram functions by processing the series of comparisons one by
one. Syntactical verifications are done as the specifications are entered. When the defini-
tion of a series of comparison is completed, the program verifies the validity of what is
requested., If there are no errors at this level, the program makes up the heading of the
series. The data needed for this operation comes on the one hand from the series specifica-
tion that defines the type of comparison requested and, on the other, from the DATSIM files
which provide the values of the simulations parameters to be compared. A specific heading
is given to each comparison in order to identify each plot. Finally, the comparisons are

enerated, and the value of the functions to be compared comes either from the DATSIM files
if it conzains the needed information) or from the SIMRES files.

Figure 5.12 shows the heading of a series of comparisons, in which the impact of para-
meters IGVA, IGVB and IGVN on the vectorial function E+R<DR are studied. Figure 5.13 shows
a comparison of this series. Figure 5.14 shows the heading of a series of comparisons showing
the impact of parameter GlAO in terms of parameter SB on a scalar function. Figure 5.15 shows
a comparison of this series.
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FIGURE 5.1 - SYNTACTICAL CARDS FNR THE SPECIFICATION LANGUAGE FCR THE SIMULATION FAMILIES
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~PROGRAM DEFPARM 1.0
~HAPPY TO HELP YOU!
~LOAD THE FARAVETERS OF A PREVIOUS SIMULATION ? (YES/NQ)

>yes
’! -GIX’E THE NUMBER CF THIS SIMULATION
>312

kg -LOOKING FOR SIMULATION 312 WAIT A MOMENT PLEASE

K -BE PATIENT I'M DOING MY BEST!

. ~ENTER PARAMETERS AND THEIR VALUES

' >3
- Program output
> User's inout

l FIGURE

S.2 - CREATION OF A BASE FROM PARAMETER VALUES OF A PREVICUS SIMULATION

~PROGRAM DEFPARM 1.0
~HAPPY TO HELP YCU!
~LGAD THE PARAVETERS CF A PREVIOUS SIMULATION ? (YES/NQ)

>ro
;! -LOOKING FCR THE NUMBER OF THE NEXT SIMULATION -
. ~WAIT A MOMENT PLEASZE

- ~ENTER PARAMETERS AND THEIR VALUES

>idimene 1;

>( ideltaa , ideltab, ) =

> 1,1 }

> 0,0 )

>toto = ab

~TOTO = AB

-teew

-ERRCR NUMPER: 12

-THE GIVEN PARAMETEZR IS UNKNOWN

I.E. WAS NCT FOUND IN THE LIST OF PARAMETERS USED IN PREVIOUS SIMULATION)
-PLEASE RETYPE LINE FROM THE BEGINNING

>s1a0 = 125.0 , 250.0, 275.0 ;

>thrhaa = 4.236669, 8.7;;

LALLM

. .
AN
ATV

L)
»

- Program output
> User's input

FIGURE 5.3 - USER'S SPECIFICATION OF A FAMILY OF SIMULATIONS

LA e o
2

A .. JE
v ' LRI S S
. I Lt

~wy
)

P

P TR PR

AT A
AJAAUA

Y
s

Sl

T
o

Pt o o ot o
MRS i




Sive IDIMEN IDELTAA IDELTAB Gla0

649 1 1 1 125.0
u 650
o 651 250.0
5 §52
3 §53 375.9
654
655 0 0 125.0
656
657 250.0
658
659 375.0
660

>CCRRECTICNS (YES/NO) ?
-yes

-FOR MCDIFICATION ENTER NEW VALUE(S) OF PARAMETER(S)
-3 MEANS NO MODIFICATION

=", " MEANS END OF MOCIFICATICN

-NUMBER OF THE FIRST SIMULATION

- >;
- -IDIMEN =

>'
- (IDELTAA,IDELTAB) =
>(1,1),(2,2);

v R " o
PR . C N Y
i P .
[ . e e
, L o LV A
. ettt

'
.
PR ]

s

e IO N
e

-GlA0 -

>.

SIMe IDIMEN IDELTAA IDELTAB GlA0
649 1 1 1 125.0
650
651 250.0
652
653 375.0
654
655 2 2 125.9
§36
657 250.0
653
659 375.0
660

>CCRRECTIONS (YES/NO) ?

-Nno

TBRHOA

4.236669
8.7
4,236669
8.7
4.236669

8.7
4.236669

4.236669
8.7
4.236669
8.7

LISTED

T3RHOA
4.236669
8.7
4.236669
7
4.236669
36669
36669

36669

[}
. .
-~

00 $ GO0 & GO & O

2
7
2
7
2
7

FIGURE 5.4 - CORRECTICN PHASE OF THE CEFPARM PRCGRAM
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$SDATA NUMBER3649,

IDIMENs]1, IDELTAA®L, IDELTAB=]1,G1A0%125.0,

;BRHOA'6.236669,
SDATA NUMBER=*650,

IDIMENs1, IDELTAAL, IDELTAB=1,G1A0%125.0,

}'ammsa .7,
SDATA NUMBER=651,

IDIMEN=1, IDELTAA=l, IDELTAB*1,G1A0%259.0,

IBRHOA".ZSGGGQ,
SDATA NUMBER=6S52,

IDIMEN=1, IDELTAASL, IDELTABS1,G140+250.2,

IBRHOA'O.?,
SDATA NUMBER®=6S3,

IDIMEN=1, IDELTAA=], IDELTAB=*1,G1A03375.0,

§3RHOA‘4.236669,
$DATA NUMBER=654,

IDIMEN=1, IDELTAA®Ll, IDELTAB=*1,G1A0=375.0,

}3RHOA'O.7,
$SDATA NUMBER=*65S,

IDIMEN=1, [DELTAA=Z, (DELTAB=#2,G1lA02125.0,

zBRHOA'4.236669,
SDATA NUMBER2656,

IDIMEN=l, IDELTAA=Z, IDELTAB=2,GlA0=125.1,

TBRHOA=8.7,
$
$DATA NUMBEBR2657,

IDIMEN=1, IDELTAASZ, IDELTAB*2,G1A0=250.0,

}3RHQA'4.236669.
$DATA NUMBER2458,

IDIMEN=1, IDELTAA=2, IDELTAB=22,G1A02250.0,

EBRHOA'8.7
$DATA NUMBER=659,

IDIMEN=1, .DELTAA=Z, IDELTAB32,G1A02375.1,

¥BRHOA=¢.236669.
SDATA NUMBER=664,

IDIMEN=1, IDELTAA=Z, IDELTAB=2,G1lA0=357.9,

;BRHOA'8.7,

FIGURE 5.5 - NAMELISTS PRODUCTS OF THE NERPARM PROGRAM

PROGRAH LRI1CFS
LATIONS: 1-5, 7, 12
"mrmsrm Energy

selec 2 TOUS (ALL)
select ciA = (1, 71, 10)
select RHO = (1, «, 2)
seiect I\U = (S, »)
BGALE : STANDARD
PLOT : PLOT 3D
STALE STANDARD
“PLOT CONTOUR

SCALE : FIN (BND)
ﬂmcﬂﬁﬂ 0 POWER
selec:t STAT 3 TOUS

sslec?t 2 (1, 71, 10)

selec 2 »)
ST : STANDARD (STAT)
PLOT : PLOT
SCALE : FIN (zm:)

FUNCTION: FRINM

SIMOTAT.IONS: FIN
PROGW‘: F.Aq

FIGURE 5.6 - PLOT SPECIFICATION FOR THE DESPES PROGRAM
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DOUBLE LASER SIMULATION
NUMERO = 626,

PARAMETERS
=1, ER8 = 1,
gﬁgﬁ = .31417817E+01. 108 = .31417817€+Q1.
PHI s 0000 P&lgﬂ =z 0.0,
[ s 6. { =z 1,
)4 = Q. [BCB2 = 0.
CiA s 83ZE-43. ci8 = 8E-Q1.
IGVA al. iove =1,
G1R0 = .78E+0L, G180 = .2268+Q3,
" GIAFET = .1E+01, GIBFCT = .1E«Q1.,
[GVF! = 0o IGVFCT3 = O.
= .429868SE+OL. TERHOB = .4236865€+01.
[RANDA = Q. [RANCB = 0.
Eﬁm = 6-998 . ?E’L.i'm = I.IE-@.
= Us = le
it faeve 1 it
S e . X . .
2o o S i
X o L] S e [}
RKAPPRA = 0.0, %ﬁ s 0.0,
JRUOR = .7E+01, TRUOS =..7E~01,
TININVA = .12682-01. TINJNVE = .L26E-O1.
T2NINVR = .142867E-01. TOINVE = .142867E-01.,
PHISTOR = 0.0. . PHIBTOS = Q.0.
ISTPHIR = Q. [STPHLIS = Q. .
m = 0.0, CRVS = 0.Q.
= 0.0. RIPLONG = 0.0,
[BISTRA = Q. gésm = 0,
Fnlive = ‘Lirgste-or o = 6
3 . . 2 Ue
ERJSF a ":’?Eggé }gm = 9E«01,
m L K1 » 2 Je
K&VE = % Ié{;?‘ s %2.
\mVE 2 ] \.BIE L 3K X ]
HR = .1 7867142867143E-01 H8 = .825E~33,
NR = 32, NRT 2 57,
INLR =z 1, ' NERUNS = .
IBT = 2- [8R = 2,
. .IPXNPSH = Q. {LEveL. = 1.

.....

FIGURE 5.7 - LIST OF PARAMETERS IDENTIFYING THE PLOTTED SIMULATION
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SERIE 95 (NUMBER 1)
WITH NORMALIZATION
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NUMSBER IGva IGVE IDGN

410. 1. 1. 9.

580. 0. 0. 0.

584. . n. 1

LASERA =1, LASERE = 1,

PHIOA = ,3141782E-01, PHIOB 3 ,31417828+01,
PHIZA 20,0, PHIZB 0.0,

IBCA 1, IBC3 =1,

13Ca2 = q, IBC32 =0,

Cla 2 ,632E-03, Cl8 = ,8E-N1,

GlaA0 = (75Ee1, Gl30 = .275E-03,
GlAFCT = .1Ee01, GlBFCT = .1E~01,
IGVECTA =1, IGVFCTB = 9,

TBRHOA 2 .4236663E+01, TBRHOB = .4236669E+01,
IRANDA =10, IRANDB = 0,

SIGNA 3 -, 99E-M1, SIGNB = -,1E-93,
IDELTAA = 1, IDELTAB = 1,

DWNA 2 0.0, DWNB 0.0,

GAMMAA = [1Es01, GAIMAB = .1E«01,

SA 2 |1Ee9], S8 = 0.0,

TBWA 3 ,5E-00, TBWB = ,5E~00.
RKAPPAA + 0.0, RKAPPAB = 0.0,

TAUOA 2 ,7E+01, TAUOB = .7EeNL,
TININVA = [12SE-01, TININVB = (12SE-01,
TZNINVA = .14236E-01, TININVB = .14286E-01,
PHISTDA = 0.0, PHISTDB = 0.0,

ISTPHIA = 0, ISTPHIB = 0,

CURVA = 0.0, CURVB 9.0,

RKPLONA = 0.0, RKPLONB = 0.0,

IDISTRA =0, IDISTRB = 0,

EPSILNA = .1E«01, EPSILNB = .1E-02,
T2NINVC = [14286E-01, TAUS?F 2 L4E~01,
TAUOCT = .9E»01, WINDOW = .21E~Q2,
IDIMEN = 3, KSAVE s 64,

MSAVE = 32, JSAVE = 300,

JSTEP =4, HR s ,17857E-01,
HS s .625E-03, NA = 32,

NAT = 57, INLR =1,

NBRUNS =1, IST s,

ISR s 2, IPUMPSH = 0,

ILEVEL =1, BETAA z ,474E-02,
BETAB 2 ,22E«02, FARUSKA = .8608E-01,
FARUSK3 = .394886013E.0n3, INFRNLA = .11344E-01,
INFRNLB = .1435949E+01, LGPHIOA = .3723431E.01,
LGPHINB = -, 3723431F#01, IGVNEGA = 0.0,

IGVNEGE = 9.0, IGVPOSA 2 -],

IGVPOSB = -I, LGPHSNA = .13863943E+02,
LGPHSQB = .13863943E+02, ING1ASQ = .17778E-01,
ING1BSQ 2 .13E-04, INVRIAO = .133333E+00,
INVG1BO = .3636E-02, GlAOSQ = .S5625E.02,
G1BOSQ = .75625E.0S, INVCIA = .1582178481E.04,
INVC1IB = .12SEe02, RCG1A0 = .2738613E~01,
RCG1BO 3 .18583124E+n2 AKAPPAA = .6170670064E+04,
AKAPPAB = .48748294E+n2, TAURA = .713489E.00,
TAURB = (19459F-01, TAUSA t ,322756009E+03,
TAUSB 2 .177267E+00, GLRA = .3508E-01,
GLRB 3 .384886013E+13, ALPHAA = .23E«00,
ALPHAB = .9166667E+I11.

FIGURE 5.12 - HEADING OF A SERIES OF COMPARISONS IN WHICH THE IMPACT OF

PARAMETERS IGVA, IGVB AND IGVN ON THE VECTORIAL FUNCTION
E*R+DR ARE STUDIED
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VI - THE LASER PROGRAMS

Zven though the laser simulation programs do not <in themselvees form the core or the
5asis 27 the system presentil here, >rey remain neverthseless it:a ‘undamenial motivation.

t should be noted that the different softwares and orograms making up the system are general
enough to process several different nroblems. The SIMRES for instance can process any pro-
gram using numerical integration for resul: calculations. Therefore, it seemed necessary to
devote a whole chapter to discuss the nroduction and resolution probiems faced in the laser
simulation programs.

It will not be possihle to give here a detailed exnlanation of the phvsics and the
numerical techniques used to solve the diverse differential equations in these programs.
These two aspects will only be touched un descriptively in order to place the programs in
their nroper context.

This chapter is divided in four narts:

1 - the first nart is a summary description of the orograms with an overview of their
particular techniaues,

2 - the second part deals with the general characteristics of the programs: documenta-
tion, modularity, etc.,

3 - the third discusses the nroblenms of validity and reliability of the programs,

4 - the last part shows how the problems created by the constraints of memory were
resolved and how the performance of the programs was increased.

6.1 DESCRIPTION OF THE LASER SIMULATION PROGRAMS

Even though each nrogram is essentially different from the other, all the programs use ~
similar numerical techniques to solve the nonlinear propagation equations (Maxwell) and the
atomic equations (3loch). These eduations are solved simultaneously by a dynamic predictor/
corrector algorithm: the predictor used generally is the explicit method of the middle point
(Euler's modified formula), the corrector used is the trapezoid.

Moreover, nonlinearly defined axes (transverse axes, temporal axes) are used in order to
increase the efficiency of the nredictor/corrector algorithm. These axes determine a non-
uniform multi-dimensional meshing that show, around the focal point along the provagation
axis, the interesting phenomena of the beam. Depending on the choice and the nature of the
phenomena studied, this non-uniform meshing can be calculated statistically either at the
beginning of the simulation or redefined locally as the simulation is in progress (dymamic
adaptation) to check the rapid changes in self-focusing.

The names of the laser simulation programs follow these conventions:

a - the prefix LR means LaseR;

b - the number following the nrefix indicates the number of lasers used in the simulation;

c - the letter immediately following this number shows the implication of radial svmmecry
(C for Cylinder, thus one transverse axis) or its absence (P for Parallelepived, thus
two transverse axes, x and y); .

d - the letters or numbers that follow denote the nrincinal characteristics of the progranm.

Also, the axes used in the different programs are designated as follows:

longitudinal axis of the cylinder or parallelepiped: axis z;

radial g€nmetty axis of the cylinder: axis r;

Cartesian transverse axes of the parallelepiped: axis x and axis v;

temporal axis: axis t;
- axis of frequencies: axis w.

1]
Following is the description of the laser simulation programs already integrated :in the
system and using the SIMRES software to produce the simulation results.

1) The LRICFS program (F for freauency and S for statistics): the simulation is defined by
the z, r, ¢, w axes. The model is based on the szilar wave eaquation coupled to the two-lsvel
resonant atomic system without degeneracy. This nrogram offers the following options:
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- the possibility of inclusion of the transverse erffects (activation of the r axis of
the cylinder): this shows the increass in the inhomogeneities and the importance of
the nonlinear dispersion and the nonlinear absorption;

- the possibility of inclusion of the auantum fluctuations ia the medium initiation for
superfluorescence evolution (activation of statistics calculations);

- possibility of inclusion of the "sxtended'Dovbpler effects (activation of the @ axis
associated with the atamic system).

t is also possible to include in this simulation all these possibilities at the same

time.

2) The LR1PS program (S for statistics): the simulation is defined by the z, x, y, t axes.
This model is essentially the Same as the one used in LRICFS without the inclusion of the
;xtended Doppler effects into the program. The following characteristics should be noted
owever:

- the transverse axes x and v are only defined for the nositive quadrant: i.,e., the
x axis is defined Srom 0.0 to xmax and the y axis is defined from 0.0 to ymax;

- the transverse effects on one axis can be activated without necessarily activating
the transverse effects on the other axis;

- the maximal delimiter chosen on the x axis (xmax) can be different from the maximal
delimiter (ymax) on the y axis: this alliows for a larger choice of situationms.

3) The LR1P4S nrogram (S for statistics and 4 to indicate that the transverse axes cover
the four quadrants): the simulation is defined by the 2y X, Y and t axss. This model is
identical to the one used in the LR1PS program except for the two following points:

- the transverse sffects cannot be removed: i.e., the x axis is necessarily defined
from -xmax to xmax and the y axis is defined from -ymax to ymax;

- the minimal and maximal delimiters of the two axes are equal to one another, i.e.,
-xmax ®* -ymax and xmax * ymax.

1) In the LR12C program, the simulation is defined by the 2, r, t axss. This model is
based on two scalar equations of the oronagation movement defined by 2 intense ultra-wave
laser beams propagating simultaneously through a gas of three-level atoms. This model shows
the interaction between the two beams and how they influence each other. This program allows
for the possibility of inclusion of the transverse effects on the simulation.

The following programs are not yet integrated to the system but will soon be added to
the four programs described above.

3) The LRZCFS program (F for frequency and S for statistics): cthe simulation is defined
by the z, v, t,w axes. The model used here is essefitially the same as the one described in
LRIC except that as in the LRICFS nrogram, it offers the following options:

- the possibility of including transverse effects;
- the possibility of including statistical calculation (quantum fluctuations);
- the possibility of including the extended Dopplar effects.

When this program will be integrated to the rest of the system, it will completely
replace the LR2C program.

6) The LRI1CC program (C for chemistry): this simulation is defined by the z, r, t axes.

The model is similar to that uSed in the LRICFS program but with a more refined atomic confi-
guration system to allow for a six of ten levels of absorption. This model thus permits the

3tudy.of the effects of coherent oropagation in the multi-level atomic configuration such as

Europium.

7) The LRIPH program (H for hydrodvnamic): the simulation is defined by the =, x, v axes.

is model is based on a hydroEVnamic formulation. [n crder to avoid the oscillatory behavior
resulting from the decomposition of the electrical field into its real and imaginary parts, it
is necessarv to describe the field by using the modulus and the phase, or equivalently, by
using the field energy and the zransverse gradient of its nhase. The evolution of the beam
can thus be seen as a flowing fluid whose density is proportional to the field energy and
whose velocity is proporticnal to the _gradient of the nhase. This description leads to a
generalized Navier-Stackes equation of motion for a compressible fluid subjected to an internal
potential which depends solely and nonlinearly on fluid density and its derivatives,

PSR ST I I S Ll S S GG S S S WL,




3) The LRICP program (? Sor plasma): the simulation is defined by the :, r axes. This is
based on a simplified LRICFS program: the transient effect is eliminated and the temporal
variation is disregarded, what is calculated here is the asymptotic effects and adiabatic
approximation response of the atomic field (off-resonance). The nonlinear field is charac-
terized hy an analytical susceptibility where the light-matter interaction is instantaneous
(unlike the model used by the LRICFS program). This nonlinearity is cubic in nature: thus
=he Xerr effect. However, this effect can He correctad and limited by a saturation or sven
by a nonlinear exponentiality. The laser can therefore descride the evolution of the elec-
tromagnetic field in a plasma medium governed by these kinds of nonlinearicies.

9) The LRI1PP program (P for plasma): the simulation is defined by the 2z, x and y axes.
It is essentially the same model as the one described in 8) but without the radial simmetlry.

10) The LRICT program (T for transistor): the simulation is defined by the z, r and te¢ axes.
The model used hers is based on the following anproach: when two waves going in opposite
dirsctions (a forward wave and a backward wave) interact coherently with each other and with

a medium resonant to the pulss frequency, this pulse adapts itself longitudinally and trans-
versely during the simulation. The dynamic cross-coupling of these two waves appears explici-
tely in a two-mode equation analogous to the traditional one~mode 3loch equation describing
the two~level absorption system. The variation of phase and the amplitude of the linear fisld
polarized in the transverse direction are described by two wave equations, one for each mode:
forward travelling propagation and backward travelling pronagation. The equations derive from
the Maxwell equation comprising the transverse and transient nhase variations. ¢ denotes the
spatial frequency harmonies associated with the standing wave nature of the field.

The algorithm used to solve these equations is a generalization of Moretti's scheme for
l the integration of the Euler equation of compressible flow. It is an explicit algorithm which
demands a simultaneous inzegration along the t axis for both waves and which also takes into
consideration the directional derivations to check the mutual influence of the two waves while
respecting the law of forbidden signals. The program thus allows a unified simulation of the
soliton collision, of the two-wave superfluorescence and of the optical instability phenomena
in a nonlinear Fabry Perct cavity.

The model used a1ere is similar to those used for the LRICFS and the LRICC programs, however
; this model uses an implicit efficient algorithm with dynamically adapting grids: to achieve
. a greater stability and a greater exactitude, in many cases, the algorithm is chtained by
= expressing the variable on the left side of a given equation in terms of an integral on the
variables on the right side of that equation. The field equation solution is determined in
.zerms of average quantities that varies lass rapidly than the original variables. Every mesh
point is determined with the associate neighboring points: the resulting triadiagenal Blach
matrix is solved by recurrence method.

ig 11) The LRICI program (I for impliciz): the simulation is defined by the =, r and t axes.
»

The nrogram offers the possibility of studying the influence of diffraction, of iumsity

variation and of the inertial response in a multi-level system for a large number of experi-
mental parameters.

6.2 GENERAL CHARACTERISTICS OF THE LASER SIMULATION PROGRAMS

Several problems arise from the frequent modifications, from the handling by different
users and from the transportation and implantation of these programs into other computers,
These problems can be summarized as follows:

- general comprehension of the praograms;

- detailed comprehension of the code;

- ease of program modification;
p- - transportability of the programs.

In order to answer all these requirements, the programs must adhere 0 certain basic
criteria which make their manipulation and maintenance easier; these are:

3
a - the documentation of the programs;
) - the use of standard FORTRAN;

-

- - the modularity of the programs.

- It {s important to point out here that all the laser sinmulation programs as well as the
- softwares presentad here adhere to these requirements.
1
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6.2.1 JOCUMENTATION

Following is presented the complete description of these programs when dealing with the
above mentioned requirements of general comprehension.

- the principal program includes a summary description of the model used and a complete
description of its algorithm;

- all the physical parameters (program data) are adequately reported;

- each subroutine of the program has a detailed description of its role in the program
and, if need be, of its algorithm;

- the code of the principal program is reported in its smallest detail;

- all the global variables of the program (i.e. variables in the commons) and specific
to the subroutines, as well as their parameters, are explicitely described as per their
usage.

Not only is a proper and extensive documentation a time-saving device but it also allows
a more detailed analysis of the program at hand.

6.2.2 TRANSPORTABILITY

The laser simulation programs can be installed on different kinds of computers, therefcre
they must be easily transportable. As a general rule, and whenever possible and feasible,
these programs are coded in standard Fortran (ANSI).

Thus all the programs use identifiers (i.e. names of subroutines, variables, parameters,
etc.) with at the most six alphanumeric characters: in fact, most Fortran programs installed
in computers other than CDC or CRAY do not permit more than the maximum six characters allowed
by the standard Forcran. Nevertheless, some non-standard statements, such as GOTO, the PROGRAM
declaration, the indices in form of expression, etc., can also be used because most Fortran
language processor accept these statements.

It is worth noting that the use of standard statements was promoted by the criterion of
majority. The only excesption to this is the BUFFER IN and BUFFER OUT used for pagination done
for efficiency. More information about this will be given in section 6.4.

6.2.3 MODULARITY

The first advantage of modularity is the simplicity and clarity it brings to the program;
that is: in the laser simulation programs, a subroutine performs only one precise task. For
example: the C1DTAU subroutine of the LRICFS program deals with the calculations of the tem-
poral axis and of its derivatives. The second advantage of modularity resides in the ease of
introducing additions, modification or corrections to the program. In fact, when a program has
been cut into simple functional and independent modules, its model can be rsfined (thus a new
code) without upsetting all its structure, Moreover, any modification to the program will
remajin localized (i.e. modifying a numerical integration algorithm for a function) and ics
effects will be better understood; in other words, the risks of unexpected errors, produced
by these modifications,will be considerably diminished.

Following is the general diagram of the LRICFS program (figures 6.2.1, 6.2.2 and 6.2.3).
6.3 MANAGEMENT CONTR0L AND VALIDITY OF THE RESULTS

Two interdependent problems result from the relatively €frequent modification to the laser
simulacion programs, whether these modifications are for the improvement of the performance or
for refining the models at hand. These nroblems are:

- the minimization of errors due to modifications to the program;

- verification of the validity of the results.

5.3.1 HANDLIMG AND MANAGING THE PROGRAMS

All the laser s.mulation programs are controlled by the CI3C UPDATE program which produces
program libraries. Thus it is possible to kecn a complete inventory of the programs and 2o
retrieve anterior versions as each new modification to the programs generates a new version.

This method offers the advantage of:
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- controlling the rasults: one is certain that a specific result was produced by a
. precise version of the program and the relevance of this result is verified in its
production context;

- controlling all the modifications effected to the program over a period of time.
It is thus possible to have a detailed verification or the code if there is a need
< to check the compatibility of certain results with others, previously produced.

Another advantage resides in the fact that all the laser simulation programs are centra-
NN lized on the same file. Moreover, because it is necessary to use the UPDATE program to make
SN any modification or addition to these programs, their manipulation must be very precise. It
. follows that the errors (accidental destruction of files, presentation of a wrong program),
e and the proliferation of more or less similar nrograms (i.e. different versions) stored on
soeversl different files are kept to a minimum, this in spite of the fact that a programmer
always tends to create working space by using several files. .

Given its facility and its great security, this practice has encompassed all the programs
and software presented in this paver.

6.3.2 RELIABILITY OF THE PROGRAMS AND VALIDITY OF THE RESULTS

Validity of the results is one of the trickiest problems to deal with. Usually, a se-
mantically faulty program will blow up, sometimes however the program will run till the end
and produces completely wrong rssults. A program using integration techniques with slow
evolving numerical values may be quite resistant to such minor errors as the use of a wrong
constant in an equation or a wrong sign. The problem is then to recognize the wrong results.

The surest way of verifying the validity of the results is to test the program with pre-
viously obtained results known as valid. There is the possibility that the results obtained
in the new version may not be strictly identical to the previous results (results are said to
Ye identical when, for a given function and a given point, all the significant numbers are
identical) however these may not be necessarily wrong. Indeed, if any modification to the
program dealt with the numerical algorithm, or even with the order of certain calculations,
the results will be slightly different (for example, only the first significant n numbers in
. the two versions agree). It is thus necessary to establish a percentage below which the
- results may be considered as valid and above which these can be seen as doubtful.

- Moreover, one test only may be quite inadequate when dealing specifically with the relia-
bility of the programs. With the introduction of modifications to the statistics of the LRICFS

AR program for instance, it will be necessary to determine whether the new version will function

.. with or without the transverse effects, with or without frequencies. A minimum of four tests

R will be necessary in order to ascertain the proper ruaning of the program. According to the

- importance of the modifications carried out, it is important to choose the most exhaustive

set of tests to cover all the possible effects of the modifications on the mcdel used in the

program. The validity of the results will thus be verified in all cases (i.e. for any set of

parameters).

This testing procedure with the mechanism of using other versions in program libraries
establishes a consistency between the results of the different versions of the same program.

6.4 CONSTRAINTS OF THE LASER SIMULATION PROGRAMS

Like many other programs, those of laser simulation fall under twc major constraints:
- the memory available on a computer, and
- the efficiency of the programs.
s 6.4.1 MEMORY
Two main factors must be dealt with, first:
@ - the rather small memory of the computer these programs run on: for example, depending
rf- on the equipment, the memory of the CYBER computers series 170 may vary between SOOK8
and 400K8 words;

- the variable si:ze of the programs are determined by the number of words samplsd on the
axes that define the simulation.

. One of the smallest programs, the LRIC®S3, will be used %o show the importance of these
® two factors. This program depends on the following four axes:
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- the = axis: longitudinal axis of the cylinder
- the r axis: radial axis (of symmetrv) of the cylinder
- the t axis: temporal axis

- the w axis: £requency axis.

-Y‘
f

Let us call E the electromagnetic field and DE the field derivative in connection to ::
these two quantities depend explicitelvy on the =z, r and t axes. Fror the purpose of this
discussion, the w axis will not be used. Moreover, if L is the current plane associated with
- the 2z axis and i is that associated with the r axis, and if k is the current point associated
- with the t axis; when the used predictor is considered (modified mid-point method) then:
E(L,i,x) 3 2(L-2,i,k) » (Az/2) x (DE(L-1,i,k) » DE(L,i,k)); as can be seen, the three planes
L-2, Lel, L of E and the two planes L-l1 and L of DE must be kept. It should be noted that the
quantities of £ and DE are complex (i.e. one word must be counted for the real part and one
word for the imaginary part).

b A U AR e
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With these informations, the size of the program can he assessed. Let us consider the
foliowing three cases:

a) 32 points on the r axis and 64 points on the t axis;
b) 64 points on the r axis and 128 points on the t axis;
c) 64 points on the r axis and 192 points on the t axis.

The code and other variable will occupy a total of SOK8 words.

Followiag are the calculations to find out the size of the programs:

a) required memory for E and DE: (3«2)x2x32x64 = SOK8 words; total memory required:
soxs-soxs 2 IZOKs words;

b) required memory for E and DE: (3+2)x2x64x128 = ZJOKs wards; total memory required:
§0Kg+240K; = 310Kg words;

¢) rcequired memory for E and DE: (3+2)x2x54x192 = SGOKS words; total memory required:
SOK30360Ks s ¢30K8 words.

Depending on the number of points on the axes, it can be noted that the si:ze of the very
same program may fluctuate surprisingly. With facilities that can deal oaly with 300Kz to
1400Xg words, like in cases b and ¢, there will be serious problems to face. Moreover, certain
programs without the radial symmetry hypothesis, like the LRIPS, require a far greater memory.
In the LRIPS program, where the quantities of E and DE depend explicitely on the z, x, y and
the t axes, with 32 points on each of the transverse axes (x and y) and 64 poiats on the t
axis, there is a need for 2400Kg words (i.e. (3¢2)x2x32x32x64). This is indeed a major problem
for most installations.

Nevertheless, the laser simulation programs have some common characteristics:

- the size of the programs in a function of the quantities of E and DE;

-« the size needed by the programs in concentrated in two quantities E and DE {from 50%
to 98% of the total size, depending on the program);

- the numerical integration uses a purely sequential algorithm in all the prograns
(i.e. inner loops structures),

One simple and direct way of solving the problem of memory is to use the computer disks
to compensate the central memory; these disks have a great capacity to store information.
Thus, as the calculations of the E and DE quantities proceed by successive iterations on the
planes (z axis), the values of the quantities of E and DE, for a given plame are stored on a
disk (writing operation), when these values are needed for prediction or corrections calcula-
o tions of a given point of the r axis at given point on the t axis, all that is needed is o
v retrieve them from the disk (reading operation): this procedure is called pagination.

More precisely, the planes L-2, L-1 and L of E and the planes L-1 and L of DE will e

’ associated to five binary files sequentially manipulated by the Fortran statements 3UFFER IN
o and BUFFER OUT (writing and reading). What remains now is to define the buffers associated
o to the five files and to manipulate the values these deal with.

At this point, there is a need to distinguish two categories of programs:
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- | Yj-li Y‘I yj., ! where v jth line on the matrix
. 4 - N
: 7] n : total number of points on x axis
1 < " x ? : total number of points on t axis
[ = l...l 1.0 %=1l %}~ x,: ith poin: on x axis
Y. - ty ¢ kth point on t axis
hd ]
lll' boee i B "“‘ to-l‘ t;1 E,: real part of E
W E;: imaginary par: of E
E %y

The control of this buffer is similar to the one described in 1) but there is no need
here to manipulate the sections of the x axis as all the line fits in the buffer. However,
to control the three lines of the buffer, it is necessary to define the supplementary pointers.
For the same reasons, the buffer associatad to the files holding the values of DE on the L-1
plane will have a similar structure but it will have only the two lines Yial and y.. All the
other buffers for E and DE will control only one yj line at 3 time, J J

As in 1), the pointers on the files are used to go from plane to plane, yet the solution
here is not as versatile. The main problem here is the great size of the buffers. In facse,
for 32 points on the x axis and 64 points on the t axis, the size of the burffer controlling
the three lines will be of 3x2x32x64 = 30Kq words. Keeping in mind the fact that there are
several buffers, and considering the memory needed by the code and the other variables (near-
ly 70Kg words for the LRIPS program), there will be 160Kg words for LR1PS. 3y changing the
:umber of points on the axis, it will be easy %o reach the 300K, words of the computers used

ere.

Finally, it is necessary to note that in the two solutions presented here, only four
buffers are needed instead of five, even though there are five files to control. In fact,
as there is never any need for the values of E on the L-2 plane and for the L-l plane simul-
taneously (the L-2 plane is used for prediction and the L-1 for correction). It is possible
ta use the same buffer to control the two files associated to these planes for the values of

6.4.2 EFFICIENCY

The pagination of the laser simulation programs may be the first source of inefficiency.
In fact, it is slower to read or write a2 word on a disk than to accede to an address in core
memory (primary storage). In order for the pagination not to affect the performance of the
program to a great extent, the following rules have been adopted:

- using buffers large enough to minimi:e the access to the disk;

- using the statements BUFFER IN and BUFFER OUT to read and write the buffers on fils,
thos; statsments are three times faster than equivalent binary statements READ and
WRITE;

- using pointers for the control of files and buffers in order to avoid unnecessary
manipulations (displacements cf the values in the buffers, transier of values from
one file to another, etc.);

- non-usage of auxilary panels for calculations (these will be done directly in the
buffers) in order to avoid supplementary <ransfers.

" kB:sidc paginaction, other points dealing with the efficiency of the programs must be
checked:

- given the inner loops structure of this kind of programs, it is necessary to
the transfer of variables as parameters in the subroutines called for by the
loops. For example, each variable transferred in parameter in the C1DRVE (or
subroutine of the LR1CPS program will increase the total running time of the

avoid
inner
C1DRVP)
program

by 0.5%, and {f this subroutine has 10 variables transferred in parameters, the running
time of the program will be :increased by S5%: this is quite significant.

X
-4
L

- [t is necessary to minimize the number of divisions and multiplications in the equation
used in the subroutines of the inner loops. This can be done, when possible, by
linking all the constant terms for each point of the same axis and by storing the

. result in a panel subject to this axis. In that way, it will be possible to replace

L many nultiplications and divisions by one multiplication and one address calculation

; (access o the slement in the panel).

T For example, the running time of the LRICFS program without storing
mechanism goes from 500 seconds (on a CYBER 173) to 550 seconds but with
e the pagination mechanism, the gain is of 30%.

the pagination
the storing of
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v, 7. “here y jth line on the matrix
IRIRAIRE RN I . -
™ n : total aumber of poiats on x axis
s " ~ P : total aumber of points on t axis
R ETINETIEE x;: ith point on x axis
; 4 . to: kth point on ¢ axis
4 -
JL{20ee) e eee ] Baa th E.: real part of E
Ei: imaginary part of E
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The control of this buffer is similar to the one described in 1) but there is no need
here to manipulate the sections of the x axis as all the line fits in the buffer. However,
to control the three lines of the buffer, it is necessary to define the supplementary pointers.
For the same reasons, the buffer associated to the files holding the values of DE on the L-1
plane will have a similar structure but it will have only the two linss Yie1 and y.. All the
other buffers for E and DE will control only one Yj line at a time. J J

As in 1), the pointers on the files are used to go from plane to plane, yet the solution
Yere is not as versatile. The main problem here is the great si:e of the buffers. Ia face,
for 32 points on the x axis and 64 points on the t axis, the size of the buffer controlling
the three lines will be of 3x2x32x64 = 30Ky words. Keeping in mind the fac: that there are
several buffers, and considering the memory needed by the code and the other variables (near-
ly 70Kg words for the LR1PS program). there will be 160Kg words for LR1PS. By changing the
gunbor of points on the axis, it will be easy to reach the SOOKs words of the computers used
ere.

Finally, it is necessary to note that in the two solutions presented hers, only four
buffers are needed instead of five, even though there are five files to control. In face,
as thers is never any need for the values of E on the L-2 plane and for the L-l plane siaul-
taneously (the L-2 plane is used for prediction and the L-1 for correction). It is possible
to use the same buffer to control the two files associated to these planes for the values of E.

6.4.2 EFFICIENCY

The pagination of the laser simulation programs may be the first source of inefficiency.
In fact, it is slower to resd or write a word on a disk than to accede to an address in core
memory (primary storage). In order for the pagination not to affect the performance of the
program 0 a great extent, the following rules have been adopted:

- using buffers large enough to minimize the access to the disk;

-'using the stataments BUFFER IN and BUFFER OUT to read and writs the buffers on file,
th;;; statements are three times faster than equivalent binary statements READ and
WRITE;

- using pointers for the control of files and buffers in order to avoid unnecessary
manipulations (displacements of the values in the buffers, transfer of values from
one file to another, etc.);

- non-usage of auxilary panels for calculations (these will be dane directly in the
buffers) in order to avoid supplementary transcers.

N kB;side pagination, other points dealing with the efficiency of the programs must be
checked:

- given the inner loops structure of this kind of programs, it is necessary to avoid
the transfer of variables as parameters in the subroutines called for by the inner
loops. For example, each variable transferred in parameter in the CIDRVE (or C1DRVP)
subroutine of the LR1CPS program will increase the total running time of the prograa
by 0.5%, and if this subroutine has 10 variables transferred in parameters, the running
time of the program will be increased by 5%: this is quite significant.

- It is necessary to minimize the number of divisions and multiplications in the equation
used in che subroutines of the inner loops. This can be done, when possible, by
linking all the constant terms for each point of the same axis and by storing the
result in a panel subject to this axis. In that way, it will be possible to replace
many multiplications and divisions by sne multiplication and one address calculation
(access to the elemen: in the panel).

For sxample, the running time of the LRICFS program without storing the pagination
mechanisam goes from 500 seconds (on a CYBER 173) to 330 seconds but with the storing of
the pagination mechanism, the gair is of 304,
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Terms used in the diagrams

eta: longitudinal axis of the cvlinder
rho: transverse axis of the cylinder (symmetcy axis)
tau: temporal axis ¢
dwn: frequency axis w (associated to the material)
material: polarization P {(complex quantity) and energy W
: electromagnetic field (complex quantity)
DE : £ield derivation in terms of eta (complex quantity)
: Lth plane on the eta axis
i ith point on the rho axis
k : kth point on the tau axis
Euler formula: E(L,i,k) E(L-1l,i,k) <XDE(L-1l,i,%)
Modified EBuler formula: E(L,i.k) E(L-2,i,k) (zY’)YDE(L-l,i,k)
Trapezoid method: E(L,i,k) E(L-1,i,k) (=/s)X(DE(L,i,k)DE(L-1,i,k)
PHIO, PHIZ: initial til:1ng angles used in naterzal calcula:1on
Statistics: indicate that depending on certain distributions, the PHIO and PHII angles
will be randomly generated

T
A

Xey to figures
tevevvesste. suberoutine contents
m = =====! loop on the number of laser simulations; (sta)
' — e = w = .t loop on the eta axis
eeceseve=e==: loop on the rho axis
: loop on the tau axis
eessssscsess loop on the dwn axis .

The loops on the sta, rho and dwn axes are optional, i.e. it depends on the activation of
csrtain effects in the simulation.

FIGURE 6.2.1 - GENERAL DIAGRAM CF THE ClIUVW SUB-ROUTINE
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. Calculation of the initial values of the material
(only the two principal cases are presented here)

1. Case with non-activated statistical calculations

Step 1. (only at bootstrapping mode or for simulation by
superfluorescence, if not, go to step 2).
clRm.'.'."'O"..""".."'.."'""'."..'
*calculation of a point of the materxal'
*from the PHIO and PHIZ angles

(22 A2 XA AR RS R R AR RA AR A AR dld )

SCED 2. t.iiiietirccetnnencaanaas
.naterzal initialization.

*
.
-
€ 2 6080000 a80 e tEIBRIOLIESIOETTS »
2. Case with activated statistical calculations M
St’p 1. CIPHST.'.""""'O.'Q".'..".'Q"."'."".Q... :
*calculations of angles PHIO and PHIZ from* .

*certain distribution specified by the . .

*program parameters e .

*
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o *calculation of a point of the mnterial'
*from the PHIO and PHI2 angles
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STEP 3. tiiiiiiieccnccvonnnennnas
.material initialization.
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FIGURE 6.2.2 - GENERAL DIAGRAM OF THE ClINTG SUB-ROUTINE
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b .material predictisnon the TAU axis. .

. .5y Euler's modiZied <ormula . .
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. . .

. * . computation of the material derivations . * .

* * . in terms of axis TAU . N
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o . . correction of the material of the . .
R M . TAU axis by the trape:zaid method . *
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- : .
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' . * integration of the polarization P °* o
A b * if the frequencies are active * M
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. » »
- *!Ifche first plane is ETA, go to step 7. d
- - - -
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* 7 5.1 diffraction compuctations (if transverse effects are active)® ”

. * 5.2 computation of DE using the gain and the diffraction M
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*{Step 6. Correction of the field on the ETA axis by the trapezoid method '
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. * 7.1 diffraction computations with the corrected values of . b

. hd field E (if transverse effects are active) -

* * 7.2 computation of DE using the gain and the diffraction * -
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* * . computation of the material derivations in .t .

hd v . terms of the TAU axis using the corrected values . * -

. * . of field E : . .
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*{Step 3. Znergzy comnutation for the kth point of the TAU axis .
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FIGURE 6.2.3 (cont'd)

Step 10.

Step 11.

Step 12.

cicaLr

Ci1CPL2

cicrLy

and of its derivative DE on the first ETA plane.

initialization of field E; if in propagation
mode, can depend on a series of Gaussian pulses.

s
o
.
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10.2.1 ClIUVW (see figure 6.2.1)

plane: see figure 6.2.2)
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10.2.2 ClINTG (calculation of DE for the first ETA
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this sub-routine deals with %he initializacion of field E
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* this sub-routine deals with the calculations of field E

* and its derivation DE on the second ETA plane.

11.] peeeeeecmcemeccmmcesemmenemmecceesemeaemmeeeanemnaeny

prediction of field E by Euler's formula.
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111.2.1 ClIUVY (see figure 6.2.2

plane: see figure 6.2.2)
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*l prediction of field E by the I
*| modified Euler's formula. t
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12.2 ClIUVW (see figure 6.2.1)

see figure 6.2.2)

been sslected by the program)
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* calculation of the energy °
* integrals on the TAU axis *
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11.2.2 ClINTG (computation of DE for the second
ETA plane and carrection of E for that

12.3 CLINTG (comnutation of DE and of the material,
correction of E and of the material:

12.3 Production of the results (if the ETA plane has
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this sub-routine calculates the avolution of field E and
of the material along the propagation axis of the cylinder.
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ENERAL DIAGRAM OF THE LR1CFS ?ROGRAM
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Reading of datas (i.e. numher o0f the simulation, opticnal selectors on the
functions, simulation parameters).

Parameters verification (markers and compatibility).

Simulation definition at the SIMRES package (i.e. declaration of axes,
functions, selectors, parameters, etc.).

Axes calculations.

4 1 CIDETA (IR AR A2 AR AR AR AR AR AR AR Al AR 22 ARl ]

* calculation of the ETA axis and its dependencies *

I 2 A AR AR AR AR AR R AR XA ARl Rl A ARl A0 XE2J

‘ i CIRFO (A A2 X222 22 AR R AR AR A AR R R AR AR A AR A2 2]
. Pl

* calculation of the RHO axis and its dependencies; *
* can be defined in linear or nonlinear mode .

COPC IR O C PN NN IC IR PO R PIT PRV PCR O PRI NOPOPOIRIRIOTITTOAIRETY

4 3 CIDTAU POV HN NPV VNOCOPRVVNPO POV P TP OP ORI VNOI RO PONPRIOIOPRNTPEPOPRIRIRPORS®
-

* calculation of the TAU axis and its dependencies; .
* can be defined in propagation or superfluorescence mode *

(A2 R AR AR AR A XA RRERRE AR A AR R R A AR R R 2 X2 X2

4.4 ClDD"’N (2 AR R AR AR RS AR R A AR AR RRRX R R R0 A2 AR 2 R 2 X Al X2 2 d )
* calculations of the DWN axis and its dependencies; *

* can he defined symmetrically or asymmetrically and *
* can define a Gaussian or a Lorent:zian curve

VOV ROPP VNI POP PPN RORNTPIPRANPERN R RO NN T PR P IPOOPOPPROEORDNOY

Calculation of the physical quantities used by the simulation.

3 1 CIGAI\‘ ""'...'Q"Q""'.""""Q." ZZ X2 XXX RRRE R R R A A KRR 22 J
bt conputatzon of the gain in terms of the RHO axis; °*
* can be defined constant or Gaussian; can introduce *
* disruntions o

POV ORCCCC ORI R OP OO NN PP O PO P VRN PV OCRNR IRV PROINPORIPOIRNPIEDOIIOIRY

I£ the statistics calculations are non-activated, go to step 5.3

5 z CIDPHN (22X AR AL SRR AR A AT RS AR AR AR R R Al l]

* density calculations in terms of RHO .
* used for the normalization of angle PHIO *

22X R R R A2 R A A AR R XA RS2SRRSR A2 AR 24
s 3 CI'VBX [ ZZ2 AR R A A AR R AR AR R A RA N R A NS AL A Al Al
. g

* outline calculations of angles PHIO AND PHIZ *

(A2 A XA AR MM R E R AR A A RS A A A ARl dld

Initializactions dealing with pagination.

Initialization of angles PHIO and PHI2, this initialization follows certain
laws if the statistical calculation has been activated and can be done through
the C1PHST sub-routine (see figure 6.2.1).

Initialization and adjustment of vector EZ0 used for the initialization of
field E in the first ETA nlane (only if the laser is defined in propagation mode).

initialization of the principal variables of the program.
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FIGURE 6.2.3 (cont'd)
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Step 14, ClACOH

End of simulation
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* calculation of the last plane produced °
* and reasons for stoppage, if available. *
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* calculation of the acoher function; useful C
snecially when it is a statistical simulation .
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VII - CONCLUSION

It i5 noteworthy to state at this point that the functioning part of the system corres-
ponds to the packages in section IV and to an appreciable part of the laser simulation programs
presented in section VI (LRICFS, LRICPS, LR1PS, LR1P4S, LR1C?, LRIPP). The programs of appli-
catiog DEFPARM, DESRES and SYNTH are still being developed, hcwever DEFPARM and DESRES are
already in use.

In conclusion, it would be of value to review our objectives and to examine how the
saftware developed for the laser model building project answered our expectations.

With respect to modularity, it is evident at this stage that a considerable effort has
been extended to divide the work into concrete jobs and to limit thase different jobs into
procedures or groups of procedures. Bv their very definition and by their conception, these
packages constitute evident examples of modularity. This modularity can be also found in
the step by step division of the programs of application.

As to Slexibility, chere was an effort, all along the conception of the new system, to
identify the problems of general concern by liiberating us of the specific constraints of the
laser project in order to concentrate on the fundamental aspects of the tasks at hand. It
follows that the softwares thus developed have enough flexibility to be adapted to the diffe-
rent situations arising within the same laser model building project or even to be adapted
to other projects where to results are functions and where there is a sufficient quantity
of results toa justify a data bank..

The question of security is more difficult to evaluate. Nevertheless, the use of tech-
niques such as data validation, exhaustive tests during the set up period, etc., increase the
security aspects of the programs. Moreover, splitting up cthe work into modules facilitates
she inception and set up of the programs and contributes to their strength. Finally, the fact
of using these programs in the context of nroduction makes it easier to test them and to find
their loopholes.

As to efficiency, it is clear that the development of more complex laser models has forced
us to take into consideration of execution time and memory requirements. For instance, the
direct access to the SIMRES and DATSIM files has increased the efficiency of the application
programs and made them more amenable to use in the interactif. Moreover, the use of pagination
in the laser modeling programs has cut down the size of the programs, and facilitates their use
on computer with limited memory.

Much attention was given to transportability in order, on the one hand, to execute certain
laser programs on computers more powerful than those at our disposal, and on other, to use our
auxiliary software in other projects. To make the software more transportable, we have chosen
to write it FCRTRAN IV and to respect the ANSI standard. Moreover, we have isolated in proce-
dures the instructions or portions of code that are particular to a given environment (like
the files direct access subroutines) thus making it easy to locate what is to be modified in
order to transfer the software to another systenm.

With respect to documentation finally, we have established and tried to follow a strice
standard for the programs comments. e expect to publish (internal publication) a technical

report and a user’'s manual for the different packages and the programs dealt with in this
document.
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. ABSTRACT
A model and results are presented which describe copropagational
coherent pump dynamics and evolving superfluorescence (SF). Specification

of certain pump pulse initial conditions results in specific SF characteristics,
as recently observed in CH3F and Ba.
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SUMMARY ﬂé

Recently developed cdmputational methods,are used to evaluate for
the first time the dynamic longitudinal and transverse reshaping associated
with the concomitant propagation of two light beams in a three-level medium.
Neither the mean field theory [1] nor the adiabatic following [2] or even the
rate equation [3] approximations have simplified this analysis. Instead, the
full Maxwell-Bloch [4,5] equations with phase and diffraction effects [6] included
are solved rigorously, using self-consistent numerical methods [7].

A new concept in nonlinear light matter interactions is introduced:
The results obtained for the first time display the conditions under which
an injected light pulse of a given frequency can be used to shape and control
a second light pulse of a different frequency coupled through the nonlinear
three-level medium. Thus, a specific aspect of the phenomenon of light control
by light is deménstrated [8].

The model has been applied to double coherent transients (i.e., double
self-induced transparency) and to the pump dynamics effects in super-
fluorescence (SF).

;} The goal of this paper is to illustrate how the output characteristics
o of the collective spontaneous emission of the SF pulse [9] (such as delay time,
fi pulse width, peak intensity, shape, etc.) can be controlled, deterministically,

by appropriately selecting certain initial and boundary conditions for the

F:' injected pump pulse.
- * Partially supported by the U.S. Army Research Office, the U. S. Office of
o Naval Research, the U.S. Science Foundation and Battelle Columbus Laboratories.
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with the exception of Bowden and Sung [10], all theoretical work has
dealt exclusively with the relaxation process from a prepared state of complete
inversion in a two-level manifold of atomic energy levels, and thus do not
consider the dynamic effects of the pumping process. Yet, all reported
experimental work has utilized optical pumping on a minimum manifold of three
atomic [11-13) or molecular [14-15] energy levels by laser pulse injection into
the nonlinear medium, which subsequently superfluoresces. (Note that the two-
level analysis is only valid for TR >> 1, where T, is the characteristic SF
time and T, is the pump pulse temporal wgdth, and gas not been realized over
the full range of reported data).

our 8n3lys/s & fels

] ~Contrary—+o Bowden and Sung's analytical treatment, we do not confine

RAAdAS AL A ST &
C IR |

our solution to the mean field regime and the linearized short time regime

but have adopted the semiclassical model advanced by Feld and co-authors [16]

r‘ where both transients and propagation effects are rigorously studied. Quantum
fluctuations [17-19] are not discussed in the treatment; instead, a classical
uniform (not random) tipping angle concept is used for initiating the polarization
to simulate the fluorescence initiation. The latter method is well-established

for both two- and three-level [20-21] propagation calculations. Since transverse
effects are also considered, the obtained results also extend the pumpless analysis
that previously modelled the Cs experiment [22].

T YT Y

In particular, it is shown that the injected coherent pump initial
characteristics, such as on-axis area, temporal and radial width (and associated
gain-length~Fresnel number), and shape alter the SF pulse characteristics. The
effects of changing the effective gain [23] of either the SF or the pump
transition and the density of active atoms are also studied.

For sufficiently large effective gain and/or large input pump area, the .
two light pulses overlap and the two-photon processes (RCR-resonant coherent <~
Raman) make strong contributions to the mutual pulse development.

Dependencies of this type have been recently observed in methyl fluoride

[24] and in barium [25]. Futhermore, under other conditions, we obtained a SF
- pulse of temporal width much less than that of the pump even though the two
. pulses temporally overlap. This calculation agrees qualitatively with the
- results of recent experiments in mode locked 002 pumped CH3F [26].
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DISTORTIONS OF A CW LIGHT BEAM PROPAGATING THROUGH GAS : SELF-LENSING AND SPATIAL RINGINGS
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Abstract

Transverse effects on the profile of an intense off-resonant cw light beam, propagating
through a gazeous cell of length 1, are numerically displayed in both cases of the very
small absorption length (a=l << 2 ) and the intermediate case (c~l ~ ). As predicted by
tha theory, self-focusing and spatial ringings are obtained. Moreover for ai ~1, these
distorsions generally appear as a recurrent process.

Introduction
The profile of a cw light beam with an on-axis input intensity I, was analytically

shown to exhibi; unusual distortions when propagating through an off-resonance optically
thick absorber :, such as

at >> IO/Is >> 1, (Case I) . (1)
The quantity a'l denotes the off-resonance absorption length and Is is the saturation inten-
sity for a homogeneously broadened atom,
T

2IN u? 2
ch 1 +82T,2

al =

(2)

52 2
Is = (1 +3 Tz Y/ Tsz .

Wwithin the framework (1), an approximate treatment ! of the normalized Maxwell equation for
a cw electric £ield with envelope ¢ (p,2)

1 - 41357

(-1 72+ ) co2) = -%F ( 2 ) elo,2) (3)
. T 3% F 12
- 1 + -E(Olz) //I
o & s
if displayed the formation of one or several concentric transverse rings of light after scme
tf- propagation, either iaside the cell or in the free space. Moreover self-focusing was also
L | predicted for a blue-shifted excitation in spite of strong abscrption losses. In =g. {2), T.
o denotes the homogeneous lifetime and § is the detuning between the atomic pulsation ws, and ©
. the driving field pulsation u,. The undimensionnal variable 5> is the radial variable r
[ scaled to the input keam waist £, and 7 is cthe axial variable z scaled to the diffraction
lengta,
z,s & ¢ ° = 4
2 (da)
. d F (=] -

* Partially supported by the US Army Research Office DAAG29-79-C0143; on
extended leave of abseace from Polytechnic Institute of New York.
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The Fresnel number F for an absorption length is
F=az,. (4b)

It measures the ratio between the diffraction length and the abgsorption one and it was
shown to be the check garmter for transverse effects in transient phenomena like S.I.T
and superfluorescence °, For large F, the loss (or gain) due to the atomic medium prevails
on the diffraction loss while in the opgosite case (F < 1) the diffracticn losses generally
orevent S.I.T. and superfluorescence 2,3,

In the present study governed by Eqs.(l) and (3), the balance between the diffraction
and the atomic response, and then the shape of the intensity profile depend not only on F
but also on I,/Ig and §T;. The analytical treatment just assumes that the beam experiences
two regimes : from the entrance in the call to a transition abcissa zyp, the diffraction is
taken as negligeable (zyp << z4). Through the cell, the wave-front undergoes distortions
because cf the interplay of nonlinearities and absorption only. It follows that at zyp the
wave-front is encoded, carrying away knowladge of the nonlinearities of the medium. Alter-
wards the driven intensity becomes so weak that the diffraction only causes further dis-
tortions of the beam, like in free space propagation, In summary the encoding of the wave-
front results from the propagation equation

F(l - £ 87,)
et,2 =% 2 €(s,2)

az 2 /
1+ [£elo,2)|*/1,

(5)

for any 0 2z < Znr’ while self-focusing and multiple ringings arise from the diffraction
equation

(=192 + 2 ) ¢(p,2) = -2F(1 =~ 18Ty elo,2) (6)

T g
which describes the distortion of the encoded envelope

-ra-1 L
5 (1=157T,) (a zNL+[h_=O(°)]2'/IS)

a(zNL;o) = cc(a) e (7

for any z > 2,.. The abcissa :§& which locates the transition between the two regimes was

found to obey approximately law !
I
1 Q
Zyn X ;(I—¢1) (8)
s
that implies
I
=2 << F (9)
I

when using Eq.(4) tecgether with the inequality Zyp €< Zg-. Actually, Ineq.(9) is cnly a
necessary condition for the diffraccion to be ne@&igiblg. A more detailed analysis - showed
that, near resonance, a sufficient condition for the diffraction to be negligible is

Io
(=) cec 7 (s Tz EIR 2 BN (10)

This latter condition can be generalized :to large detunings, such as

-
}oiT, (=2)?% <er (57T, >> 1), (11)

- rs

‘ In this paper we f£irst presant the results of a numerical simulation which confirm the

f~ validity of the theoretical model (case I), In a next section wWe extend our numerical study
!
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to the case of weaker absorber, such as
at v IO/IS vl (Case II) , (12)

for which there is presently no available analytical model. For such media the numerical
calculations display the formation of several rings inside the cell for sufficiently large
values of either F or iT,. Experiments _realized by Gibbs and Rushford * in the conditions
(12) for scme 5T, as higﬁer as 10+¢, 103 and small F ~ 0.15 exhibited many transverse
ringings., They will be discussed in details elsewhere.

Case I (ag >> Io/Is >> 1)

In this section we compare the analytical calculations (Eqs,(5)-(7) ) performed within
the framework defined by Inegs. (1) and (1ll1) with the numerical solution of the field ampli-
tude which obeys the full reduced Maxwell equation (2).

The input cross-section will be assumed to be gaussian. Both analytical and numerical
transverse shapes of the intensity are plotted on Fig. 1 as the beam propagates, first
inside the vapor cell (0 s z ¢ 2 = 0.03) and next in the free space to ten times the cell
length. The parameters I,/Igq = 2.31, § Tp = +5, ot = & and F = 29.3 have been chosen
in order to satisfy the conditions (1) ang {(l11). Fig. 1 displays the gocd agreement between
the analytical profile (broken lines) with the numerical one (full lines). Let us notice
that the ringings take form after the transition point zyp = 0.025 cm, and even only ocutside
the cell. For z larger than the diffraction length the numerical solution exhibits a sub-
structure of ringings for the two lateral large rings.

--==Apalytical
— Numerical

Tigure 1. Transverse reshaping I /Is = 2,31, a2 = 4, 3§ Tz = + 5, Zg = 0.22 cm, F = 29.5,
1 =0,03cm, zg = 0.095 Scm.

In Fig, 2 the parameters are the same as in Fig. 1l except for F = 8.8 . 1In this latter
case, the inequality (1l1) is not satisfied. This explains why the analytical curves do not
fi= the numerical ones. At Zyr. the theoretical profile exhibits a narrowing of the beam
waist of magnitude of order I,/ 0.’ resulting from the nonlinear absorption while the
numerical profile exhibits defocusing due :o the diffraction. This discrepancy between the
two descriptions clearly shows that the diffraction strongly works before zyr. The encoding
model i{s no more valid, Fig. 3 illustrates the behaviour of the cn-axis intensity as a
function of 2 for z < 2zyp, with the same parameters as in Fig. 1 and Fig. 2, respectively.
For large F, the analytical curve given by the squared-modulus solution of Eq.(5) agrees
with the numerical one deduced from Eq.(3), that confirms the validity of the encoding
approach. For smaller F, as yet pointed out in Fig. 2, the diffraction cannot be neglected,

Fig. 4 displays the propagation for smaller Fresnel number, F = 1 .25 where the analyti-
cal treatment does not hold in any case. The parameters I./Is, 3T, and  xt are those
of Fig. 2 but the absorption length (together with the cell lengfth) is seven times larger
than in Fig. 2 or =he dif:traction length is seven times smaller in Fig. 4 than in Fig. 2.
The beam widely defocuses since the very bdeginning of the cell and the ringings appear
inside the cell, even for penetraticn smaller than 2y. . Let us point out that even though
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}? strong diffraction effects, the nonlinearities of the medium still work to give rise to

. ringings.

= High

|e=== Analytical 2.3}
] e Numerical

-y

E:_ 2-31| —— Analytical
—— . =4 F=29.

3-2 * = — __\Numerical :LI[ F=%,983

N 3

b ; -

ko v

P

) : xZ NL %4
Figure 2. Transverse reshaping:same parameters Figure 3. On axis intensity as a func-
as in Fig. 1, except F = 8.8, tion of z. The £ull lines
2 =0.1 cm, zyy = 0.08 cm/ correspond to the analytical

treatment and the dotted lines
to the numerical integration
of Eq.(5) with F = 29,5 and
F = 8.8, respectively.

. Itr,z)/15A

N x2.31

|
i |
h x0.35/} i

x0.0064

|

|

i

120.002 ]
|

I

{

i

L
3

k4

Figure 4. Transverse reshaping, same parameters as in Figs. . and 2, except F = 1,25,
t = 0,7 ¢cm, Zun * 0.6 em.,

Case II (a » Io/Is v 1) b

The case treated in this section is quite different from the situation encountered in
the previous section. In the present situvation, the Fresnel number, F = az3, is of magni-
tude of order the cell Fresnel number, JM = z,/1, which generally does nct exceed some {
units, for provagation of visible light in cells with reasonable lengths. From another hand,
if an enceding of the beam was feasible, a strong non linear phase modification weould be
expected only for large values of the product of (I /I]) by 3T, see Eg.(7) }. The coniunc-
tion of the three relations

z I
= .1, 57, = > 1 , F oA~ 13
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. b_
implies that the condition for encoding (Eq.(l2) ) cannot be realized. The encoding of the
beam before Zyt would be viewad for very large <A (F = az ),

Moreover the present case is still different from the situation for which analytical
treatment of self-focusing was made (af << I /IS << 1) 3, In this latter cagf, the condi-
tion I, /I, <<l allows to approximate the 8rm® (1 + | (u/%R) s(z,r);z/Is ) in the
right hand member of Eq.(2) by (1 - |(u/h) e (z,r) |2 /Ig) and then to° relate self-
focusing to a cubic index 3.

Ly
3
: Up to now, nro analytical treatment is attempted in the conditions ( 13). Cnly a
b computer-simulaticn appears presently to turn out the trangverse effects. The figures
N (S -9) exhibit scme features of the distortion of an input gaussian profile as a blue
shifted light beam through the gas and then through the vacuum. Fig. 5 displays a quasi
b

| m,T
2.3
30 — . [
o«
p-3
© X
o
2 !
"n20¢ =
< | ]
< |
i ) |
i z
! Q
TH
S0 d -
Z ¢
- | b
! I ‘
- ; a )
= ‘ 5 ) 5 20
- 0 S 10 . 1 “1_0/1,
t.f Figure 5. Intensity profile, IO/Is = 2,31 Figure 6. Number of on-axis maxima as a
il = 2, 5T2 = -60, zq= 0.22 cm, function of I /Is' for same parame-
F=2,9, 1°=0.15 cm. ters as in Fiqg.5, and for different
; T, a) -60, b) -120, c) =250,
- d) “=500.
F. -
.-

periodicity of the transverse patterns exhibiting self-focusing followed by ringinags. This
recurrence results from the variation of the factor ( 1 + |(u/k) c(2z,r),;2 /I )'I, which
alternatively behavesg either like (1 - |(u/%f) ec(z,r) |? /Ig) for small intefisities or

(I./ '(u/B) ¢l(z,r)!2) near the focus. When the driven intensity I(z,r)/I 1s much smaller
thdn unity, the gas behaves like a cubic medium, giving rise to self-lensiné. This self-
focusing causes so large I(z,r) /I, that (1 + (u/fR) elz,r) {2 /I )=} practically
vanishes, giving rise to ringings (Case I), and soon ..., . PFig, 6 wexhibits the
number of the successive foci corresponding to the recurrent lensing phenomenom, for given

¢ and a=l, as a function of I /Ig ., and for different acomic densities. The two regimes
for small or strong input in:ensigies are clearly differentiated. The figures 7 and 8
display the variation of the maximum intensity I(zf)/Io and its location 2. as a func-
tion of I /I, for same parameters as Fig. 7. Let us notice that, as a result of the
absorptlog or the diffraction losses, the absolute maximum is located at the first focus. _
For I,/Ig smaller than unity, the magnitude of z¢ strongly decreases as I, /I increases -,
reaches a minimum for I, /Iy smaller or of order unity and then slowly increases with
1.1,

o ‘s

i d

ot
S @
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. T™he numerical analvsis also shows that ringings appear inside a zeil wi<h st » 1 if
S the product F 35T is high enough, i Fig. 5 with a large F (+ 3 and (T, = =60, and
} @ in Fitg. 9 with a small F (~ 0.1%) and larger T, = -1200 ., The case cf Filg. 9 was

b - thoroughly studied in relationship with experimen:g of Gibbs and Rushford and will be
published elsewhere, Lat us only point out that the ringings disappear for large pere-
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0 ) A S - 10 15 IO/IS 20; 0 S 10 15 /15 20
Figure 7. On-axis intensity at the focus as Figure 8. First focus as a function of
a function of I,/I for same I/1 for same parameters as
parameters as in Fig.'s. iR Figs. 6 and 7.
[/lgxcste
231}
Figure 9, Transverse reshaping and on-axis intensity. I, /Ig = 2.31, of =1, 5T = =1200,

zd = 1,26cm, F=20.14, ¢ = 10 cm.

tration. The behaviour of the patterns for large z seems to make possible the £filamentation
of the beam, Self-trapping in the unusual conditions of Case II will be also discussed
elsewnere,
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Coherent pump dynamics, propagation, transverse, and diffraction effects
in three-level superfluorescence and control of light by light

F. P. Mattar
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Massachuserts Institute of Technology, Cambridge, Massachusetts 02139
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A model is presented for the dynamical evolution of superfluorescence from an optically
pumped three-level system. The full propagation, transverse, and dilfraction effects are tak-
en into account. With the use of a previously developed algorithm, 2 computatioaal simula-
tion was constructed from this model and results are presented and discussed. In particular,
it is shown that the injected coherent pump-pulse initial characteristics, such as on-axis
ares, temporal and radial width and shiape, can have significant deterministic effects on the
superfluocescent pulse delay time, peak inteusity, temporal width, and shape. Thus, by
specifying certain initial propertics of the injected punp pulse, the superfluorescent pulse
can be shaped and altered. The results predict the conditions under which an injected light
pulse of a given frequency can be used to generate, shape, and control a second light puise of
a different frequency via a noalinear medium, thus demonstrating a _bew aspect of the

phenomenon of light control by light.
L. INTRODUCTION

Superflucrescence! is the plienomenon whereby a
collection of atoms or molecules is prepared initialiy
in a state of complete inversion and then allowed to
undergo relaxation by collective, spontaneous decay.
Since Dicke'’s initial work,® there has been a
preponderance of theoretical and experimental work
dealing with this process.’

With the exception of the more recent work of
Bowden and Sung,* ail theoretical treatments have
dealt exclusively with the relaxation process from a
prepared states of complete inversion in a twe-level
manifold of atomic energy levels and thus do"not
consider the dynamical cffects of the pumping pro-
cess. Yet, all reported experimental work®~'% has
utilized optical pumping on a minimum manifold of
three atomic or molecular energy levels by laser
pulse injection inio the nonlinear medium, which
subsequently superfluoresces.

It was pointed out by Bowden and Sung* that for
a system otherwise satisfying the conditions for su-
perfluorescent (SF) emission, uniess the charactens-
tic super-radiance time' g is much greater than the
pump-puise temporal duration 7,, i.e., Tp >>7p, the
process of coherent opticai pwnping on a three-level
system can have dramatic effects on the SF. This is
a condition which has not been realized over the full

u

" range of reported data.}

In this paper, we present calculational results and
analysis for the effects of coherent pump dynamics,
propagation, transverse, and diffraction effects on
SF emission from an optically pumped three-leve!
system. The full, nonlinear, copropagaticnal aspects
of the injected pump pulse, together with the SF
which evolves, are explicitly treated in the calcule-
tion. Not only do our results relate sirongly to pre-
vious calculations and experimental results in SF,
but we introduce and demonstrate a new concept in
nonlinear light-matter interactions, which we cail
light control by light. We show how characteristics
of the SF can be controlied by specifying certain
characieristics of the injection pulse in the regime
1" >TR.

In Sec. IT, the modal upon which the calculaticn
is based is presented, and the algorithm used in the
simulation is outlined. Results of the calculation are
presented and discussed in Sec. III. Section IV is
used to summarize the resuits and cite implications
and to discuss future work.

I1. MODEL FOR THREE-LEVEL
SUPERFLUORESCENCE

The model upon which the calculation is based is
compused of a collection of identical three-level

45 ©1983 The American Physical Society
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atoms, each having the energy-level scheme shown
in Fig. 1. The l«s3 transition is induced by a
coherent electromagnetic field injection pulse of fre
quency @g nearly tuned to the indicated transition.
The properties of this pumping pulse are specified
initially in terms of the initial and boandary condi-
tions. The transition 3«»2 evolves by spontancous
emission at frequency @. It is assumed that the
energy-level spacing is such that €; > & >> €, so that
the fields at frequencies wo and @ cam be treated by
separate wave equations. The energy levels 2«1 are
not coupled radiatively due to parity considerations.
Further, we neglect spontaneous relaxation in. the
3e»l transition, and spontaneous relaxation in the
3«2 transition is simulated by the chaice of a small,
but nonzero, initial transverse polarization'! charac-
terized by the parameter o~ 10~3. Our results do
not depend upon nominal variations of this parame-

X=fi E 2 e RY -1

r-l[-l

2 (0}'RP expl —i(wot ~ Ko F))] - wid ™ R explitwe — Ko T} -

l-‘

The first term on the right-hand side (rhs) of Eq.
(2.1) is the free atomic system Hamiltonian with
atomic level spacings € r=123; j=1,2,... N
The second term on the rhs describes the i mteucnon
of the atomic system with the fluorescence field as-
sociated with the 3«+2 transition, whereas' the last
term on the right in (2.1) describes the interaction
between the atomic system and the coherent pump-
ing field. The fluorescence field and the pumping
field have amplitudes Q'/ and w¢’, respectively, in
terms of Rabi frequency, at the position of the jth

atom, ;. _The respective wave vectors of the two
fields are k and Ko, and the carrier frequencies are @
N =
@y Y,
e

o

V.

FIG. 1. Mode} three-level atomic system and eleceric
field tunings under consideration. For the results report-
ed here, the injected pulse is tuned to the 1++3 transition.

ter. The initial condition is chosen consistent with
the particular choice of $q (see the Appendix) with
nearly all the population in the ground state and the
initial values of the other atomic variables chosen
consxstemly"' according to the initial equilibrium
properties of the system.'’ The full statistical treat-
ment of the quantum initiation process with resuit-
ing temporal fluctuations will be presented in a fu-
ture development. Thus, the results presented here
are to be regarded as expectation values or ensemble
averages.

We use the electric-dipole and rotating-wave ap-
proximations and couple the atomic dipole moments
to classical field amplitudes which are determined
from Maxwell's equations. The Hamiltonian which
describes the fi eld-rnatter interaction for this system
comprising N atoms* is

}; (@R D expl —i(wt—k-F)]~ 0" Riexpli(at - Kk-T))}}

2.1

I

and wq. It is assumed that the electromagnetic field
amplitudes vary insignificantly over the atomic di-
mensions and that all of the atoms remain fixed dur-
ing the time frame of the dynamical evolution of the
system. .

The atomxc variables in (2.1) are the canonical
operators® R}/’ which obey the Lie algebra defined
by the commutation rules'*~

(R REN=RE6)Sma~R[™88mn +  (2.2)
where z,jal 2,3; mn=12,...,N. The Rabi rates
Q' and wg” are given in terms of the electric field
amplitudes E' and E{", respectively, and the ma-
trix elements of the transition dipole moments u
and uf) by

{f),, ()

e E ’:‘{’ , (2.3a)
iy

of'= EJ;"{' , (2.3)

where we have considered only one linear polariza-
tion for the two fields and propagation in the posi-
tive z direction.

It is convenient to canonically transform (2.1) to
remove the rapid time variations at the carrier fre-
quencies w and wqo and the rapid spatial variations
due to the wave vectors k and k,. We assume that
the field envelopes Q¥ and wy' vary much more
slowly than the periods w ~' and wg ', respectively.
In the transformed representation, we are thus deal-
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ing with slowly varying field amplitudes and atomic
operators. The dau'ed unitary transformation U,
such that . . -

Fr=UxU-, 24
is given by
N
U(t)== [ exp{iA ()R] expliral (RG],
=t 2.9)
J

Hrah }_‘, ATRY) 44 Z s'l’x,,-
j= 25

where
AP=elf) ~wg, 8V =€) v+ —w0, €,;=0.

COHERENT PUMP DYNAMICS, PROPAGATION, TRANSVERSE... 347

where
PULGEIMITEN I8 (2.60)
A () =[(wo~a)t —(ko—K)-T)] . (2.6b)

If (2.5) is applied to (2.1) and the commutation rules

(22) are used, we get for the canonically
transformed Hamiltonian ¥y,

(0"’R£ Q'R )-—-2(»,{’3,1‘ w’RY),

@7

2.3

The equations of motion for the atomic variables are calculated from (2.7) according to

d=2l#rRY) .

Q9 .

By imposing the canonical transformation defined by (2.5) we, in fact, transformed to a slowly varying opera-
tor representation which is cousisteat with the slowly varying envelope approximation to be imposed later oa in
the Maxwell’s equations coupled to the hierarchy of first-order equations (2.9).

If (2.7) is used in (2.9), the following hierarchy of coupled nonlinear eqnanons of motion is obtained for the

atomic variables:
R = = Q"RY + R — 3 (0f'RY +03 "R =y (RY -RD) (2.10a)
RY =+ 3 (QRY +0*"RY)—y (RE-RE), : ©@lon)
R =+ 3R +0g "R —ry (RN -R'Y), (2.10c)
R} =—i8"RY - +Q*NRY R - 03 "RE ~y,RY , (2.10d)
RO =—i8 Ry + Q"R 3 +0f'Ry) -y, R, {2.10e)
R = —iaVRY 10 Ry + ol (RE—RE) -1 RY . : - (2100

In Egs. (2.10), we have added phenomenological re-
laxation 7 and dephasing ¥, and taken these to be
uniform, i.e., the same parameters for each transi-
tion. For the d:agonal terms R the equilibrium
values are designed as R{Y, the same for all atoms.

We shall treat the qu. {2.10) from this point as
c-number equations, i.e, expectation values. Fur-
ther, we assume that all the atoms have identical
energy-level structure and also, we drop the atomic
labels j, so it is taken impli~*tly that the atomic and
field variables depend upon : ie spacial coordinates
x, y, and 2, as well as the time 1.

It is convenient to introduce a new set of real vari-
ables in terms of the old ones. We let

) WuﬂRu—Rll- k>’ 2.11a)

Ru=+(Uy+iVy), k>l (2.11b)

o

where Uy, Vy, and Wy are real variables, and
Uy=Ug, Vy=Vp,

O=X+iY, (2.11c)
wg=Xe+iYs , 2.11d)

where X, Y, X,, and Y, are real variables.

If the transformation (2.11) is applied to (2.10},
the resulting equations of motion for the real vari-
ables { Wy, Uy, Py are

W= =3 [XUp=YVy) = (XoUs ~ Yoy ]

‘—Yu("’n- Wi, (2.12a)
Wy m—{XUpy—YVy;) —+{XoUn —=YoVy)
~mWp-w), (2.12b)

------
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&n- +8Vn+XWn~%(XoUlz-YOVII)

-7Un, 2.12¢)
Vigm =8Usp =YWy +3(XoVu + YoUn)

T (2.12d)

. Up=—AVy— XUy + YV )+ X0 Wy

-nUsn, N 2.12¢)
Vy=+AUs =XV = YUy )= Yo Wy

=7V, @.12)
Uy = =8V +3(XU3 = YV3)

+3(XoUp=YoVu) =7 Uy, (2129
Vay=+8Uz +3(XVy + YUs3)

—iXoVu+ YoUn)=7i¥y . (212)

In obtaining Egs. (2.12), we bave made use of the
invariant trR=J .

I1=R+RE+RY . 2.13)
It is noted that I=0 is satisfied identically in
(2.108)—(2.10¢) for y;;—0. For y;+0, the condi-
tion (2.13) together with (2.10a)—(2.10c) constitutes
the statement of conservation of atomic density, i.e.,
particle number.

Equations (2.12) are coupled to Maxwell’s equa-
tions through the polarizations associated with each
transition field. It is easily determined that the
Maxwell’s equations in dimensionless form in the
rotating-wave and slowly varying envelope approxi-
mations can be written in the following form:

—fo vV =U
~ig2 9 (Y| i
TV 8y |, [xo] "[ Vo ]
(2.140)
%] 3 (3] [-Un
~lg2 SN D 4
TVl 7 |t %7 a |
(2.14b)

where the variables X, ¥, X,, ¥, are the same as
those defined in (2.11c) and (2.11d), but in units of
y,. In the above equations, we have assumed
cylindrical symmetry, thus

13 P.é_
pdp | Jp

The first term on the left-hand side in (2.142) and
(2.14b) accounts for transverse effects with normal-

V:-

]

ized radial coordinate p=r/r,, where 7 is the radial
distance and r, is a characteristic spatial width. In
(2.14), 0, =28u1,,» Where gur,p, is the on-axis effec-

tive gain’
]
@ | [Hn ]

@ | BN
8ty = nfic

2.1%)

where N is the atomic number density (assumed

‘longitudinally homogeneous), and # is the index of

refraction assumed identical for each transition
wavelength. The quantity

N{r)
-arl

No
governs the relative radial population density distri-
bution for active atoms. This could have variation,

say, for an atomic beam. Equations (2.14) are writ-
ten in the retarded time r frame where

d .16

‘r=t—nz/c.

From this point on, the dot in Egs. (2.12) is taken to
be 3/3r. Finally, the first factors on the first terms
on the Ihs in (2.14) are the reciprocals of the “gain-
length” Fresnel aumbers defined by

2or3

-1 °
1,,841
]

F,= @17

It is seen from (2.14) that for sufficiently large
Fresnel number 7 the corrections due to transverse
effects become negligible. The gain-length Fresael
numbers 7 are related to the usual Fresnel numbers
Fa2mr3/AL, where L is the length of the medium,
by

F/Fmgul , (2.18)

i.e., the total gains of the medium. In the computa-
tions, diffraction is explicitly taken into account by
the boundary condition that p=pgy,, corresponds to
completely absorbing walls.

The initial conditions are chosen to establish a
small, but nonzero transverse polarization for the
3++2 transition with almost the entire population in
the ground state. This requires the specification of
two small dimensionless parameters €~ 10~ for the
ground-state initial population deficit, and 5~ 10-?
for the tipping angle for the initial transverse polari-
zation for the 3«2 transition. The derivation for
the initial values for the various matrix elements is
presented in the Appendix, and the results are given
by (A22), (A23), and (A28)—(A33).
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IIL CALCULATION RESULTS AND ANALYSIS

Calculational methods developed earlier!” and dis-
cussed elsewhere'®!® were applied to the model
presented in Sec. II to compute the effects on SF
pulse evolution for various initial conditions for the
injected (pump) pulse. The results presented here
demonstrate many facets of the contro} and shaping
of the SF signal by control of the input signal initial
characteristics. The material parameters chosen for
these calculations are arbitrary, but correspond
roughly to those for optically pumped metal vapors
in the regime 7, > 7.

Thus, although the simulation inherently yields
numerically accurate results for particular experi-
mental design, the results reported here must be tak-
en as qualitative. Our main purpose here is to
demonstrate and analyze specific correlations be-
tween the initial and boundary conditions associated
with the injected pump pulse and characteristics of
the SF pulse which evolve. In many of the cases
which follow, rules are established through the
analysis which can be used to predict quantitative
results for any particular experimental conditions.
Our choice of particular initial and boundary condi-
tions has been motivated in part by processes which
may have been ive in experiments which have
been reported®='" and in part by the feasibility of
experimental selection or specification. In connec-
tion with the latter, we demonstrate the control of
one light signal by another via a nonlinear medium,
thus imparting nonlinear information transfer and
pulse shaping of the SF {rom specific initial and
boundary conditions associated with the pump injec-
tion signal.

Figure 2 shows results of the numerical calcula-
tion for the tram verse integrated intensity profiles
for the copropagating SF and injected pulses at a
penetration depth of z=53 c¢cm in the nonlinear
medium. These profiles correspond to what would
be observed with a wide aperture, fast, energy detec-
tor. The pumping pulses are labeled by capital
letters, and the corresponding SF pulses are labeled
by the corresponding lower case letters. Each set of
curves represents 2 different initial on-axis area for
the pump pulse, i.e., curve A is the reshaped pump
pulse at z=5.3 cm which had its initial on-axis area.
specified as 6, =, and curve a is the resulting SF
pulse which has evolved. All other parameters are
identical for each set of pulses. The initial condi-
tions for the atomic medium is that nearly ail the
population is in the ground state €, at r=0, and a
small, but nonzero macroscopic polarization exists
between levels €; and €,. These two conditions are
specified by two parameters ¢ and 5, respectively,
and we have chosen 5m=e= 102 self-consistently as

st L £ ¢
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FIG. 2. Radially integrated normalized intensity pro-
files for the SF and injected pulse at za=5.3-cm penctra-
tion depth for three different values for the initial on-axis
injection pulse area ;. The SF pulses are indicated by a,
b, and ¢, wheress the corresponding injected pump pulses
are labeled A, B, and C. The injected pulses are initially
Gaussian in » and r with widths (FWHM) ro=0.24 cm
and 7, =4 nsec, respectively. The level spacings are such
that (€5 —¢€,)/(€;—¢€;)=126.6. The effective gain for the
pump transition g, = 17 cm=! and that for the SF trausi-
tion g, =291.7 cm~'. The gain-length Fresnel numbers
for the two transitions are 7, =16800 and 5, =2278.
The relaxation and dephasing times are taken as identical
for all transitions and are given as 7, =80 nsec und
T, =70 nsec, respectively. The injected pulse initial on-
axis areas are (A) §, =, (B) §, =21, and (C) §, =3,

specified in the Appendix. These initial conditions
are uniform for the atomic medium and are the
same for all results reported here. Notice that we
have neglected spontaneous relaxation in the pump
transition l+e3 relative to the SF transition 3«2,
This is justified owing to our choice of relative oscil-
lator strengths (see Fig. 2 caption).

These results clearly indicate the coherence effect
of the initial pump-pulse area on the SF signal
which evolves. Notice that the peak intensity of the
SF pulses increases monatonically with initial on-
axis area for the pump pulse. This is caused by
self-focusing due to transverse coupling and propa-
gation. For instance, a 2n-injection puise would
generate a very small SF response compared to an
initial w-injection pulse for these conditions at rela-
tively small penetration z, or for the corresponding
case in one spatial dimension. Even so, the peak SF
intensity is approximately proportional to the square
of the pump-pulse initial on-axis area, whereas the
delay time 7 between the pump-puise peak and the
corresponding SF pulse peak is very nearly inversely
proportional to the input pulse area, The temporal
SF pulse width at full width at half maximum
(FWHM) r, is approximately invariant with respect
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tensity are important quantities for interpreting ex- .

perimental results with theories of SF“>!), the "
mmn«mwhnchthepump—pukecohaeweandmi- Ll

tial on-axis area affects these quantities is seen to be el

of extreme importance in any analysis.

Figure 3 shows the effect upon the SF pulse of 1

variation in the intitial temporal width at half max- N
imum intensity for the pumping pulse. As the ini- s 1 2 3 & 8§

tial temporal width of the injected pulse 7, becomes
smaller, the SF delay time 7, increases, whereas the
peak SF intensity decreases, and the SF temporal
width 7, remains very closely fixed.

It is clear from these results that there exists an
approximate linear relationship between the time de-
lay 7p, between the peak SF intensity and the corre-
sponding pump-pulse intensity, and the initial tem-
poral width 7, of the pump pulse.

This linear relanonslnp is shown in Fig. 4, where
the time delay 7p is plotted versus the corresponding
pump-pulse initial temporal width, from Fig. 3.
These results generate the following empirical for-
mula for zp as a function of 7,: )

rp=0.3757, [In(47/dp) ]
' -“RYL(YR/WL-l)rp ’ 3.1
where®®

(Y] 20 ae s &8 e e
? (nwemd

F1G. 3. Radially integrated normalized intensity pro-
files for the SF and injected pulses at 2= 3.1-cmn penetrs-
tion depth for five different values for the initial temporal
width of the injected puise. The initial on-axis area of the
injected pulse is 9, =, and the pump transition and SP
effective gains are g, =17.5 cm~' and g, =641.7 cm™
respectively. All other parameters except for the Fruud
numbers are the same as those for Fig. 2. The injected
pulse initial temporal widths at half maximum are (A)
7,m4 nsec, (B) 1, = 3.3 nsec, (C) 7, =29 nsec, (D) 7, =25
nsec, and (E) 7, = 2.2 nsec.

INC )

FIG. 4. Delay time rp of the SF peak intensity from

the corresponding pump-pulse pesk iatensity vs the

pump-pulse initial full temporal width at half maximum
intensity 7, aceordmg to Fig. 3.

rpm—t ) G2

is the characteristic superfluorescence time,"* and
@o is a parameter adjusted to give a best fit to the
calculational results. For the case treuted here,
ra =4l psec, Ty =70 nsec, and $o=>10~"%, and the
Fresnel number F=1.47.

The relation (3.1) is at least in qualitative agree-
ment with the analytical prediction made in Ref.
4(b), Eq. (5.1), based upon mean-field theory. The
first term in (3.1) was chosea to conform with the
quantum-mechanical SF initiation result.! The
quantity ¢, can be interpreted as the “effective tip-
ping augle for an equivalent m-initial impulse exci-
tation, i.e., for 7,—0, which initiates subsequent su-
perfluorescence. It is to be noted that the value for
@0 is dependent upon ourcho:c:of&(seetheAp-
pendix); however, rp varies less than 25% for
order-of-tnagnitude changes in § for (5| <10-3,
The choice of § is simply an artificial way of insti-
gating the s=miclassical numerical calculation, and
reasonable variations in its value do not strongly af-
fect the results. The physical parameter is, then, ¢,
which, interpreted on the basis of (3.1), is generated
through the dynamics caused by the pumping pro-
cess and represents quantum SF initiation. The full
statistical treatment for three-level superﬂuoresemce
with pump dynamncs inciuded will be presented in
another publication.?

These results emphasize the importance of the ini-
tiating pulse characteristics in SF pulse evolution,
and the effect of SF pulse narrowing with approxi-
mate puise shape invariance by increasing the initial
temporal width of the injected pulse. It is em-
phasized that all other parameters, incfuding the ini-
tial value for the injected pulse on-axis area, are
identical among these sets of curves.

The initial radial width rg of the injected pulse

A i i had e RPN I

e p— e .

#\

A ol a0

e

DN L ST S S S G S S R AP




(Nl A Je aomg cotmEiEy

- ity from
- vs the

€,
:_:_J-

n
iy
A

g "'o E “;'

S at 3 4 'r,r‘r;r;'-

Al i

b4

was varied and the effect upon the SF pulse evolu-
tion is shown in Fig. 5. There is clearly indicated an
optimum value for 7y for which the SF peak intensi-
ty is a maximum and the SF temporal width 7, is a
minimum, If the relation (2.18) is used in conjunc-
tion with the values of the parameters given in Fig.
5 and its caption, it is seen that optimization occurs
for a value for the conventional Fresnel number F,
for the SF transition F,a 1. Thus from (2.18) and
F,=], we have

I =g Z0u 3.3)

for the gain-length Fresnel number. Since F,~1/z,
the implication is that Eq. (3.3) gives the penetration
depth z,,, at which the SF peak intensity reaches a
maximum in terms of the ratio 5,/g,. Since this
takes both transverse and diffraction explicitly into
account as well as propagation, this is indeed a pro-
found statement.

Further insight into the implication of (3.3) can be
obtained by considering a one-spacial dimension
analogy. If the linear field loss is taken to be entire-
ly due to diffraction, then the one-dimensional linear
loss x corresponding to the two-dimensional case

IARDITRARY LUNITS)
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FIG. $. Radially integrated normalized intensity pro~
files for the SF and injected pulses at zwm5.3-cm penetra-
tion depth for seven different values for the injected pulse
initial radial width at half maximum ry. The initial on-
axis area 0, of the injection puise is 8, =2x; the SF effec-
tive gain g, »758.3 em~!, and the pump transition effec-
tive gain g, =14.6 cm™'. All other parameters are the
same as for Fig. 2. The initial radial widths at half max-
imum for the injected pulses are (a) 7p=0.57 cm, (b)
rom0.43 cm, (¢) ro=0.24 cm, (d) rg=0.18 cm, (¢) Pom0.15
cm, (P rom0.11 cm, and (g) 7g=0.09 cm. The corre-
sponding geometrical Fresnel numbers are (a} F,=8.46,
() F,=4.79, () F,=1.47, (d) F,=0.85, () F,=0.57, (N
F,=0.3$, and (g) F,=0.21.
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st
- specified by 7, is given by
- . 3.4
" 211'?,
Then, from (2.17),
A 39
Ks

is the effective gain g, to loss x, ratio. From the
condition (3.3),

Zoa =Y, 3.6

i.6, Zga is the penetration depth at which the SF
pesk intensity is a maximum and corresponds to one
effective diffraction length, as defined by (3.4). Car-
rying the one-dimensional analogy one step further,
{3.5) used in (2.18) gives .

F=(xz)™!. 3.7

From (3.5) and (3.7) we have exhibited the signifi-
cance of the Fresnel numbers & and F in terrus of
diffraction loss, i.e., 7 can be thought of as gain to
loss ratio, Eq. (3.5), whereas F can correspondingly
be thought of as the reciprocal of the strength of the
diffraction loss, Eq. (3.7).

The effect on SF pulse evolution of variation of
the initial radial shape of the initiating pulse is
shown in Fig. 6. The shape parameter v is defined
in terms of the initial coundition for the pump traasi-
tion field amplitude wx(r):

ox(r)mag(Oexpl —(r/r,)"] . (3.8)

Thus for v=2, the initial amplitude of the injected
pulse is radially Gaussian, whereas for v=4, it is ra-
dially super-Gaussian. We see from the resuits
presented in Fig, 6 that as the initial radial shape of
the injected pulse becomes broader, i.e., larger values
for v, the peak intensity of the SF pulse generated
becomes larger, and the width 7, and delay time 7p,
diminish. It is emphasized that all other parame-
ters, including the initial values for the radial and
temporal widths are invariant among these sets of
curves.

Thus if the initial radial shape of the injected
pulse is modulated from one injection to the next,
the SF temporal width and delay time 7 are corre-
spondingly moduiated as well as the SF peak inten-
sity. Correspondingly, the coherence and initial ra-
dial shape of the pump pulse cannot, with validity,
be ignored in interpretation of SF experiments in
terms of 7, and rp.

Whereas the initial on-axis area for the pumping
puise was d, = 27 for the results shown in Fig. 6, the
identical conditions and parameters were imposed,

" but the initial on-axis pump-pulse area was changed
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FIG. 6. Radially integrated normalized intensity pro-
files for the SF and injected pulses at zmS$.3-cm-
penetration depth for four different values for the injected
pulse initial radial shape parameter v (see text). The ini-
tial on-axis area 9, of the injected pulse is 0, =2m, and
the SF effective gain g,=758.3 cm~', whereas the effec-
tive gain for the pump transition g, = 14.6 cm~!, All oth-
er parameters are the same as for Fig. 2. The initial radi-
al shape parameters for the injected pulses are (A) vm|,
(B) v==2, (C) v=3, and (D) yemd.

to 6, = 3w, and the resuits are shown in Fig. 7. It is
secn that the major effect of changing the initial
on-axis ares from 2w to 37 is (0 cause more ringing
in the SF puises and to modify the pump-pulse tem-
poral reshaping as is noted by comparing Fig. 7 with
Fig. 6.

The response of SF pulse evolution to changes in
the initial temporal shape of the injection pulse is
shown in Fig. 8, which compares the effect of a
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FIG. 7. Radially integrated normalized intensity pro-
files for the SF and injected puises at z=m$.3-cm penetra-
tion depth for four different values for the injected puise
initial radial shape parameter v (see text). The initial on-
axis area 6, of the injected pulse is 6,m3w. All other
parameters are the same as for Fig. 6.

FIG. 8. Radially integrated normalized intensity pro-
files for the SF and injected pulses at 2= 5.3-ca penetra-
tion depth for two different values for the injected pulse
initial temporal shape parameter o (see text). The initial
on-axis area 8, of the injected pulse is §, =2, and the SF
effective gain g, =641.7 cm='. All other parameters are
the same as for Fig. 5(c). The initial radial shape parame-
ters for the injected pulses are (A) ¢=2 and (B) o md,

Gaussian initial temporal shape for the pump pulse,
identified by the temporal shape parameter =2
with that of a super-Gaussian identified by o=4.
As for the radial distribution discussed previously,
the temporal shape parameter o is defined in terms
of the initial condition for the pump traasition field
amplitude wg(r),

wg(r)=map(0lexp{~(r/7,)°] . (3.9)
Again, it is seen that the broader initial pump pulse
causes an increase in the peak SF intensity and a
reduction in the delay time 7, and SF pulse width
Tye :
Whereas the resuits of Fig. 8 correspond to an ini-
tial on-axis area 6, =27 for the pump pulse, the re-
sults of Fig. 9 correspond to identical conditions and
values for the parameters as those for Fig. 8, except
that the initial on-axis area for the injection pulse is
8, =13w.

,The effect of changing the effective gain for the
SF transition g, and hence the relative oscillator
strength between the SF transition and the pump
transition is demonstrated in the results of Figs.
10—13. Each of these figures corresponds to a dif-
ferent on-axis initial area §, for the injection pulse.
Consistent among the entire set of resuits is that in-
creasing the effective gain g, results in a nearly
linear increase in the SF peak intensity as well as de-
crease in the delay time ©5. Also, the smaller area
initiating pulse causes a narrower SF pulse to evoive
and with apparently less ringing. .
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FIG. 9. Radially integrated normalized intensity pro-
files for the SF and injected pulses st zw 5.3-cm penetra-
tion depth for two different values for the injected pulse
initial tempocs. shape parameter o (see text). The initial
on-axis area 8, of the injected pulse is §, =3w. All other
parameters are the same as for Fig. 8. The initial radial
shape parameters for the injected pulses are (A) o=2 and
(B) o=4,

Figure 14 shows the effect of variation of the den-
sity p of active atoms. The effective gains g, and g,
are changed proportionally, corresponding to a den-
sity variation p. The ratio of the SF intensities is
I./I,=1.76 and I,/1,=2.06; these ratios are larger
than the ing density ratios squared,
(Pe/py)’ =1.40 and (0y/p,P=1.49. This difference
from the predictions from previous theories of

8:2::?
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FIG. 10. Radislly integrated normalized intensity pro-
files for the SF and injected pulses at z=5.3-cm penetra-
tion depth for three different values for the SF transition
effective gain g,. The on-axis initial area 8, for the inject-
ed pulse is 9, mm. All other parameters are the same as
those for Fig. S(c). The SF transition effective gain is (a)
£,m525.0 ecm=', (b) g, =641.7 am~', and (c) g, =758.3
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FIG. 11. Radially integrated normalized intensity pro-
files for the SF and injected pulses st zm$.3-cm penetra-
tion depth for three different values for the SF transition
effective gain g,. The on-axis initial area §, for the inject-
ed pulse is §, =27. All other parameters are the same as
for Fig. 10.

SF'=? may be due to self-focusing, especially since
the vz~ ies of the effective gaing used in-this caseare —— ———
quite high. However, the ratio of the temporal
widths 7,, FWHAM, are within 15% of the corre-
sponding inverse ratios of the densities; the same is
true for the delay time r, of the SF intensity peak
with respect to the pump intensity peak. These re-
sults compare qualitatively reasonably well with the
mean-field predictions for SF in two-level systems
initially prepared in a state of complete inversion.!

A comparison of the effects upon the injection
pulse of variation in oscillator strengths between the
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FIG. 12. Radially integrated normalized intensity pro-
files for the SF and injected pulses at z=5.3-cm penetra-
tion depth for three different values for the SF transition
effective gain g,. The on-axis initial area 9, for the inject-
ed pulse is 9, =37. All other parameters are the same as

" for Fig. 10.
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FIG. 13. Radially integrated aormrilivad intensity pro-
files for the SF and injected pulses gtzm3$.3-cm penetra-
tion depth for three different values fur the SF transition
effective gain g,. The on-axis initial ssm@, for the inject-
ed palse is §,=4w. All other parametzms ace the same as.
for Fig. 10,

SF and pump transition (variation df g,) as contrast-
ed to effects upon the pump puise-of a density varia-

tion (vmanonofbothg and g, pwoportionally) is
given in Figs. 15 and 16, repecuvdy. It is seen that
the respective effects in the pump-puise reshaping
are quite distinct. The variatiom in oscillator
strengths, Fig. 15, essentially canses “hole burning”
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FIG. 14. Radially integrated normalized intensity pro~
files for the SF and injected pulses at z=5.3-cm penetrs-
tion depth for three different values for the density p of
atoms. The on-axis initisl area 6, for the injected puise is
0, =2w. Except for the effective gaims and Fresael num-
bers, the values for all other parameters are the same as
for Fig. S(c). For each set of curves, the gain values are
®) g,=525.0 cm~', g, =263 cm~"; @ g, =641.7 cm ™",
Z,=321 cm~'; and (d) g, =758.3 cm™, g, =37.9 cm™".
The corresponding Fresnel numbecs are (b) 7, =25992,
F,=4100; (© F,=31724, F,=5010; and (d)
7, m37456, F, =922
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FIG. 15. Radially integrated normalized intensity pro-
files for the SF and injected pulses at z=S5.3-cm penetra-
tion depth for four different values for the SF transition
effective gain g,. The initial on-axis area for the injected
pulse is §, =, and the effective gain for the pump transi-
tioa g,=17.5 cm™"'. Except for the effective gain g,, ail
other parameters are the same as those for Fig. 5(c). The-
SF transition effective gain g, for each set of curves is (a)
2,=291.7 cm~", (b) g, =408.3 cm~!, (c) g, =525.0 cm ™!,
and (d) g, =641.7 cm~.
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FIG. 16. Radiaily integrated normalized intensity pro-
files for the SF and injected pulse at z=35.J-cm penetra-
tion depth for four different values for the density p of
atoms. The on-axis initial area 6, for the injected pulse is
6, =7. Except for the effective gains and Fresnel num-
bers, the values for all other parameters are the same as
for Fig. S(c). For each set of curves, the gain values are
(a) g, =291.7 cm™~!, g, =17.5 cm""; (b) g, =408.3 cn~",
gpy=24.5 cm™'; (c) g, =525.0 cm™}, g, =31.5 cm™"; and
(d) g, =641.7 cm“. g,=38.5 cm~!. The corresponding
Fresnel numbers are (a) 7,=17296, 7,=2278; (b
F,m=24212, 7,=3188; (¢} 7,=3] 130, 7, =4100; and
(dw',-ssou. , = 5010,
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in the following edge of the pump pulse, whereas the
variation in density, Fig. 16, affects the whole pump
pulse. : This contrast has an analogy as an inhomo-
geneous, Fig. 15, as opposed to 2 homogeneous, Fig.
16, effect on the pump pulse. This effect might be
used for the purposes of pulse shaping under suit-
able conditions.

Shown in Fig. 17 is the transverse integrated SF
pulse intensity versus retarded time r (curve 2) to-
gether with the transverse integrated pump-pulse in-
tensity versus 7 (curve 1) for a gain and propagation
depth chosen so that the puises temporally overlap.
Under these conditions the two puises strongly in-
teract with each other via the noalinear medium,
and the two-photon processes (resonant, coherent
Raman—RCR), which transfer populations directly
between levels ¢, and ¢,, make strong contributions
to the mutual pulse development.* The importance
of the RCR in SF dynamical evolution in an optical-
ly pumped three-level system was pointed out for
the first time in Ref. 4. Indeed, the SF pulse evolu-
tion demonstrated here has greater nonlinearity than
SF in a two-level system which has been prepared
initially by an impulse excitation. What is remark-
able is that this is an example where the SF pulse
temporal width 7, is much less than the pump width
7, even though the two pulses temporally overlap,
i.c., the SF process gets started late and terminates
early with respect to the pump time duration
Puises of this type bave been observed® in CO;-
pumped CH,F.

The remaining figures are isometric representa-
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FIG. 17. Radially integrated intensity profiles, in units
of Rabi frequency, for the SF (2) and injected pulse (1) at
s penetration depth of z=5.3 cm. The effective gain for
the pump transition and the SF transition are g, =17
cm~! and g, m641.7 cm™!, respectively. The initial on-
axis area for the injected pulse is 8, mm. All other param-
eters are the same as {or Fig. 2.

tions of pump-pulse and SF pulse copropagation and
interaction via the nonlinear medium. These figures
exhibit details of the dynamic mutual pulse reshap-
ing, self-focusing and defocusing during SF buildup.
The puise intensities as functions of the radial
coordinate p and retarded time r are presented in |
Figs. 18 and 19 for two different penetrations z=4.4 |
cm and z=5.3 cm, respectively, into the high gain . ‘
medium. The injected pulse is initiaily radially and
temporally Gaussian. Both the pump pulse and the
SF pulse are seen to exhibit considerable self-
defocusing with ringing following the main SF peak.
At the larger penetration, Fig. 19, a large postpuise
appears in both the pump and SF pulse propagation.
This is due to energy feedback from the SF to the
pump transition. The postpulses overlap, and so the
two-photon RCR effects are active and quite signifi-
cant in the dynamic evolution and coupling between
the pump and SF pulses. This effect is due entirely
to the coherence in the dynamical evolution of the
system. ‘
Portrayed in Figs. 20 and 21 are isometric repre-
sentations for the radial and temporal dependence of
the copropagating injected and SF pulses for two
different initial shape distributions for the pump
pulse. In the first case, Fig. 20, the initial temporal
distribution of the injected pulse it Gaussian,
whereas the initial radial distribution is character-
ized by the parameter v==3, Eq. (3.8). It is observed
that the injected pulse has undergone considerable
reshaping, due to propagation, to a more Gaussian
radial distribution, and the SF pulse exhibits strong
self-defocusing in the wings of the tail region. In
the second case, Fig. 21, the initial radial distribu-
tion of the injected pulse is Gaussian, whereas the
initial temporal distribution is half-Gaussian, with
the sharp temporal cutoff on the following temporal
half-section of the pulse. The SF pulse rises ex-
tremely sharply, in comparison to the other cases
analyzed, and tapers off with strong seif-defocusing
indicated in the wings of the pulse tail. Pump
pulses of this type are generated using a plasma ;
switch'? and the corresponding SF pulses with steep R
rise have been observed.

IV. CONCLUSIONS

The effects presented here clearly demonstrate the
coherence and deterministic effects on SF pulse evo-
lution of injection pump-pulse characteristics and
conditions in the regime 7, <. It is suggested that
effects of the type discussed here may have in fact
been operative m SF experiments and their results
which were published earlier.*~'" The pump puise
was taken as purely coherent in these caiculations.
To determine whether or not effects of the nature
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FIG. 18. Pulse intensity [ as a function of the radial coordinate o and retarded time 7 at penetration zm4.4 cm. The in-
jected pump pulse is in the upper left, and the SF pulse, which is generated, is in the lower right. The parameters are the

same as for Fig. 3(A). :

reported here are indeed operative in a given experi-
ment, it is crucial to determine the degree of coher-
ence of the pumping process as well as its temporal
duration.* :
Furthermore, and perhaps of greater importance,
we have demonstrated the control and shaping of
the SF pulse which evolves by specification of par-

FIG. 19. Puise intensity [ as a function of the radial coordinate p and retarded time 7 at penetration z=5.3 cm. Thein-
jected pump pulse is in the upper left, and the §F pulse, which is generated, is in the lower right. The parameters are the

same as for Fig. 18,

ticular initial characteristics and coaditions for the
pumping pulse which is injected into the nonlinear
medium to initiate SF emission. These manifesta-
tions and others of the same class we call the control -
of light by light vis a nonlinear medium. This
phenomenon constitutes a method for noalinear in-
formation encoding, or information transfer, from
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FIG. 20. Pulise intensity J as a function of the radial coordinate p and retarded time r at penetration z=5.3 cm. The in-
jected pump pulse is in the upper left, and the SF pulse, which is generated, is in the lower right. The parameters are the
same as for Fig. 14(b) except that the initial on-axis ares for the injected pump pulse is 6, = 3w and the initial radial shape

parameter is v 3 (see text).

the injection pulse initial characteristics to corre- Work is now in progress to incorporate the effects
sponding SF pulse characteristics which evolve due of quantum statistics of the SF spontaneous relaxa-
to propagation and interaction in the nonlinear tion process.® We are in the process of further
medium. determination and analysis of the nonlinear interac-

FIG. 21. Pulse intensity I as a function of the radiaj coordinate p and retarded time r at penetration 2=5.3 cm. Thein-
jected pump pulse is in the upper left, and the SF puise, which is generated, is in the lower right. The parameters are the
same as for Fig. 6(B) except that the initial on-axis area for the injected pulse is 8,2 3, and the initial temporal shape of
the injected pulse is half-Gaussian with the sharp temporal cutoff on the following, i.e., increasing , side of the pumping

e ————




-
- ———

Ch s e e we ¢ s ane
P

Fr b S - pads

P —

N S ahe S s s e o

\o

358 5: F.P. MATTAR AND C. M. BOWDEN 217

tion betwea two copropagating pulses resonantly,
as weil a3 nonresonantly, interacting by a nonlinear
medivm. .
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APPENDIX B

We must choose the initial conditions seif-
consistently. We wish to establish a small, but
nonzero, uniform initial transverse polarization 8 for
the 3«2 transition. For self-consistency, this corre-
sponds to initial population depletion e of the
ground-state population, consistent with (2.13) and

Egs. (2.10).

In terms of initial population numberr ¥y,
Wyp=N;—-N;, (A1)
Wy =N;—N, . : A2

Wechoose .
N\'-l—t » (A3)
€ small and positive and impose the ansatz
Ujy m=p sindsing, , (Ad)
V32 =p sind cosd, , (AS)
and let
p=€, N;/Nj3<<l. N (A6)

The condition (A6) means essentially that V;xe
and N, 0. Equations (Al), (A4), and (AS) under
condition (A6) become

U n ~»ed Si“, » (A7)
V32 €8 cosd, , ' (A3)
Wi € cosd . (A9)
Our uniform initial conditions are just the condi-
tions which led to the linearized mean-field equa-
tions in the small fluorescence signal regime of Ref.
4, Eqs. (4.14c)—(4.14f). Initially, the pump field

amplitude wp =0, and these equations of motion be-
come

Ryym—ia/24rR); , (A10)
Ryy=—2igdlR,, (AlD)
Riz= =2iad!R,, (A12)

Ar=—iaRy—xdr , © (A13)

and Ay is the initial fluorescence field amplitude,
a=g xy), and « is the linear fluorescence field loss.
We let

R:’%Wn.

and initially,
T
L] 4
KAy >> =2 3 (Al9)
The condition (A14) in (A13) gives
A,---";ixn ) A19)

Using (A15) and (A14) to eliminate the field am-
plitude Ay from Egs. (A10)—(A13), we get

1

. az T
Ry "-?K‘Ran ’ (A16)
) 2
R.,a-z—:—x.,x,, , (ALD)
N al
e R,;,,-,.:;-__W, 32 . (A18)
Dividing (A17) by (A16),
dR,; Ry
——— T e e | (A19)
dRy; Ry
Integrating (A 19),
Rh=—3R}, (A20)

where the constant of integration has been set equal
to zero. Thus

R;;--;-R,; ) (A21)

In terms of the real variables defined by (2.11b), and
using (A21), we get

Up=—=2¥y, {A22)
Vy=2Uj, . (A23)
From the initial conditions (A1)—~(A6),

Wi mcosn=—1+2¢ . (A24)
Thus

n=cos~(2e~1), (A25)
and .

U;y =siny sing, =7 sing, , (A26)

V31 =msiny cosé, =7 cosd, . : (A27)
We have, therefore, using (A9),
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Wime , (A28)  since we must choose the phase @, such that
W, sing, =0. We have
-2‘— » .
n 1 (A29} Uy = Siidy , ~ ] (A32)
Un=edsing, =0, F A0y, (A33)
Vi =€b cosd, meb , (A31) with 7 given by (A25) and ¢, chosen arbitrarily.
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e HYSICAL REVIEW A

1ncluded quantum fluctuations’='* or transverse ef-
’ecLs but never both until recently. This article re-
rts simultaneous treatment of hoth of these effcets
p~in the presence of inhomogeneous broadening and
- 'svaluates their significance.
Superﬂuomcence (SF) is the process by which
.soherent emission occurs from an cnsemble of two-
level atoms initially in an inverted state in the ab-
ce of driving external radiation, The emission
gins by incoherent spontaneous emission; only the
“3eometry of the inverted medium leads to dirccted
~.-emission, The quantum initiation process lcads to
-hrge (=~10%) macroscopic {luctuations in the tem-
% +’poral and spaual shapes of the SF pulses emitted by

]
’.
-- Previous simulations of superfluorescence' ~* have
5
N
5

-0 il
. 5

a system of 10 initially inverted atoms.
l Recently, two groups"" have studied theoreti-
% tally the quantum initiaticn of SF, mcludmg propa-
A “gation effects in the plane-wave approximation.
. Quantum effects occur during the very beginning of

2

a0

-—O
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Superfluorcscence emission profiles are computed using one-way coupled Maxwell-Dloch
equations, Transverse effects are included in the full three-spatial-dimension case as well as
in the cylindrical-symmetry case. Initiating quantum Muctuations are approximated by a
random polarization source with a completely random phasc and root-mcan-square tipping
angle of 2/V'N, where N is the number of atoms in each volume element. These Muctua-
) tions reduce the tail of the output obtained with transverse effects alone. In fact, the fluc-
- tuations in output pulsc shapes cncompass the Cs data of Gibbs, Vechen, and Hikspoors,

b
P -~
i The standard deviation for the delay time is found to be (12,5£4)% for Fresnel number of
“_-‘4 X 0.8 compared with the value (104 2)% recently measured by Vrchen and der Weduwe, also
h for Cs. Inhomogeneous-broadening effects are also included in some simulations.
: L INTRODUCTION the pulse cvolution when the problem is still lincar.

During the later nonlinear evolution when the num-
ber of photons in important modes is large, the
dynamlcs can be described a.curately qcmnc'awcal-
ly, i.c, with coupled Maxwell-Bloch- equations.*

The quantsm initiation is then described by a sta-
tistical ensemble of initial conditions for Maxwell-
Bloch solutions. One can adopt for each volume ele-
ment an initial polarization source with random
phasc ¢ and with tipping angle 0y which is a bivari-
ate Gaussian with rms value 2/V'N, where N is the
number of atoms in a given volume element. There
are two experiments that indicate that 8, is about
2/V'N; they show that mjcctcd pulses must have in-
put pulsc arcas largcr than 0 in order to shorten the
SF delay time.!™!'® Uniform piane-wave Maxwell-
Bloch solutions have been caiculated by Haake et al
for hundreds of such statistical initial conditiors.

These y:eld about 12% for the standard deviation
al{rp)/?p in the delay time in good agreement wnh
the expression 2.3/In.V denved by Polder et al.'?

Vrehen and der Weduwe'? have measured (101 2)1%

1427 ©1983 The Amcerican Physical Society
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for Fresnel number F=0.8, (6%£2)% for F=4, and
<4% lor I'=18, where I =ary /AL, r, is the radius
of the initial inversion density at half maximum, L
is the sample length, and A is the SF wavelength.
Note that the planc-wave theoretical value of olry)
is in good agreement with the £=0.8 experimental
value. Towever, the lack of ringing is nol accounted
for. One might hope that this would be so in that a
single-mode plane-wave theory was always justified
by uoting that 2~ has enough diffraction luss to
favor single-mode emission without introducing ex-
cessive losses. This article contains the first?*?! cal-
culations of SF in which both quantum initiation
and transverse cffects are included; we [ind satisfuc-
tory agreement with experiment. Inclusion of inho-
mogeneous broadening fusther improves the agree-
ment.

An carlier paper'® presented a study of trunsverse
effeets in superfluorescence in the absence of statis-
tics. Ia those simulations, a one-way-propagaling
small-area pulse irradiated a population-inverted
meditn under conditions of cylindrical symmetry.
Within those simplifying assumptions, propagation
and cylindrical transverse effects were fully taken
into account. It was found that transverse effects
couple together atoms in various parts of the beam,
so that they tend to emit at the same lime and,
hence, largely remaove the strong ringing® so prom-
inent in the plane-wave simulations. In fact, rather
good agreement was found with the Cs data® by
using simulation densities somewhat higher than the
measured ones. Also the simulated pulses trailed off
more slowly than the observed ones. Finally, the
simulations  predicted large ringing for a small
detector placed in the center of the Fresnef-number-
1 ("=1) SI output. The primary objective of this
paper is to show how the various refinements of the
propagation model lead tq an increesingly accurate
description of the observed SE pulse shapes, delays,
jittering, and fluctuations.

1I. APPROXIMATIONS
AND NUMERICAL TECHNIQUES

The basic assumptions of these calculations are
one-way propagation and initiation by a polarization
randomized in a particular way. Previous studies®**
indicate that interference effects between forward-
and backward-evolving SF pulses are quite insignifi-
cant for the small tipping angles 6y ( <10~* rad)
usually encountered in experiments. At large 6,
(~10"" rad), the interference can reduce the tail by
several percent.

To reduce the computer costs, the first calcula-
tions described a geometry with cylindrical symme-
try (one transverse dimension). Subtequent calcula-

tions have been cxiended to the more complex case
where azimuthal symmetry is absent and two trans.
verse dimensions are required. The latter model is
needed to describe short-scale-length phase and am-
plitude Muctuations  which  result in - multiple.
transverse-mode initiation and lead to multidirec:
tional output with hot spots. This ¢fTect is only im-
portant in samples with Fresnel numbers of order
unity or larger, since diffraction singles out @
smooth phase front in small-F samples.

The polarization is assumed to be random in
phase relative to the coherent emission which even-
ually cvolves. The probability P(w,v) that the
transverse polarization has components @ and v is @
Gaussian distribution

Plu,v)du du= —'3; expl —(u+0)/8%dudu, (1]
k1L

where
b= <> 1=2/VN, (2

fur the quantum initiation to be properly represent
ed B Ihe angulur brackets denote an ensembl(
average. Equation (2) is casily checked using

W ut=1 o wi~sin’0~0* (3

for small 0 as assuwined here; then
| . 1

PUEYAO e~ g (o

The probability that 0% is less than 83 is

8 —el/8
£, Pioaoi=1 "%, t

so that Eq. (5) cun be set equal to 1 =R, where R is {
random number between 0 and 1. This leads 10

n
2

|
W

P q

When the population-inverted medium is divid
into smaller volume clements, .V in Eq.(6) is replac
by the number of atoms in cach volume element, i.ef
i

1

[
i -2 aL
90 ‘WV—‘ lln R
is the initial tipping angle for the ith volume el¢
ment containing N; atoms. The smaller the volu
element the larger the initial tipping angle and th
fluctuations for that clement, but also the small
their effect.
The random numbers used in Eq. (7) and in rag
domizing ¢ between 0 and 27 are obtained from
table of random numbers. The starting address
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the table is changed at the beginning of each run.
The equations of motion are

3% . gt o 47

Y —i(4FL)-'Vi % = i 2, (8a)
a2 P

—+—T2 E—ﬁ ng, (8b)
N n—n* P

—_— e = R Rc
or + T; Re fi ! fAe)

where & and 2 are the slowly varying complex am-
plitudes of the electric ficld and polarization, respec-
tively; n is the inversion density and can initially
sustain transverse varialions, and n°¢ its equilibrium
value; 7=t —2/c is the retarded time; u is the tran-
sition dipole moment matrix clement; and T, and
T, are the population-rclaxation and polarization-
dephasing times. Diffraction is taken into account
by the Laplacian term

V& =(1/p)d 1p)pd 4 /2p,
or

(328 /38*+31% /3L2),
where

p=r/ry, §=x/r,, and =y /r,.

The boundary conditions are V-4 =0 (where 4
is the electric field) on the axis (r =0 or x =:py -:0)
and at r=e (or x =y = ). Lqualions (8) are nu-
merically integrated with % =jungsinfhexplish) and
n mngcosdh; 0 is defincd by Eq. (7) and $h is uni-
formly randomly distributee between 0 and 27, For
computational efficiency, the temporal and radial
grids are adaptive nonlinecar, i.c., nonlincar with
parameters determincd by the computer noting the
evolution of the pulse.2®

Qs
2 ot
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0 ) 10 L 20 24
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FIG. 1. Intensity as a function of time for the average
of 14 output pulses in the plane-wave case with quantum
fluctnations  such  that (047 1.6 - 10 4 e amd
n)=11.8%10Mcm- .

(a) L/\(b) te)
L s P L_ _A._:\‘
L I L R 4 ] n s k] DO n s

n Y

I{p.12dp

(s) [N

’ Eiet .

LY [T T4/ n 4 [
t{ns)

FIG. 2. Intensity integrated over the transverse
cylindrical coordinate as a function of time for single tra-
jectories. {a) Cs data for n3=1.6% 10" ¢ =3, (b) Simula-
tion with transverse effects, but no fluctuations:
n=18.2x 10" cm=?, B,=1.37x 104 rad, and Fresnel
number F =1. (c)=(f) Simulalions with transverse effects
and  fuctuations for  nAl=18.210" cm~', (M)
= 1.37 x10"* rad, and I =1,

/
N
5-/
=1
—

The simulation parameters (except as noted) were
essentinlly those of the Cs single-puibse experiment,”!
namely, A=2.931pum, L=2 cm, Ty=70ns,7,
=80 ns,rp =871y /3nPALL, 1o=551ns, ~nd=1.8
x 10" ¢cm~%, and F=1, The initial gain profile is
Gaussian, i.c., na{r)=ngexp] —(7/7,)%n2], so the
spatial width is narrower for smaller F, but the peak
gain remains the same.

11, SIMULATION RESULTS

A. SF pulse shapes

Figure | is a summation of 14 output pulses in
the planc-wave case with quantum lNuctuations.
The ringing is still very pronounced so quantum

1{ns)

FIG. 3. Elfect of fluctuations on the average pulse
shape. Average over 17 trajectories with fluctuations
(sclid curve) has a slightly shorter delay and a smaller tail
than the dashed curve with no fluctuations and a uniform
Nn  Here, g IR210M cm (0 13710 !
rad, and /'~ 0.32,
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the table is changed at the beginning of each run.
The equations of motion are

.ag . -l _4fr2 ’
=iV R = S5 2, (82)
32 2 _u

3 + oA n%, (8b)
an  n—nt_ . 2T

ar‘" T, =—Re A ' (Be)

where & and 2 are the slowly varying complex am-
plitudes of the electric field and polarization, respec-
tively; n is the inversion density and can initially

"sustain transverse variations, and 2° its cquilibrium
.value; 7=t —2/c is the retarded time; u is the tran-
" sition dipole moment matrix element; and T, and
- Ty are the population-relaxation and polarization.

dephasing times. Diflraction is taken into account
by the Laplacian term

VEE =(1/p)d/0p)pd % /dp,
or .
(3*® /3824827 738D,

where

p=r/ry, §=x/ry, and {=y/r,.

The boundary conditions are V% =0 (where #
is the clectric field) an the axis (r =0 ar x =p =0)
and at r=o (or x =p =ea). Lquations (8) arc nu-

" merically integrated with 2 =jin,sinfhexplidh) and

n =ngcosdh; 0f is defined by Fq. (1) and Ah is uni-
formly randomly distributed hetween 0 and 2w, For
computational efficiency, the temporal and radial
grids are adaptive nonlinear, i.e., nonlinear with
parameters determined by the computer noting the
evolution of the pulse.?t

OIS
g ot
1 2]
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0 [ 10 18 20 2%
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FIG. 1. Intensity as a function of time for the average
of 14 output pulses in the plane-wave case with quantum
fluctuations such that {03)'/2=).69x 10~ rad and
nm11,8%10 em=*,
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F1G. 2. Intensity integrated over the transverse

cylindrical coordinate as a function of time for single tra-
jectories. (a) Cs data for n~7.6X 10" em =3, (b) Simula-
tion with transverse effects; but no fluctuations:
n3=18.2x10"° em=3, 6p=1.37X 10~* rad, and Fresnel
number F =1. (c)=(f) Simulations with transverse effects
and fluctuations for n8=18.2x10" cm=?(03)'?
= 1.37 X 10"*rad, and /' =1.

The simulation parameters {except as noted) were
essentially thase of the Cs single-pulse experiment,?
namely, A=2.931pm, L =2 cm, T',=70ns,T,
=80 ns,rp =8mre/3nIAL, 7p=551ns, nd=1.8
x 10" em=3, and F=1. The initial gain profile is
Gaussian, i.c., nlr)=ndexp{—~(r/r,)*In2], so the
spatial width is narrower for smalier £, but the peak
gain remains the same.

111, SIMULATION RESULTS

A. SF pulse shapes

Figure | is a summation of 14 output pulses in
the planc-wave casc with quantum fluctuations.
The ringing is still very pronounced so gquantum

1 +
H
4 H
- ;
T |
. | :
A 3 .
P '
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h
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:' e
° L L o T
) 10 20 1) a0
ring)

FIG. ). Effect of fluctuations on the average pulse
shape. Average over 17 trajectories with fluctuations
{solid curve) has a slightly shorter delay and a smaller tait
than the cashed curve with no fluctuations and a uniform
0y Here, n}m18,2x10" em=%{(63)'?=1.3710-*
rad, and F=0.32.
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FIG, 4. ‘Transverse encrgy cucrent J and intensity are
plotied isometrically for four shots in a statistica} ensem-
ble. In some of the shots the phase curvature is such that
the associated energy flux flows inwardly; i.e., the trans-
verse energy current is acgative, which could lead to self-
focusing. Inward energy flow never occurred for simula-
tions using a homogencous initial tipping angle (without
quantum initiation) for any value of the Fresne! number.
Here, nd=9.5x10%cm=3, F=1.49, and 10Y})'?
=2.15, 1.63, 1.79, and 1.16 rud, respectively, from top to
bottom. Note the fluctuations in peak maximum and its
associated delay in the output integrated over p (last
column).

e‘
2
3.
&

fluctuations alone do not remove it.!* Figure 2(b) il-
lustrates the fact that, for F =1, transverse effects
alone do largely remove ringing.'®  Figures 2(c)
through 2(1) show that transverse effects and quan-
tum fluctuations together result in fluctuating out-
put pulses with very little ringing that cncompass
the published Cs pulse shapes {one is shown in Fig.
2(a)). Figure 3 iilustrates that on the average (17
runs) the tail of the pulse is lower with fluctuations
than without.

Figure 4 displays isometric plots of the ST inten-
sity and its associated fluency (Jr=| & | 234 /3p),
where O is the phase of the electric field as a func-
tion of p and 7 for four elements of the statistical
ensemble. One finds that the transverse energy
current Jr occasionally flows inwardly causing hot
spots in the output beam as was sometimes observed
in the Cs experiments. The previous transverse cal-
culations'® involving a uniform tipping angle never
displayed inward transverse energy flow. Figure 4

FIG. 5. Histogram showing the number of occurrences
of u particular delay time. Points do not occur at integral
values of 7p because of the nonlinear time mesh. (a)
Planc-wave case for nJ=11.8x10" cm=? and (63)'7?
=1.69<10"* rud. (L) and (¢} Cylindrical-symmetric
transverse case for nd=18.2X 10" cm =3, and (03!
=137 X10~*rad. (b) F=1. (c) F=%"', Each arrow
denotes ¥p.

L
=
r. 5
b
o 1 1 |

o 05 1.0 LS

FRESNEL NUMBER

FIG. 6. Fresnel-number dependence of the uncertainty
in delay time normalized to the average delay. Points are
as follows: ®, seven trajectaries with nd=9.5x 10 cm~?
and (63)'?=1.89%10* rad; O, n=18% 10 cm~’ and
(6§)'2=1.37x10~* rad, for 13 trajectories for Fm=1,
und for 16 trajectories for #=#""; &, experimental value
for 468 trajectories. A peak close to Fwm| can be argued
as follows: For small F, strong diffractive coupling
reduces fluctuations in the overall output. For large F, so
many transverse modes compete that a good average is
obtained on every shot. For F=1, competition of a few
modes is maximal, resulting in large fluctuations. Mean-
ingful calculations for large F require an increasing num-
ber of transverse steps, and so we avoid the large-F re-
gion,

Ale oh‘*‘

N

e




ORI

STTa W WS

Y

LN s 4
[}

lv.'.v* Tvv b fag .. " r' .
e

..v
v

o,

L.

.
LI S

o e

[ TR I

PSP VA TR e PP .

also shows the radially integrated output SF intensi-
ty as a function of r for the four shots of the sta-
tistical ensemble.

B. Delay-time fluctuations

Figure 5(a) is a histogram showing the [luctua-
tions in delay time rp (r at pulse peak) when quan.
tum fluctuations are included in the planc-wave ap-
proximation. These 57 runs yield

N 11
z(f‘p—?p)z/N
colrp) _ {i=t | i 1
L7 = “Fp TVN-=-I
={9.9+1.3)%

compared with 129 from the formula 2.3/InN de-
rived by Polder et al.'® and from numerical simula.
tions of a larger number of trajectorics.!® Figures
5(b) and 5(c) are similar histograms for cylindrical-
symmetry transverse simulations for F=1 and
=1, respectively;

olrp,F=1)/?p=(13.0£3.6)%

* for 13 trajectories and (7.2+1.8)9% for F=7"and
16 trajectories. Figure 6 summarizes the Fresnel-
number dependence over the range F=0.1-—1.5,

The curve is drawn through the points Lo guide the
eye. Because the same starting point was used in the
same random-number table for the five closed circle
points, the Fresnel number dependence of o(rp)/7p

f.fl.(-.y.nc-:'ﬁ.
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FI1G. 7. Phase waves. Fllctuations can result in the
second peak cxceeding the first. #8=9.5x10"cm=’, (a)
F=1.49, (0})'"=121%10"* rad; () F=ld9,
(63)2=1.24X10~* rad; (¢) F=0.165, (6})'/2=2.22
% 10~4 sad; (d) F =0.165, {03)'2=1.79% 10=* rad.

is probably determined much better than the error
bars would suggest. The curve yields (12+4)% for
F=0.8 compared with (10+2)% reported by Vrchen
and der Weduwe for Cs.!” Drummond and Eberly
have morc extensive calculations of ofrp) ~for
F=1-162"

Figure 7 illustrates a difficulty encountered in cal-
culating o(rp). Occasionally, the first “peak” is not
the highest peak. If onc uses the second peak for
determining rp for just one trajectory in a set of 10,
the value of a(r,) is dominated by that onc trajecto-
ry. Conscquently, in Fig. 6, 7p is measured to the
first peak even if it is only an inflection on the lead-

NORMALIZED IN"IGRATED OUTPUT

A ry

30 40

0
r{ns)

F1G. 8. Effect of Cartesian vs cylindrical geometry for the sum over shots of the transversely integrated intensity lor
quantum-fluctustion calculations. Curve a holds for /*= 1,37 for a Cartesian geometry. F=0.11 for both curves b and ¢;
curve b involves cylindrical geometry while curve ¢ is Cartesian (parallelepiped). Note that the delay with F=1.37 (curve

" 8) is shorter than the delay with F=0.11 (curve ¢), just as it was for cylindrical geometry and no fluctuations (Ref. 16):

Strong diffraction increases the delay because of encrgy lost transversely, but the tail is greatly reduced hecause the diffrac-
tion makes the sample superfluoresce as a unit. Curves a'—c’ show the same curves normalized for pulse-shape compar-
isons. n}=18,210" cm ~* and (63)'/2 is about 1.56 X 10~* rad.
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F1G. 9. Transverse fygetuations for o full three-
spatial-dimension calculation with quantum initiation. (a)
Field energy is displayed isqgetrically at a time near the
peak of the pulse [sce arrow, Fig. 9(b)). In (b) the trans-
versely integrated energy is displayed. (c) Comparison of
seven output energy profiles. Fw=1.37,
nd=18.2X10 cm ~3, and (63)'?=1.56X10~*  rad.
Actually (a) and (b) were calculated for L=1.86 cm and
{c) for L=2 cm.

ing edge of the pulse as in Fig. 7(d). Trajectories as
unusual as those of Fig. 7 occurred perhaps once in
every 20 to 30 trajectories, and they can be interpret-
ed as phase waves discussed by Hopf."
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INTENSITY

FIG. 10. Effects of inhomogencous broadening in the
uniform plane-wave case with homogeneous initial tipping
angle. a: Ti=w. band c: T;=32 ns in the formulas
(for b) g(Aw)=(T; /mlexp| — [ T3(Aw)/V'7)?] and (for c)
glAw)=(T3 /) 1 +[T3(Aw)/V TR} =" corresponding
closely to the value in the Cs experiment. Notice that in-
cluding 7'7 damps the field energy amplitude and reduces
the tail. Delay is also affected slightly.
n9=9.5£10% cn ? and 0y=1.39 < 10* rad.

C. Full three-dimensional quaatum
Nuctuutions—Carlesian geometry

* The cylindrical symmetry was removed to allow
fluctuations in all three spatial dimensions. This
permits treatment of the large-Fresnel-number case
in which therc may be competition between trans-
verse modes not possessing cylindrical symmetry.
This additional degree of freedom has little effect on
pulse shapes integrated over transverse dimensions
(Fig. 8), but it clucidates fluctuations in SF angular
distributions (Fig. 9). For small Fresnel number the
diffraction term strongly couples the various parts
of the beam, and so the beam behaves as a unit. On
the other hand, the output for lurge Fresnel number

IOr
>
3
&
u
z
0O 10 20 30 40 %0 60
rins}
FIG. 11. Removal of ringing by inhomogsneous

broadening. Parameters: Same as Fig. 10 with T;=0.67
ns.
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FIG. 12. Transverse effects and inhomogeneous
broadening., Parameters: Same as Fig. 10 except that
" transverse effects (Fm0.27) sre now considered. Includ-
*ing T3 in the Cs simulation is seen to be a small refine-

ment which does suppress the tall slightly. (a) Relative in- °

tegrated outputs, (b} Normalized integrated outputs with
peaks shifted to coincide with cach other to simplify
ptlse-shape comparisons.

is completely irregular and highly asymmetrical [sce
- Fig. 9(a) for the energy isometric near the peak of
- the output pulse]. This is owing to the loose cou-
pling between the various portions of the beam as
well as the short-scale Muctuations. Nevertheless,
~ Fig. 9(b) shows that the (transversely) integrated
. output signals remain smooth, as observed: by the
detector in the experiment. Figure 9(c) compares
seven different outputs showing quantum fluctua-
tions in the full three-dimensional Cartesian case.

D. Inhomogeneous broadening

Fluctuations in the medium initiation and inho-
mogeneous?’ broadening in the plane-wave limit

' QUANTUM FLUCTUATIONS AND TRANSYERSE EFFECTSIN... 1433

have been calculated by Haake, Haus, King,
Schrider, and Glauber.'"* Their results show that
simulations, including both inhomogeneous broaden-
ing (T'3) and fluctuations but ignoring transverse ef-
fects, do not explain the absence of ringing in the Cs
data. Without (luctuations or transverse cffects,
Fig. 10 shows that T3~32 ns as in the Cs data has
little effect on the ringing. Elimination of ringing is
shown in Fig. 11 using a T, almost as short as 75r.
Figure 12 shows that adding T';=32 ns to the previ-
ous simulations including fluctuations and trans-
verse effects changes the pulse shapes very little.

IV. CONCLUSIONS

The addition of quantum fluctuations in the ini-
tial conditions of SF calculations does not greatly
alter the general shape of thd total output pulse in-
tegrated over the transverse dimension. It does re-
sult in noticcable macroscopic pulse-shape fluctua-
tions similar to those observed. Although fluctua-
tions prevent prediction of a single-shot pulse shape,
by examining many single-shot calculations one
finds that fluctuations reduce the on-axis ringing
and the tail, on the average, improving the agree-
ment with existing Cs data. The standard deviation
in delay time is consistent with the measured value,
but the uncertainties in both the simulations and ex-
petiments are large. The existing Cs data arc cn-
compassed by the changes in oulput pulse shapes
calculated including both fluctuations and trans-
verse effects. The plane-wave predictions fail for all
Fresnel numbers, large or small, so the strong ring-
ing computed?? for small-area pulse propagation in
an inverted medium is not expected in superfluores-
cence,
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9 problem; (iii) construct a two-laser three-level code to study light control

;! by light effect; (iv) construction of a data base that (a) would manage the
production of different types of laser calculations: cylindrical, cylindrical

with atomic frequency broadening, cartesian geometry; all of the above with
quantum mechanical initiation), (b) allow parametric comparison within the
same type of calculations, by establishing a unifying protocol of software
storage, of the various refinements of the model could be contrasted among
themselves and with experiment; (v) construct an algorithm for counterbeam
transient studies for optical bistability and optical oscillator studies.

II. Physics

A. Transverse effects were shown to be inherent to the problem of
superfluorescence. By refining the propagational model advocated by Feld,
we were able to simulate correctly Gibbs, et al's Cs data for the first time.
The mean field approach was shown not to directly relevant to the Cs data.
The interplay of quantum fluctuations and transverse dynamic effects lead to
Fresnel variation of the time delay statistic in conformity with experiments.
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B. The previously studied as totally independent effects super-
radiance and swept-gain superradiance were shown to be strongly related to
and to evolve assymptotically from the first one to the second one. Output
energy stabilization was obtained by balancing the gain (from the inverted
medium) with the dynamic diffraction loss (from the finiteness of the beam).

C. The Study of three-level systems exhibited that injected coherent-
pump initial characteristic (such as on-~axis area, temporal and radial width
and shape) injected at one frequency can have significant deterministic ef-
fects on the evolution of the superfluorescence at another frequency and its
pulse delay time, peak intensity, temporal width and shape. The importance
of Resonant Coherent Roman processes was clearly demonstrated in an
example where the evolving superfluorescence pulse temporal width t_ is
much less than the reshaped coherent pump width t_ eventhough the® two
pulses temporarily overlap (i.e., the superfluoresceRce process gets started
late and terminates early with respect to the pump time duration). The
results of the three-level calculations are in quantitative agreement with
observations in CO, pumped CH3F.
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