D-A127 496 INTERACTIVE RUTOMATED SYSTEM FOR: NORMALIZATION OF
RELRTIONS(U) AIR FORCE INST OF TECH WRIGHT- PRTTERSON
AFB_OH SCHOOL OF ENGINEERING C T TRAVIS 18 NRR
UNCLASSIFIED AFIT/GCS/EE/83M-4

=
-

N

Sala el e el s a

PRSP e

CH Uy

tomy

At adad ok o lesd sl o PR

Ao,

—— . —p g -y AR Bhaae S dn-il - Rl B BT N A T e T -
L j2s |||2.5
1.0 w h= Iz
me— [3.2
= o k2 |||||22
— u I3,b -=E
m
[T “mZO
|||| _I I =
. bl
= 1.8
——
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

. .‘
LN NS IR |

RIS i ety s 2

AdAdrararat 5~ IITIIILIRNLY
-

™ araen
« .
TR TR ¥ 3.

b o rea etk g LN o
L e

pp—p— L 20 G000 FE SN B i
M A NEAEAER A D
P D P N S
L e Pt
L . o ettt

. N

~1

INTERACTIVE AUTOMATED SYSTEM

N for NORMALIZATION of RELATIONS
THESIS

AFIT/GCS/EE/83M-4 Charles T. Travis
Capt USAF

f'b.' .
X DTIC
(&5 ELECTE
f : APR 2 8 1383
(.
.5 DEPARTMENT OF THE AIR FORCE E
AIR UNIVERSITY (ATC) P
= AIR FORCE INSTITUTE OF TECHNOLOGY
Wright-Patterson Air Force Base Ohio
mm‘nthhw \ . o
fox tolmtmg ‘ B] ¢
shn i mesee,| 83 04 28 Y

— e

AFIT/GCS/EE/83M-4

INTERACTIVE AUTOMAT.D SYSTEM

|
\
for NORMALIZATION of RELAinNS ‘

_ THESIS
™
- AFIT/GCS/EE/83M-4 Charles T. Travis
- Capt USAF
f; Approved for public release; distribution unlimited
g

Dol ol et b e o A oA o de e atefeSeanwnad

AFIT/GCS/EE/83M-4

a
-

INTERACTIVE AUTOMATED SYSTEM
for NORMALIZATION of RELATIONS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
ey Air University (ATC)

In Partial Fulfillment of the

Requirements for the Degree of | Accession For

NTIS GRA&T
Master of Science DTIC TAB
Unanneunced O
Justification — |

By.

| Distribution/

Availability Codes

Avail and/or
Dist Special

by L_A

Charles T. Travis —
Capt USAF

Graduate Information Systems

18 March 1983

PUAE . a PRI DD I DL YN S P S . . PPN S S e B B PR S L) PO U S A &

Ol s GEREAS R
s e

WWTVTY, VXY,

S e

b o b AR N AE Db S oy

- .

T

PREFACE

This work presents a user friendly system to define
functional dependencies of relations in a relational data-
base and the design and psuedo language coding of the
normalization technique to reduce unnormalized relations
to Third Normal Form. I feel that with the progress made
on this project, the remainder of the implementation can
be accomplished either as another thesis effort or as a
special study project.

I would like to express my deepest appreciation to
Dr. Thomas C. Hartrum, who as my thesis advisor gave me
guidance and encouragement. Thanks is also extended to
Dr. Henry Potoczny and Major Charles Lillie, who as my
thesis readers provided constructive comments to improve
the content and clarity of this thesis.

Finally, I wish to thank my wife Sheila and my
children Joshua, Dawn, and Reese. They endured endless
hours of complaining and sepafation; however, their
patience, understanding, and selfless cooperation

enabled me to to complete this graduate program.

ii

R A G ‘:< R

AR R FTFIY Y N W R
: o p L e

PREFACE

LA A A A R A N 3

CONTENTS

LIST OF FIGURES e e e ¢ e o o o &

ABSTRACT

I. INTRODUCTION e e s e e o o o

BACKGROUND . . « . . + « .« . .
STATEMENT OF PROBLEM
SCOPE .« ¢ o ¢ ¢ o o o o o o« &
APPROACH
SEQUENCE OF PRESENTATION . . .

II. BACKGROUND . . ¢ & o ¢ & o « « &

SYSTEM CONSIDERATIONS

MACHINE . . . « o & & & o
OPERATING SYSTEM

ROTH SYSTEM BACKGROUND
(?‘ SIX NORMAL FORMS

RELATIONAL DATABASE CONCEPTS
KEYS . ¢ ¢ ¢« ¢ ¢« o « o o o &
FIRST NORMAL FORM
SECOND NORMAL FORM
THIRD NORMAL FORM
BOYCE/CODD NORMAL FORM . . .
FOURTH NORMAL FORM
FIFTH NORMAL FORM
SUMMARY "+« « « .

III. SYSTEM REQUIREMENTS

USER REQUIREMENTS
ASSUMPTIONS « « « .

Iv. TOP

LEVEL DESIGN

INTRODUCTION . . ¢ . ¢ « « o &
SYSTEMS INTERACTION
HIGH LEVEL DATA FLOW
ROTH SYSTEM MODIFICATIONS . .
CONCLUSIONS . . ¢« . « « « o &

iii

ii

vi

XTI T, - SR

~J

28
28

30

30
31
35
39
39

Mg At Juun gt Bt el A e et .

V. FUNCTIONAL DEPENDENCY MODULE« + . . 41

INTRODUCTION . . « o o o o « ¢ 2 o o o o o o o 41
FD MODULE DESIGN . . . ¢ ¢ ¢« ¢ ¢ o ¢ ¢ o o o o« 41
"USER FRIENDLY" DESIGN CONSIDERATIONS 44
FD MODULE IMPLEMENTATION . . . &+ ¢ ¢« &« « o o & 49
SUMMARY . ¢ ¢ ¢ ¢ o o o o s o o o o o o o o o 52

VI. NORMALIZE MODULE . . . ¢ & o« o o o o o o o o o = 53

INTRODUCTION

MINIMAL SETS . & ¢ ©v ¢ o o o o o « o o o 028 @ 53

DESIGN . ¢ o ¢ 4o ¢ 4 o o o o o o o o o & .« . 54

NORMALIZE IMPLEMENTATION « <« o 63

Module HIGH _LOW « ¢ « & o &« « &« « « & 64

Module BREAKOUT . . . & & ¢ o« o o & o o s o 64

o Module RMOVE SUBS . . ¢ ¢ « o« o ¢ o o o o o 64
- Module RMOVE TRANS «. . « « « « « . . 65
- Module REGROUP . . . « ©¢ « o « o o o « s o 67
b Module NEW REL . . . « « ¢« o ¢ ¢ « o o o + & 68
- SUMMARY . . ¢ « « o o o o o o o o o 2 o o o o &« 68
F? VII. CONCLUSIONS &+ &« o« ¢ o« o« o o 2 o a o = o s o o o = 69

= BIBLIOGRAPHY . + « o« « « o o « + o o « o « « « o o« « « 13

APPENDIX A: User's Guide . ¢« ¢« o« ¢ o o ¢ a o o s o a =« 74
APPENDIX B: Article . v « o o o o o o o o o« o o« v o . 81

APPENDIX C: Program Design Language Code for
NORMALIZE Submodules « « . . 99

o
}.:.'.'
g
b
-
.
=
i
p—
»
F
=
%
. -
p
".-
=)

*
P
4

iv

L'._ Py S Sy S S S AP [P LI D i U Y G VU S A W VP WNIL TN Wb RPN P

..............

Figure

1.

10. s

12.

LIST of FIGURES

Relation FIRST . . . « « « .

Relation and FDs of SECOND and

Relations and FDs of SC and CS

Relation CTX e v e e e e .
Relations CT and ¢CX
Join of Three Projections .
Top Level Data Flow

Top Level Structure Chart .

Sample Screen Display of Attributes

tructure Chart of Module FD
Data Flow for NORMALIZE . .

Structure Chart for NORMALIZE

PRI SUUI DY YU SOET S WP SOy A ot

SP

Page
3,16
17
20
22
24
27
36
37
42
50
55

56

N IR P S P SR Ir NP

ABSTRACT

An interactive Automated System for Normalizing
Relations was designed and partially implemented with the
goal of interacting it with a Relational Database Manage-
ment System. In addition, this system was to serve as a
pedagogical tool for teaching the benefits of normaliza-
tion for relational database management.

Toward these goals, an extensive literature search

and analysis of the six normal forms and other pertinent

areas of relation normalization was required in order to
identify current issues and areas of research. A main

i- (‘ concern was overcome by attempting to locate an algorithm
- o to normalize relations. Most authors present a cursory

guide to normalization if any at all, but Jeffrey Ullman

r- presents the concept of "minimal set." 1If a minimal set
!. is deduced from an unnormalizgd relation the resultant

: relations that are formed are in Third Normal Form.

i‘ Research was also accompiished in the area of

"user friendly" interactive methods. This was needed be-
cause the requirement existed for this system to guery

gi the user for functional dependencies in order that relations

could later be normalized.

;:‘ vi

P IR S) P P S S D i SO S . LIPS GNP L AP UE R | [P Y Aol onn ey L. PR S S S T

v
o b
vros

1

st

T

"‘.TYYV....}A

T

[P S -

...... A et 20l Shadit i Mndh Jiad Sl bl Math il A0l o

INTERACTIVE AUTOMATED SYSTEM

for NORMALIZATION of RELATIONS

I. INTRODUCTION

BACKGROUND

Data base technology has been described as "one of
the most rapidly growing areas of computer and information
science™ (Ref 1:63). As a field, it is still relatively
young; manufacturers did not begin to offer data base
management products untill well into the 1960's. A data
base management system (DBMS) can be thought of as a system
comprised of a collection of data and a set of application
programs which are designed to manipulate the data. An
important concept of a database is that the data must be
stored in the computer on direct-access devices (such as
disks) in order for the computer's central processing unit
to be able to utilize the data's cross-references within
a reasonable amount of time., 1In the mid 1970's a different
type of data base appeared on the scene. Its name,
relational data base, implied that certain data could be
viewed as a relation to other data. These relations are
described in a two dimensional table consisting of
horizontal rows and vertical columns.

In the Digital Engineering Laboratory (DEL) at the
Air Force Institute of Technology (AFIT), the need and
desire existed for a relational DBMS system, to be used as

a pedagogical tool for instructing students in the design,

P WA T e W e TR TT e R mRE T T e

- —

&
s
&

R oTrnes

manipulation, and use of database systems. In 1979, 2LT
Mark Roth designed and partially implemented a system
(Ref 5) which has served as a starting point for the
continued development of the AFIT Relational Database
System. In addition to the work completed by Roth, 2LT
Linda M. Rodgers (Ref 6) continued the implementation of
the system in 1982, An additional desire from the DEL was
the design and implementation of a stand-alone system to
query the Database Administrator (DBA) for functional
dependencies of existing unnormalized relations and the
subsequent normalization of said relations, This thesis
effort is the result of that desire,

Relations in a relational database can be depicted as
a two dimensional table consisting of horizontal rows and
vertical columns. For example, the relation FIRST, Figure
l, is depicted by a table with 12 rows (tuples) and 5
columns (attributes). This thesis will use the terms "row"
and "tuple" interchangably, as well as the terms "column"”
and "attribute". Each tuple refers to a separate entity,
while each column has values that were obtained from the
domain of each attribute. In the case of "SNUM", it's
domain would contain "sl", "s2", "S3", and "S4". The
domain of the attribute "CITY" would contain "LOMDON" and
"PARIS". So, each attribute has a distinct domain or value
set from which its values are drawn.

The relation FIRST has some inherent problems within

its structure. The pre” minant problem is redundancy. The

G
x

Eoe A e i-:“"

aae TR S0 2
-— -

Y

.-

CIEEE e S ZSufe - Sy SR e T e it Ar SRt e

same values for STATUS and CITY exist for all like values
of SNUM, For instance, with a SNUM of S1, STATUS is always
"20" and CITY is always "LONDON". This redundancy of data
is expensive in terms of the additional storage required to
hold repetitous data and in terms of the number of updates
required if a supplier might move from one city to another,
Regarding updates, the relation FIRST would have to be
searched to find every tuple with the particular supplier
number in gquestion and then the CITY value would have to
changed to reflect the new location, This would be

costly, as well as cumbersome.

SNUM STATUS CITY PNUM QTY
Sl 20 London Pl 300
Sl 20 London P2 200
S1 20 London P3 400
Sl 20 London P4 200
Sl 20 London PS5 100
sl 20 London pPé 100
S2 10 Paris Pl 300
s2 10 Paris P2 400
Ss3 10 Paris P2 200
S4 20 London P2 200
S4 20 London P4 300
S4 20 London P5 400

FIRST

Figure 1. Sample of Relation FIRST

L._-_A_-kq-___-_‘¢;,-_-4x_v.‘.-ﬁ_x LA O S EE SPL S a A PP oot ——— JROUEO USROS TSP

Ty

s

W

At this point the term functional dependency (FD)

becomes significant. Functional dependency is described as

T
(

2 follows: " given a relation R, attribute Y of R is

A .'.‘.'

o

functionally dependent on attribute X of R, if and only if,
each X-value in R has associated with it precisely one Y-
value in relation R {(at any one time)" (Ref 2:240).
Functional dependencies might be thought of as a special

type of integrity constraint, This means each value of the

rrrﬂi’-"‘~
P

attribute X in relation R will functionally determine one
and only one value for attribute Y in relation R.

With the definition of FD in mind, the main thrust

)
'

of this thesis comes to mind, that is, normal forms and the

.

normalization of relations. There have been described six

(t‘ normal forms. They are First (1NF), Second (2NF), Third
(3NF), Boyce-Codd (BCNF), Forth (4NF), and Fifth (5NF)
normal form. The first three forms are stepping stones to

BCNF and beyond. The "normalization process" reduces

&t relations to the successive six normal forms, if the

}i relation is not already optimal. Using the predefined

b! FDs, this normalization process produces a collection of

@ new relations that are equivalent to the original relation,
i out from a data base point of view, more desireable. They
E‘ are more desireable due to the elimination of redundancy
;f and the creation of compact and meaningful relations,

}7 STATEMENT OF PROBLEM

g! The purpose of this thesis is to solve two problems.
E First, a system is to be designed and implemented to query
3

E! 4

-

E.
P.‘~ -
[
Lo
Yo
;. B
L
N
l-

L
he
vt
S

h

b=,
r‘ E
v
I

‘@

the DBA for functional dependencies of relations that exist

in 1INF. This segment of the thesis effort will be a "user
friendly" interactive system which will communicate with
the database administrator by providing prompts, guidance,
accurate display of results, and the ability to negate
previous requests.

Secondly, a system is desired to normalize relations
to Third Normal Form (3NF). When both goals are combined,
the final system will provide the DBA a method to
interactively communicate to direct the subsequent

normalization of unnormalized relations.

SCOPE

The scope of this thesis is to design and implement
an interactive system to normalize relations. The design
phase will utilize current Top Down Structured Programming
(TDSP) techniques. The main effort will be on the design
and implementation of an algorithm to normalize relations
that were defined by the Data Definition Language (DDL)
(found in Appendix 2) of the Roth database system (Ref 5).
In addition, a "user friendly" interface will be designed
and implemented to allow the user exclusive control in
defining the functional dependencies of the relations to be

normalized.

APPROACH

The first step consisted of an extensive literature

search to examine the research already completed in the

T W W Y N PP S P W W RPN S G W S - Gr, U T S S W WP U U U SRR S . PP WP Y

~

1

T W . wEw=w v o
. P . .
Lot
. L e
. . d PR]

) e

™ Ari At it)
AR A
" ‘e s . .

.'T z?" .‘- 'l_‘,‘ /-'

v,,f-f.
PO

Y

T

T A Wy “‘
ol

-

d

' ASNE Ul - aaal et aSi - auli e e S

w . L e e T LI it it L i v aamaSIEMC AR
’ . P i e M I o

normalization area. A multitude of data base experts have

written on the normalization concept, The literature |
search was then directed specifically to the normalization
algorithm area to determine if any research had been

accomplished and recorded. Very little work has been

recorded in this area. Both Hubbard (Ref 3) and Date

(Ref 2) have outlines for algorithms, but do not provide

any detailed information towards an algorithm,

Continued search revealed that Ullman (Ref 5:178)
proposed the concept of a "minimal set" and then went on to
prove that a minimal set of functional dependencies was in
3NF. With this algorithm in mind, the required modules

were designed using TDSP methods and then they were

(! compiled and validated, first as stand alone modules and
then as an integrated portion of the existing Roth Database

System.

SEQUENCE OF PRESENTATION

The remainder of this thesis is divided into seven
chapters. Chapter II is the Background chapter. The system
configuration is presented, the six normal forms are
discussed in detail, and some definitions are examined,
Chapter III discusses the System Requirements, Chapter IV
is the Top Level Design, while Chapter V is the Functional
Dependency Module. Chapter VI is the analysis and design of
the normalization technique, the Normalize Module and

Chapter VII is the Conclusions and Recommendations chapter.

| o e L e s e P ——— U e et RN A S e A R ———rTy

-

L
o
a

i YA

v
P

—————y
& ’

S
Y

YTV

i P

II. BACKGROUND

This chapter will discuss the system configuration,

the Roth System background, and the six normal forms that

will be used in this thesis.

SYSTEM CONFIGURATION

This section describes the system configuration
associated with the implementation of this thesis. The
system configuration section consists of two areas, the
machine selection and the operating system.,

MACHINE

One of the goals of this thesis is to implement an
automated normalization technique on the AFIT Digital
Engineering Lab's (DEL) LSI-1lls. The LSI-1lls are
manufactured by the Digital Engineering Corporation as a
microcomputer with minicomputer capabilities.

There are five LSI-1lls located in the DEL. All
software developed from this thesis effort will be

executable on each of these machines. Machine

Troorrow

configuration and software portability were two of the main

reasons for selecting the LSI-1lls to accomplish this
work.

OPERATING SYSTEM

In order to provide software compatable with previous

DEL lab thesis efforts, namely the Roth database system
(Ref 5) and the Fonden database system (Ref 6), the

decision was made to continue with the University of

P N re——

Rt ot PR ol e 2

[

SO Ot

Pl Sl SEnbAL IR s A - Al

California, San Diego (UCSD) version of PASCAL as both the
operating system and the implementation language.

PASCAL is a good choice for the implementation
language for a number of reasons, First, PASCAL can be
structured for easier reading and as a continuation of the
top down design effort. Secondly, PASCAL can handle large
programs by allowing program segmentation, separately
compiled procedures, and virtual memory using segment
swapping., Thirdly, PASCAL is used in a multitude of
microcomputers, so software systems can be portable by just
moving the code to a new computer that has the

capability.

ROTH SYSTEM BACKGROUWND

The Roth Database System was designed to run on a
stand-alone minicomputer under the control of UCSD Pascal
Operating System, Version II.0. The present Roth system is
being run on the DEL's LSI-1lls with a CRT as the CONSOLE
device. This section will discuss how this thesis effort
interacts with the Roth System,

In addition to the Executive module, hereafter called
exec, the Roth System has presently four main logical
modules which are in different stages of completion. They
are the SETUP module, the DDL Processor module, the DML
Processor module, and the SHUTDOWN module. The execC
operates in one of two modes: normal mode for user control,
and special mode under control of the database

administrator (DBA). This thesis effort will only be

YIS S P VU S Vi W P e

[JEh

n
|

concerned with the special mode, because normalization of
relations modifies the previously defined data definition
language, and should only be allowed at the DBA level,

The exec module allows entry to the special mode
after the DBA inputs a unique identification password as
part of the system logon. Special mode allows the DBA
access to the entire database for the purpose of defining,
modifying, or deleting domains and relations; for full
control of the DDL; as well as the database initialization.
The SETUP module, in addition to maintaining the LOGON
procedures, also has the responsibility for reading domain
and relation definitions from disk and storing them in
memory.

The DDL Processor module aids the DBA by creating in
memory additional domain and relation definitions as they
are input by the DBM. Once defined, these definitions
reside in memory, along with any definitions read in by the
SETUP module, until the DBA terminates the session, which
subsequently causes the SHUTDOWN module to write all the
definitions to a disk file on a diskette, These
definitions will always be read from disk upon logon to
the system, and they will be always written back to disk
upon quitting the session.

The DML Processor module controls the execution of
all other commands. 1It's four modules, ATTACH, EDIT,
RETRIEVE, and INVENTORY, maintain the responsibility of

accessing, modifying, querying, and viewing relations,

ATTACH makes the connection between the user and any
desired relations that he/she is authorized to access. EDIT
allows the user to modify relations by renaming the
relation; inserting, deleting, and modifying tuples within
the relation; or changing the relation's password(s).
RETRIEVE handles the relational queries by storing,
retrieving, and executing the command file where the
queries are stored. Also, RETRIEVE processes user's
requests to display the contents of the relations.
INVENTORY displays to the user a list of domain and
relation definitions that currently reside in memory.
These definitions could have been originally read from

disk, or defined during the current session, or both.

The Roth System also uses the concept of a COMMON
area where constant and variable names are defined,
constants are assigned values, types are declared, and

common procedures are defined., Each system procedure has

;n access to this COMMON area if necessary, so required values

g& or common procedures may be used at will.

E‘ This thesis is concerned with actions executable at

?i the DBM level, i.e. normalization, so there will be no

i further reference to the "normal" mode of the exec or to

;i the options available to "normal" users. The high level

2 data flow of the Roth System modules pertinent to this
thesis is depicted in Figure 7. The corresponding

k; structure charts are found in Figure 8, The data flow

?3 shows that the Roth Database (DB) program and a SETUP.DATA

. 10

¢

Lo e B : e

h
]
L
[
L
o
[
A

Y‘ 1_'- "- -
-,

SRR
{

i

e

|

A AR v TV e T vy
« R 2SI STy T T B
Bl s .

are required to activate this system. The DB program
contains the necessary references to access the compiled
code that is required to make this system execute
properly. The SETUP.DATA file contains domain and relation
definitions that have been defined previously. Once the DB
program has been executed and SETUP.DATA has been read into
memory, the DBM is ready to accomplish the required actions
for the current session,

Within the special mode, the DBA has four upper
level options available for use. They are DEFINE,
INVENTORY, INITIALIZE,AND QUIT. DEFINE allows the defining
of domains and/or relations. INVENTORY displays a list of
domain and relation definitions which presently exists in
memory. INITIALIZE destroys all existing domain and
relation definitions. This is the preparatory command to
the DEFINE command if the DBA desires to construct a
completely new set of domain and relation definitions. QUIT
calls the SHUTDOWN function to write the domain and

relation definitions to the output file SETUP.DATA.

SIX NORMAL FORMS

This section will present a background and definition
of the terms used in this thesis, as théy relate to
relational data bases., In addition, six of the various
normal forms accorded to relational data bases will be
examined. The six normal forms to be covered are First

(1NF), Second (2NF), Third (3NF), Boyce/Codd (BCNF), Forth

11

T

v

"
-, LT

-Ir;';'.'{'
St

.
At

(4NF), and Fifth (5NF). There have been numerous normal
forms suggested, but the previously mentioned ones are the
most well accepted. Codd was instrumental in developing
1NF, 2NF, and 3NF. Later, Boyce and Codd set stronger
guidance on 3NF and this was to become Boyce/Codd normal
form (BCNF). Fagin later developed both 4NF and SNF (Ref.
2:238-9).

RELATIONAL DATABASE CONCEPTS

A relation consists of an unordered set of entries.
Each entry is a complete and meaningfull collection of
related information about the objects around which the
relation was composed. For instance, if the relation
contains information that pertains to suppliers for a
certain job, then each entry (tuple) would correspond to a
specific supplier. There would be an entry for each
supplier for the job. The tuples are composed of fields
called attributes. There would be an attribute for each of
the following: supplier name, supplier number, city, part

number, and quantity supplied.

KEYS

An important concept to relational data bases is the
notion of keys. Keys are the foundation to understanding
and using relational data bases., It is frequently found
within a given relation there is a "collection" of one or
more attributes with values that can uniquely identify each

tuple within the relation. This is called the primary key.

12

n
1
P
.
1
1
R
4
4
§
L

) *Hu. T
. Y B .
o

"

In the supplier example, a supplier number would uniquely
identify tuples (suppliers) within the relation. The
supplier number attribute is said to be the primary key for
this relation. Not all primary keys are single valued. In

this case it was, but numerous relations will have a

combination of two or more attributes as primary keys. By
default, this primary key is also what is called a

dﬂ "candidate" key, that is, a key that identifies each

!. tuple, but it may or may not be the primary key.

B Some relations might have more than one attribute
combination possessing the unique identity property, thus,
p’ more than one candidate key. The previously mentioned

supplier relation is a possibility, with each supplier

having a unique supplier number and a unique supplier

Gz name. At this point, one of the candidate keys must be
arbitrarily chosen as primary key for the relation, with
the other candidate key being an alternate Kkey.

5 Up to this point, primary keys have been noted to

? identify tuples. This is true, but the tuples actually are
;3 entities that exist in the real world. Because of this,

?? there exists a rule that no component of a primary key

E? value may be null. This is because each entity must have
E; an identifier. So, a null identifier, which corresponds to
5: nothing, is not allowed.

E; A seco;d rule states, when an tuple of a relation

E% references a tuple of a second relation, that tuple has to
%g exist in the second relation. Otherwise there would be a
13

- &

—

b o . o

reference to a nonexistent tuple.
Two important properties of candidate keys are as
follows:

* Each attribute of a given relation is functionally
dependent on each candidate key of the relation
in question.

* The attributes of a candidate key is a maximal func-
ally independent set, i.e., every proper subset of
the attributes within the primary Key is functionally
independent of every other proper subset of the attri-
butes within the primary key, and no other attribute
from the relation can be added without destroying
this functional independence.

vinr,

Any candidate key of the relation can be designated

as the primary key of the relation. This was accomplished

LN AR A AR A

on the supplier data base when a primary key was selected

from the two available candidate keys. The importance of

designating a primary key of a relation is to assure that
(!: there are values placed in the primary key's attributes for

each entry in the relation. The remaining attributes can

be empty at the time an entry is created and can be filled
in later.

FIRST NORMAL FORM

An attribute may consist of a single discrete value,

or a set of values. In the case of single direlation

in question,
, * The attributes of a candidate key is a maximal func-
g- ally independent set, i.e., every proper subset of
] the attributes within the primary key is functionally
. independent of every other proper subset of the attri-
ﬁ. butes within the primary key, and no other attribute
- - from the relation can be added without destroying
] this functional independence.

Any candidate key of the relation can be designated

Mg ol aen 4 .

as the primary key of the relation. This was accomplished

on the supplier data base when a primary key was selected

o e T wvr

14

T

- PR R P PR PP S S S S -~ a A St U Ry PP TPy SN WA W WY SONY S

=T

n g

—r

Ta

from the two available candidate keys. The importance of
designating a primary key of a relation is to assure that
there are values placed in the primary key's attributes for
attribute of a relation in 1INF can be a relation itself., A
table composed of two or more entries or two or more
attributes is referred to as a relation as defined in
Chapter 1.

To convert an unnormalized relation to 1NF, each
attribute that consists of multiple values would be
examined to see which of the two following cases apply. In
the case of a single entry relation, each of its sub-
attributes would be added to the original relation,
renaming attributes as necessary, to avoid similiar or
confusing names. Or, if an attribute contains multiple
entries, then this attribute entry should be established as
its own relation in the methods described earlier,

SECOND NORMAL FORM

A relation is in 2NF if and only if the following
conditions hold:

1. The relation is in 1NF,.

2. Every attribute not a member of a candidate key
is fully functionally dependent on each candidate key of
the relation.

An example of a relation being in 1NF, but not in 2NF
is the relation FIRST presented in Chapter 1, Figure 1. As
stated before, FIRST has problems of redundancy and

insertion/deletion conflicts., To eliminate some of the

problems, FIRST can be normalized into 2NF as depicted in

15

]

CHRES i Mt T i Aduh SRtaa SRRt AP S G e St S o et s SENie cla g T —————

Figure 2,
The solution to the problems of FIRST is to form two
new relations, SECOND and SP, and ignore FIRST from any

further consideration other than for historical purposes.

;! SNUM STATUS CITY PNUM QTY
. S1 20 London Pl 300
F - Sl 20 London P2 200
Sl 20 London P3 400

Sl 20 London P4 200

Sl 20 London P5 100

Sl 20 London P6 100

s2 10 Paris Pl 300

S2 10 Paris P2 400

r. : S3 10 Paris P2 200

Do sS4 20 London P2 200

S4 20 London P4 300

S4 20 London P5 400

FIRST

f

b yDEs

- Figure 1. Sample of Relation FIRST (Ref 2:244)

MR e on 4
'

By comparing the relation FIRST against SECOND and

A A i i il

SP, it can be easily seen that the final effort was to

'. e .'Y

eliminate the non-full functional dependencies, which was

v ow o«

-v-e
-

the answer to the previous problems. Upon closer

examination, one might determine that problems in 1NF

Lo

relations, but not in 2NF relations, exist due to the

16

o
-

1

“ - T, (V. SEUU VNS VG S VU Wl Gl VLIS UL S NUNE G G G S W Y S U T G

e

-

MO
-

R P A 2 La e g

T AR SR .

PR ettt N

s B R L Y) LT e Tl el

T - e

8 NESAALIAIAG
I‘ R . .l ‘.0 " . .

Ny * ’l 3 : .oy .

P i it)

A PR
H e

| IR

e e

i

— -

A M A S L i e . i ol el Anmie _metlh T
. - - T 12

mixing of two types of information (Ref. 1:246). 1In this
case, city and status information was combined with
quantity information,

The question surfaces of how were SECOND and SP

derived from the relation FIRST? This example worked out to

SNUM STATUS CITY
STATUS
Sl 20 London
S2 10 Paris
S3 10 Paris SNUM
S4 20 London
S5 30 Athens
CITY
SECOND
FDs of SECOND
SNUM PNUM QTY
sl Pl 300 SNUM
Sl P2 200
Sl P3 400 QTY
sl P4 200
Sl P5 100 PNUM
Sl P6 100
S2 Pl 300
S2 P2 400
S3 P2 200
sS4 P2 200 FDs of SP
sS4 P4 300
sS4 PS 300
Sp

Figure 2. Relations and FDs of SECOND and SP (Ref 2:245)

17

be quite simple by projecting out sets of attributes in
accordance with the functional dependencies which were
stated earlier. The first step was to pick a pimary key
for the relation FIRST, This could be done arbitrarily,
but since the supplier number by itself could tell the
status and city of the tuple, while the combination of both
the supplier number and part number were required to
determine the quantity of a part, the supplier number was
selected as the "primary key". Thus SECOND evolved as a
relation with the functional dependencies of SNUM --->
STATUS, SNUM ---> CITY, and CITY ---> STATUS. In the
meanwhile, a relation called SP was formed with its key as
SNUM and PNUM, and the functional dependency of (SNUM,
PNUM) ---> QTY.

Another question comes to mind., What if the original
relation structure is needed later? It can be recovered by
taking a natural join of the relations SECOND and SP, thus
giving back the relation FIRST. This is called a lossless
decomposition, which means any information that could be
obtained from the original relation can also be obtained
from the two new relati- is.

THIRD NORMAL FORM

The relations SECOND and SP have eliminated the
problems of redundancy, but there still exists a problem
with the rmutual independence of SECOND's non-Kkey
attributes. In other words, there are non-key attributes

dependent on the key thru another attribute. This is

18

el el PR S T U T SLIPUE IS AL P WP WL WO Y G W P . e i Sener S

_LLAJ

Lol gt aths o
‘r ‘e "
-~

| v

roliral I A st e

A I i g i—v L R o
ST . &~
T Lot

O e e A ey AT e W AR R R (it
L A e A A T S .
. 4 Aot P [d S Ao

o

- -

——pr

vv

e

.IT-.'.‘".".‘.

7

called transitive dependency. Third Normal Form relations
do not contain this transitive dependency, hence this
redundancy of dependencies is desireably absent.

For example, it can be seen that two dependencies
exist in the relation SECOND, "SNUM -- -> CITY" and "CITY -
- - > STATUS". By observation, it can also be seen that
SNUM ---> STATUS, thru CITY. This is an implied, or
transitive dependency. This transitive dependency is
forbidden if a relation is to be in 3NF. 1In fact, in order
for a relation to be in 3NF, it has to be in 2NF and
contain no transitive dependencies between the attributes,
This transitivity leads to difficulties in updating,
inserting, and deleting, so it should be eliminated.

In order to eliminate the transitive dependence of
STATUS on SNUM, the relation SECOND has to be projected out
into two new relations, i.e., SC(SNUM,CITY) and
CS(CITY,STATUS). Figure 3 shows the relations SC and Cs,
with the appropiate functional dependency of each. At this
point, the relations SC and CS are in 3NF, while SECOND was
not,

wWhat has been shown is that a relation in 2NF, but
not 3NF, can be put into 3NF by projecting out an
equivalent set of relations. This process is reversible by
performing a "join" between the two relations on the
attribute, in this case CITY, that is common to both of the
new relations,

For the data base administrator, 3NF is an aid to

19

precise thinking. A data base in 3NF can grow and evolve

naturally. The updating rules are straight forward, where

-
tuples (records) can be added or deleted without the
problems that occur in relations with non-3NF tuples. The
two new relations previously formed are operatonally better
than SECOND because now there can be cityv and status
information for cities where there is no supplier. Third
normal form structuring gives a simple view of data to the
programmers and users, and makes them less likely to
perform invalid operations,

SNUM CITY
S1 London
S2 PARIS SNUM (. g CITY
(. S3 Paris
. sS4 London
S5 Athens
FDs of SC
SC
CITY STATUS
Athens 30
London 20 CITY |———4STATUS
Paris 10
Cs FDs of CS

Figure 3. Relations and FDs of SC and CS (Ref 2:248)

20

T ————

T T

BOYCE/CODD NORMAL FORM

When Codd originally developed the concept of 3NF, he
did not take into account the fact that a relation might
have more than one candidate key. As earlier stated, a
candidate key is a key made up of a combination of

attributes. Each candidate key possesses unique identity

" r.rﬂ ONE P o ot D a—"

properties that functionally determine all the attributes
within the relation. The 3NF definition was replaced by a
stronger, but conceptually simpler, definition that was due
to the efforts of Boyce and Codd. It was to be known as

Boyce/Codd normal form (BCNF).

s &

BCNF does not make any reference to 1NF, 2NF or

transitive dependencies. But, BCNF does define the term
"determinant®, as a set of attribute(s) on which some other
attribute(s) is/are fully functionally dependent. This

- brings the discussion to the definition of BCNF. A

T’. " 4-Iv.‘v‘r LA A NS St Bt Mt I iiNG

relation is in BCNF if and only
candidate key. That is to say,
functionally determines all the
the relation

relation. If not,

into two or more relations that

if every determinant is a
every determinant fully
attributes within the
should be projected out

fullfill this requirement,

Ullman (Ref. 4:189) has done some additional reseach

in the normalization concepts.

that any relation in BCNF is also in 3NF,

that BCNF may cause the loss of

dependencies,

21

S S P I W

One of his conclusions is
He also implies

some previously defined

| T S N A A A A R N B D, |

','l:z..‘

FORTH NORMAL FORM

If there exists a relation CTX that contains

-
information concerning courses, teachers, and texts used by
the teachers in the particular courses, it is easy to see
the problem of redundancy reoccurring. This is shown in
Figure 4. Since one of the goals of normalization is to |
eliminate, as much as possible, any redundancy, this sub-
section will examine methods along this thought.
COURSE TEACHER TEXT
Physics Prof Green Basic Mechanics
Physics Prof Green Prin of Optics
Physics Prof Brown Basic Mechanics
Physics Prof Brown Prin of Optics
/® Physics | Prof Black | Basic Mechanics
- Physics Prof Black Prin of Optics
Math Prof White Modern Algebra
Math Prof White Projective Geom
CTX

Figure 4. Relation CTX (Ref 2:256)

The relation CTX is in BCNF, since the whole relation
is made up of keys and there exist no additional functional
determinants, This type of problem exists in BCNF
relations because when related data is "grouped" together,
the data might not be dependent on each other. In this
case, TEACHERS and TEXTS are independent of each other,

Attributes of CTX cannot be projected out to form

22

S B B B e B B P P 3 s - SRV VPRE WY DRI WS-

P WP o W L e bl

"new" relations, based on functional dependencies. This is
because the relation is a key itself. However, two new

relations can be created if a different type of dependency
is considered. This type is called multivalued dependency

(MVD)., A MVD exists when a value of an attribute can

determine more than one value for the dependent attribute.
For example, a male human could have been married to a

I. number of wives, with each union producing a number of
offspring. Each of these would be a MVD, The definition of

MVD is as follows:

Given a relation R with attributes A, B, and C, the
multivalued dependence

R.A —-> -=> R.B
holds in R if and only if the set of B-values matching
Iy a given (A-value,C-value) pair in R depends only on the
.~ A-value and is independent of the C-value. As usual,
A, B, and C may be composite (Ref, 2: 258).
This definition will only hold in relations that have more

than three attributes.

[Q' A functional dependency (FD) is a special case of a
MVD. 1In fact, a FD is a MVD in which the set of values

ke consists of a single value.

= The definition for 4NF (Ref. 2 : 259) states:

: A relation R is in 4NF if and only if, whenever there
s exists an MVD in R, say A -->B, then all attributes of
T R are also functionally dependent on A,

If the relation CTX is re-examined, it is obviously

Ef not in 4NF. This is because when COURSE --> --> TEACHER,

ﬁ‘ there is not an FD between COURSE and TEXT. In order to

place CTX in 4NF, it is necessary to project out attributes

23

according to the stated MVDs. This produces two relations,
CT and CX, as shown in Figure 5. These structures are more
desirable than BCNF, because of the elimination of the
redundancy due to improper structure. Fagin says " any
relation can be nonloss-decomposed into an equivalent
collection of 4NF relations™ (Ref. 2 : 259)., What is not
stressed is that it might be undesirable to decompose a

relation into 4NF. This was also true with BCNF too,

COURSE TEACHER

Physics Prof Green
Physics Prof Brown
Physics Prof Black

Math Prof White
CT
COURSE TEXT

Physics Basic Mechanics
Physics Prin of Optics

Math Modern Algebra
Math Projective Geom
CX

Figure 5. Relations CT and CX (Ref 2: 257)

24

PRI S G SIS W WP Y

r‘r‘ Lt e e Mok 0N IO 3

T'—T\".i._ff;_

FIFTH NORMAIL FORM

Further research into normalization unexpectedly
discovered that there exist relations that can not be
nonloss-decomposed into just two relations, but can be
satisfactorily nonloss—-decomposed into three or more
relations (Ref 2 :260). This is a very special type of
relation that contains at least three attributes, where all
are keys and there exists no non-trivial FDs or MVDs. This
is shown in Figqure 6, where the relation SPJ cannot be
projected non-losslessly into two new relations, but it can
form three new relations, SP, PJ, and JS, without losing
its integrity.

Figure 6 also shows that by joining any two of the
sub-relations over their similiar attribute, an
intermediate relation (with three attributes) is formed.
This intermediate relation then can be joined with the
third sub-relation over the attributes of the third
relation to produce the original relation in its entirity.

This shows that it has been a nonloss-decomposition,

SUMMARY

Normalization is a powerful tool for the relational
data base manager. The main benefit is the elimination of
redundancy within the relation. This will reduce both the
space requirement to store relations, as well as aid in the
insertion/deletion problems. But normalization has its
limits., Of the six normal forms described in this chapter,

only the first three (1NF, 2NF, 3NF) are 100% beneficial.

25

3 AP VRIS LI WIS NI, DI WP . G YU W v Danadhetndiamndl .

—— T — T ——— T T

The others (BCNF, 4NF, SNF) can produce relations which
W‘ ha have lost some of their original dependency meanings, so

are of less benefit.

L PRI
@

26

o Ta

RSPy ; e —— + odemmiests oottt omte oot ‘l

N
a0

CaiEat Sihat S NN BICRICEHA
. RN

[Ta

SPJ
SNUM PNUM JNUM
Sl Pl J2
Sl P2 Jl
S2 Pl Jl
Sl Pl Jl
SP PJ PS
SNUM PNUM PNUM JNUM PNUM SNUM
Sl Pl Pl J2 J2 S1
S1 P2 P2 Jl Jl Sl
S2 Pl Pl Jl Jl S2
Join over
PNUM
SNUM PNUM JNUM
S1 Pl J2
sl Pl Jl \5\5\“‘ Join over
sl P2 Jl JNUM, SNUM
S2 Pl J2
S2 Pl Jl
Original SPJ
S
Figure 6. Join of three projections, back to the original.

DI W S P I

(Ref 2:260)

I W Y E Y GG Y W W U Y

27

L
Lo
o
L

.

Ty
oo o

IIT. SYSTEM REQUIREMENTS

This chapter discusses two main areas. They are
presented in the following order: user requirements and

assumptions for this thesis,

USER REQUIREMENTS

Since the main objective of this thesis is a product
that will aid the DBA in his/her day to day job, the

following requirements are hereby established:

. Develop a user friendly system,

The system must be interactive with the user.

Will be an automated method to normalize relations.

Will complement the existing Roth Database System.

w L) w N [l
.

. The thesis effort will be a stand-alone system which
will access the data file output by the Roth Database
System.

6. The output file of this thesis effort will be
compatible with the Roth Database System.
7. Normalize relations to at least 3NF.
Each of these requirements are necessary for a completely

viable system.

ASSUMPTIONS

The following assumptions are in effort for this
thesis effort:
1. Each relation is treated as an individual.

2, Functional dependencies will only exist within
a relation, not between relations,

28

PP UL WA S SN SR WY S Gy SR & ; PRSP PP SO G, Iy SOy T oo S - (Y R)

P oy A It G St St sadh s b Sntt S

MW i Wl) W AP TIPS

3. The following will be required to normalize a
relation:

a. Name of the relation,
b, Attributes of the relation.

c. Functional dependencies within the relation.

4. Relations required to be created during the normalization

process will be created in accordance with Appendix A,
section 3,.4,.A, of the Rodger's followup to the Roth
Database System (Ref 5).
These assumptions are required for an orderly
appraisal of the effort and restrictions required for this

thesis.

29

A (5 ail NN
0P YRR
NIRRT

A -X LA st L)
PR TN

s

I}
»

————
Bt s
e

T

Ta

e

IV. TOP LEVEL DESIGN

INTRODUCTION

This chapter will outline the top level design for
this thesis effort. Since this thesis will complement the
Roth Data Base System (Ref. 5), the integration with the
Roth System will also be examined in this chapter. 1In
addition, the top level data flow graphs and structure
charts of the Roth System and of the necessary
modifications to this system will be discussed,

The objective of this thesis is the design of a user
friendly, interactive system that queries the user for
functional dependencies of an existing relation and then
normalizes the the relation. This thesis was
accomplished in two steps. First, the user friendly
functional dependency section was designed, coded, and
implemented. Then the normalization section was designed,
coded, and implemented.

Each step outlined above was treated as a separate

segment because, while they worked together in achieving

the end product, they
The important idea to
segments are somewhat
normalization segment

dependency segment to

performed totally independent tasks.,
remember is that while the two
independent of each other, the

does require the functionai

have created functional dependencies

before the relations can be normalized.

30

. PR WA YU T S)

g

SYSTEMS INTERACTION

Based on an understanding of the Roth System as
described in Chapter II, the interaction of this thesis
effort with the Roth System will be examined., This thesis
effort is intended to execute as a stand-alone system., It
will need access to the data file SETUP.DATA in order to
perform normalization on the needed relations. The Roth
System itself will not be required, but some of its modules
have been extracted to insure consistant input and output
capabilities.

The Roth System modules that can be used (but need to
be modified) include the SETUP module, the QUIT module, the
DEFINE module, and the COMMON unit. The required changes
are in the following paragraphs.

The present Roth Database System COMMON module
defines each relation to be a record with the following: a
name, a pointer to the next relation in the list, a pointer
to a separate list of attributes, a pointer to a separate
list of key attributes, a security record, a tuple count, a
filer name, and some special purpose boolean switches,

In order to determine if a specific relation needs to
be normalized or not, a boolean switch must be added to
each relation record structure., Then the proposed system
would only have to traverse the linked list of relations
and check each record's NORMALIZE switch to determine if
the relation has already been normalized., If not, the

necessary procedures will be called to normalize the

31

P Y S P PR Y S a o a'a s Dot e TPy WP Aomt, . —— PSP SOOI

A vvwlrw v

e e

&’

!

hASLEAN IR AR e 4
-~

ars 4

T .
[

~T

Ry age——— —_———— —— P—— —— v p—— p—

relation. If by checking the switch, it was determined the
relation did not need normalization, then the traversal of
the linked list would resume until the next unnormalized
relation is located or the end of the list reached.

The Roth System's data file SETUP.DATA will have
been stored on a disk file and contains all prevously
defined domain definitions and relation definitions. The
difference between the Rcth SETUP.DATA and the SETUP.DATA
created by this thesis effort is the addition of a
NORMALIZE switch which has been inserted into each
relation's definition in the COMMON unit and subsequently
written out to disk.

The current SETUP module first reads the domain
definitions from the input file SETUP.DATA and stores them
in memory. Then SETUP reads the relation definitions from
the input file and stores them in memory. Each set of
definitions are stored as a linked list with a head pointer
value returned so the system can access the lists. The
SETUP module requires modification to read the domain
definitions straight from the input file to the output
file. This is because the domain definitions are not needed
in this thesis effort, but they are required to remain on
the SETUP.DATA file for use by the Roth System itself. The
SETUP module must also be modified to read in the
added boolean NORMALIZE switch in the relation records.
This is necessary because this thesis program will need to

examine each relation's NORMALIZE switch to determine if

32

Bt e e) i S SN PP S S S S S . NP,

".'""‘
K
]

T —— — o L2 A S Al ML SRS RSN Mk skt sy — T ————— ,W

ey
-l

I
-

the relation is in a normalized form or not,
The module QUIT must be modified in a corresponding
manner., That is, since the domain definitions will already

be written on the output file by the modified SETUP, the

code in QUIT that normally would write them out can be

b deleted. Since the proposed system requires an interlaced
method of reading and writing to and from disk, it was

?l determined that a totally separate output file would be

: incorporated in this system. This would even allow

) comparison between the "before" and "after" data files,

rq .Obviously, the output file will have a different name than

the input file, in order to make them distinguishable to

the PASCAL filer system, QUIT module should also be

‘1. modified so when it ié writing out the relation definitions
to the output data file, it also writes out the value of
the NORMALIZE switch.

As stated before, the DEFINE module allows the

defining of domain and relation definitions., This is

- performed by querying the user for names and other
&
- characteristics of the domains and relations after the user

has indicated the desire to define either domains or

relations. DEFINE must be modified so it will set

- the added NORMALIZE switch to "off" or "false" to indicate
that the relation is unnormalized. The switch will remain
in this "false" state until the normalization program is
executed and this relation itself is normalized. When

normalized, the relation's NORMALIZE switch will be set to

33

—t W S R S T SN S, S, W S S Y S S, S e Ry R I VU S S WIS U G S S T a2 o

TN I Y T

A r“' '

T T
‘-

E_.
b-
[--
Fe
E-
b

3

A
>

b4

l‘n.—[

"1

a
1

L v — P el Sean it asae mem cen S aman e e o P p—p——
- " T — " " —1

"true".

During the design stage, the question arose as to
whether the DBA should be allowed to set the NORMALIZE
switch for relations that he desired to remain in the
unnormalized state. Since the thesis effort involves the
implementation of a system to "automatically” normalize
relations, the decision was made to not allow the DBA to
set the normalize switch., This will keep all relations
consistant with each other in that they all will be
examined for normalization. The point to be made is that
the DBA might input functional dependencies in such a
manner that the relation is already in 3NF. But, each
relation will be examined to determine if it needs
normalization or not,

In summary, the modules that required modification
for the Roth System were the COMMON unit, the SETUP module,
the QUIT module, and the DEFINE module. The COMMON unit
had the addition of the normalize switch in each relation
record, as well as the additional record structure to
facilitate the functional dependencies as they are defined,
The changes to the SETUP, QUIT, and DEFINE modules centered
about the reading, writing, and defining of relations and
the necessity to handle the normalize switch appropiately.

The Roth System modules which were used in this

thesis effort includes the COMMON unit, the SETUP module,

and the QUIT module. The COMMON unit is exactly the same

as the modified COMMON described in the previous

34

P P Sy Wy 2 i S 2 P A e s

PO, e

¢ ol il aall SO i g o S0 o A Jant sk B
i @

-
Q.

paragraph. The SETUP module must be changed so it will
immediately write domain definitions to the output file as
they are being read from the input file SETUP.DATA. SETUP

will still write the relation definitions to memory as it

reads them from disk, including the normalize switch for
each relation, The QUIT module must be changed so it will
correspond to the SETUP module. It will not have to write
the domain definitions out to memory because SETUP would
have already accomplished this task, but QUIT will still
need to write out to the output file the relation

definitions which includes the normalize switch.

HIGH LEVEL DATA FLOW'

The high level data flow diagram for this thesis
effort is found in Figqure 7. The structure chart is found
in Figure 8. The data flow diagam shows that the user is
queried for the input and output file names. The input
file should be SETUP.DATA, but at a minimum it must contain
data in the format as it would be found in SETUP.DATA.
Because domain definitions are written to the output file
as they are read in from the input file, totally separate
and distinct input and output files must be used. The
system will create the actual output file with a user
supplied name. The new output file can later be renamed

SETUP.DATA for use by the Modified Roth System .

35

. e .

T

Cl S N

andanQ
mau
uo

*s3jag uTtewoq

44
J
) 4
STSOYL STY3 I0J MOTJ e3jeq Taaa] dol °; aanbtg M
1
andanp MaN UuO 4
SUOT3ITUTISQ]
uotlTesy
9T Td
andano {
93 TIM
suotjeIay |
POz 1T PWION .
soTouapuadaq
TrUOT3OUNJ - .
L
<
4
suotT3TUTIoq a1 Td
uot3zeTay ummmm
*sS3yag utewo
390 uredoq saweN oTTd wa3shs
9TT3 INL ,
B
E
. b
.. .
-t ...
y
| m-& St P ,...M.\.ur,......W.ifv..f....r.-P..h.L“WL....»..».L.L.C“M....&.l,.l...f..l..n.»mp. b.'.!H - i...r

STSaYJ STY3 I03 3Ieyd aanjonizg (aaa71 dog

* g ombrg

LINO

HZI'TVWION

ad

d0rLde

LNL

LT WY

37

adak i

el

Upon accepting the input and output file names from
the user, the system should then read the input file
(usually SETUP.DATA). The domain definitions will be
written to the output file immediately upon being read. The
relation definitions will subsequently be written to memory
after they are read from the input file,

This thesis effort has been designed around two major
concepts., They are describing functional dependencies for
unnormalized relations, and then normalizing relations as
needed., The two major modules in this thesis effort will
be FD and NORMALIZE. The module FD is concerned with
determining functional dependencies. Through user friendly
interactive queries, FD will write into memory the
functional dependencies of each unnormalized relation, as
the user supplies them.

Once FD has determined the functional dependencies,
the module NORMALIZE will then normalize the relation in
question to Third Normal Form (3NF). This means that each
subsequent relation generated will be in 3NF and its
normalize switch will be set to "true". When breaking
each unnormalized relation into new relations, the user
will be queried to supply names for the new relations,

when all unnormalized relations have been normalized,
the module QUIT will write the relations to the output
file., The system will then sign off with an ending message
to let the DBA know that the system has completed

execution,

38

ROTH SYSTEMS MODIFICATIONS

In order to generate a new SETUP.DATA compatable with
this thesis effort, the Roth System will have to undergo

some modifications. The changes are necessary due to the

addition of the "normalize" switch in each relation
record., Each of the modules that accesses the linked list
record structure will require the modification., SETUP and
T‘. QUIT are required to read and write the relations to and
from disk, so changes will be needed in each. DEFINE will
also need to be changed to account for this added feature,
It will set all newly derived relation's normalize switch
to false, so they will be examined for normalization,

In addition, the COMMON module for the modified

"~ Saesan 3
‘®

version of the Roth Database System will require the same
changes proposed for the thesis effort. In fact, the same

COMMON module can be used for both systems.

CONCLUSIONS

This thesis effort will generate a system that will
manipulate unnormalized relations by first determining

functional dependencies; and then by reducing the relation

ot 4. . " - .. . e . -

in question into new relations that are in Third Normal

Form. The first step of this thesis was to modify the Roth
System so relations in COMMON would contain a "normalize"
switch and the needed extra record structures. The second

step of this thesis was to modify other Roth modules so

they would read and write to SETUP.DATA the added normalize

o

39

edan

1

o PP T W S U S SO S TP T SR S T QA WA R W N S - - ettt e,

TV T T ‘."

A

value. Thirdly, a system was then devised to perform the
derivation of the functional dependencies of unnormalized
relations. Lastly, modules were designed and implemented to

normalize the needed relations.

- v Tw -
'
e P

40

T CLRT T N VN P P Py B T .
e PO P, FIP SN WP I W Y P Cry

DA N 3 LRl ol Y
RO~ A
,

-

AN

2

Mol SN A ol odar i R et
T

,1-v-v-T

L cumll OB aNL aslh ootk Siiac et et

A SR W

Ll A S i

V. FUNCTIONAL DEPENDENCY (FD) MODULE

INTRODUCTION

Relational data bases are becoming popular in their
use throughout the world of information systems. A common
fallacy of relational data bases is the use of unnormalized
relations within the data base., This can cause a
tremendous volume of duplicated data which can be
eliminated by normalization. In order to normalize each
relation, the functional dependencies (FDs) of the
particular relation have to exist in some form, This
chapter will examine the segment of this thesis effort that

produces the FDs.

FD MODULE DESIGN

The executive module TNT is designed to traverse a
linked list structure of relations in memory searching for
unnormalized relations, When such a .elation is found, TNT
calls the module FD so that functional dependencies can be
input by the Database Administrator (DBA). The module FD
is passed a value that points to a relation that needs to
have its functional dependencies defined,

FD is designed to ask the DBA to input the attributes
which comprise the determinant attribute set and the
attributes that comprise the dependent attribute set of
individual functional dependencies. To aid the DBA in
knowing exactly which attributes are in the relation in

question, a menu display of the attributes was determined

41

..........

e

to be useful. Each attibute is displayed with its key

number in front of the attribute, The key numbers run

beititon ga Fargih MM
:) B

{

sequentially from 1 to N (with N being the number of
attributes in the relation). The attributes are numbered in
a left to right fashion with attributes 1 to 4 on the first
line, attributes 5 to 8 on the second line, and so on until
all attributes or 20 lines have been displayed. If

there exist more attributes than have been displayed,

the DBA signals for a continuation of display by pressing
the <RETURN> key. Figure 9 depicts the screen display

which will be presented to the DBA so he may select

attributes to define functional dependencies,

-

5~ SbTace
i

1. aaaa 2. bbbb 3. ccce 4, dddd
5. eeee 6. ffff 7. 99499 8. hhhh
9, iiii 10. 3333 11. kkkk 12. 1111

W

= 73. ssss 74, tttt 75. uuuu 76. vvvv

o 77 . WWWW 78. XxXxx 79. YYYY 80. zzzz

h¢

r.‘,,“

ai Figure 9. Sample Screen Display of Attributes.

e . | _— | |
p— Functional dependencies, as implied earlier, consist
&

o of two sets of attributes: the determinant set and the

-

o dependent set. The determinant set consists of attributes
2

h! that imply (determine) the dependent set of attributes, FD
.

—

42

| e

T i M il M ARt E 2

P V. VU, WL RO/ LP S W SPEE SPUE TN NN S WGP NI YD N DAL AP SISV WU SIS SNNEP SIS SUVE SO SUEISESEP UL S S S P ARSRES SR SRR SRR SRS SR

“Q
first asks the DBA to input individually the attributes
that comprise the determinant set. Once the DBA has
-
3! decided on an attribute to input, he is required to type in

the key number of the attribute and press the <RETURN>
key. This continues until all determinant attributes have
been input, then the DBA answers "no" to the query asking
if there are more determinant attributes to be input. Then
FD asks the DBA to individually input the attributes of the
dependent set. This is done exactly as was done with the
determinant attributes, i.e., input key number, press
<RETURN> key, repeat these two steps as needed, then answer
"no" to exit the input cycle.
In order to allow the DBA to check and recheck his
work, a series of acceptance queries is presented to the
(!, DBA. This series consists of the ability to accept or
reject the whole determinant set, accept or reject the

whole dependent set, or accept or reject the whole defined

functional dependency. A query is presented after each
b step has been completed, For instance, after all

determinant attributes have been input the DBA indicates

no further attributes are to be input, then a listing of
P the attributes will be displayed and the DBA will have the
;i opportunity to accept or reject the whole set of selected
?! attributes. If rejected, the DBA will be required to input
€ the entire set of determinant attributes again
;; (corrected version). 1If accepted, the DBA is then
1 & requested to input the dependent set of attributes. When

T
1 .

43

L' R o UL PP S S U AP U P U VLI SO W U S UL [P HTEUE PP IPADE VAP WRTSEPPSI T WY S0P W WP NS SR ST PR S

e e A s 7 Rl

accomplished, a similar query will allow the DBA to accept
or reject the entire dependent set. 1If the dependent set
is rejected, the DBA is then required to input the
corrected set. If accepted, the next step is to accept or
reject the entire functional dependency. FD displays the
entire functional dependency and the follow-on
accept/reject query. If the whole functional dependency is
rejected, internally the functional dependency is destroyed
and the DBA is asked to begin again by first naming the
determinant attribute set and then continuing on as before
until an acceptable functional dependency has been input.
If the functional dependency is accepted, éD has been
completely executed and control is passed back to the

executive module TNT.

"USER FRIENDLY" DESIGN CONSIDERATIONS

Since the module FD is the main interface with the
DBA, it was desired that FD would be as "“user friendly"

as possible., To this end, the design of FD was

accomplished with four main considerations in mind. The
considerations contemplated were human factors, software,
hardware, and the required applications, But even before
these, there are some overall observations that should be
e reviewed . They are the concepts of design
consistency, design standards, and design tradeoffs.

Design consistency is the first cardinal rule of all

'. design activities., Consistency is important because it can

reduce requirements for human learning by allowing skills

44

L)

F

"1

L cauty b sane ae e N e L Rass ana Bage ot

learned in one situation to be transfered to another
situation like it. While any new automated system must
impose some learning requirements on its users, it should
avoid burdening productive learning with nonproductive,
unnecessary activity. Inconsistencies in design are caused
by differences in designers, as well as from pressure
imposed by time constraints, The solution in these cases
usually ccnsists of exceptions that the user must learn to
handle. People percieve a system as a single entity. To
them it should look, act, and feel similar thoughout.
Excess learning can hinder their performance and
ultimately influence their acceptance of the system,

The module FD is an interactive module that queries
the DBA for functional dependencies., FD displays on the
screen the name of the relation and a menu (listing) of its
attributes, each with an associated key number, FD first
asks the DBA to name the determinant attributes, and then
FD asks the DBA for the dependent attributes. The DBA is
required to input each set of attributes by keying in the
associated key number of the first attribute, then the
number of the second attribute, and so on until all
attributes of the determinant set have been input. Then
all attributes of th~ dependent set will be input in the
same fashion. The querying for determinant and dependent
attributes have been consistently designed. Each section
of the module that requeste the naming of attributes do

themselves produce queries, accept responses, and display

45

OND Al i §

error notices similarly and consistently. Because these
two sections provide similar services, consistency and
procedural usage are not difficult to substantiate.

Design consistency is achieved by applying design
standards. The purpose of design standards is to provide a
product that is (1) consistant from both an appearance and
a procedural usage standpoint, and (2) visually clear and
easily used (Ref 7:32)., Their objective is to reduce the
subsystem processing errors and increase processing speed
by faster initial learning of screen formats and
discouraging "extraordinary situations" during daily
activities. Some people might say that designer creativity
may suffer from the imposition of design standards, but
that would seem a small price to pay for an effective
design.

As stated before, the module FD is consistant in its
outward appearance (to the DBA) and its procedural usage.
The sections that process queries, responses, and error
notices are also easily used by the DBA., In fact, because
of the display of a menu of attributes, the DBA is required
to input only the associated number of each desired
attribute, not the whole name, which would have allowed
spelling errors, confusion, and frustration,

Design tradeoffs are products of: incompatible
designer guideli ns; time, accuracy, cost, or ease-of-use
requirements; and human requirements. Design guidelines

often conflict with one another or with machine processing

46

A s

Nas a0 SBCEN A UaA e i g g L e man e ek ac e
z IR i ¢

A M At ae e A AL aa ot
v e . S ' .
. R 3 e PRI

ARGy SED ¢ LJEN S SR AN S A My Gae. 420
v 3
« @

- -

requirements. In such conflicts the designer must weigh
alternatives and reach a decision based on accuracy, time,
cost, and ease-of-use requirements., This leads to another
rule in user friendly systems designs: Human requirements
always takes precedence over machine processing
requirements, While it might be easier for the designer to
develop a system at the expense of the users, this must not
be tolerated,

The module FD and its submodules were designed with
an emphasis on ease-of-use concepts. For instance, a menu
of attributes for the relation in question will be
displayed with a key number in front of each attribute.
When required to input attributes, the DBA will only have
to input the associated Key number, not the whole attribute
name, The DBA also has the the choice of continuing or
stopping the current session each time a relation has had
its functional dependencies input and the relation has been
subsequently normalized. This allows the DBA the choice to
curtail the current session, which causes all the relations
(whether normalized or not) to be written to the new output
file. At a later session the DBA might re-execute the TNT
system using the last output file as the new input file,

In the new session the DBA has the same choice of
sequentially handling as many unnormalized relations as he
wants to or as time permits. Time savings and convenience
will aid the DBA in accomplishing his objectives for the

session,

47

..

Human considerations are the needs and requirements
of the user and are oriented toward clarity,

meaningfulness, and ease-of-use. Ease-of-use has been a

T i Ty e TeTrT4TH

constant goal in the design of this thesis project, as has
been discussed in previous sections., Hardware and software
considerations reflect the physical constraints of the
terminal on which the screen will be used and the
characteristics of the controlling program., They provide a
framework within which the screen design must occur. The
CRT display screens used with the LSI-1lls in the DEL lab
are limited to an 80 column by 24 line display, so it was
felt that when trying to display menus of attribute names
that a maximum of four columns with a maximum of 20 lines
{' of attribute names would not degregate the readability of
N the screen,

Roth originally decided to allow attribute names to
be up to 132 characters in length, but it was felt

necessary te truncate the attribute names to the first 14

characters in order to allow the display of four columns on
ﬁi the screen. This truncation is only in effect for the
display of the attribute names. The names remain unchanged
in memory. The module SHOW_ATRIBS displays the names in

the manner discussed in the previous paragraph., Later in

d

;ﬁ this chapter, SHOW_ATRIBS will discuss in more detail the
& screen display of the attribute names.

!3 If the relation has more than 80 attributes, two or
-

. more screens of display will be required., After a screen
b

' 48

4

YT
Pl

PGP ol Wolll SO S I UL W VI G Iy W AP (L. 1D W S s —— P madioalatnedin PRSP e o~

o
b
le
4 o

A SR an . shen it R
L

Cm . al . A & ow -

b Jhnai atandl Mindh diaath i ik i S Sindh Sl gl A A A et

has been displayed, an automatic pause will allow the DBA
to examine the list as necessary. When ready, the DBA will
signal for a continuation of the listing by pressing the
<RETURN> key. Then the next set of attributes will be
displayed either until the screen is full or the last
attribute has been displayed. Application considerations
reflect the objectives of the system for which the screen
is being designed. They are the data or information
building blocks which make up a screen display (Ref 7:14).
The application consideration for FD is the input of
accurate functional dependencies that will aid the system

to correctly normalize relations.

FD MODULE IMPLEMENTATION

The module FD is depicted by its structure chart
found in Figure 10. FD was implemented in a top down
structured method. First, the upper level FD module was
designed, coded, and implemented. Then each of the lower
level modules were individually designed, coded, and
implemented. Stubs were used in FD where the lower level
modules would eventually be called. As each lower
level module was implemented, the previously mentioned
stubs were replaced with the modules themselves.

In addition to the FD module, there are four (4) lower
level modules that complement this subsystem, The lower
level modules are called SEEK_ATR_NAME, SHOW_ATRIBS,

DETER_ATRIBS, and DEPEND_ATRIBS,

49

R L S LT ST

SEEK_ATRIB_NAME is the module that searches the
relational linked list structure to find the ith
attribute name in the list. The input to the
module is an integer value. This signifies the number of
the attribute in question. The output of this module is
the actual relation name that is found to be the ith
element in the list. SEEK_ATRIB_NAME also accesses a
global pointer value that points to to the relation in
question. This pointer is necessary in order to access the
relation name and the list of attributes, as well as to
build the functional dependencies as a linked list

structure under this relation,

FD
SEEK__ SHOW_ DETER_ DEPEND__
ATR ATRIBS ATRIBS ATRIBS
NAME

Figure 10. Strucure Chart of Module FD

50

[Y SRy LY U VA WP W WL Y . ¥ WL Uy Sy - CIPE Y & o

I

A

)~ REAEES

"",‘iv. o
.

[nl el

PrTT—
- o

The module SHOW_ATRIBS displays on the screen the
attributes of the relation that needs functional
dependencies defined. As discussed in the design section
of this chapter, an acceptable screen display of 4 columns
of attribute names, with a maximum of 20 lines of
attributes would not degrade the screen readability,.

Due to Limits imposed by the size of the screen display
(80 columns wide) and due to the desire to display the
four columns of names, a decision was reached to display
only the first 14 characters of each attribute name, This
will allow each line of display on the screen to contain

four sets of the following:

2 columns -- attribute key number
1 column -- decimal point

1 column -- blank (spacing)

14 columns -- attribute name

2 columns -- blanks (spacing)
20 columns -- total

Four sets of the 20 columns would make up the 80 column
display. A module called SCREEN, which is found in the
COMMON unit, administratively handles counting the 20 lines
of display that is desired when listing the attibutes,
SCREEN is controlled by and modifies the global

value called LINES. LINES is used to keep count of how
many lines have been displayed since LINES was last set to
zero (0). When LINES is incremented to 20, it causes an
automatic pause and displays a user instruction that says

"Press <RETURN> to continue", This feature allows the DBA

51

LN T Y Py e o] PO L e e e .

Py T
Resle T T AKCNIPESRSENAP
e REEL R AP S

oy TR et oy
LR ataty T

.“rr.'.._-"rrr —

¢ -.II x“'

v IV -
.

to leisurely read the entire 20 lines on the screen, then

continue at will,

SUMMARY

The module FD and its submodules are responsible for
user friendly interaction with the DBA, while he inputs the
functional dependencies of unnormalized relations. The DBA
selects from a menu of attributes those attributes that
comprise the determinant attribute set and those that
comprise the dependent attribute set of each functional
dependency of the relation in question. Module FD also
gives the DBA the options to accept or reject in part or in
whole the individual functional depeandencies as they are

being input.

52

SR T T e e]
S |
i VI. NORMALIZE MODULE
R! B INTRODUCTION
| The automatic normalization of relations into Third
Normal Form (3NF) will produce relations that can
FI significantly decrease the idiosyncrasies of relational
databases. By reducing unnormalized relations into 3NF
g; realtions, the obvious problems of redundancy of data and
al other addition/deletion anomilies can be eliminated while
E}' maintaining the integrity of the data. This chapter covers
&} the design and implementation of the subsystem which
?! normalizes needed relations into 3NF.
?‘ The module NORMALIZE is designed so that it is
&é transparent to the DBA., After the module FD has aided the

@

DBA in defining functional dependencies, NORMALIZE will be
called by the executive TNT module to reduce the relation

in question to 3NF, NORMALIZE is passed a pointer value

that points to the relation that has just had its

1

functional dependencies defined. With this pointer,

NORMALIZE can access the relation and perform the needed

Fov LU
Lo e
v [

normalization,

|
i

Ty w

[

BY R

MINIMAL SET

Based on an understanding of minimal set, as defined

in Chapter II, the design of the normalization segment of

YWY,

this thesis effort closely follows Ullman's work. By

constructing a minimal set of functional dependencies, the
- resultant family of dependencies is in 3NF (Ref. Ullman:193).
e >3

b e e | — e y

....

DESIGN

The data flow graph and structure chart for NORMALIZE
are found in Figqures 11 and 12, respectively. As can be
deduced from examining the data flow graph of NORMALIZE in
Figure 11, the main thrust of this module is sequential in
nature. That is to say, one procedure follows another one
and so on until the last procedure is executed., Also the
output of one procedure is the direct input of the next
procedure. The procedures were designed with the concept
of functionality in mind. Each module performs a specific
function and only that function., There are six submodules
(procedures) that module NORMALIZE calls into execution,
They are called HIGH_LOW, BREAKOUT, RMOVE_SUBS,
RMOVE_TRANS, REGROUP, and NEW_REL.

The module HIGH_LOW is the first submodule called by
NORMALIZE. HIGH_LOW's function is to sort the relation's
functional dependencies in a descending manner, with
respect to the number of attributes in the determinant side
of the dependencies. Upon completion of HIGH_LOW, the
functional dependency pointer in the relation's structure
will point to a functional dependency that has the largest
number of attributes in the determinant side of the
dependency. Then each functional dependency, including
this first dependency, will in turn point to another
functional dependency with an equal or smaller number of
attributes or it will be the last functional dependency and

its pointer will be "NIL". The impact of sorting the

54

STNPOW FZITVWYON JO ydexp mord ejeq *11 2anbtg

SUOT3IeI3I pPOZ ITEWION

apts 3ybri uo
sainqrIije STdr3aTnuw/M
ad/m uotietray

dnoyo

poaowax A3TATI
-suexl gd/m

U ST VD VU ST G Y G R

uotieray
A J
paaouax]

s3osqns gd/Mm sqgd

uoTtle -

- I3ersy SanS FAOWM padousnbas /m :
uot3ieTay]
LNONY g @
]
sqd 30 apTs 3IybTa y
uo aInqrIiie pauTysp M
8uU0/M uoTIRIDY sdd /M uotielay]
.4
. E
4
%
-. ...k
., §
| e s, W e]

it i Jhash S Sunt]

CHE e A Mu A Al

9TNPOW AZITYWHON I0JF 3IIBYD 2INIONIIS °*ZI 2InbTd

Tad MAN

dno¥O

NVYI JAOWM

SENS FAOWM

JZITYWION

ILNoMvad g

MOT HOIH

56

functional dependencies at this particular time will become

apparent later when discussing some of the other modules,
but the reason for doing it now is strictly because of time
efficiency.

The module BREAKOUT performs the first step in
obtaining a minimal set from the family of functional
dependencies. BREAKOUT takes each functional dependency
that the DBA defined and separates it into functional
dependencies that have the same set of determinant
attributes, but with a single attribute as the dependent
set. For example, if F is a family(set) of functional
dependencies for a .relation, which consists of the
following dependencies:

AB-->CDE

A -->CX
C -=-> X
X -—->2Y

then the results of BREAKOUT would be a set of
dependencies as follows:

AB -->C
AB -->

XXOP PP

1

1

v
KNXXOMmO

As can be seen from the above example, all previously
defined dependencies can still be obtained from the "new"
set, so there is no loss of structure with in this step.

The second step in developing a minimal set is to

remove dependencies that are found to be redundant in their

57

PSP T - emtal e P a T -

yy—p——— r‘—, —rr—Y: ,H.u-,.,',.v —p————

rr——p—————
-

wr.,,

'

definition. The module RMOVE_SUBS will examine each
dependency in the list of functional dependencies and
remove the dependency if any other functional dependency
exists that has a determinant subset of the original while
determining the same single attribute. For instance, by
examining the above example again, it can be seen that the

following dependencies:

W ww
|
1
v

XKXOP DD
1
|
A%
KNXXODODO

can be reduced by this simple procedure. The resultant set

of dependencies would be as follows:

AB-->D
AB-->E
A -->C
A -=> X
C --> X
X -=> 2
X -=> Y

By examination, it can be seen that the dependency

"A B --> C" was eliminated. The question is "Why?". Since
there were two dependencies ("A B --> C" and "A ~--> C")
that determined the same single attribute and one of these
dependencies had as a determinant set of attributes a
subset of the other dependency in question, then the
dependency with the subset of attributes as the determinant
set of attributes was retained, while the dependency with
the larger set of attributes was eliminated. 1In other

words, since "A --> C", then there was no need to retain

58

L T UUYITW TR 7T TN T s TR e T T e TARETAIT e T T e me T T e .57 T .

the dependency "A B --> C". The explanation for this
procedure is simply stated in that if "A" can get you "C",
then why carry along "B" if it is not necessary.

The third step in developing a minimal set of
functional dependencies is the removal of all transitive
dependencies. A transitive dependency exists if a
dependency can be removed from the family of dependencies
and the resultant set is an equivalent family. The module
RMOVE_TRANS is responsible for eliminating any transitive
dependencies that exist in the family of dependencies. The
most recent example shows seven dependencies in the current

family of functional dependencies. They are :

o w
|
|
A4

XXOpprpp
!
1
v
KNXXOmOo

By careful scrutinization, it can be seen that one
dependency can be eliminated by the above procedure. By
examining the value on the right hand siae of each
dependency, the module searches to see if there are any
dependencies with single attributes in the determinant side
that are the same as the value in question. By beginning
at the top of the list, the module looks to see if "D"
(right hand value) can be found as a single attribute in
the determinant side of any other dependencies. It is not,
so the module examines the next dependency in question to

gsee if its right hand side fits the above description, The

59

ORI W YA G W W G . bl bt 8o Bomnd n - a 5 B - P P Y A.AJ

o

v A et am ve o b e g
N L o .
3 S e .

g .'Ir.'.v\'~ [y
,r.. T TR,

Ol kAt A At DNt

" rrrrrd"'.'.‘-'-‘?l ey
e L . . R »:

L -

(e

value "E" also cannot be found as a single determinant

attribute in a dependency. As RMOVE_TRANS progresses down
the list, it becomes apparent that the third dependency "A -
-> C" fits what is being searched for. The value "C" of
the third dependency is also found on the left hand side of
the fifth dependency, "C --> X".

With this realization, it can be deduced that since
"A -- > C" and "C --> X", that "A" implicitly determines
"X". At this point, it is desired to see if there is an
explicitly defined dependency "A --> X". In this éxample
the dependency "A --> X" does exist, so it should be
removed, This procedure should continue until the
dependency list has been exhausted and any existing
transitive dependencies have been removed. In this example,
there is only one transitive dependency, so the remainder
of the dependencies are necessary and meaningful. The

resultant set of dependencies would be as follows:

AB ~->D\

AB-->E \

A --> C \ Minimal
C --> X / Set

X -—->Z /

X ->Y /

At this time, the construction of a minimal set of
functional dependencies is complete., 1In addition, each
dependency, if treated as a relation itself, would satisfy
tue definition of a relation in 3NF (Ref. Ullman:194),
Since the dependencies are just dependencies, there are two

more steps required before they can be evolved into

60

relations, The first step will be performed by REGROUP and
- the second step will be handled by NEW_REL.

The module REGROUP is designed to examine the
resultant minimal set and collect functional dependencies
with like determinant attribute sets into groups. If this
function was performed on the previously defined minimal
set, then the following dependencies would result:

AB-->DE \

A -->C \ Regrouped
C --> X / Set
X -~-> 7Y /

As can be seen, the six dependencies in the minimal set

have now been reduced to four dependencies,

The question arises of why should the dependencies be
grouped back together? Since relational databases have as
a. (t. a prime characteristic the elimination of redundancy of
data, it would seem wasteful to create two (or more)

relations with the same determinant attributes., If the

family of dependencies were examined prior to the
regrouping step, it can be seen that there are six
dependencies with a total of 14 attributes., If each
dependency evolved into a relation itself, then there would
be six relations with these 14 attributes, It is easy to
see that there is redundancy because of the duplication of
determinant attributes, By looking at the resultant family
of dependencies after they were regrouped, it can be seen

that the four dependencies with 11 total attributes is more

effective. This amounts to a savings of 21 per cent of

required memory in this small example. In larger

61

v

databases, there could be a significantly greater savings,

The only possible objection to this procedure would
be in the area of security. For instance, in the previous
example, if the DBA gave authorization to a user to access
the attribute "D", but did not want him to access the
attribute "E", then there would be problems. Since both
attributes are in the same dependency the user could access
both of them. Because this objection is beyond the scope
of this thesis, a recommendation will be made for futher
examination at a later date.

The second step in transforming the minimal se* ° .o
useable relations is performed by NEW_REL. NEW_REL takes
each of the regrouped dependencies and creates a new
relation with the same attributes as the dependency. Each
attribute of the new relation will have the same domain as
was in the original relation defined by the DBA. NEW_REL
will query the DBA to supply a name for the new relation as
each relation is created. The results of this procedure

on the regrouped set of dependencies would look as follows:

RELATION NAME : XXXXXXX
ATTRIBUTES : A B D E
KEY : AB

RELATION NAME : YYYYYYY
ATTRIBUTES : A C
KEY : A

RELATION NAME : 2222727%
ATTRIBUTES : C X
KEY : C

RELATION NAME : UuUuUUUUU

62

e e Bonee P B St YIS Wy G e WP Gy a

T - T e — - T———

'
-l

ATTRIBUTES
KEY

X2Z2Y
X

oo oo

The relation names would have to supplied by the DBA at the
time they were created.
The result of NORMALIZE is the transformation of

unnormalized relations into relations that are in 3NF. 1In

this example, it has been shown that a relation with four
DBA supplied functional dependencies could be normalized
m! into four separate relations that have had both redundancy
: of data and transitive dependencies removed. It is entirely

coincidential that there were four dependencies originally

defined and four resultant relations. There is no way to
predict the outcome of this procedure because if the

dependencies were in a different order, a different minimal

GE, set would have been probable. Every other step would have

been affected also.

NORMALIZE IMPLEMENTATION

The module NORMALIZE is used as a calling executive
for the six submodules that comprise this segment of the
system. This allows the modules to be broken up into
segments according to their function., The six submodules

which will be called are HIGH_LOW, BREAKOUT, RMOVE_SUBS,

RGN APRON .V‘. !
KO -Ez. TR R R Al
. RSN e S A AL

RMOVE_TRANS, REGROUP, and NEW_REL. They are listed in the

T

order in which they will be called. This is also the order
that they will be discussed.
The module NORMALIZE will reference the COMMON

pointer value that points to the relation that requires

63

r,—'?" . 0 e e AR v i
. e e

I S I T P T T T T T T R R I R R SR

I NP PG NV SO T

o0 B e T P S -T

normalization. By using this method, there is not a
requirement to pass any values when NORMALIZED is called.

Module HIGH_LOW

The module HIGH_LOW performs a simple sort on the

ii functional dependencies of the relation in question, In
3 order to reference the relation, HIGH_LOW will use the

pointer value that NORMALIZE also uses,

- Module BREAKOUT

The module BREAKOUT performs its function by
accessing the linked list of sorted functional dependencies
and then creating additional dependencies by separating
the original dependencies into as many dependencies as

there are attributes in the dependent attribute set.

BREAKOUT will begin execution by examining the first
dependency, leaving the first dependent attribute
untouched in the functional dependency, then creating new
record structures and inserting attribute values for the

rest of the dependent attributes., BREAKOUT will continue

down the linked list until all functional dependencies have
E‘ been broken into dependencies with single attributes in the
dependent attribute set,

Module RMOVE_SUBS

3 This module is designed to remove dependencies which

&

Fﬁ have subsets of determinant attributes as determinant

!

3 attributes in other realtions. Each dependency also has to
i‘ have the same dependent attribute on the right hand side

2

e

5 - of the dependency in order to be a candidate for removal.

| - 64

L

L‘_’A‘_—_—- X L) LS PO SR " : 2) - e e e e B Ce hea Bel AR R A oA s m o a &l e a s . ,.J

RMOVE_SUBS begins by accessing the pointer to the
-;; relation, which has a pointer to the linked list of the
relation's functional dependencies, This module examines
the dependent attribute of the first dependency, then it
uses AUXPTR to search the list to see if there is another
g dependency with the same dependent attribute. If a
E dependency is not found, then the MAINPTR is advanced to
%i the next dependency and the process begins all over again.
: If there is a dependency found that has the same single
k% dependent attribute set, then there is a check to see if
ti the determinant set is a subset of the original relation in
question., If not, AUXPTR is advanced while trying to

~ﬁ; locate another dependency with a similar dependent

attribute set.

If both the dependent attribute sets are the same and
if the dependency at the AUXPTR is a subset of the dependency
at the MAINPTR, then the main dependency is a candidate
for deletion. This is performed by manipulating pointers
which effectively removes the the functional dependency
from the list,

Once the MAINPTR has traversed the entire linked
list, RMOVE_SUBS has completed execution. Control is
passed back to NORMALIZE so RMOVE_TRANS can be called,

Module RMOVE_TRANS

This module begins at the head of the linked list of
functional dependencies and searches for transitive

dependencies within the family of functional dependencies,

65

MIP UL P AT, I | 1 NP W Y vy i P S —— e

e e T e T Ty e T O o v v v v oW e v e

T f MR
A ‘I‘ s
AR IR

L4

L an
f

yorw ”
@ e a

L R A S A
PR R T S

a0 o A

it §

This procedure is performed by manipulating a set of

three pointers. The required pointers are the MAINPTR,
the SNGLPTR, and the AUXPTR. The MAINPTR will be the
pointer which traverses the linked list of functional
dependencies searching for the first dependency of a
transitive dependency situation., MAINPTR will be advanced
to the next functional dependency after no transitive
dependencies are found or after there are no more
transitive dependencies to be removed.

SNGLPTR will point to the first dependency in the
list that has a single attribute in the determinant
attribute set. This pointer will be a constant pointer for
each relation to be normalized. Since there is a need to
access the single determinant dependencies within the set
of functional dependencies, SNGLPTR provides an immediate
access method to the first dependency of this type.

AUXPTR will point to dependencies as transtivity is
trying to be established. 1In fact, at the beginning of
each separate search for transtivity for each particular
relation, AUXPTR will be set back to equal SNGPTR. The
reason for this is that since each dependent attribute set
is a single attribute, all multiple determinant attribute
sets can be bypassed and just the single determinant
dependencies need be examined. Looking back at the example
of the family of dependencies before RMOVE_TRANS was

executed, the following dependencies can be recalled:

66

I e A L L A AP N S

3

MAINPTR SNGLPTR AUXPTR

<-—

W w
|
|
v

XXOADPPDPY»
|
1
\%
KX XOMmO

The original position of the pointers are shown in the
above example. SNGLPTR will always remain at the first
occurance of a single determinant attribute set. The
MAINPTR will traverse the list attempting to find the
beginning of a transitive dependency. Once MAINPTR has
reached the end of the linked list, then the submodule
RMOVE_TRANS has completed execution and control is passed
back to NORMALIZE so REGROUP can be called.

The AUXPTR will always be reset back to equal SNGLPTR
when MAINPTR is advanced one position down the list. AUXPTR
is used to traverse the segment of the list that contains
single determinant attribute sets., The reason for this is
that since there are only single attributes in the
dependent attribute set, all multiple determinant attribute
sets can eliminated from consideration, This will
significantly reduce search time for possible transitive
dependencies.

Module REGROUP

This module is responsible for consolidating into a
single functional dependency all those dependencies which
have similar determinant attribute sets, This

consolidation is instrumental in upholding one of the main

67

PPN

ik Dhan 28 i"" NG
Dt 'l‘l"4A et IR o
oS e TS e e P

l’f‘l
L

P
. e

C e i il S e S

purposes of relational databases: eliminating redundancy of
data. Two pointers are required to perform the needed
manipulation in this procedure. There is a MAINPTR and an
AUXPTR that traverse the list of dependencies seeking those
that are similar in the determinant attribute set.

Module NEW_REL

Module NEW_REL will create new relations from the
regrouped functional dependencies provided by the module
REGROUP, NEW_REL is required to create the record structure
to hold the relation definition, query the DBA for the new
relation's name, and initialize all values in the relation
definition., The initialization will be accomplished by
accessing information that was in the original relation
definition (i.e., domains,etc), as well as setting the
NORMALIZE switch of this new relation to "on", so it will
not be normalized again., NEW_REL will also make a check
for duplicate relation names as the DBA is queried to input

the new relation's name,

SUMMARY

The module NORMALIZE is the section of this thesis
effort that normalizes relations into 3NF. To do this,
NORMALIZE calls six submodules, which first sorts the
dependencies by size of determinant sets, performs a
minimal set on the dependencies, then regroups the
dependencies, and then creates new relations from these
dependencies., Control is passed back to TNT when

NORMALIZE has completed execution,

68

-. ~ .."x j’-- '1“7.'-,. ik '~‘~.i

% & 7 « 7 ., T Tk T oW 7 .

VI. TESTING, CONCLUSIONS, and RECOMMENDATIONS

TESTING

The implemented portion of this thesis effort was
presented to students of the present database class here at
AFIT. After executing the compiled system, each was able
to describe functional dependencies from the list of the
relation's attributes diplayed. None noted any substantial
difficulties with the process. Some of their
recommendations included not allowing duplicate attribute
selections within the same relation, as well as including
some additional screen houskeeping segments. These are
legitimate recommendations and might be good choices for

future implementation,

CONCLUSIONS

This thesis effort had as an original goal the design
an implementation of an automated system to normalize
relations in a relational database. This entailed
integration with one of two existing databases within the
Digital Engineering Lab (DEL) at the Air Force Institute of
Technology (AFIT). The existing databases were the Roth
Database System and the Fonden Database System. Due to its
stage of completion, the Roth System was chosen because it
was thought to have the best potential in aiding this
effort.

This effort was implemented using UCSD PASCAL on the

LSI-1ls in the DEL. UCSD PASCAL proved to be an adequete

69

. . - : .
L D T T Tt T e

- v‘q' TTTTYTYITTY r.".".".'v'."'r

Y v
R . i . Lo
F—- '™ B

programming language for accomplishing this work, but
problems were encountered while using the PASCAL FILER
system. The problems centered around the FILER "losing" or
inadvertently writing over files already stored on disk
files. This created tremendous annoyances,

This thesis effort was divided into two main areas
with each area involving research, design, implementation,
and testing. The two areas were the interactive user
segment, which queried the DBA for functional dependencies;
and the normalization segment, which normalized relations
into 3NF. But, even before the systems could be advanced
past a crude design stage, an in- depth analysis of the
Roth System was accomplished and then modifications were
made to this system so it could produce a data file which
would be acceptable for this thesis effort. The needed data
file was crucial from the onset of this effort, Once the
data file could be created and accessed as required, this
thesis effort was able to progress in a more orderly
fashion,

The design and implementation of the interactive user
segment of this effort was accomplished and it provides a
method for the DBA to input functional dependencies of
relations that require normalization., This was achieved by
informing the DBA of the relation to be normalized,
displaying the attributes, and then querying the DBA for
the functional dependencies. This segment attempts to

guide the DBA through thics defining portion while

70

e o L LI N Y S Y e re e PN 2 il o) S

. e =TT e

inflicting as little grief as possible. The functional

dependencies are stored in memory as they are described.
They are later used in the normalization process., A future
effort might possibly implement a system to write these
dependencies to a disk file so the DBA and system users can
maintain records of the manipulated relations,

The normalization segment was designed through the
data flow diagram, the structure chart, and the program
design language (PDL) levels. These are found in Appendix D.
When implemented, the design will accomplish normalization
of relations up through Third Normal Form (3NF). This
particular effort is a prime candidate for further
examination and completion, not only through 3NF, but all
the way through 5NF., This would be an excellent thesis
effort for someone interested in databases, because
normalizing relations beyond 3NF can produce relations
which are not desirable. The challenge will be in
determining which relations are desirable as well as being
worthwhile. Before attempting this effort, a detailed
systems requirements and specifications analysis should be

performed,

RECOMMENDATIONS

This thesis effort opens up several areas for further
investigation., As mentioned before, there exists the need
to develop a method to document the changes which relations
experience during normalization. This would give the DBA

and users access to what actually occurred through the

71

execution of this system.

Areas to examined in the normalization segment would
include, but would not be limited to, the implementation of
of the designed, but unimplemented portion of this thesis

effort, as well as investigating the design and

implementation of segments to normalize up to S5NF. Also, a
topic yet to be introduced would be the effect of such a

system on the limited memory capability of the DEL's LSI-lls.

Ty R Sk Ao
ST A .
Tttt X o

Ta |‘.'- P . o et

MLl

LA nti A

: 4 T, BAS
I BRI
I

i
‘4

2 ol

Y SO

'va-v (s Ko J0n
. . .
PR

N

72

1r1[7‘v—..-.
v e R

BIBLIOGRAPHY

Worden, R., "Relational Databases on Minicomputers,"

"Proceedings of the Minicomputer Forum 1978, 63-77,

London, England (November 1978).

Date, C. J., An Introduction to Database Systems,
Reading: Addison-Wesley Publishing Company, 1981.

Hubbard, George U., "A Technique for Automated Logical
Database Design," New York University Symposium on
Database Design, 1978.

Ullman, J. D., Database Systems, Rockville: Computer
Science Press, Inc., 1980.

Roth, Mark A., "The Design and Implementation of a
Pedagogical Relational Database System," (Thesis)

School of Engineering, Air Force Institute of Technology,
Wright Patterson AFB, Ohio, 1979.

Rodgers, Linda M., "The Continued Design and Implementa-
tion of a Relational Database System," (Thesis) School
of Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, Ohio, 1982.

Galitz, Wilbert 0., Handbook of Screen Format Design,

Wellesley, Massachusetts: GED Information Systems,
Inc., 1981.

73

v—vr—r rv—vt-‘

e

aEALS

PRY W PN

T ————

2

APPENDIX A

USER'S GUIDE: THE AFIT RELATIONAL DATABASE SYSTEM

THE RELATION NORMALIZATION FACILITY

INTRODUCTION AND OVERVIEW * SECTION 1

The Relation Normalization Facility described in this
document is a program intended to run on a stand-alone
minicomputer under the control of UCSD Pascal Operating
System, Version II. All software is written in Pascal.

This system is designed to be used primarily with
a CRT terminal as a CONSOLE device. The program does re-
quire some kind of fast mass storage such as a floppy disk
system or better.

The function of the Relation Normalization Facility
is to provide the Database Administrator (DBA) with the
ability to normalize relations to Third Normal Form
(3NF) . This system interacts with a modified version
of Lt Rodger's thesis effort concerning the AFIT Relational
Database System. The modifications to Lt Rodger's effort
entailed the addition of a "normalization" switch to
each relation record and the appropriate code to the
modules that defined relations, read relations from disk,

and wrote relations to disk.

74

©M

e rryy o R AR L N
. viip-;s~uu
L L. et Tl

s

MAD AL A
A @

e aa 0 oa am A an aa o
.

YW T T, Y v v e % v

l.1 The Relation Normalization Facility: An Overview

The structure of the relation normalization facility
is depicted in Figure A-l. The diagram depicts the upper
level structure chart of the facility. The EXEC queries the
DBA for input and output file names, as well as calls the
modules SETUP, FD, NORMALIZE, and QUIT when appropriate to

do so.

EXEC

NORMALIZE

Figure A-1l. Relation Normalization Facility

HOW TO USE THE RELATION NORMALIZATION FACILITY * SECTION 2

(LY
o
[

Starting the System

To start the system, execute the TNT file RUN.CODE.
The disk which contains this file must remain on-line
during the execution of this system in order to permit
segment swapping.

2.2 Naming Input and Output Files

The system requires the DBA to first key in the
disk drive number and the file name of the input file.

The DBA is given a chance to verify his input. If the

75

L S B J0h ek e

e L

g
.“ e
P I A

———————

?

r~ ' q

AH,—-‘.-I.-.-'-(—,A:—T 3o
R R .J‘ S

- Ny T - uihE aui B el il AN A L A A e M -—1

file does not exist on the disk indicated, an error will
result and the operating system will automatically be
re-initialized. The input file must be in the format of
the Modified-Roth SETUP.DATA as described in Appendix C
of this document. This input file can be created by
executing the Modified Roth RUN.CODE file. The first
step to be accomplished is to perform an "INITIALIZE."
This will wipe out all previously defined domain and
relation definitions. Then domains and relations should
be defined as desired. A point to remember is that
domain(s) of a particular relation have to be defined
before the relation itself.

The Output file will also have to be named by the

DBA, Its name must be different than the input file name.

The DBA will be given the chance to immediately verify
the name submitted as the output file name and resubmit
the name if necessary. The DBA is queried by the system
to submit the output file name. The query will look
similar to the following: |

“Type in the disk drive number and the file
name of the OUTPUT file that you will be using.

"

Once the DBA has responded, the verification query will
look similar to the following:

"Is (output file name) correct? (Y/N)"
Any answer other than "Y" for "Yes" will cause the initial
response to be ignored, the original output file query will

then reappear, the DBA will have to respond, and the

76

1

'."-.'." “'A ‘.. T . A .i 'L "_‘l“ | :

L

-

e o LA AT RN, ot
! l‘. v e v LI
< . . i PR

ATy S o A
e e

- Y TWLIN T

Y

Pt

verification will have to be reaccomplished. The naming
and renaming of the output file will continue until an
acceptable name has been submitted and the verification
response is "¥Y".

Once the DBA has submitted the input and output file
names the system will then look for the input file on the
named disk drive and if a file with the same named file
is not found, the Operating System will automatically
re-initialize and all previously accomplished work in
the session will be obliterated.

After the named file has been found, the domain
definitions will be read first and immediately written to
the output file. Then the relation definitions will be
read from the input file and stored in memory in the
form of a linked list structure.

Once the relation definitions have been stored in
memory, the first unnormalized relation, if any exist,
will go through the process of defining functional
dependencies and then through the normalization process.
Each successively located unnormalized relation will
be processed in a similar manner. The remainder of
this User's Manual will discuss the two processes of
defining the functional dependencies and of normalizing

the relation.

DEFINING FUNCTIONAL DEPENDENCIES

When a relation has been located that requires

normalization, the EXEC module first calls the module

77

PO

wow L st Tbaiar Ran AR A S B AR RN SEDA R L i SRl M it R R Sl M- v i . Al R S RSN S St St S [|

FD to query the DBA for functional dependencies (FDs).
After all the FDs have been defined for the relation in
question, the EXEC will call the médule NORMALIZE to reduce
the relation to 3NF. Then the EXEC will look to see if

any other relations in memory are in unnormalized form,

so they may have their FDs defined and then be put into
3NF.

The first step in defining FDs for a relation is to
define the determinant attribute set. But even before
defining any attribute sets the system will display a
message as follows:

"Relation xxxx is selected to be normalized," where
xxx i1s the name of the relation. This allows the DBA to
know the exact relation that is being manipulated.

Then a message is displayed to instruct the DBA that
now is the time to select determinant attributes. Next is
a sequence of steps that entail listing all the attributes
of the relation, asking the DBA to choose one as a deter-
minant attribute, and then asking if there are more
determinant attributes to be ‘chosen.

The listing of attributes is accomplished by dis-
playing up to a maximum of four (4) attributes on each
line of display, with 20 lines of display being the
maximum allowed per screen., If more attributes exist
than were displayed, the DBA is required to press the
<RETURN) key to signal a continuation of the listing

process.

78

e T § 1 o e

Each attribute is displayed with a preceding unique
key number which allows the DBA to be able to reference
each attribute without having to type in the name, but
just the attribute's key number. This should help avoid
spelling errors and other miscellaneous mistakes.

The DBA is also asked if any more determinant attri-
butes are to be named. If a negative response is input,
then the system proceeds with the naming of dependent attri-
butes. If an affirmative response is input, then the
attributes are displayed again, the DBA is asked to input
a key number to represent the attribute selected, and then
the question of if there are more determinant attributes
to be named is posed to the DBA.

Once all determinant attributes have been named,
dependent attributes will be named in a similar manner.
There is an introductory message displayed, a listing
of attributes, a query for the naming of an attribute, and
then the request for if there are more attributes to be
named.

After the last dependent attribute of the FD is
selected, a query is displayed to determine if there are
more FDs to be defined. If a negative response is returned,
the EXEC calls the NORMALIZE module to normalize the
relation with respect to the FDs defined for the relation.
If an affirmative response is returned, then the entire
process of defining determinant and dependent attribute

sets is repeated until there are no more FDs to be defined.

79

PRt e e Auaniaid

NORMALIZING RELATIONS

The normalization process when implemented will be

u - transparent to the user. This is only because there is

) no user interface in this segment of the system.

80

PR W Wy PSS W

A PRINGAOAG
A

APPENDIX B

INTERACTIVE AUTOMATED SYSTEM

for NORMALIZATION of RELATIONS

INTRODUCTION
Data base technology has been described as "one
of the most rapidly growing areas of computer and infor-
mation science" (Ref 1:63). As a field, it is still
relatively young; manufacturers did not begin to offer
data base management products until well into the 1960's-
A data base management system (DBMS) can be thought of
as a system comprised of a collection of data and a set
of application programs which are designed to manipulate
the data. An important concept of database is that the
data must be stored in the computer on direct-access
devices (such as disks) in order for the computer's
central processing unit to be able to utilize the data's
cross-references within a reasonable amount of time.
In the mid 1970's a diffefent type of data base appeared
on the scene. 1Its name, relational data base, implied
that certain data could be viewed as a relation to other
data. These relaticns are described in a two dimensional
table consisting of horizontal rows and vertical columns.
In the Digital Bnqineerihg‘Laboratory (DEL) at the
Air Force Institute of Technology (AFIT), the need and
desire existed for a reclational DBMS system, to be used

as a pedagogical tool for instructing students in the

31

A o maalmlate®atotelie alas [P Lol ant PRI SO SPICIDE RPN, SV SR USRI S, SHN SIS P

e

design, manipulation, and use of database systems. In
1979, 2LT Mark Roth des--.gned and partially implemented
a system (Ref 2) which has served as a starting point
for the continued development of the AFIT Relational
Database System. In addition to the work completed by
Roth, 2LT Linda M. Rodgers (Ref 3) continued the imple-
mentation of the system in 1982. An additional desire
from the DEL was the design and implementation of a
stand-alone system to guery the Database Administration
(DBA) for functional dependencies of existing unnormal-
ized relations and the subsequent normalization of said
relations. This thesis effort is the result of that
desire.

Relations in a relational database can be depicted
as a two dimensional table consisting of horizontal rows
amd vertical columns. For example, the relation FIRST,

Figure 1, is depicted by a table with 12 rows (tuples)

and 5 columns (attributes). This paper will use the
terms "row" and "tuple" interchangable, as well as the
terms "column" and "attribute". FEach tuple refers to

a separate entity, while each column has values that
were obtained from the domain of ecach attribute. In

the case of "SNUM", its domain would contain "S1", "s2",
"s3", and "54". The domain of the attribute "CITY"
would contain "LONDON" and "PARIS". So, each attribute
has a distinct domain or value set from which its values

are drawn.

82

.

* PR
R A

LUAIAAD

v
1

Lugun oot L ohn AL el et (SR SUR S Loes sk Rl e L aaie aan sae ue FEb e e oren arae e B ae b e e ae g 'y ~r -y

SNUM STATUS CITY PNUM QTY
S1 20 London Pl 300
S1 20 London P2 200
Sl 20 London P3 400
Sl 20 London P4 200
Sl 20 London PS5 100
Sl 20 London P6 100
S2 10 Paris Pl 300
S2 10 Paris P2 400
S3 10 Paris p2 200
S4 20 London P2 200
S4 20 London P4 300
S4 20 London P5 400

FIRST

Figure 1. Gample of Relation FIRST (Ref 4:240)

The relation FIRST has some inherent problems within
its structure. The predominant problem is redundancy.
The same values can be found for STATUS and CITY for all
like values of SNUM. For instance, with a SNUM of S1,
STATUS is always "20" and CITY is always "LONDON". This
redundancy of data is expensive in terms of the additional
storagerequired to hold repctitous data and in terms of
the number of updates required if a supplier might move
from one city to another.

At this point the term functional dependency (FD)
becomes signigicant. Functional dependency is described

as follows: "given a relation R, attribute Y of R is

83

PN

Ty

S R BRI o - ™

‘- » " . .
@ e

A

Wt

1

L omd

i N RN ks -.' ".""
.I.h/.. Y

Nk Pt SR N
Sl L

l;'.; S T S TG R TR

functionally dependent on attribute X of R, if and only
if, each X-value in R has associated with it precisely
one Y-value in relation R (at any one time)" (Ref 3:240).
Functional dependencies might be thought of as a special
type of integrity constraint. This means each value of
the attribute X in relation R will functionally determine
one and only one value for attribute Y in relation R.
With the definition of FD in mind, the main thrust
of this thesis is reached, that is,normal forms and the
normalization of relations. There have been described
six normal forms. They are First (1NF), Second (2NF),
Third (3NF), Boyce-Codd (BCNF), Fourth (4NF), and Fifth
(5NF) normal form. The first three forms are stepping
stones to BCNF and beyound. The "normalization process"
reduces relations to the successibe six normal forms,
if the relation is not already optimal. Using the pre-
defined FDs, this normalization process produces a col-
lection of new relations that are equivalent to che
original relation, but frbm a data point of view, more
desirable.. They are more desirable due to the elimina-
tion of redundancy and the creation of compact and

meaningful relations.

STATEMENT OF PROBLEM

The purpose of this paper was to solve two problems.
First, a system was to be designed and implemented to

gquery the DBA for functional dependencies of relations

84

. PP W W N PP, Y P e B o B - = A S . S P, STNE. W N T S

4

-

that exist in INF. This segment of the thesis effort
was to be a "user friendly" interactive system which
would communicate with the database administrator by
providing prompts, guidance, accurate display of results,
and the ability to negate previous reguests.

Secondly, a system was desired to normalize relations
to Third Normal Form (3NF). When both goals are combined,
the final system will provide the DBA a method to inter-
actively communicate to direct the normalization of

unnormalized relations.

SCOPE

The scope of this paper was to design and implement
an interactive system to normalize relations. The design
phase will utilize current Top Down Structured Programming
(TDSP) techniques. The main effort was on the design
and implementatior of an algorithm to normalize relations
that were defined by the Data Definition Language (DDL)
(found in Appendix 2) of the Roth database system (Ref 2).
In addition, a "user friendly" interface was designed
and implemented to allow the user exclusive control in
defining the functions dependencies of the relations to

be normalized.

APPROACH
The first step consisted of an extensive literature

search to examine the research already completed in the

85

T W v W

-

rr..l
i@

qu,va.W(
ASASMA

& co
L

11
. RANEARRERE AR
..
. . SN N

7.-11':1_ Dyt 2aAe
A I.

Sl

S

r‘

R P g e ———— W - Ny T RENA Sna St Maam B Sae e S Se o

normalization area. A multitude of data base experts have
written on the normalization concept. The literature
search was then directed specifically to the normalization
algorithm area to determine if any research had been accom-
plished and recorded. Very little work has been recorded
in this area. Both Hubbard (Ref 5) and Date (Ref 4) have
outlines for algorithms, but do not provide any detailed
information towards an algorithm.

Continued research revealed that Ullman (Ref 6: 178)
proposed the concept of a "minimal set" and then went on
to prove that a minimal set of functional dependencies was
in 3NF. With this algorithm in mind, the required
modules were designed using TDSP methods and then they
were compiled and validated, first as stand alone modules
and then as an integrated portion of the existing Roth

Database System.

SEQUENCE OF PRESENTATION

The remainder of this paper will discuss the user
friendly system to define functional dependencies, the
method used to derive a "minimal set,”" and the resultant

conclusions of this effort.

DEFINING FUNCTIONAL DEPENDENCIES

The executive module TNT is designed to traverse a
linked list structure of relations in memory searching for
unnormalized relaticons. When such a relation is found,
TNT calls the module FD so that functional dependencies

87

ke Py PP W W IR T | L 2 NP ORI AP W P PN TN P W G Y R T S T

i B R Nl B RP S I at S e e T v w

can be input by the Database Administrator (DBA). The
module FD is passed a value that points to a relation that
needs to have its functional dependencies defined.

FD is designed to ask the DBA to input the attributes
which comprise the determinant attribute set and the
attributes that comprise the dependent attribute set of
individual functional dependencies. To aid the DBA in
knowing exactly which attributes are in the relation in
question, a menu display of the attributes was determined
to be useful. Each attribute is displayed with a key
number in front of the attribute. The key numbers run
sequentially from 1 to N (with N being the number of
attributes in the relation). The attributes are numbered
in a left to right fashion with attributes 1 to 4 on the
first line, attributes 5 to B on the second line, and so
on until all attributes or 20 lines have been displaved.
If there exist more attributes than have been displayed,
the DBA signals for a continuation of display by pressing
the €RETURNY» key. Figure A-2 depicts the screen display
which will be presented to the DBA so he may select
attributes to define functional dependencies.

Functional dependencies, as implied earlier, consist
of two sets of attributes: the determinant set and the
dependent set. The determinant set consists of attributes
that imply (determine) the dependent set of attributes.
The module FD first asks the DBA to input individually the

attributes that comprise the determinant set, and then

88

L o
¢ B
o

BN ASALSAINS SIS0 SR A IS R
S [R . .
.
.

P T Lamam

l. aaaa 2. bbbb 3. cccc 4. dddd
5. eeee 6. ffff 7. gggg 8. hhhh
9 iiii 10. 3333 11. kkkk 12. 1111

73. ssss 74. tttt 75. uuuu 76 . vvvv
77. wWwww 78. xxxX 79. Yyyy 80. =zzzz

Figure A-2. Sample Screen Display of Attributes.

asks the DBA to input individually the attributes that
comprise the dependent set.

Since the module FD is the main interface with the
DBA, it was desired that FD would be as "user friendly"
as possible. To this end, the design of FD was accom-
plished with four main considerations in mind. The
considerations contemplated were human factors, soft-
ware, hardware, and the required applications. But even
before these, there are some overall observations that
should be reviewed. They are.the concepts of design
consistency, design standard, and design tradeoffs.

Design consistency is the first cardinal rule of
all design activities (Ref 7:12). Consistency is
important because it can reduce regquirements for human
learning by allowing skills learned in one situation
to be transferred to another situation like it. While
any new automated system must impose some learning
requirements on its uscrs, it should avoid burdening

89

- 2 mde e % A oA e A e Do a A PO Y . S Scrneolin

- AD-A127 496 INTERRCT]VE RUTOMATED SYSTEM FOR- NORMALIZATION OF 2/3
RELATIONSCU) RIR FORCE INST OF TECH RIGHT-PHTTERSON
SCHOOL _OF ENGINEERING C T TRAVIS 1

AFB_OH
UNCLRSSIFIED RFIT/GCS/EE/SRN—

10 B
|||| =
"m TR 2

N
O
o

Iz |

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

PR R A

T, Y YTy

B

.

P B o .,-.-—“,.——ﬁ

productive learning with nonproductive, unnecessary
activity. Inconsistencies in design are caused by differ-
ences in designers, as well as from pressure imposed by
time constraints. The solution in these cases usually
consists of exceptions that the user must learn to handle.
People perceive a system as a single entity. To them

it should look, act, and feel similar throughout. Excess
learning can hinder their performance and ultimately
influence their acceptance of the system.

The module FD is an interactive module that queries
the DBA for functional dependencies. FD displays on the
screen the name of the relation and a menu (listing) of
its attributes, each with an associated key number. FD
first asks the DBA to name the determinant attributes,
and then FD asks the DBA for the dependent attributes.

The DBA is required to input each set of attributes by
keying in the associated key number of the second attrib-
ute, then the number of the second attribute, and so on
until all attributes of the déterminant set have been in-
put. The ¢querying for determinant and dependent attrib-
utes have been consistently designed. Each section of
the module that requests the naming of attributes do
themse lves produce gueries, accept responses, and dis-
play crror notices similarly and consistently. Because
these two sections provide similar services, consistency

and procedural usage are not difficult to substantiate.

90

v T ——— -.—-__.-.-—fv,,_‘.-,f.f.w.‘vr.f.,-.-rw.rifw

Design consistency 1is achieved-by applying design
standards. The purpose of design standards is to provide
a product that is (1) consistent from both an appearance
and a procedural usage standpoint, and (2) visually clear
and easily used (Ref 7:32). Their objeclive is to reduce
the subsystem processing errors and increase processing
speed by faster initial learning of screen formats and
discouraging "extraordinary situations" during daily

activities. Some people might say that designer crea-

tivity may suffer from the imposition of design standards,
t" but that would seem a small price to pay for an effective

design.

As stated before, the module FD is consistent in its

outward appearance (to the DBA) and its procedural usage.

The sections that process queries, responses, and error
notices are also easily used by the DBA. In fact, because

of the display of a menu of attributes, the DBA is required

[- to input only the associated number of each desired attri-

bute, not the whole name, whiéh would have allowed spelling

errors, confusion, and frustration.

Design tradeoffs are products of: incompatible

TR

i""’ 3 . i B LI

..‘,‘. et
Tt .

designer guidelines; time, accuracy, cost, or ease-of-use
requirements; and human requirements. Design guidelines

often conflict with one another or with machine processing

S —
e

requirements. In such conflicts the designer must weigh

alternatives and reach a decision based on accuracy, time,

' @

cost, and ease-of-use requirement. This leads to another

91

——YT VY

Lk S At et i A SEE o dee on

w

il 4

F e

rule in user friendly systems designs: Human requirements
always take precedence over machine processing regquire-
ments. While it might be easier for the designer to
develop a system at the expense of the users, this must
not be tolerated.

The module FD and its submodules were designed with
an emphasis on ease-of-use concepts. For instance, a menu
of attributes for the relation in question will be dis-
played with a key number in front of each attribute. When
required to input attributes, the DBA will only have to
input the associated key number, not the whole attribute
name. The DBA also has the choice of continuing or stop-
ping the current session each time a relation has had its
functional dependencies input and the relation has been
subsequently normalized. This allows the DBA the choice
to curtail the current session, which causes all the
relations (whether normalized or not) to be written to the
new output file. At a later session the DBA might re-
execute the TNT system using ghe last output file as the
new input file. In the new session the DBA has the same
choice of sequentially handling as many unnormalized rela-
tions as he wants fto or as time permits. Time savings
and convenience will aid the DBA in accomplishing his
objectives for the session.

Human considerations are the needs and requirements
of the user and are oriented toward clarity, meaningful-
ness, and ease-of-use. Ease-of-use has been a constant

92

goal in the design of this thesis project, as has been
discussed in previous sections. Hardware and software
considerations reflect the physical constraints of the
terminal on which the screen will be used and the charac-
teristics of the controlling program. They provide a frame-
work within which the screen design must occur. The CRT
display screens used with the LSI-1lls in the DEL lab are
limited to an 80 column by 24 line display, so it was felt
that when trying to display menus of attribute names that
a maximum of four columns with a maximum of 20 lines of
attribute names would not degregate the readability of

the screen.

Roth originally decided to allow attribute names to
be up to 132 characters in length, but it was felt neces-
sary to truncate the attribute names to the first 14
characters in order to allow the display of four columns
on the screen. This truncation is only in effect for the
display of the attribute names. The names remain unchanged
in memory.

If the relation has more than 80 attributes, two or

more screens of display will be required. After a screen
has been displayed, an automatic pause will allow the DBA
g to examine the list as necessary. When ready, the DBA
will signal for a continuation of the listing by pressing
the <§ETURN> key . Then the next set of attributes will
‘j be displayed either until the screen is full or the last
attribute has been displayed. Application considerations

93

T Y Y
R

Cule S Jeaien -ty - Sne JeunILant i NAR N gt gete i aoe e y Dl ey T p— N R TT————

reflect the objectives of the system for which the screen
is being designed. They are the data or information build-
ing blocks which make up a screen display (Ref 7:14). The
application consideration for FD is the input of accurate
functional dependencies that will aid the system to cor-

rectly normalize relations.

NORMALIZATION OF RELATIONS

The automatic normalization of relations into Third
Normal Form (3NF) will produce relations that can signif-
icantly decrease the idiosyncrasies of relational data-
bases. By reducing unnormalized relations into 3NF rela-
tions, the obvious problems of redundancy of data and
other addition/deletion anomalies can be eliminated while
maintaining the integrity of the data.

The module NORMALIZE is designed so that it is trans-
parent to the DBA. After the module FD has aided the DBA
in defining functional dependencies, NORMALIZE will be
called by the executive TNT module to reduce the relation
in question to 3NF. NORMALIZE is passed a pointer value
that points to the relation that has just had its functional
dependencies defined. With this pointer, NORMALIZE can
access the relation and perform the needed normalization.

Due to the significant amount of time spent in the
beginning of this effort towards understanding the Roth
Database System and pinpointing potential modifications,
this normalization segment was designed and the Program
Design Language (PDL) for each module was written (can be

94
3

ik

-

Clhaoat e Bie A &
St

DL o N

)
4

NY RS

| AeCliinERay

Y
S A

——y n P S ——— A e e s S e e dt Mt B MY R P e At

found in Appendix D of this document), but was not imple-
mented. Implementation should be of little effort for a

team of gualified PASCAL programmers.

MINIMAL SET

The design of the normalization segment of this
effort closely follows Ullman's work. By constructing a
minimal set of functional dependencies, the resultant
family of dependencies is in 3NF (Ref 6:133-4).

The main thrust of the module NORMALIZE is sequential
in nature. That is to say, one procedure follows another
one and so on until the last procedure is executed. Also,
the output of one procedure is the direct input of the next
procedure. The procedures are designed with the concept
of functionality in mind. Each module performs a specific
function and only that function. There are six submodules
(procedures) that module calls into execution.

Ullman states three requirements are necessary for a
set of functional dependencies (FDs) to be a "minimal set"
and subsequently in 3NF. First, he says that each FD in
the family of FDs can only have one dependent attribute in
the dependency. This step entails creating as many new
FDs as there are dependent attributes in the original FD.
These new FDs will be substituted for the original FD.

For example, if the FD of A B —®» C D E exists in a
family of FDs, then the result of this step would appear
as the following:

AB —» C

95

L A s sal Saat SaarEnat-l S S gn- Mo JIVL SRS SN At g — ‘W - e

AB —» D
- AB —3 F
As can be seen, the original FD with three dependent
attributes was replaced by three new FDs. The signifi-
cance and meaning of the original FD has not been iost
in this step because FDs with similar determinant attri-

butes can later be regrouped as needed.

The second requirement for establisning a minimal set
is to remove dependencies that are found to be redundant

in their definition. This means to remove the FDs which

have a subset of determinant attributes that determines
the same set of dependent attributes. For instance, if

the 'rDs AB =—» C and A —3» (C exist, then the FD

(‘- A B —»= C should be eliminated because the FD A —= C
[| will still exist and because if A by itself implies C,
then why retain the FD where A and B implies C. This
step has eliminated the redundancy of the FDs.

The third requirement is.to remove all transitive
dependencies within the family of FDs. A transitive

dependency exists if a dependency can be removed from the

T v
. N YL .
v S e .
. ' . . g
. L e e coe e e

4

family of dependencies and the resultant set is an eguiv-

alent family. If three FDs exist in a family of FDs such

hahdrh 2 hon e e 2 B) AER A e A BB A4 40 AA Ak o

4 as: A ——w» C, A ——P= X, and C —» X; then it can
be seen that A implies X directly in one dependency as
well as through the attribute C, i.e., A ——= C and

e C —» X. Because a transitivity exists, the FD

—

7.; A ——3p= X should be eliminated.

K 96

L

g

b

.

L"

’ ,'.-.fe-rﬁ

T ,.

1

wvwp ey Vv W

)

.
-

At this time, the construction of a minimal set of
functional dependencies is complete. In addition, each
dependency, if treated as a relation itself, would satisfy
the definition of a relation in 3NF (Ref 6:194).

Because relational databases strive to reduce redun-
dancy of data, a process beyond deriving the minimal set
is necessary to continue this effort of reduction of
redundancy. This process is one mentioned in an earlier
section; that is, the grouping together of dependencies
with similar determinant attributes. This will eventually
eliminate the creation of two (or more) relations with the
same determinant attributes.

Once a minimal set has been derived and FDs with
similar determinant attributes have been grouped as
single FDs, then the last step will be to create separate
relations out of each FD within the family. For instance,
if the FD A B —9 C existed in a family of FDs, then a
relation would be created with the attributes a, B, and C.

The key would be the attribute set A B.

CONCLUSION

Unnormalized relations in a relational database
can be automatically reduced to 3NF if functional depend-
encies are provided for use by this system. This effort
produced a system which interfaces with the Roth Database
System and which when fully implemented can interactively

query the DBA for functional dependencies of a relation

97

AN =S S e W e e T N

rv-:'*.'—-yv’_r,‘v—'*vﬂr—vf\ w YW T W T Che e e TR A A AR NN M Tt atal i R i A PSR AR it T ATy
J - ° - -

and reduce the relation to an equivalent set of relations

in Third Normal Form.

98

Lhe NS agn s Dua e aagchnt 2

D Y ~ . - o A

| pmasme aut st Bt Bt el i At i S A A T A A e A A A et I M M

R! APPENDIX C
Program Design Language Code

for NORMALIZE Submodules

Module HIGH_ LOW

khkhkkhkhkhkhkhkhkkhkhkhkhkhhhkhkhkhkkhhkhkhkhkhkhkkhhhkhkhhkhhhkhhhhhhkkhkhhkhkkhkkhhtd

(

* PURPOSE : Sort FDs of the relation that NREL points to
* in a descending order, by the number of

* attributes ineach FD's determinant attribute
* set.

* GLOBAL VARIABLES USED :
*

x

*

*

*

NREL - pointer to relation in question.

GLOBAL VARIABLES MODIFIED : None.

khhkhkhhkhkhkhkhhkhkhhhkhkhkhhkhkhhkhkhhhkhkhhhkhkhkhhkhkhkkhhkhhkhhkhhhhhhhhhkihkhkhkk

S~ % % R % ¥ F % N

PROCEDURE HIGH_ LOW

C‘ BEGIN

USE QUICK SORT METHOD FOUND IN FUNDAMENTALS OF DATA
STRUCTURES, HOROWITZ and SAHNI, COMPUTER SCIENCE
PRESS, 1976, pp 347-350.

END.

L ind

& At

'._"A"'. -.' -.‘..r‘!

% PGk
col el
1
.

99

b A e b
« e s

I

.
.
b
}

PO VLT G Y PR LI P Sy e u ke o a P P .

& e it shese Jhs b Shots S S A gr

.—y‘—vv-'
‘ .
o

Ty =

Module BREAKOQUT

IXEEEZ RS ERERE R AR RXE AR AR R R SRR 2 2R R Rttt 2]

PURPOSE :

*
*
*

Insure that each functional dependency (FD)

contains only one attribute in the dependent
attribute set. This is accomplished by tra-
versing the linked list of FDs, selecting those*

. R AR L A RS
) e e e ! X

that contain two or more attributes in the *
dependent set, and then creating "new" (equiv-
alent) FDs that have the same determinant set
of attribute(s) witha single attribute as the
dependent set (ie, the FD "A B C -- D E" would
produce the FDs "A B C -- D" and "A B C -~ E").

GLOBAL VARIABLES USED :
NREL - pointer to relation in question.

~ functional dependency record structure.

PART - attribute record structure.

GLOBAL VARIABLES MODIFIED: None.

hhhkkhkhhkhhhkhkkhhkhkhkhkhhhkhhhhkhkhkhhhkhkkhkhkhkhkhkhkhhkhhhrhkhkhhhkhrhkhhkhhhkk

PROCEDURE BREAKOUT

SET TPTR1l TO NRELA.NEXTFD (* head of list *)
DOWHILE TPTR1<¢> NIL

DOWHILE NUMBER DEPENDENT ATTRIBUTES> 1
BEGIN

CREATE NEW FD STRUCTURE

MOVE DETERMINANT SET TO NEW STRUCTURE

MOVE lst DEPENDENT ATTRIBUTE TO NEW STRUCTURE

REMOVE lst DEPENDENT ATTRIBUTE FROM TPTR1A.TOPTR
LIST

INSERT NEW FD STRUCTURE INTO FD LIST

ENDDO .
ADVANCE TPTR1 DOWN FD LIST ONE RECORD

BREAKOUT *)

100

Il sfnadatrutasdine Sumn S Al gt et Al

Module RMOVE SUBS

(***

- * PURPOSE : Remove dependencies which have subsets of *

!1 * determinant attribute(s) as determinant *
: * attributes in other funtional dependencies *

* which determine the same single dependent *

* attribute. *

. * %*
. * GLOBAL ATTRIBUTES USED : *
!! * NREL -~ pointer to relation in gquestion. *
* *

* GLOBAL VARIABLES MODIFIED : None. *

* *

* INTERNAL VARIABLES USED : *

* MAINPTR - pointer to FD in question. *

* AUXPTR - pointer to possible subset FD. *

* *
***)

PROCEDURE RMOVE SUBS

BEGIN
SET MAINPTR TO lst FD (* head of list *)
SET AUXPTR TO MAINPTRA.NEXTFD
DOWHILE MAINPTRA.NEXRPTR NIL
BEGIN
,‘. DOWHILE AUXPTRL? NIL
! BEGIN
IF MAINPTRA.TOPTRA.PARTNAME EQUALS
AUXPTRA.TOPTRA.PARTNAME THEN
IF AUXPTR DETERMINANT SET 1S SUBSET OF MAINPTR
DETERMINANT SET THEN
REMOVE MAINPTR FD
ADVANCE AUXPTR ONE FD DOWN LIST
ENDDO
ADVANCE MAINPTR ONE FD DOWN IN LIST
SET AUXPTR TO MAINPTRA.NEXTPTR
ENDDO
END.

101

saen M RCHRN MMM Sl

R P

kil aulg

PRI R S U

\
P‘..
a

0

I S oA R AL
' - AN

lvv'V."?' k MBCEIRAR

f‘

Module RMOVE_TRANS

(*'k***

PURPOSE : Searches linked list of FDs to find transitive*
dependencies and then removes them. *

GLOBAL VARIABLES USED :
NREL - pointer to relation in question.

GLOBAL VARIABLE MODIFIED : None.

*

*

*

*

*

*

*

*

* INTERNAL VARIABLES USED:
* MAINPTR - pointer to possible lst dependency of

* transitive dependency.

* SNGLPTR - pointer to lst dependency in list that has
* single attribute in determinant set.

* AUXPTR1 - extra pointer.

* AUXPTR2 - extra pointer.

*

*

kkkhkhkhkkkhhkkhkkhkhhhkkhkkhhkhkhkhkhkrhhkhkhkhhhkhkhkhkhkhkhkhkhkhhhkhkhkkdkhhkhkikkk

~ % % % k % F * ¥ H ¥ ¥ * X X

PPROCEDURE RMOVE_TRANS

BEGIN
SET SNGLPTR TO lst FD WITH SINGLE DETERMINANT SET
SET MAINPTR TO 1lst FD IN LIST (* head of list *)
DOWHILE MAINPTRA.NEXTFD NIL

BEGIN
DOWHILE AUXPTR1.NEXTFD ¢ NIL
BEGIN

SET AUXPTR1 TO SNGLPTR

SET AUXPTR2 TO SNGLPTR

IF MAINPTR DEPENDENT ATTRIBUTE SET EQUALS

AUXPTR1l's DETERMINANT ATTRIBUTE SET THEN
DOWHILE AUXPTR2 {» NIL
BEGIN ,
IF AUXPTR2's FD EQUALS FD MADE UP OF
(MAINPTR's DETERMINANT SET AND AUXPTR1l's
DEPENDENT SET) THEN
REMOVE AUXPTR2's FD
ADVANCE AUXPTR2 DOWN LIST ONE RECORD
ENDDO
ADVANCE AUXPTR1 DOWN LIST ONE RECORD
ENDDO
ADVANCE MAINPTR DOWN LIST ONE RECORD
ENDDO
END.

102

R JuiChel Juh
-. . .

A

.
*
*
*
*
*
*
*
*
*
*
*
*
*

Module REGROUP

dependency all dependencies that have similar
determinant attribute sets.

GLOBAL VARIABLES USED :

NREL - pointer to relation in question.

GLOBAL VARIABLES MODIFIED : None.

INTERNAL VARIABLES USED :

MAINPTR - pointer to FD in guestion.
AUXPTR - pointer to possible FD to be joined.

khkhkhkhkkkhkhkhkhkhkhkhkhkhkkhkhkhkkkhkkhkkhkhkhkhkhkhkhkkkkkhhkkhkhkhrhkhkkhkkkkkkkkk

PROCEDURE REGROUP

BEGIN
SET MAINPTR TO HEAD OF FD LIST
SET AUXPTR TO HEAD + 1 OF FD LIST
DOWHILE MAINPTRA.NEXTFD NIL

END.

BEGIN
DOWHILE MAINPTR's DETERMINANT SET EQUALS
AUXPTR's DETERMINANT SET
BEGIN
ADD AUXPTR's DEPENDENT ATTRIBUTE (S) TO MAINPTR's
DEPENDENT ATTRIBUTE SET
DISPOSE OF AUXPTR's FD (* remove it *)
ENDDO
ADVANCE MAINPTR DOWN LIST ONE FD RECORD
SET AUXPTR TO MAINPTR
ENDDO

Damb P - 2 e FRPRp

khkhkkhkhkkkkhkhkhkkhhkhbkhthkhkkhhhkhhkhkhhkhhkhhkhbhhkhrhbhrhhhhdhkhhkkhkhbkhkkhk kk ki
PURPOSE : Consolidation into a single functional

hagli JEE N B R B BN NS N

Ty vw TO¥
-

Rt it i A

-

N

>y

T T T (il i S AR i Suase st diutes _ S gl deeten Ui S Sk

Module NEW_REL

AhkhkhkkhhhkhhkhkhkhkhhhkhkrRhkhkhkhhhhhkhkhkhkhhkhhhkhhhhkhkhhhkthhhkhkhhhkhkhbkhkhhkhkk

PURPOSE : Create relations from the regrouped
functional dependencies.

(
*
*
*
* GLOBAL VARIABLES USED :

* NREL - pointer to relation in question.
*

*

*

*

GLOBAL VARIABLES MODIFIED : None.

khkkhkhkkkhhkhkkhkhkkkhkhkkhkkhkhkhhkhkkkkhkhhkhkkhkkhkhkhkhkhkhkhkkhkhkhkhkhhkhkrthkhkk

~ % % % % * ¥ * *

PROCEDURE NEW_ REL

BEGIN
DOWHILE NRELA.NEXTFD NIL
BEGIN
CREATE RELATION STRUCTURE
SET NORMALIZE SWITCH TO "ON"
DISPLAY ATTRIBUTES
QUERY DBA FOR NEW RELATION NAME
BUILD ATTRIBUTE LIST FROM FD's DETERMINANT AND
DEPENDENT SETS
LINK KEYPTR LIST FROM FD's DETERMINANT SET
SET NEXT FD TO NIL
SET SECURITY RECORD FROM NREL SECURITY RECORD INFO
SET MODIT, TEMPEXIST, and ATTACH FROM NREL's INFO
SET FILER FROM NREL's FILER
INSERT THIS NEW RELATION INTO RELATION LIST
IMMEDIATELY BEHIND NREL's RELATION
DISPOSE OF NRELA.NEXTFD (* remove head FD from list *)
ENDDO
END.

104

e r* AN T T Wy Y T W T W W e ww— = W -~ = = = = = -
F— - e e T = e —w e w—T —w—w T~ £ T~ T T E2hdy cear e e SOSNS Snd Snd Rd s n 5 v 1

: VITA

Charles T. Travis was born July 12, 1949, in Brewton,

Alabama. He graduated with a B.S. in Computer Science in
1972 from the University of Southern Mississippi. On
March 18, 1983, he graduated with an M.S. in Information

Systems from the Air Force Institute of Technology.

Permanent Address: 317 Farrell Street
Picayune, Mississippi 39466

O S

105

f
b
L
|
b
:
|
}
F

AD A127 496

UNCEASSTEIED

INTERACTIVE AUTOMATED SYSTEM FOR NORMAL 12ATION OF

RELATIONSIU) AIRTFORCE INST OF TECH WRIGHT
TRAVIS 1R MAR A3

ATR OH SCHOOL OF ENGINFERING
AF1T/GCS/EE/BIM- A

c1

PATTERSON
F/G %72

33

NI

-

10 &= k=

| Bt
u i
Pl =
ks

lle=
2 s

E

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDAROS - 1963~ A

ERRATA
AD«A127 496

Page 86 is not missing. Document wae misnumbered.per AFIT,

DTIC-DDAC
9 Dec 83

