
D'f-R127 496 INTERACTIVE AUTOMATED SYSTEM FOR NORMALIZATION OF
RELATIONS(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON
AFS ON SCHOOL OF ENGINEERING C T TRAVIS 19 MAR 83

UNCLASSIFIED AFIT/GCS/EE/83M-4 F/G 5/2 N

EhhhhhhhM11iI

1Ion NONSENSE,,fl~l~lf

11111 11112-2

L 6

11111!2 .4

111 1=11111.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

2. - 6

-a-V

~OF

INTERACTIVE AUTOMATED SYSTEM

for NORMALIZATION of RELATIONS

THESIS

rAFIT/GCS/EE/83M-4 Charles T. Travis

Capt USAF

ELECTE

' APR 28 1983

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY (ATC)

,-J AIR FORCE INSTITUTE OF TECHNOLOGY

Wriqht-Patterson Air Force Bose Ohic)

I= pUbhIc ali IM jW3 04 28 1 1~

AFIT/GCS/EE/83M-4

INTERACTIVE AUTOMAT,:D SYSTEM

for NORMALIZATION of RELAT\ONS

THESIS

AFIT/GCS/EE/83M-4 Charles T. Travis

Capt UJSAF

Approved for public release; distribution unlimited

!7; D.wk-"*
~~~rE, tt 4



AFIT/GCS/EE/83M-4

INTERACTIVE AUTOMATED SYSTEM

for NORMALIZATION of RELATIONS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University (ATC)

In Partial Fulfillment of the

Requirements for the Degree of Aecession For
NTIS GRA&I

Master of Science DTIC TAB
WUannounced
Justificatio

By
Distribution/

Availability Codes
Avail and/or

Dist Special

by

Charles T. Travis
Capt USAF

Graduate Information Systems
AdO3K . 18 March 1983

I-



PREFACE

This work presents a user friendly system to define

functional dependencies of relations in a relational data-

base and the design and psuedo language coding of the

normalization technique to reduce unnormalized relations

to Third Normal Form. I feel that with the progress made

on this project, the remainder of the implementation can

be accomplished either as another thesis effort or as a

special study project.

I would like to express my deepest appreciation to

Dr. Thomas C. Hartrum, who as my thesis advisor gave me

guidance and encburagement. Thanks is also extended to

Dr. Henry Potoczny and Major Charles Lillie, who as my

thesis readers provided constructive comments to improve

the content and clarity of this thesis.

Finally, I wish to thank my wife Sheila and my

children Joshua, Dawn, and Reese. They endured endless

hours of complaining and separation; however, their

patience, understanding, and selfless cooperation

enabled me to to complete this graduate program.

a

I

4q



CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . .

LIST OFFIGURES.............................v

ABSTRACT ...... ... ... ... ... ... .... ... ... ... ... ... ... ... ... .... ... ... ... ......... vi

I. INTRODUCTION............... . . .. .. .........

BACKGROUND..............................
STATEMENT OF PROBLEM....................4

SCOPE..............................5
APPROACH............................5
SEQUENCE OF PRESENTATION.................6

I.BACKGROUND.............................7

SYSTEM CONSIDERATIONS........................7
MACHINE............................7
OPERATING SYSTEM..........................7

ROTH SYSTEM BACKGROUND..................8
SIX NORMAL FORMS...................11

RELATIONAL DATABASE CONCEPTS...............12
KEYS..................................12
FIRST NORMAL FORM.....................14
SECOND NORMAL FORM......................15
THIRD NORMAL FORM.....................18
BOYCE/CODD NORMAL FORM................21
FOURTH NORMAL FORM......................22
FIFTH NORMAL FORM.....................25
SUMMARY......................25

III. SYSTEM REQUIREMENTS ..................... 28

USER REQUIREMENTS......................28
ASSUMPTIONS..........................28

IV. TOP LEVEL DESIGN........................30

INTRODUCTION..........................30
SYSTEMS INTERACTION.........................31
HIGH LEVEL DATA FLOW..................35
ROTH SYSTEM MODIFICATIONS.................39
CONCLUSIONS..........................39



V. FUNCTIONAL DEPENDENCY MODULE............41

INTRODUCTION...................41
FD MODULE DESIGN..................41
"USER FRIENDLY" DESIGN 'CONSIDERATIONS. ...... 44
FD MODULE IMPLEMENTATION..............49
SUMMARY......................52

VI. NORMALIZE MODULE..................53

INTRODUCTION ................... 53
MINIMAL SETS.................... ... 53
DESIGN........................54
NORMALIZE IMPLEMENTATION................63

Module HIGH LOW.................64
Module BREAKOUT.................64
Module RMOVESUBS................64
Module RMOVE TRANS...............65
Module REGROUP.................67
Module NEW REL.................68

SUMMARY......................68

VII. CONCLUSIONS......................69

BIBLIOGRAPHY.......................73

APPENDIX A: User's Guide.................74

APPENDIX B: Article...................81

APPENDIX C: Program Design Language Code for

NORMAALIZE Submodules..........99

iv



LIST of FIGURES

Figure Page

1. Relation FIRST ..... ........... .. 3,16

2. Relation and FDs of SECOND and SP ....... 17
S

3. Relations and FDs of SC and CS ......... 20

4. Relation CTX ................. 22

5. Relations CT and CX ... ............. .24

6. Join of Three Projections . ....... 27

7. Top Level Data Flow .......... 36

8. Top Level Structure Chart .. ........... 37

9. Sample Screen Display of Attributes ...... 42

10. Structure Chart of Module FD .......... 50

11. Data Flow for NORMALIZE ............ 55

12. Structure Chart for NORMALIZE . ......... 56

I

"I

v

L .



ABSTRACT

An interactive Automated System for Normalizing

Relations was designed and partially implemented with the

goal of interacting it with a Relational Database Manage-

ment System. In addition, this system was to serve as a

pedagogical tool for teaching the benefits of normaliza-

tion for relational database management.

Toward these goals, an extensive literature search

and analysis of the six normal forms and other pertinent

areas of relation normalization was required in order to

identify current issues and areas of research. A main

concern was overcome by attempting to locate an algorithm

to normalize relations. Most authors present a cursory

guide to normalization if any at all, but Jeffrey Ullman

presents the concept of "minimal set." If a minimal set

is deduced from an unnormalized relation the resultant

relations that are formed are in Third Normal Form.

Research was also accomplished in the area of

"user friendly" interactive methods. This was needed be-

cause the requirement existed for this system to query

the user for functional dependencies in order that relations

could later be normalized.

t vi



INTERACTIVE AUTOMATED SYSTEM

- for NORMALIZATION of RELATIONS

I. INTRODUCTION

BACKGROUND

Data base technology has been described as "one of

the most rapidly growing areas of computer and information

science" (Ref 1:63). As a field, it is still relatively

young; manufacturers did not begin to offer data base

management products untill well into the 1960's. A data

base management system (DBMS) can be thought of as a system

comprised of a collection of data and a set of application

programs which are designed to manipulate the data. An

important concept of a database is that the data must be

stored in the computer on direct-access devices (such as

disks) in order for the computer's central processing unit

to be able to utilize the data's cross-references within

a reasonable amount of time. In the mid 1970's a different

type of data base appeared on the scene. Its name,

relational data base, implied that certain data could be

viewed as a relation to other data. These relations are

described in a two dimensional table consisting of

horizontal rows and vertical columns.

In the Digital Engineering Laboratory (DEL) at the

Air Force Institute of Technology (AFIT), the need and

desire existed for a relational DBMS system, to be used as

a pedagogical tool for instructing students in the design,

4 1



, -- ~-- --- - ~ -. - --

manipulation, and use of database systems. In 1979, 2LT

Mark Roth designed and partially implemented a system

(Ref 5) which has served as a starting point for the

continued development of the AFIT Relational Database

System. In addition to the work completed by Roth, 2LT

Linda M. Rodgers (Ref 6) continued the implementation of

the system in 1982. An additional desire from the DEL was

the design and implementation of a stand-alone system to

query the Database Administrator (DBA) for functional

dependencies of existing unnormalized relations and the

subsequent normalization of said relations. This thesis

effort is the result of that desire.

Relations in a relational database can be depicted as

a two dimensional table consisting of horizontal rows and

vertical columns. For example, the relation FIRST, Figure

I, is depicted by a table with 12 rows (tuples) and 5

columns (attributes). This thesis will use the terms "row"

and "tuple" interchangably, as well as the terms "column"

and "attribute". Each tuple refers to a separate entity,

while each column has values that were obtained from the

domain of each attribute. In the case of "SNUM", it's

domain would contain "Sl"? "S2"0 "S3", and "S4". The

domain of the attribute "CITY" would contain "LONDON" and

"PARIS". So, each attribute has a distinct domain or value

set from which its values are drawn.

The relation FIRST has some inherent problems within

its structure. The prs ,minant problem is redundancy. The

2



same values for STATUS and CITY exist for all like values

of SNUM. For instance, with a SNUM of S1, STATUS is always

"20" and CITY is always "LONDON". This redundancy of data

is expensive in terms of the additional storage required to

hold repetitous data and in terms of the number of updates

required if a supplier might move fror one city to another.

Regarding updates, the relation FIRST would have to be

searched to find every tuple with the particular supplier

number in question and then the CITY value would have to

changed to reflect the new location. This would be

costly, as well as cumbersome.

| SNUM STATUS CITY PNUM QTY

S1 20 London P1 300
Sl 20 London P2 200
Sl 20 London P3 400
Sl 20 London P4 200
S1 20 London P5 100
Si 20 London P6 100
S2 10 Paris P1 300
S2 10 Paris P2 400
53 10 Paris P2 200
S4 20 London P2 200
S4 20 London P4 300
S4 20 London P5 400

FIRST

Figure 1. Sample of Relation FIRST

3



At this point the term functional dependency (FD)

becomes significant. Functional dependency is described as

follows: "given a relation R, attribute Y of R is

functionally dependent on attribute X of R, if and only if,

each X-value in R has associated with it precisely one Y-

value in relation R (at any one time)" (Ref 2:240).

Functional dependencies might be thought of as a special

type of integrity constraint. This means each value of the

attribute X in relation R will functionally determine one

and only one value for attribute Y in relation R.

With the definition of FD in mind, the main thrust

of this thesis comes to mind, that is, normal forms and the

normalization of relations. There have been described six

normal forms. They are First (lNF), Second (2NF), Third

(3NF), Boyce-Codd (BCNF), Forth (4NF), and Fifth (5NF)

normal form. The first three forms are stepping stones to

BCNF and beyond. The "normalization process" reduces

relations to the successive six normal forms, if the

relation is not already optimal. Using the predefined

FDs, this normalization process produces a collection of

new relations that are equivalent to the original relation,

but from a data base point of view, more desireable. They

are more desireable due to the elimination of redundancy

and the creation of compact and meaningful relations.

STATEMENT OF PROBLEM

The purpose of this thesis is to solve two problems.

First, a system is to be designed and implemented to query

64



the DBA for functional dependencies of relations that exist

in INF. This segment of the thesis effort will be a "user

." friendly" interactive system which will communicate with

the database administrator by providing prompts, guidance,

N accurate display of results, and the ability to negate

previous requests.

Secondly, a system is desired to normalize relations

to Third Normal Form (3NF). When both goals are combined,

the final system will provide the DBA a method to

interactively communicate to direct the subsequent

normalization of unnormalized relations.

SCOPE

The scope of this thesis is to design and implement

an interactive system to normalize relations. The design

phase will utilize current Top Down Structured Programming

(TDSP) techniques. The main effort will be on the design

and implementation of an algorithm to normalize relations

that were defined by the Data Definition Language (DDL)

(found in Appendix 2) of the Roth database system (Ref 5).

In addition, a "user friendly" interface will be designed

and implemented to allow the user exclusive control in

defining the functional dependencies of the relations to be

normalized.

APPROACH

The first step consisted of an extensive literature

search to examine the research already completed in the

5



normalization area. A multitude of data base experts have

written on the normalization concept. The literature

H search was then directed specifically to the normalization

algorithm area to determine if any research had been

accomplished and recorded. Very little work has been

recorded in this area. Both Hubbard (Ref 3) and Date

(Ref 2) have outlines for algorithms, but do not provide

any detailed information towards an algorithm.

Continued search revealed that Ullman (Ref 5:178)

proposed the concept of a "minimal set" and then went on to

prove that a minimal set of functional dependencies was in

3NF. With this algorithm in mind, the required modules

were designed using TDSP methods and then they were

(- compiled and validated, first as stand alone modules and

then as an integrated portion of the existing Roth Database

System.

SEQUENCE OF PRESENTATION

The remainder of this thesis is divided into seven

chapters. Chapter II is the Background chapter. The system

configuration is presented, the six normal forms are

discussed in detail, and some definitions are examined.

Chapter III discusses the System Requirements. Chapter IV

is the Top Level Design, while Chapter V is the Functional

Dependency Module. Chapter VI is the analysis and design of

the normalization technique, the Normalize Module and

Chapter VII is the Conclusions and Recommendations chapter.

d 6



II. BACKGROUND

-This chapter will discuss the system configuration,

the Roth System background, and the six normal forms that

will be used in this thesis.

SYSTEM CONFIGURATION

This section describes the system configuration

associated with the implementation of this thesis. The

system configuration section consists of two areas, the

machine selection and the operating system.

MACHINE

One of the goals of this thesis is to implement an

automated normalization technique on the AFIT Digital

Engineering Lab's (DEL) LSI-lls. The LSI-lls are

manufactured by the Digital Engineering Corporation as a

microcomputer with minicomputer capabilities.

There are five LSI-lls located in the DEL. All

software developed from this thesis effort will be

executable on each of these machines. Machine

configuration and software portability were two of the main

reasons for selecting the LSI-lls to accomplish this

wor k.

OPERATING SYSTEM

In order to provide software compatable with previous

DEL lab thesis efforts, namely the Roth database system

(Ref 5) and the Fonden database system (Ref 6), the

decision was made to continue with the University of

7



California, San Diego (UCSD) version of PASCAL as both the

operating system and the implementation language.

PASCAL is a good choice for the implementation

language for a number of reasons. First, PASCAL can be

structured for easier reading and as a continuation of the

top down design effort. Secondly, PASCAL can handle large

programs by allowing program segmentation, separately

compiled procedures, and virtual memory using segment

swapping. Thirdly, PASCAL is used in a multitude of

microcomputers, so software systems can be portable by just

moving the code to a new computer that has the

capability.

ROTH SYSTEM BACKGROUND

The Roth Database System was designed to run on a

stand-alone minicomputer under the control of UCSD Pascal

Operating System, Version 11.0. The present Roth system is

being run on the DEL's LSI-lls with a CRT as the CONSOLE

device. This section will discuss how this thesis effort

interacts with the Roth System.

In addition to the Executive module, hereafter called

exec, the Roth System has presently four main logical

modules which are in different stages of completion. They

are the SETUP module, the DDL Processor module, the DML

Processor module, and the SHUTDOWN module. The exec

operates in one of two modes: normal mode for user control,

and special mode under control of the database

administrator (DBA). This thesis effort will only be

8

6



concerned with the special mode, because normalization of

- relations modifies the previously defined data definition

language, and should only be allowed at the DBA level.

The exec module allows entry to the special mode

after the DBA inputs a unique identification password as

part of the system logon. Special mode allows the DBA

access to the entire database for the purpose of defining,

modifying, or deleting domains and relations; for full

control of the DDL; as well as the database initialization.

The SETUP module, in addition to maintaining the LOGON

procedures, also has the responsibility for reading domain

and relation definitions from disk and storing them in

memory.

The DDL Processor module aids the DBA by creating in

memory additional domain and relation definitions as they

are input by the DBM. Once defined, these definitions

reside in memory, along with any definitions read in by the

SETUP module, until the DBA terminates the session, which

subsequently causes the SHUTDOWN module to write all the

definitions to a disk file on a diskette. These

definitions will always be read from disk upon logon to

the system, and they will be always written back to disk

upon quitting the session.

The DML Processor module controls the execution of

all other commands. It's four modules, ATTACH, EDIT,

RETRIEVE, and INVENTORY, maintain the responsibility of

accessing, modifying, querying, and viewing relations.

9



P.74-

ATTACH makes the connection between the user and any

desired relations that he/she is authorized to access. EDIT

allows the user to modify relations by renaming the

relation; inserting, deleting, and modifying tuples within

the relation; or changing the relation's password(s).

RETRIEVE handles the relational queries by storing,

retrieving, and executing the command file where the

queries are stored. Also, RETRIEVE processes user's

requests to display the contents of the relations.

INVENTORY displays to the user a list of domain and

relation definitions that currently reside in memory.

These definitions could have been originally read from

disk, or defined during the current session, or both.

The Roth System also uses the concept of a COMMON

area where constant and variable names are defined,

constants are assigned values, types are declared, and

common procedures are defined. Each system procedure has

access to this COMMON area if necessary, so required values

or common procedures may be used at will.

This thesis is concerned with actions executable at

the DBM level, i.e. normalization, so there will be no

further reference to the "normal" mode of the exec or to

the options available to "normal" users. The high level

data flow of the Roth System modules pertinent to this

thesis is depicted in Figure 7. The corresponding

* structure charts are found in Figure 8. The data flow

" shows that the Roth Database (DB) program and a SETUP.DATA

10



are required to activate this system. The DB program

Scontains the necessary references to access the compiled

code that is required to make this system execute

properly. The SETUP.DATA file contains domain and relation

definitions that have been defined previously. Once the DB

program has been executed and SETUP.DATA has been read into

memory, the DBM is ready to accomplish the required actions

for the current session.

Within the special mode, the DBA has four upper

level options available for use. They are DEFINE,

INVENTORY, INITIALIZE,AND QUIT. DEFINE allows the defining

of domains and/or relations. INVENTORY displays a list of

domain and relation definitions which presently exists in

(I memory. INITIALIZE destroys all existing domain and

relation definitions. This is the preparatory command to

the DEFINE command if the DBA desires to construct a

completely new set of domain and relation definitions. QUIT

calls the SHUTDOWN function to write the domain and

relation definitions to the output file SETUP.DATA.

I - SIX NORMAL FORMS

This section will present a background and definition

V. of the terms used in this thesis, as they relate to

relational data bases. In addition, six of the various

* normal forms accorded to relational data bases will be

examined. The six normal forms to be covered are First

(lNF), Second (2NF), Third (3NF), Boyce/Codd (BCNF), Forth

b .1
a. i



(4NF), and Fifth (5NF). There have been numerous normal

forms suggested, but the previously mentioned ones are the

most well accepted. Codd was instrumental in developing

INF, 2NF, and 3NF. Later, Boyce and Codd set stronger

guidance on 3NF and this was to become Boyce/Codd normal

form (BCNF). Fagin later developed both 4NF and 5NF (Ref.

2:238-9).

RELATIONAL DATABASE CONCEPTS

A relation consists of an unordered set of entries.

Each entry is a complete and meaningfull collection of

related information about the objects around which the

relation was composed. For instance, if the relation

contains information that pertains to suppliers for a

certain job, then each entry (tuple) would correspond to a

specific supplier. There would be an entry for each

supplier for the job. The tuples are composed of fields

called attributes. There would be an attribute for each of

the following: supplier name, supplier number, city, part

number, and quantity supplied.

KEYS

An important concept to relational data bases is the

notion of keys. Keys are the foundation to understanding

and using relational data bases. It is frequently found

within a given relation there is a "collection" of one or

more attributes with values that can uniquely identify each

tuple within the relation. This is called the primary key.

12

. ..I '"" . .m ..ai .:- ,,- -- -.-, ..,- k



In the supplier example, a supplier number would uniquely

identify tuples (suppliers) within the relation. The

supplier number attribute is said to be the primary key for

this relation. Not all primary keys are single valued. In

this case it was, but numerous relations will have a

combination of two or more attributes as primary keys. By

default, this primary key is also what is called a

"candidate" key, that is, a key that identifies each

tuple, but it may or may not be the primary key.

Some relations might have more than one attribute

combination possessing the unique identity property, thus,

more than one candidate key. The previously mentioned

supplier relation is a possibility, with each supplier

having a unique supplier number and a unique supplier

name. At this point, one of the candidate keys must be

arbitrarily chosen as primary key for the relation, with

the other candidate key being an alternate key.

Up to this point, primary keys have been noted to

identify tuples. This is true, but the tuples actually are

entities that exist in the real world. Because of this,

there exists a rule that no component of a primary key

value may be null. This is because each entity must have

an identifier. So, a null identifier, which corresponds to

nothing, is not allowed.

A second rule states, when an tuple of a relation

references a tuple of a second relation, that tuple has to

exist in the second relation. Otherwise there would be a

13



reference to a nonexistent tuple.

Two important properties of candidate keys are as

follows:

* Each attribute of a given relation is functionally
dependent on each candidate key of the relation
in question.

* The attributes of a candidate key is a maximal func-
ally independent set, i.e., every proper subset of
the attributes within the primary key is functionally
independent of every other proper subset of the attri-
butes within the primary key, and no other attribute
from the relation can be added without destroying
this functional independence.

Any candidate key of the relation can be designated

as the primary key of the relation. This was accomplished

on the supplier data base when a primary key was selected

from the two available candidate keys. The importance of

designating a primary key of a relation is to assure that

there are values placed in the primary key's attributes for

each entry in the relation. The remaining attributes can

be empty at the time an entry is created and can be filled

in later.

FIRST NORMAL FORM

An attribute may consist of a single discrete value,

or a set of values. In the case of single direlation
in question.

* The attributes of a candidate key is a maximal func-
ally independent set, i.e., every proper subset of
the attributes within the primary key is functionally
independent of every other proper subset of the attri-
butes within the primary key, and no other attribute
from the relation can be added without destroying
this functional independence.

Any candidate key of the relation can be designated

[4 as the primary key of the relation. This was accomplished

on the supplier data base when a primary key was selected

14

I



from the two available candidate keys. The importance of

designating a primary key of a relation is to assure that

there are values placed in the primary key's attributes for

attribute of a relation in INF can be a relation itself. A

table composed of two or more entries or two or more

attributes is referred to as a relation as defined in

Chapter 1.

To convert an unnormalized relation to INF, each

attribute that consists of multiple values would be

examined to see which of the two following cases apply. In

the case of a single entry relation, each of its sub-
attributes would be added to the original relation,

renaming attributes as necessary, to avoid similiar or

confusing names. Or, if an attribute contains multiple

entries, then this attribute entry should be established as

its own relation in the methods described earlier.

SECOND NORMAL FORM

A relation is in 2NF if and only if the following

conditions hold:

1. The relation is in INF.

2. Every attribute not a member of a candidate key
is fully functionally dependent on each candidate key of
the relation.

An example of a relation being in INF, but not in 2NF

is the relation FIRST presented in Chapter 1, Figure 1. As

stated before, FIRST has problems of redundancy and

insertion/deletion conflicts. To eliminate some of the

problems, FIRST can be normalized into 2NF as depicted in

15



Figure 2.

The solution to the problems of FIRST is to form two

new relations, SECOND and SP, and ignore FIRST from any

further consideration other than for historical purposes.

SNUM STATUS CITY PNUM QTY

S1 20 London PI 300
S1 20 London P2 200
Sl 20 London P3 400
S1 20 London P4 200
S1 20 London P5 100
S1 20 London P6 100
S2 10 Paris P1 300
S2 10 Paris P2 400
S3 10 Paris P2 200
S4 20 London P2 200
S4 20 London P4 300
S4 20 London P5 400

FIRST

Figure 1. Sample of Relation FIRST (Ref 2:244)
p.

By comparing the relation FIRST against SECOND and
p.

SP, it can be easily seen that the final effort was to

eliminate the non-full functional dependencies, which was

the answer to the previous problems. Upon closer

examination, one might determine that problems in INF

relations, but not in 2NF relations, exist due to the

L16



mixing of two types of information (Ref. 1:246). In this

case, city and status information was combined with

quantity information.

The question surfaces of how were SECOND and SP

derived from the relation FIRST? This example worked out to

SNUM STATUS CITY
" • STATUS

Sl 20 London
S2 10 Paris
S3 10 Paris SNUM
S4 20 London
S5 30 Athens CITY I

SECOND
FDs of SECOND

SNUM PNUM QTY

Si PI 300 SNUM
S1 P2 200
S1 P3 400 QTY
S1 P4 200
S1 P5 100 PNUM
Sl P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200 FDs of SP
S4 P4 300
S4 P5 300

SP

Figure 2. Relations and FDs of SECOND and SP (Ref 2:245)

17



be quite simple by projecting out sets of attributes in

accordance with the functional dependencies which were

stated earlier. The first step was to pick a pimary key

for the relation FIRST. This could be done arbitrarily,

but since the supplier number by itself could tell the

status and city of the tuple, while the combination of both

the supplier number and part number were required to

determine the quantity of a part, the supplier number was

selected as the "primary key". Thus SECOND evolved as a

relation with the functional dependencies of SNUM --- >

STATUS, SNUM --- > CITY, and CITY ---> STATUS. In the

meanwhile, a relation called SP was formed with its key as

SNUM and PNUM, and the functional dependency of (SNUM,

PNUM) --- > QTY.

Another question comes to mind. What if the original

relation structure is needed later? It can be recovered by

taking a natural join of the relations SECOND and SP, thus

giving back the relation FIRST. This is called a lossless

decomposition, which means any information that could be

obtained from the original relation can also be obtained

from the two new relati is.

THIRD NORMAL FORM

The relations SECOND and SP have eliminated the

problems of redundancy, but there still exists a problem

with the routual independence of SECOND's non-key

attributes. In other words, there are non-key attributes

dependent on the key thru another attribute. This is

18
0I



called transitive dependency. Third Normal Form relations

do not contain this transitive dependency, hence this

redundancy of dependencies is desireably absent.

For example, it can be seen that two dependencies

exist in the relation SECOND, "SNUM -- -> CITY" and "CITY -

- - > STATUS". By observation, it can also be seen that

SNUM --- > STATUS, thru CITY. This is an implied, or

transitive dependency. This transitive dependency is

forbidden if a relation is to be in 3NF. In fact, in order

for a relation to be in 3NF, it has to be in 2NF and

contain no transitive dependencies between the attributes.

This transitivity leads to difficulties in updating,

inserting, and deleting, so it should be eliminated.

In order to eliminate the transitive dependence of

STATUS on SNUM, the relation SECOND has to be projected out

into two new relations, i.e., SC(SNUM,CITY) and

CS(CITY,STATUS). Figure 3 shows the relations SC and CS,

n -with the appropiate functional dependency of each. At this

point, the relations SC and CS are in 3NF, while SECOND was

not.

What has been shown is that a relation in 2NF, but

not 3NF, can be put into 3NF by projecting out an

equivalent set of relations. This process is reversible by

performing a "join" between the two relations on the

attribute, in this case CITY, that is common to both of the

new relations.

For the data base administrator, 3NF is an aid to

19

I



precise thinking. A data base in 3NF can grow and evolve

naturally. The updating rules are straight forward, where

tuples (records) can be added or deleted without the

problems that occur in relations with non-3NF tuples. The

two new relations previously formed are operatonally better

than SECOND because now there can be city and status

information for cities where there is no supplier. Third

normal form structuring gives a simple view of data to the

programmers and users, and makes them less likely to

perform invalid operations.

SNUM CITY

S1 London
S2 PARIS SNUM CITY
S3 Paris
S4 London
S5 Athens

FDs of SC

SC

* CITY STATUS

Athens 30
London 20 CIT
Paris 10

CS FDs of CS

* Figure 3. Relations and FDs of SC and CS (Ref 2:248)

20



BOYCE/CODD NORMAL FORM

When Codd originally developed the concept of 3NF, he

did not take into account the fact that a relation might

have more than one candidate key. As earlier stated, a

candidate key is a key made up of a combination of

attributes. Each candidate key possesses unique identity

properties that functionally determine all the attributes

within the relation. The 3NF definition was replaced by a

stronger, but conceptually simpler, definition that was due

to the efforts of Boyce and Codd. It was to be known as

Boyce/Codd normal form (BCNF).

BCNF does not make any reference to lNF, 2NF or

transitive dependencies. But, BCNF does define the term

"determinant", as a set of attribute(s) on which some other

-7: attribute(s) is/are fully functionally dependent. This

brings the discussion to the definition of BCNF. A

.* relation is in BCNF if and only if every determinant is a

candidate key. That is to say, every determinant fully

functionally determines all the attributes within the

" relation. If not, the relation should be projected out

into two or more relations that fullfill this requirement.

Ullman (Ref. 4:189) has done some additional reseach

in the normalization concepts. One of his conclusions is

that any relation in BCNF is also in 3NF. He also implies

that BCNF may cause the loss of some previously defined

dependencies.

21



FORTH NORMAL FORM

F. If there exists a relation CTX that contains

U -information concerning courses, teachers, and texts used by

the teachers in the particular courses, it is easy to see

the problem of redundancy reoccurring. This is shown in

Figure 4. Since one of the goals of normalization is to

eliminate, as much as possible, any redundancy, this sub-

section will examine methods along this thought.

COURSE TEACHER TEXT

Physics Prof Green Basic Mechanics
Physics Prof Green Prin of Optics
Physics Prof Brown Basic Mechanics
Physics Prof Brown Prin of Optics
Physics Prof Black Basic Mechanics
Physics Prof Black Prin of Optics
Math Prof White Modern Algebra
Math Prof White Projective Geom

CTX

Figure 4. Relation CTX (Ref 2:256)

The relation CTX is in BCNF, since the whole relation
is made up of keys and there exist no additional functional

aI determinants. This type of problem exists in BCNF

relations because when related data is "grouped" together,

the data might not be dependent on each other. In this

i| case, TEACHERS and TEXTS are independent of each other.

Attributes of CTX cannot be projected out to form

22
Il



"new" relations, based on functional dependencies. This is

because the relation is a key itself. However, two new

relations can be created if a different type of dependency

is considered. This type is called multivalued dependency

(MVD). A MVD exists when a value of an attribute can

determine more than one value for the dependent attribute.

For example, a male human could have been married to a

number of wives, with each union producing a number of

offspring. Each of these would be a MVD. The definition of

MVD is as follows:

Given a relation R with attributes A, B, and C, the
multivalued dependence

R.A -- > -- > R.B

holds in R if and only if the set of B-values matching
a given (A-value,C-value) pair in R depends only on the
A-value and is independent of the C-value. As usual,
A, B, and C may be composite (Ref. 2: 258).

This definition will only hold in relations that have more

than three attributes.

A functional dependency (FD) is a special case of a

MVD. In fact, a FD is a MVD in which the set of values

consists of a single value.

The definition for 4NF (Ref. 2 : 259) states:

A relation R is in 4NF if and only if, whenever there
exists an MVD in R, say A -->B, then all attributes of
R are also functionally dependent on A.

If the relation CTX is re-examined, it is obviously

not in 4NF. This is because when COURSE -- > -- > TEACHER,

* there is not an FD between COURSE and TEXT. In order to

place CTX in 4NF,' it is necessary to project out attributes

23



according to the stated MVDs. This produces two relations,

CT and CX, as shown in Figure 5. These structures are more

desirable than BCNF, because of the elimination of the

redundancy due to improper structure. Fagin says " any

relation can be nonloss-decomposed into an equivalent

collection of 4NF relations" (Ref. 2 : 259). What is not

stressed is that it might be undesirable to decompose a

relation into 4NF. This was also true with BCNF too.

COURSE TEACHER

Physics Prof Green
Physics Prof Brown
Physics Prof Black
Math Prof White

CT

COURSE TEXT

Physics Basic Mechanics
Physics Prin of Optics
Math Modern Algebra
Math Projective Geom

CX

Figure 5. Relations CT and CX (Ref 2: 257)

42



FIFT NORMAL FORM

Further research into normalization unexpectedly

discovered that there exist relations that can not be

nonloss-decomposed into just two relations, but can be

satisfactorily nonloss-decomposed into three or more

relations (Ref 2 :260). This is a very special type of

relation that contains at least three attributes, where all

are keys and there exists no non-trivial FDs or MVDs. This

is shown in Figure 6, where the relation SPJ cannot be

projected non-losslessly into two new relations, but it can

form three new relations, SP, PJ, and JS, without losing

its integrity.

Figure 6 also shows that by joining any two of the

sub-relations over their similiar attribute, an

intermediate relation (with three attributes) is formed.

This intermediate relation then can be joined with the

third sub-relation over the attributes of the third

relation to produce the original relation in its entirity.

This shows that it has been a nonloss-decomposition.

SUMMARY

Normalization is a powerful tool for the relational

data base manager. The main benefit is the elimination of

* redundancy within the relation. This will reduce both the

space requirement to store relations, as well as aid in the

insertion/deletion problems. But normalization has its

*limits. Of the six normal forms described in this chapter,

only the first three (lNF, 2NF, 3NF) are 100% beneficial.

25

6-



The others (BCNF, 4NF, 5NF) can produce relations which

-have lost some of their original dependency meanings, so

are of less benefit.

26

,E ,



S PJ

SNUM PNUM JNUMt

Si P1 J2
Si P2 i
S2 P1 i
Si P1 i

SP pJ PS

SNUM PNUM PNUM JNUM PNUM SNUM

Si P1 P1 J2 J2 Si
Si P2 P2 i i Si
S2 P1 P1 i i S2

Join over
PNUM

SNUM PNUM JNUM

Si P1 J2
Si P1 i Join over
Si P2 i JNUM, SNUM
S2 P1 J2
S2 P1 i

Original SPJ

Figure 6. join of three projections, back to the original.

(Ref 2:260)

* 27



'4

III. SYSTEM REQUIREMENTS

This chapter discusses two main areas. They are

presented in the following order: user requirements and

assumptions for this thesis.

USER REQUIREMENTS

Since the main objective of this thesis is a product

that will aid the DBA in his/her day to day job, the

following requirements are hereby established:

1. Develop a user friendly system.

2. The system must be interactive with the user.

3. Will be an automated method to normalize relations.

4. Will complement the existing Roth Database System.

5. The thesis effort will be a stand-alone system which

will access the data file output by the Roth Database

System.

6. The output file of this thesis effort will be

compatible with the Roth Database System.

7. Normalize relations to at least 3NF.

Each of these requirements are necessary for a completely

viable system.

ASSUMPTIONS

The following assumptions are in effort for this

K- thesis effort:

1. Each relation is treated as an individual.

2. Functional dependencies will only exist within
a relation, not between relations.

28



-- -. -. •-. 2

-o

3. The following will be required to normalize a
* -relation:

- a. Name of the relation.

b. Attributes of the relation.

c. Functional dependencies within the relation.

4. Relations required to be created during the normalization
process will be created in accordance with Appendix A,
section 3.4.A, of the Rodger's followup to the Roth
Database System (Ref 5).

These assumptions are required for an orderly

appraisal of the effort and restrictions required for this

thesis.

29



IV. TOP LEVEL DESIGN

INTRODUCTION

This chapter will outline the top level design for

this thesis effort. Since this thesis will complement the

Roth Data Base System (Ref. 5 ), the integration with the

Roth System will also be examined in this chapter. In

addition, the top level data flow graphs and structure

charts of the Roth System and of the necessary

modifications to this system will be discussed.

The objective of this thesis is the design of a user

friendly, interactive system that queries the user for

functional dependencies of an existing relation and then

normalizes the the relation. This thesis was

accomplished in two steps. First, the user friendly

functional dependency section was designed, coded, and

implemented. Then the normalization section was designed,

coded, and implemented.

Each step outlined above was treated as a separate

segment because, while they worked together in achieving

0 the end product, they performed totally independent tasks.

*The important idea to remember is that while the two

segments are somewhat independent of each other, the

normalization segment does require the functional

dependency segment to have created functional dependencies

before the relations can be normalized.

03

I' 30



SYSTEMS INTERACTION

Based on an understanding of the Roth System as

described in Chapter II, the interaction of this thesis

effort with the Roth System will be examined. This thesis

effort is intended to execute as a stand-alone system. It

will need access to the data file SETUP.DATA in order to

perform normalization on the needed relations. The Roth

System itself will not be required, but some of its modules

have been extracted to insure consistant input and output

capabilities.

The Roth System modules that can be used (but need to

be modified) include the SETUP module, the QUIT module, the

DEFINE module, and the COMMON unit. The required changes

C' are in the following paragraphs.

The present Roth Database System COMMON module

defines each relation to be a record with the following: a

name, a pointer to the next relation in the list, a pointer

to a separate list of attributes, a pointer to a separate

list of key attributes, a security record, a tuple count, a
.4 filer name, and some special purpose boolean switches.

In order to determine if a specific relation needs to

be normalized or not, a boolean switch must be added to

each relation record structure. Then the proposed system

would only have to traverse the linked list of relations

and check each record's NORMALIZE switch to determine if

- the relation has already been normalized. If not, the

necessary procedures will be called to normalize the

31



relation. If by checking the switch, it was determined the

relation did not need normalization, then the traversal of

the linked list would resume until the next unnormalized

relation is located or the end of the list reached.

The Roth System's data file SETUP.DATA will have

been stored on a disk file and contains all prevously

defined domain definitions and relation definitions. The

difference between the Roth SETUP.DATA and the SETUP.DATA

created by this thesis effort is the addition of a

NORMALIZE switch which has been inserted into each

relation's definition in the COMMON unit and subsequently

written out to disk.

The current SETUP module first reads the domain

definitions from the input file SETUP.DATA and stores them

in memory. Then SETUP reads the relation definitions from

the input file and stores them in memory. Each set of

definitions are stored as a linked list with a head pointer

value returned so the system can access the lists. The

SETUP module requires modification to read the domain

definitions straight from the input file to the output

file. This is because the domain definitions are not needed

in this thesis effort, but they are required to remain on

the SETUP.DATA file for use by the Roth System itself. The

SETUP module must also be modified to read in the

added boolean NORMALIZE switch in the relation records.

1This is necessary because this thesis program will need to

examine each relation's NORMALIZE switch to determine if

4 32



the relation is in a normalized form or not.

The module QUIT must be modified in a corresponding

manner. That is, since the domain definitions will already

be written on the output file by the modified SETUP, the

code in QUIT that normally would write them out can be

deleted. Since the proposed system requires an interlaced

method of reading and writing to and from disk, it was

determined that a totally separate output file would be

incorporated in this system. This would even allow

comparison between the "before" and "after" data files.

Obviously, the output file will have a different name than

the input file, in order to make them distinguishable to

the PASCAL filer system. QUIT module should also be

modified so when it is writing out the relation definitions

to the output data file, it also writes out the value of

the NORMALIZE switch.

As stated before, the DEFINE module allows the

defining of domain and relation definitions. This is

performed by querying the user for names and other
A

characteristics of the domains and relations after the user

has indicated the desire to define either domains or

K relations. DEFINE must be modified so it will set

the added NORMALIZE switch to "off" or "false" to indicate

that the relation is unnormalized. The switch will remain

in this "false" state until the normalization program isd
executed and this relation itself is normalized. When

normalized, the relation's NORMALIZE switch will be set to

4 33



"true".

During the design stage, the question arose as to

whether the DBA should be allowed to set the NORMALIZE

switch for relations that he desired to remain in the

unnormalized state. Since the thesis effort involves the

implementation of a system to "automatically" normalize

relations, the decision was made to not allow the DBA to

set the normalize switch. This will keep all relations

consistant with each other in that they all will be

examined for normalization. The point to be made is that

the DBA might input functional dependencies in such a

manner that the relation is already in 3NF. But, each

relation will be examined to determine if it needs

normalization or not.

In summary, the modules that required modification

for the Roth System were the COMMON unit, the SETUP module,

the QUIT module, and the DEFINE module. The COMMON unit

had the addition of the normalize switch in each relation

record, as well as the additional record structure to.4

facilitate the functional dependencies as they are defined.

The changes to the SETUP, QUIT, and DEFINE modules centered

Fi about the reading, writing, and defining of relations and

the necessity to handle the normalize switch appropiately.

The Roth System modules which were used in this

K. thesis effort includes the COMMON unit, the SETUP module,

and the QUIT module. The COMMON unit is exactly the same

as the modified COMMON described in the previous

34



paragraph. The SETUP module must be changed so it will

immediately write domain definitions to the output file as

they are being read from the input file SETUP.DATA. SETUP

will still write the relation definitions to memory as it

reads them from disk, including the normalize switch for

each relation. The QUIT module must be changed so it will

correspond to the SETUP module. It will not have to write

the domain definitions out to memory because SETUP would

have already accomplished this task, but QUIT will still

need to write out to the output file the relation

definitions which includes the normalize switch.

HIGH LEVEL DATA FLOW

The high level data flow diagram for this thesis

effort is found in Figure 7. The structure chart is found

in Figure 8. The data flow diagam shows that the user is

queried for the input and output file names. The input

file should be SETUP.DATAr but at a minimum it must contain

*I data in the format as it would be found in SETUP.DATA.

Because domain definitions are written to the output file

as they are read in from the input file, totally separate

* and distinct input and output files must be used. The

system will create the actual output file with a user

supplied name. The new output file can later be renamed

*g SETUP.DATA for use by the Modified Roth System

35

I



4-4

C: 0

-)

W0

.4-1 040)D
.,4 4. ,-4 En 3 (

40z r-" ) 4  En.

U)d U)Ona
0 Q) 0U -4O .

0)q a 0W -4 -4

rq ~~4-):0 -
E r-4 4'4 0 )

0 Q)0) ) zC4 4
0

0 3: rZ4rT4

U) 1

0

-4 -,
.4

0

4J.

44
0 E-

E-4

36

.



41)

E-4-

41J

D4.

a4.

E--4

4 0D4

37



Upon accepting the input and output file names from

-the user, the system should then read the input file

(usually SETUP.DATA). The domain definitions will be

written to the output file immediately upon being read. The

relation definitions will subsequently be written to memory

after they are read from the input file.

This thesis effort has been designed around two major

concepts. They are describing functional dependencies for

unnormalized relations, and then normalizing relations as

needed. The two major modules in this thesis effort will

be FD and NORMALIZE. The module FD is concerned with

determining functional dependencies. Through user friendly

interactive queries, FD will write into memory the

(S functional dependencies of each unnormalized relation, as

the user supplies them.

Once FD has determined the functional dependencies,

the module NORMALIZE will then normalize the relation in

question to Third Normal Form (3NF). This means that each

subsequent relation generated will be in 3NF and its

normalize switch will be set to "true". When breaking

each unnormalized relation into new relations, the user

will be queried to supply names for the new relations.

When all unnormalized relations have been normalized,

the module QUIT will write the relations to the output

file. The system will then sign off with an ending message

4 to let the DBA know that the system has completed

execution.

438



ROTH SYSTEMS MODIFICATIONS

In order to generate a new SETUP.DATA compatable with

this thesis effort, the Roth System will have to undergo

some modifications. The changes are necessary due to the

addition of the "normalize" switch in each relation

record. Each of the modules that accesses the linked list

record structure will require the modification. SETUP and

QUIT are required to read and write the relations to and

from disk, so changes will be needed in each. DEFINE will

also need to be changed to account for this added feature.

It will set all newly derived relation's normalize switch

to false, so they will be examined for normalization.

In addition, the COMMON module for the modified

version of the Roth Database System will require the same

changes proposed for the thesis effort. In fact, the same

COMMON module can be used for both systems.

CONCLUSIONS

This thesis effort will generate a system that will

manipulate unnormalized relations by first determining

functional dependencies; and then by reducing the relation

in question into new relations that are in Third Normal

* Form. The first step of this thesis was to modify the Roth

System so relations in COMMON would contain a "normalize"

switch and the needed extra record structures. The second

*step of this thesis was to modify other Roth modules so

they would read and write to SETUP.DATA the added normalize

*39



-.

value. Thirdly, a system was then devised to perform the

-derivation of the functional dependencies of unnormalized

relations. Lastly, modules were designed and implemented to

normalize the needed relations.

a

4l 40



V. FUNCTIONAL DEPENDENCY (FD) MODULE

V

INTRODUCTION

Relational data bases are becoming popular in their

use throughout the world of information systems. A common

fallacy of relational data bases is the use of unnormalized

relations within the data base. This can cause a

tremendous volume of duplicated data which can be

eliminated by normalization. In order to normalize each

relation, the functional dependencies (FDs) of the

particular relation have to exist in some form. This

chapter will examine the segment of this thesis effort that

produces the FDs.

FD MODULE DESIGN

3 The executive module TNT is designed to traverse a

linked list structure of relations in memory searching for

unnormalized relations. When such a .elation is found, TNT

calls the module FD so that functional dependencies can be

input by the Database Administrator (DBA). The module FD

is passed a value that points to a relation that needs to

have its functional dependencies defined.

FD is designed to ask the DBA to input the attributes

which comprise the determinant attribute set and the

attributes that comprise the dependent attribute set of

individual functional dependencies. To aid the DBA in

knowing exactly which attributes are in the relation in

question, a menu display of the attributes was determined

41



to be useful. Each attibute is displayed with its key

number in front of the attribute. The key numbers run

Msequentially from 1 to N (with N being the number of

attributes in the relation). The attributes are numbered in

a left to right fashion with attributes 1 to 4 on the first

line, attributes 5 to 8 on the second line, and so on until

all attributes or 20 lines have been displayed. If

there exist more attributes than have been displayed,

the DBA signals for a continuation of display by pressing

the <RETURN> key. Figure 9 depicts the screen display

which will be presented to the DBA so he may select

attributes to define functional dependencies.

(l.

1. aaaa 2. bbbb 3. cccc 4. dddd
5. eeee 6. ffff 7. gggg 8. hhhh
9. iiii 10. jjjj 11. kkkk 12. 1111

73. ssss 74. tttt 75. uuuu 76. vvvv
77. wwww 78. xxxx 79. yyyy 80. zzzz

Figure 9. Sample Screen Display of Attributes.

- Functional dependencies, as implied earlier, consist

of two sets of attributes: the determinant set and the

*. dependent set. The determinant set consists of attributes

that imply (determine) the dependent set of attributes. FD

42

a

t" " ' : : .. .". , . 2 , ;, . . . . . . . . . o _ . . . . . . . . .. . . .. . . .. . . .: :. ........ -- ... . ....... -•.......-". .. . .. .... ... ... .... .. .. . .



first asks the DBA to input individually the attributes

that comprise the determinant set. Once the DBA has

decided on an attribute to input, he is required to type in

the key number of the attribute and press the <RETURN>

key. This continues until all determinant attributes have

been input, then the DBA answers "no" to the query asking

if there are more determinant attributes to be input. Then

FD asks the DBA to individually input the attributes of the

dependent set. This is done exactly as was done with the

determinant attributes, i.e., input key number, press

<RETURN> key, repeat these two steps as needed, then answer

"now to exit the input cycle.

In order to allow the DBA to check and recheck his

Z- work, a series of acceptance queries is presented to the

, DBA. This series consists of the ability to accept or

reject the whole determinant set, accept or reject the

whole dependent set, or accept or reject the whole defined

functional dependency. A query is presented after each

step has been completed. For instance, after all

determinant attributes have been input the DBA indicates

no further attributes are to be input, then a listing of

the attributes will be displayed and the DBA will have the

opportunity to accept or reject the whole set of selected

attributes. If rejected, the DBA will be required to input

the entire set of determinant attributes again

(corrected version). If accepted, the DBA is then

requested to input the dependent set of attributes. When

43

. _.... ".. .. . . . - .. . .. ... ...- - .... .......



accomplished, a similar query will allow the DBA to accept

or reject the entire dependent set. If the dependent set

is rejected, the DBA is then required to input the

corrected set. If accepted, the next step is to accept or

reject the entire functional dependency. FD displays the

entire functional dependency and the follow-on

accept/reject query. If the whole functional dependency is

rejected, internally the functional dependency is destroyed

and the DBA is asked to begin again by first naming the

determinant attribute set and then continuing on as before

until an acceptable functional dependency has been input.

If the functional dependency is accepted, FD has been

completely executed and control is passed back to the

executive module TNT.

"USER FRIENDLY" DESIGN CONSIDERATIONS

Since the module FD is the main interface with the

DBA, it was desired that FD would be as "user friendly"

as possible. To this end, the design of FD was

accomplished with four main considerations in mind. The

considerations contemplated were human factors, software,

hardware, and the required applications. But even before

these, there are some overall observations that should be

reviewed . They are the concepts of design

consistency, design standards, and design tradeoffs.

Design consistency is the first cardinal rule of all

* design activities. Consistency is important because it can

reduce requirements for human learning by allowing skills

44

6.



learned in one situation to be transfered to another

situation like it. While any new automated system must

impose some learning requirements on its users, it should

avoid burdening productive learning with nonproductive,

unnecessary activity. Inconsistencies in design are caused

by differences in designers, as well as from pressure

imposed by time constraints. The solution in these cases

usually consists of exceptions that the user must learn to

handle. People percieve a system as a single entity. To

them it should look, act, and feel similar thoughout.

Excess learning can hinder their performance and

ultimately influence their acceptance of the system.

The module FD is an interactive module that queries

the DBA for functional dependencies. FD displays on the

screen the name of the relation and a menu (listing) of its

attributes, each with an associated key number. FD first

asks the DBA to name the determinant attributes, and then

FD asks the DBA for the dependent attributes. The DBA is

required to input each set of attributes by keying in the

associated key number of the first attribute, then the

number of the second attribute, and so on until all

attributes of the determinant set have been input. Then

all attributes of the dependent set will be input in the

7same fashion. The querying for determinant and dependent

attributes have been consistently designed. Each section

of the module that requestr the naming of attributes do

themselves produce queries, accept responses, and display

45



error notices similarly and consistently. Because these

two sections provide similar services, consistency and

procedural usage are not difficult to substantiate.

Design consistency is achieved by applying design

standards. The purpose of design standards is to provide a

product that is (1) consistant from both an appearance and

a procedural usage standpoint, and (2) visually clear and

easily used (Ref 7:32). Their objective is to reduce the

subsystem processing errors and increase processing speed

by faster initial learning of screen formats and

discouraging "extraordinary situations" during daily

activities. Some people might say that designer creativity

may suffer from the imposition of design standards, but

that would seem a small price to pay for an effective

design.

As stated before, the module FD is consistant in its

outward appearance (to the DBA) and its procedural usage.

The sections that process queries, responses, and error

notices are also easily used by the DBA. In fact, because

of the display of a menu of attributes, the DBA is required

to input only the associated number of each desired

attribute, not the whole name, which would have allowed

*4 spelling errors, confusion, and frustration.

Design tradeoffs are products of: incompatible

designer guideli .es; time, accuracy, cost, or ease-of-use

* requirements;. and human requirements. Design guidelines

often conflict with one another or with machine processing

46

4!



requirements. In such conflicts the designer must weigh

alternatives and reach a decision based on accuracy, time,

- cost, and ease-of-use requirements. This leads to another

rule in user friendly systems designs: Human requirements

always takes precedence over machine processing

requirements. While it might be easier for the designer to

develop a system at the expense of the users, this must not

be tolerated.

The module FD and its submodules were designed with

an emphasis on ease-of-use concepts. For instance, a menu

of attributes for the relation in question will be

displayed with a key number in front of each attribute.

When required to input attributes, the DBA will only have

ci. to input the associated key number, not the whole attribute

name. The DBA also has the the choice of continuing or

stopping the current session each time a relation has had

its functional dependencies input and the relation has been

subsequently normalized. This allows the DBA the choice to

curtail the current session, which causes all the relations

(whether normalized or not) to be written to the new output

file. At a later session the DBA might re-execute the TNT

system using the last output file as the new input file.

In the new session the DBA has the same choice of

sequentially handling as many unnormalized relations as he

wants to or as time permits. Time savings and convenience

will aid the DBA in accomplishing his objectives for the

session.

47

6



-4

Human considerations are the needs and requirements

S -of the user and are oriented toward clarity,

meaningfulness, and ease-of-use. Ease-of-use has been a

.K constant goal in the design of this thesis project, as has

been discussed in previous sections. Hardware and software

considerations reflect the physical constraints of the

terminal on which the screen will be used and the

characteristics of the controlling program. They provide a

framework within which the screen design must occur. The

CRT display screens used with the LSI-lls in the DEL lab

are limited to an 80 column by 24 line display, so it was

felt that when trying to display menus of attribute names

that a maximum of four columns with a maximum of 20 lines

of attribute names would not degregate the readability of

the screen.

Roth originally decided to allow attribute names to

be up to 132 characters in length, but it was felt

necessary tr truncate the attribute names to the first 14

characters in order to allow the display of four columns on

the screen. This truncation is only in effect for the

display of the attribute names. The names remain unchanged

in memory. The module SHOWATRIBS displays the names in

the manner discussed in the previous paragraph. Later in

this chapter, SHOW_ATRIBS will discuss in more detail the

screen display of the attribute names.

If the relation has more than 80 attributes, two or

more screens of display will be required. After a screen

48

.4 ' ' " - . . ma dl .. amC.ad. --.eq, -:- -' ,.k. ,,,. e.r aa, ,* ~ w.a,.



,0

has been displayed, an automatic pause will allow the DBA

-- to examine the list as necessary. When ready, the DBA will

signal for a continuation of the listing by pressing the

[< (RETURN> key. Then the next set of attributes will be

displayed either until the screen is full or the last

attribute has been displayed. Application considerations

reflect the objectives oE the system for which the screen

is being designed. They are the data or information

building blocks which make up a screen display (Ref 7:14).

The application consideration for FD is the input of

accurate functional dependencies that will aid the system

to correctly normalize relations.

FD MODULE IMPLEMENTATION

6 IThe module FD is depicted by its structure chart

found in Figure 10. FD was implemented in a top down

*structured method. First, the upper level FD module was

designed, coded, and implemented. Then each of the lower

* level modules were individually designed, coded, and

implemented. Stubs were used in FD where the lower level

modules would eventually be called. As each lower

level module was implemented, the previously mentioned

stubs were replaced with the modules themselves.

In addition to the FD module, there are four (4) lower

level modules that complement this subsystem. The lower

level modules are called SEEK_ATR_NAME, SHOWATRIBS,

DETER_ATRIBS, and DEPEND_ATRIBS.

49



SEEK_ATRIBNAME is the module that searches the

relational linked list structure to find the ith

attribute name in the list. The input to the

* -" module is an integer value. This signifies the number of

the attribute in question. The output of this module is

the actual relation name that is found to be the ith

element in the list. SEEKATRIB_NAME also accesses a

global pointer value that points to to the relation in

question. This pointer is necessary in order to access the

relation name and the list of attributes, as well as to

build the functional dependencies as a linked list

structure under this relation.

tip FD

SEEK_ SHOW_ DETER_ DEPEND_
ATR ATRIBS ATRIBS ATRIBS
NAME

Figure 10. Strucure Chart of Module FD

50

.6



The module SHOWATRIBS displays on the screen the

attributes of the relation that needs functional

dependencies defined. As discussed in the design section

of this chapter, an acceptable screen display of 4 columns

of attribute names, with a maximum of 20 lines of

attributes would not degrade the screen readability.

Due to limits imposed by the size of the screen display

(80 columns wide) and due to the desire to display the

four columns of names, a decision was reached to display

only the first 14 characters of each attribute name. This

will allow each line of display on the screen to contain

four sets of the following:

2 columns -- attribute key number
1 column -- decimal point
1 column -- blank (spacing)
14 columns -- attribute name
2 columns -- blanks (spacing)

20 columns -- total

Four sets of the 20 columns would make up the 80 column

display. A module called SCREEN, which is found in the

COMMON unit, administratively handles counting the 20 lines

of display that is desired when listing the attibutes.

SCREEN is controlled by and modifies the global

value called LINES. LINES is used to keep count of how

many lines have been displayed since LINES was last set to

zero (0). When LINES is incremented to 20, it causes an

4 automatic pause and displays a user instruction that says

"Press <RETURN> to continue". This feature allows the DBA

51

a.



to leisurely read the entire 20 lines on the screen, then

-continue at will.

. SUMMARY

The module FD and its submodules are responsible for

user friendly interaction with the DBA, while he inputs the

functional dependencies of unnormalized relations. The DBA

selects from a menu of attributes those attributes that

comprise the determinant attribute set and those that

comprise the dependent attribute set of each functional

-: dependency of the relation in question. Module FD also

gives the DBA the options to accept or reject in part or in

whole the individual functional dependencies as they are

being input.

52



VI. NORMALIZE MODULE

INTRODUCTION

The automatic normalization of relations into Third

Normal Form (3NF) will produce relations that can

significantly decrease the idiosyncrasies of relational

databases. By reducing unnormalized relations into 3NF

realtions, the obvious problems of redundancy of data and

other addition/deletion anomilies can be eliminated while

maintaining the integrity of the data. This chapter covers

the design and implementation of the subsystem which

normalizes needed relations into 3NF.

The module NORMALIZE is designed so that it is

transparent to the DBA. After the module FD has aided the

DBA in defining functional dependencies, NORMALIZE will be

called by the executive TNT module to reduce the relation

in question to 3NF. NORMALIZE is passed a pointer value

that points to the relation that has just had its

functional dependencies defined. With this pointer,

NORMALIZE can access the relation and perform the needed

*0 normalization.

MINIMAL SET

Based on an understanding of minimal set, as defined

in Chapter II, the design of the normalization segment of

this thesis effort closely follows Ullman's work. By

Sconstructing a minimal set of functional dependencies, the

resultant family of dependencies is in 3NF (Ref. Ullman:193).

6i 53



-DESIGN

The data flou graph and structure chart for NORMALIZE

are found in Figures 11 and 12, respectively. As can be

deduced from examining the data flow graph of NORMALIZE in

Figure 11, the main thrust of this module is sequential in

nature. That is to say, one procedure follows another one

and so on until the last procedure is executed. Also the

output of one procedure is the direct input of the next

procedure. The procedures were designed with the concept

of functionality in mind. Each module performs a specific

function and only that function. There are six submodules

(procedures) that module NORMALIZE calls into execution.

They are called HIGHLOW, BREAKOUT, RMOVE_SUBS,

RMOVE_TRANS, REGROUP, and NEW_REL.

The module HIGH_LOW is the first submodule called by

NORMALIZE. HIGHLOW's function is to sort the relation's

functional dependencies in a descending manner, with

respect to the number of attributes in the determinant side

of the dependencies. Upon completion of HIGHLOW, the

functional dependency pointer in the relation's structure

will point to a functional dependency that has the largest

number of attributes in the determinant side of the

dependency. Then each functional dependency, including

this first dependency, will in turn point to another

functional dependency with an equal or smaller number of

attributes or it will be the last functional dependency and

its pointer will be "NIL". The impact of sorting the

*# 54



IU,

0 C:

41-

0 0 C4 4U -4

rz 4  a1

~ 41 41

.- I .1 c

.I)~ 44

a) 4. .i

0 E0

rq N

r-4 01
4Ji

a)

0 N

C:1

(a U



-ii

00

0

4I-4

.4-)

--4

(4)

56



functional dependencies at this particular time will become

-- apparent later when discussing some of the other modules,

but the reason for doing it now is strictly because of time

efficiency.

The module BREAKOUT performs the first step in

obtaining a minimal set from the family of functional

dependencies. BREAKOUT takes each functional dependency

that the DBA defined and separates it into functional

dependencies that have the same set of determinant

attributes, but with a single attribute as the dependent

set. For example, if F is a family(set) of functional

dependencies for a relation, which consists of the

following dependencies:

A B -- >C D E
A -- >CX
C -->X
X -- >zY

then the results of BREAKOUT would be a set of

dependencies as follows:

A B -- > C
A B -- > D
AB-->E
A -->C
A -->X
C -- >X
X -- >z
X -- >Y.

As can be seen from the above example, all previously

defined dependencies can still be obtained from the "new"

set, so there is no loss of structure with in this step.

The second step in developing a minimal set is to

remove dependencies that are found to be redundant in their

0 57



definition. The module RMOVE_SUBS will examine each

dependency in the list of functional dependencies and

remove the dependency if any other functional dependency

exists that has a determinant subset of the original while

determining the same single attribute. For instance, by

examining the above example again, it can be seen that the

following dependencies:

A B--> C
A B -- >D
A B -- >E
A -->C
A -->X
C -->X
X -->z
X -->Y

can be reduced by this simple procedure. The resultant set

of dependencies would be as follows:

AB--> D
AB -- >E
A -->C
A -->X
C -->X
X -->z
X -->Y

By examination, it can be seen that the dependency

"A B --> C" was eliminated. The question is "Why?". Since

there were two dependencies ("A B -- > C" and "A -- > C")

that determined the same single attribute and one of these

dependencies had as a determinant set of attributes a

subset of the other dependency in question, then the

dependency with the subset of attributes as the determinant

set of attributes was retained, while the dependency with

the larger set of attributes was eliminated. In other

words, since "A -- > C", then there was no need to retain

58



the dependency "A B -- > C". The explanation for this

procedure is simply stated in that if "A" can get you "C",

then why carry along "B" if it is not necessary.

The third step in developing a minimal set of

functional dependencies is the removal of all transitive

dependencies. A transitive dependency exists if a

dependency can be removed from the family of dependencies

and the resultant set is an equivalent family. The module

RMOVETRANS is responsible for eliminating any transitive

dependencies that exist in the family of dependencies. The

most recent example shows seven dependencies in the current

family of functional dependencies. They are :

A B -- > D
A B--> E

(~1 A -- C
A -->X
C -->X
X -->z
X -->Y

By careful scrutinization, it can be seen that one

dependency can be eliminated by the above procedure. By

examining the value on the right hand siae of each

dependency, the module searches to see if there are any

dependencies with single attributes in the determinant side

that are the same as the value in question. By beginning

at the top of the list, the module looks to see if "D"

(right hand value) can be found as a single attribute in

the determinant side of any other dependencies. It is not,

so the module examines the next dependency in question to

see if its right hand side fits the above description. The

6 59



value "E" also cannot be found as a single determinant

attribute in a dependency. As RMOVETRANS progresses down

the list, it becomes apparent that the third dependency "A -

-> C" fits what is being searched for. The value "C" of

the third dependency is also found on the left hand side of

the fifth dependency, "C --> X".

With this realization, it can be deduced that since

"A -- > C" and "C --> X", that "A" implicitly determines

"X". At this point, it is desired to see if there is an

explicitly defined dependency "A -- > X". In this example

the dependency "A --> X" does exist, so it should be

removed. This procedure should continue until the

dependency list has been exhausted and any existing

transitive dependencies have been removed. In this example,

there is only one transitive dependency, so the remainder

of the dependencies are necessary and meaningful. The

resultant set of dependencies would be as follows:

A B --- > D \
AB-->E \
A -->C \ Minimal

*.I C -->X / Setx -->z /
x -->Y/

At this time, the construction of a minimal set of

functional dependencies is complete. In addition, each

dependency, if treated as a relation itself, would satisfy

t:e definition of a relation in 3NF (Ref. Ullman:194).

Since the dependencies are just dependencies, there are two

more steps required before they can be evolved into

60



relations. The first step will be performed by REGROUP and

the second step will be handled by NEWREL.

The module REGROUP is designed to examine the

resultant minimal set and collect functional dependencies

with like determinant attribute sets into groups. If this

function was performed on the previously defined minimal

set, then the following dependencies would result:

AB-->DE \
A -- > C \ Regrouped
C -->X / Setx -- >zY /

As can be seen, the six dependencies in the minimal set

have now been reduced to four dependencies.

The question arises of why should the dependencies be

grouped back together? Since relational databases have as

.a prime characteristic the elimination of redundancy of

data, it would seem wasteful to create two (or more)

relations with the same determinant attributes. If the

family of dependencies were examined prior to the

regrouping step, it can be seen that there are six

dependencies with a total of 14 attributes. If each

dependency evolved into a relation itself, then there would

be six relations with these 14 attributes. It is easy to

see that there is redundancy because of the duplication of

determinant attributes. By looking at the resultant family

of dependencies after they were regrouped, it can be seen

that the four dependencies with 11 total attributes is more

*effective. This amounts to a savings of 21 per cent of

required memory in this small example. In larger

61



databases, there could be a significantly greater savings.

The only possible objection to this procedure would

be in the area of security. For instance, in the previous

example, if the DBA gave authorization to a user to access

the attribute "D", but did not want him to access the

attribute "E", then there would be problems. Since both

attributes are in the same dependency the user could access

both of them. Because this objection is beyond the scope

of this thesis, a recommendation will be made for futher

examination at a later date.

The second step in transforming the minimal se -o

useable relations is performed by NEW_REL. NEWREL takes

each of the regrouped dependencies and creates a new

relation with the same attributes as the dependency. Each

attribute of the new relation will have the same domain as

was in the original relation defined by the DBA. NEW_REL

will query the DBA to supply a name for the new relation as

[ "each relation is created. The results of this procedure

on the regrouped set of dependencies would look as follows:

RELATION NAME : XXXXXXX
ATTRIBUTES : A B D E
KEY :A B

RELATION NAME : YYYYYYY
ATTRIBUTES : A C
KEY :A

RELATION NAME : ZZZZZZZ
ATTRIBUTES : C X
KEY :C

RELATION NAME : UUUUUUUU

62



ATTRIBUTES : X Z Y
KEY X

The relation names would have to supplied by the DBA at the

time they were created.

The result of NORMALIZE is the transformation of

unnormalized relations into relations that are in 3NF. In

this example, it has been shown that a relation with four

DBA supplied functional dependencies could be normalized

into four separate relations that have had both redundancy

of data and transitive dependencies removed. It is entirely

coincidential that there were four dependencies originally

defined and four resultant relations. There is no way to

predict the outcome of this procedure because if the

dependencies were in a different order, a different minimal

set would have been probable. Every other step would have

been affected also.

NORMALIZE IMPLEMENTATION

The module NORMALIZE is used as a calling executive

for the six submodules that comprise this segment of the

system. This allows the modules to be broken up into

segments according to their function. The six submodules

which will be called are HIGH_LOW, BREAKOUT, RMOVESUBS,

RMOVE_TRANS, REGROUP, and NEW_REL. They are listed in the

order in which they will be called. This is also the order

that they will be discussed.

The module NORMALIZE will reference the COMMON

pointer value that points to the relation that requires

63



normalization. By using this method, there is not a

requirement to pass any values when NORMALIZED is called.

Module HIGHLOW

The module HIGHLOW performs a simple sort on the

functional dependencies of the relation in question. In

order to reference the relation, HIGH_LOW will use the

pointer value that NORMALIZE also uses.

Module BREAKOUT

The module BREAKOUT performs its function by

accessing the linked list of sorted functional dependencies

and then creating additional dependencies by separating

the original dependencies into as many dependencies as

there are attributes in the dependent attribute set.

BREAKOUT will begin execution by examining the first

dependency, leaving the first dependent attribute

untouched in the functional dependency, then creating new

record structures and inserting attribute values for the

rest of the dependent attributes. BREAKOUT will continue

down the linked list until all functional dependencies have

been broken into dependencies with single attributes in the

dependent attribute set.

Module RMOVESUBS

4 ,This module is designed to remove dependencies which

have subsets of determinant attributes as determinant

attributes in other realtions. Each dependency also has to

have the same dependent attribute on the right hand side

of the dependency in order to be a candidate for removal.

64



RMOVESUBS begins by accessing the pointer to the

relation, which has a pointer to the linked list of the

relation's functional dependencies. This module examines

the dependent attribute of the first dependency, then it

uses AUXPTR to search the list to see if there is another

dependency with the same dependent attribute. If a

dependency is not found, then the MAINPTR is advanced to

the next dependency and the process begins all over again.

If there is a dependency found that has the same single

dependent attribute set, then there is a check to see if

the determinant set is a subset of the original relation in

question. If not, AUXPTR is advanced while trying to

locate another dependency with a similar dependent

attribute set.

If both the dependent attribute sets are the same and

if the dependency at the AUXPTR is a subset of the dependency

at the MAINPTR, then the main dependency is a candidate

for deletion. This is performed by manipulating pointers

which effectively removes the the functional dependency

from the list.

Once the MAINPTR has traversed the entire linked

list, RMOVE_SUBS has completed execution. Control is

passed back to NORMALIZE so RMOVETRANS can be called.

Module RMOVETRANS

This module begins at the head of the linked list of

functional dependencies and searches for transitive

dependencies within the family of functional dependencies.

65



This procedure is performed by manipulating a set of

three pointers. The required pointers are the MAINPTR,

the SNGLPTR, and the AUXPTR. The MAINPTR will be the

pointer which traverses the linked list of functional

dependencies searching for the first dependency of a

transitive dependency situation. MAINPTR will be advanced

to the next functional dependency after no transitive

dependencies are found or after there are no more

transitive dependencies to be removed.

SNGLPTR will point to the first dependency in the

list that has a single attribute in the determinant

attribute set. This pointer will be a constant pointer for

each relation to be normalized. Since there is a need to

access the single determinant dependencies within the set

of functional dependencies, SNGLPTR provides an immediate

access method to the first dependency of this type.

AUXPTR will point to dependencies as transtivity is

trying to be established. In fact, at the beginning of

each separate search for transtivity for each particular

relation, AUXPTR will be set back to equal SNGPTR. The

reason for this is that since each dependent attribute set

is a single attribute, all multiple determinant attribute

sets can be bypassed and just the single determinant

dependencies need be examined. Looking back at the example

of the family of dependencies before RMOVETRANS was

executed, the following dependencies can be recalled:

66



MAINPTR SNGLPTR AUXPTR

. AB-->D<-
A B E-->E
A -->C
A -->X
C -- >X

Sx -->z

X -- >Y

The original position of the pointers are shown in the

above example. SNGLPTR will always remain at the first

occurance of a single determinant attribute set. The

MAINPTR will traverse the list attempting to find the

beginning of a transitive dependency. Once MAINPTR has

reached the end of the linked list, then the submodule

RMOVETRANS has completed execution and control is passed

back to NORMALIZE so REGROUP can be called.

The AUXPTR will always be reset back to equal SNGLPTR

when MAINPTR is advanced one position down the list. AUXPTR

is used to traverse the segment of the list that contains

single determinant attribute sets. The reason for this is

that since there are only single attributes in the

dependent attribute set, all multiple determinant attribute

sets can eliminated from consideration. This will

significantly reduce search time for possible transitive

dependencies.

Module REGROUP

This module is responsible for consolidating into a

single functional dependency all those dependencies which

have similar determinant attribute sets. This

consolidation is instrumental in upholding one of the main

67



purposes of relational databases: eliminating redundancy of

data. Two pointers are required to perform the needed

manipulation in this procedure. There is a MAINPTR and an

AUXPTR that traverse the list of dependencies seeking those

that are similar in the determinant attribute set.

Module NEWREL

Module NEW_REL will create new relations from the

regrouped functional dependencies provided by the module

REGROUP. NEWREL is required to create the record structure

to hold the relation definition, query the DBA for the new

relation's name, and initialize all values in the relation

definition. The initialization will be accomplished by

accessing information that was in the original relation

definition (i.e., domains,etc), as well as setting the

NORMALIZE switch of this new relation to "onw, so it will

not be normalized again. NEWREL will also make a check

for duplicate relation names as the DBA is queried to input

the new relation's name.

SUMMARY

The module NORMALIZE is the section of this thesis

effort that normalizes relations into 3NF. To do this,

NORMALIZE calls six submodules, which first sorts the

dependencies by size of determinant sets, performs a

minimal set on the dependencies, then regroups the

dependencies, and then creates new relations from these

U dependencies. Control is passed back to TNT when

NORMALIZE has completed execution.

686~



VI. TESTING, CONCLUSIONS, and RECOMMENDATIONS

TESTING

The implemented portion of this thesis effort was

presented to students of the present database class here at

AFIT. After executing the compiled system, each was able

to describe functional dependencies from the list of the

relation's attributes diplayed. None noted any substantial

difficulties with the process. Some of their

recommendations included not allowing duplicate attribute

selections within the same relation, as well as including

some additional screen houskeeping segments. These are

legitimate recommendations and might be good choices for

future implementation.

CONCLUSIONS

This thesis effort had as an original goal the design

an implementation of an automated system to normalize

relations in a relational database. This entailed

integration with one of two existing databases within the

Digital Engineering Lab (DEL) at the Air Force Institute of

Technology (AFIT). The existing databases were the Roth

Database System and the Fonden Database System. Due to its

stage of completion, the Roth System was chosen because it

was thought to have the best potential in aiding this

effort.

This effort was implemented using UCSD PASCAL on the

LSI-lls in the DEL. UCSD PASCAL proved to be an adequete

69

• I . . . . . " . . ." ......,. .. . ... ., ...... ...... .. ., ... .. ., . ... ..



programming language for accomplishing this work, but

problems were encountered while using the PASCAL FILER

system. The problems centered around the FILER "losing" or

inadvertently writing over files already stored on disk

files. This created tremendous annoyances.

This thesis effort was divided into two main areas

with each area involving research, design, implementation,

and testing. The two areas were the interactive user

segment, which queried the DBA for functional dependencies;

and the normalization segment, which normalized relations

into 3NF. But, even before the systems could be advanced

past a crude design stage, an in- depth analysis of the

Roth System was accomplished and then modifications were

made to this system so it could produce a data file which

would be acceptable for this thesis effort. The needed data

file was crucial from the onset of this effort. Once the

data file could be created and accessed as required, this

thesis effort was able to progress in a more orderly

fashion.

The design and implementation of the interactive user

segment of this effort was accomplished and it provides a

method for the DBA to input functional dependencies of

relations that require normalization. This was achieved by

- informing the DBA of the relation to be normalized,

displaying the attributes, and then querying the DBA for

the functional dependencies. This segment attempts to

guide the DBA through this defining portion while

70



inflicting as little grief as possible. The functional

dependencies are stored in memory as they are described.

They are later used in the normalization process. A future

effort might possibly implement a system to write these

dependencies to a disk file so the DBA and system users can

maintain records of the manipulated relations.

The normalization segment was designed through the

data flow diagram, the structure chart, and the program

design language (PDL) levels. These are found in Appendix D.

When implemented, the design will accomplish normalization

of relations up through Third Normal Form (3NF). This

particular effort is a prime candidate for further

examination and completion, not only through 3NF, but all

the way through 5NF. This would be an excellent thesis

effort for someone interested in databases, because

normalizing relations beyond 3NF can produce relations

which are not desirable. The challenge will be in

determining which relations are desirable as well as being

worthwhile. Before attempting this effort, a detailed

systems requirements and specifications analysis should be

performed.

". RECOMMENDATIONS

0 This thesis effort opens up several areas for further

investigation. As mentioned before, there exists the need

to develop a method to document the changes which relations

experience during normalization. This would give the DBA

and users access to what actually occurred through the

H. 71



execution of this system..°

Areas to examined in the normalization segment would

include, but would not be limited to, the implementation of

of the designed, but unimplemented portion of this thesis

effort, as well as investigating the design and

implementation of segments to normalize up to 5NF. Also, a

topic yet to be introduced would be the effect of such a

system on the limited memory capability of the DEL's LSI-Ils.

72



BIBLIOGRAPHY

1. Worden, R., "Relational Databases on Minicomputers,"
Proceedings of the Minicomputer Forum 1978, 63-77,
London, England (November 1978).

2. Date, C. J., An Introduction to Database Systems,

Reading: Addison-Wesley Publishing Company, 1981.
3. Hubbard, George U., "A Technique for Automated Logical

Database Design," New York University Symposium on
Database Design, 1978.

4. Ullman, J. D., Database Systems, Rockville: Computer
Science Press, Inc., 1980.

5. Roth, Mark A., "The Design and Implementation of a
Pedagogical Relational Database System," (Thesis)
School of Engineering, Air Force Institute of Technology,
Wright Patterson AFB, Ohio, 1979.

6. Rodgers, Linda M., "The Continued Design and Implementa-

tion of a Relational Database System," (Thesis) School
of Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, Ohio, 1982.

7. Galitz, Wilbert 0., Handbook of Screen Format Design,
Wellesley, Massachusetts: GED Information Systems,
Inc., 1981.

73

U



APPENDIX A

USER'S GUIDE: THE AFIT RELATIONAL DATABASE SYSTEM

THE RELATION NORMALIZATION FACILITY

INTRODUCTION AND OVERVIEW * SECTION 1

The Relation Normalization Facility described in this

document is a program intended to run on a stand-alone

minicomputer under the control of UCSD Pascal Operating

System, Version II. All software is written in Pascal.

This system is designed to be used primarily with

a CRT terminal as a CONSOLE device. The program does re-

quire some kind of fast mass storage such as a floppy disk

system or better.

The function of the Relation Normalization Facility

is to provide the Database Administrator (DBA) with the

ability to normalize relations to Third Normal Form

(3NF). This system interacts with a modified version

of Lt Rodger's thesis effort concerning the AFIT Relational

6 Database System. The modifications to Lt Rodger's effort

entailed the addition of a "normalization" switch to

each relation record and the appropriate code to the

modules that defined relations, read relations from disk,

and wrote relations to disk.

746



1.1 The Relation Normalization Facility: An Overview

The structure of the relation normalization facility

is depicted in Figure A-I. The diagram depicts the upper

level structure chart of the facility. The EXEC queries the

DBA for input and output file names, as well as calls the

modules SETUP, FD, NORMALIZE, and QUIT when appropriate to

do so.

~EXEC

No

Figure A-I. Relation Normalization Facility

HOW TO USE THE RELATION NORMALIZATION FACILITY * SECTION 2

2.1 Starting the System

To start the system, execute the TNT file RUN.CODE.

The disk which contains this file must remain on-line

during the execution of this system in order to permit

segment swapping.

2.2 Naming Input and Output Files

The system requires the DBA to first key in the

disk drive number and the file name of the input file.

The DBA is given a chance to verify his input. If the

75



file does not exist on the disk indicated, an error will

result and the operating system will automatically be

re-initialized. The input file must be in the format of

the Modified-Roth SETUP.DATA as described in Appendix C

of this document. This input file can be created by

executing the Modified Roth RUN.CODE file. The first

step to be accomplished is to perform an "INITIALIZE."

This will wipe out all previously defined domain and

relation definitions. Then domains and relations should

be defined as desired. A point to remember is that

domain(s) of a particular relation have to be defined

before the relation itself.

The Output file will also have to be named by the

DBA, Its name must be different than the input file name.

(~ The DBA will be given the chance to immediately verify

the name submitted as the output file name and resubmit

the name if necessary. The DBA is queried by the system

to submit the output file name. The query will look

similar to the following:

"Type in the disk drive number and the file
name of the OUTPUT file that you will be using.

Once the DBA has responded, the verification query will

look similar to the following:

"Is (output file name) correct? (Y/N)"

Any answer other than "Y" for "Yes" will cause the initial

response to be ignored, the original output file query willI
then reappear, the DBA will have to respond, and the

76

• I- " -" . . . . . - m. ~ .- l mwm ,,inn -- ',i . ,h . I ,,,-" , ,,, , - :-m , , ,h



verification will have to be reaccomplished. The naming

and renaming of the output file will continue until an

acceptable name has been submitted and the verification

response is "Y"

Once the DBA has submitted the input and output file

names the system will then look for the input file on the

named disk drive and if a file with the same named file

is not found, the Operating System will automatically

re-initialize and all previously accomplished work in

the session will be obliterated.

After the named file has been found, the domain

definitions will be read first and immediately written to

the output file. Then the relation definitions will be

read from the input file and stored in memory in the

form of a linked list structure.

Once the relation definitions have been stored in

memory, the first unnormalized relation, if any exist,

will go through the process of defining functional

dependencies and then through the normalization process.

Each successively located unnormalized relation will

be processed in a similar manner. The remainder of

this User's Manual will discuss the two processes of

defining the functional dependencies and of normalizing
0

the relation.

DEFINING FUNCTIONAL DEPENDENCIES

* When a relation has been located that requires

normalization, the EXEC module first calls the module

77.1



FD to query the DBA for functional dependencies (FDs).

After all the FDs have been defined for the relation in

question, the EXEC will call the module NORMALIZE to reduce

the relation to 3NF. Then the EXEC will look to see if

any other relations in memory are in unnormalized form,

so they may have their FDs defined and then be put into

3NF.

The first step in defining FDs for a relation is to

define the determinant attribute set. But even before

defining any attribute sets the system will display a

message as follows:

"Relation xxxx is selected to be normalized," where

xxx is the name of the relation. This allows the DBA to

know the exact relation that is being manipulated.

Then a message is displayed to instruct the DBA that

now is the time to select determinant attributes. Next is

a sequence of steps that entail listing all the attributes

* of the relation, asking the DBA to choose one as a deter-

minant attribute, and then asking if there are more

determinant attributes to be chosen.

The listing of attributes is accomplished by dis-

playing up to a maximum of four (4) attributes on each

line of display, with 20 lines of display being the

maximum allowed per screen. If more attributes exist

than were displayed, the DBA is required to press the

(RETURN> key to signal a continuation of the listing

- process.

78I4



Each attribute is displayed with a preceding unique

key number which allows the DBA to be able to reference

each attribute without having to type in the name, but

just the attribute's key number. This should help avoid

*spelling errors and other miscellaneous mistakes.

The DBA is also asked if any more determinant attri-

butes are to be named. If a negative response is input,

then the system proceeds with the naming of dependent attri-

butes. If an affirmative response is input, then the

attributes are displayed again, the DBA is asked to input

a key number to represent the attribute selected, and then

the question of if there are more determinant attributes

to be named is posed to the DBA.

Once all determinant attributes have been named,

dependent attributes will be named in a similar manner.

There is an introductory message displayed, a listing

of attributes, a query for the naming of an attribute, and

then the request for if there are more attributes to be

named.

After the last dependent attribute of the FD is

selected, a query is displayed to determine if there are

more FDs to be defined. If a negative response is returned,

the EXEC calls the NORMALIZE module to normalize the

relation with respect to the FDs defined for the relation.

If an affirmative response is returned, then the entire

* process of defining determinant and dependent attribute

sets is repeated until there are no more FDs to be defined.

79



NORMALIZING RELATIONS

The normalization process when implemented will be

- transparent to the user. This is only because there is

no user interface in this segment of the system.

0

6j

b"80

-I



APPENDIX B

INTERACTIVE AUTOMATED SYSTEM

for NORMALIZATION of RELATIONS

INTRODUCTION

Data base technology has been described as "one

of the most rapidly growing areas of computer and infor-

mation science" (Ref 1:63). As a field, it is still

relatively young; manufacturers did not begin to offer

data base management products until well into the 1960's-

A data base management system (DBMS) can be thought of

as a system comprised of a collection of data and a set

of application programs which are designed to manipulate

the data. An important concept of database is that the

data must be stored in the computer on direct-access

devices (such as disks) in order for the computer's

central processing unit to be able to utilize the data's

cross-references within a reasonable amount of time.

In the mid 1970's a different type of data base appeared

on the scene. Its name, relational data base, implied

that certain data could be viewed as a relation to other

data. These relaticns are described in a two dimensional

table consisting of horizontal rows and vertical columns.

In the Digital Engineering Laboratory (DEL) at the

4 Air Force Institute of Technology (AFIT), the need and

desire exi,:ted for a relational DBMS system, to be used

as a pedagogical tool for instructing students in the

81



.. .design, manipulation, and use of database systems. In

1979, 2LT Mark Roth des--gned and partially implemented

a system (Ref 2) which has served as a starting point

- for the continued development of the AFIT Relational

Database System. In addition to the work completed by

Roth, 2LT Linda M. Rodgers (Ref 3) continued the imple-

mentation of the system in 1982. An additional desire

from the DEL was the design and implementation of a

stand-alone system to query the Database Administration

(DBA) for functional dependencies of existing unnormal-

ized relations and the subsequent normalization of said

relations. This thesis effort is the result of that

desire.

i- Relations in a relational database can be depicted

as a two dimensional table consisting of horizontal rows

amd vertical columns. For example, the relation FIRST,

Figure 1, is depicted by a table with 12 rows (tuples)

and 5 columns (attributes). This paper will use the

terms "row" and "tuple" interchangable, as well as the

terms "column" and "attribute". Each tuple refers to

a separate entity, while each column has values that

were obtained from the domain of each ati-ribute. In

the case of "SNUM", it- domain would contain "SI", . 2",

"S3", and $4 The domain of the attribute "CITY"

would contain "LONDON" and "PARIS". So, each attribute

-" has a distinct domain or value set from which its values

are drawn.

82



__ SNUM STATUS CITY PNUM QTY

Sl 20 London P1 300

Sl 20 London P2 200
Si 20 London P3 400

S1 20 London P4 200
Si 20 London P5 100

Si 20 London P6 100
S2 10 Paris P1 300

S2 10 Paris P2 400

S3 10 Paris P2 200

S4 20 London P2 200
S4 20 London P4 300
S4 20 London P5 400

FIRST

Figure 1. Sample of Relation FIRST (Ref 4:240)

ie The relation FIRST has some inherent problems within

its structure. The predominant problem is redundancy.

The same values can be found for STATUS and CITY for all

like values of SNUM. For instance, with a SNUM of S1,

STATUS is always "20" and CITY is always "LONDON". This

redundancy of data is expensive in terms of the additional

storagerequired to hold repetitous data and in terms of

the number of updates required if a supplier might move

from one city to another.

. At this point the term functional dependency (FD)

becomes signigicant. Functional dependency is described

as follows: "given a relation R, attribute Y of R is

83

0!



functionally dependent on attribute X of R, if and only

if, each X-value in R has associated with it precisely

one -value in relation R (at any one time)' (Ref 4:240).

Functional dependencies might be thought of as a special

type of integrity constraint. This means each value of

the attribute X in relation R will functionally determine

one and only one value for attribute Y in relation R.

With the definition of FD in mind, the main thrust

of this thesis is reached, that is,normal forms and the

normalization of relations. There have been described

six normal forms. They are First (INF), Second (2NF),

Third (3NF), Boyce-Codd (BCNF), Fourth (4NF), and Fifth

(5NF) normal form. The first three forms are stepping

stones to BCNF and beyound. The "normalization process"

reduces relations to the successibe six normal forms,

if the relation is not already optimal. Using the pre-

defined FDs, this normalization process produces a col-

lection of new relations that are oquivalent to the

original relation, but from a data point of view, more

desirable. They are more desirable due to the elimina-

tion of redundancy and the creation of compact and

-, meaningful relations.

STATEMENT OF PROBLEM

The- purpose of this paper was to solve two problems.

First, a system was to be designed and implemented to

query the DBA for functional dependencies of relations

84

.I



that exist in INF. This segment of the thesis effort

was to be a "user friendly" interactive system which

would communicate with the database administrator by

providing prompts, guidance, accurate display of results,

and the ability to negate previous requests.

Secondly, a system was desired to normalize relations

to Third Normal Form (3NF). When both goals are combined,

the final system will provide the DBA a method to inter-

actively communicate to direct the normalization of

unnormalized relations.

SCOPE

The scope of this paper was to design and implement

an interactive system to normalize relations. The design

phase will utilize current Top Down Structured Programming

(TDSP) techniques. The main effort was on the design

and implementation of an algorithm to normalize relations

that were defined by the Data Definition Language (DDL)

(found in Appendix 2) of the Roth database system (Ref 2).

In addition, a "user friendly" interface was designed

and implemented to allow the user exclusive control in

defining the functions dependencies of the relations to

be normalized.

APPROACH

The first step consisted of an extensive literature

4 search to examine the research already completed in the

85

U.

b"j



normalization area. A multitude of data base experts have

written on the normalization concept. The literature

search was then directed specifically to the normalization

algorithm area to determine if any research had been accom-

plished and recorded. Very little work has been recorded

in this area. Both Hubbard (Ref 5) and Date (Ref 4) have

outlines for algorithms, but do not provide any detailed

information towards an algorithm.

Continued research revealed that Ullman (Ref 6: 178)

proposed the concept of a "minimal set" and then went on

to prove that a minimal set of functional dependencies was

in 3NF. With this algorithm in mind, the required

modules were designed using TDSP methods and then they

were compiled and validated, first as stand alone modules

and then as an integrated portion of the existing Roth

Database System.

SEQUENCE OF PRESENTATION

The remainder of this paper will discuss the user

friendly system to define functional dependencies, the

method used to derive a "minimal set," and the resultant

conclusions of this effort.

4DEFINING FUNCTIONAL DEPENDENCIES

The executive module TNT is designed to traverse a

linked list structure of relations in memory searching for

unnormalized relations. When such a relation is found,

- TNT calls the module FD so that functional dependencies

87

64



*. can be input by the Database Administrator (DBA). The

module FD is passed a value that points to a relation that

needs to have its functional dependencies defined.

FD is designed to ask the DBA to input the attributes

which comprise the determinant attribute set and the

attributes that comprise the dependent attribute set of

individual functional dependencies. To aid the DBA in

knowing exactly which attributes are in the relation in

question, a menu display of the attributes was determined

to be useful. Each attribute is displayed with a key

number in front of the attribute. The key numbers run

sequentially from 1 to N (with N being the number of

attributes in the relation). The attributes are numbered

(in a left to right fashion with attributes 1 to 4 on the

first line, attributes 5 to 8 on the second line, and so

on until all attributes or 20 lines have been displayed.

If there exist more attributes than have been displayed,

the DBA signals for a continuation of display by pressing

the <ETUR key. Figure A-2 depicts the screen display

which will be presented to the DBA so he may select

attributes to define functional dependencies.

Functional dependencies, as implied earlier, consist

4 of two sets of attributes: the determinant set and the

dependent set. The determinant set consists of attributes

that imply (determine) the dependent set of attributes.

The module FD first asks the DBA to input individually the

attributes that comprise the determinant set, and then

88

" I



1. aaaa 2. bbbb 3. cccc 4. dddd
5. eeee 6. ffff 7. gggg 8. hhhh
9. iiii 10. jjjj 11. kkkk 12. 1111

.' * * *

73. ssss 74. tttt 75. uuuu 76. vvvv
77. wwww 78. xxxx 79. yyyy 80. zzzz

Figure A-2. Sample Screen Display of Attributes.

asks the DBA to input individually the attributes that

comprise the dependent set.

Since the module FD is the main interface with the

DBA, it was desired that FD would be as "user friendly"

as possible. To this end, the design of FD was accom-

plished with four main considerations in mind. The

considerations contemplated were human factors, soft-

ware, hardware, and the required applications. But even

* before these, there are some overall observations that

should be reviewed. They are the concepts of design

consistency, design standard, and design tradeoffs.

Design consistency is the first cardinal rule of

all design activities (Ref 7:12). Consistency is

important because it can reduce requirements for human

learning by allowing skills learned in one situation

to be transferred to another situation like it. While

any new automated system must impose some learning

requirements on its usurs, it should avoid burdening

89

,-



RD 52 9 NERTY UOAE YTMFRNRAIAINO /D-Ri RELATIONSMU AIR FORCE INST OF TECH WRIGHT-PATTERSONAFB OH SCHOOL OF ENGINEERING C T TRAVIS 19 MAR 83

UCASIFIED AFIT/GCS/EE/83 -4 F/G 5/2 NmhhRSNO E M som ohhiE*ffllfCM



11111 Q8 11.

L m36in

11111.25 111 .4 _ _

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDSIRA3-A



productive learning with nonproductive, unnecessary

activity. Inconsistencies in design are caused by differ-

ences in designers, as well as from pressure imposed by

time constraints. The solution in these cases usually

consists of exceptions that the user must learn to handle.

People perceive a system as a single entity. To them

it should look, act, and feel similar throughout. Excess

learning can hinder their performance and ultimately

influence their acceptance of the system.

The module FD is an interactive module that queries

the DBA for functional dependencies. FD displays on the

screen the name of the relation and a menu (listing) of

its attributes, each with an associated key number. FD

first asks the DBA to name the determinant attributes,

and then FD asks the DBA for the dependent attributes.

The DBA is required to input each set of attributes by

keying in the associated key number of the second attrib-

ute, then the number of the second attribute, and so on

until all attributes of the determinant set have been in-

* put. The querying for determinant and dependent attrib-

utes have been consistently designed. Each section of

the module that requests the naming of attribute-, do

themselves produce queries, accept responses, and dis-

play error notices similarly and consistently. Because

these two sections provide similar services, consistency

and procedural usage are not difficult to substantiate.

90
,.



Design consistency is achieved by applying design

standards. The purpose of design standards is to provide

a product that is (1) consistent from both an appearance

and a procedural usage standpoint, and (2) visually clear

and easily used (Ref 7:32). Their objective is to reduce

the subsystem processing errors and increase processing

speed by faster initial learning of screen formats and

discouraging "extraordinary situations" during daily

activities. Some people might say that designer crea-

tivity may suffer from the imposition of design standards,

but that would seem a small price to pay for an effective

design.

As stated before, the module FD is consistent in its

outward appearance (to the DBA) and its procedural usage.

The sections that process queries, responses, and error

notices are also easily used by the DBA. In fact, because

of the display of a menu of attributes, the DBA is required

to input only the associated number of each desired attri-

• bute, not the whole name, which would have allowed spelling

errors, confusion, and frustration.

Design tradeoffs are products of: incompatible

designer guidelines; time, accuracy, cost, or ease-of-use

requirements; and human requirements. Design guidelines

often conflict with one another or with machine processing

requirements. In such conflicts the designer must weigh

alternatives and reach a decision based on accuracy, time,

cost, and ease-of-use requirement. This leads to another

91



rule in user friendly systems designs: Human requirements

always take precedence over machine processing require-

ments. While it might be easier for the designer to

develop a system at the expense of the users, this must

not be tolerated.

The module FD and its submodules were designed with

an emphasis on ease-of-use concepts. For instance, a menu

of attributes for the relation in question will be dis-

played with a key number in front of each attribute. When

required to input attributes, the DBA will only have to

input the associated key number, not the whole attribute

name. The DBA also has the choice of continuing or stop-

ping the current session each time a relation has had its

(V functional dependencies input and the relation has been

subsequently normalized. This allows the DBA the choice

to curtail the current session, which causes all the

relations (whether normalized or not) to be written to the

new output file. At a later session the DBA might re-

execute the TNT system using the last output file as the

new input file. In the new session the DBA has the same

choice of sequentially handling as many unnormalized rela-

tions as he wants to or as time permits. Time savings

and convenience will aid the DBA in accomplishing his

objectives for the session.

Human considerations are the needs and requirements

of the user and are oriented toward clarity, meaningful-

ness, and ease-ot-use. Ease-of-use has been a constant

92

a



goal in the design of this thesis project, as has been

discussed in previous sections. Hardware and software

considerations reflect the physical constraints of the

terminal on which the screen will be used and the charac-

teristics of the controlling program. They provide a frame-

work within which the screen design must occur. The CRT

display screens used with the LSI-lls in the DEL lab are

limited to an 80 column by 24 line display, so it was felt

that when trying to display menus of attribute names that

a maximum of four columns with a maximum of 20 lines of

attribute names would not degregate the readability of

the screen.

Roth originally decided to allow attribute names to

be up to 132 characters in length, but it was felt neces-

sary to truncate the attribute names to the first 14

characters in order to allow the display of four columns

on the screen. This truncation is only in effect for the

display of the attribute names. The names remain unchanged

in memory.

If the relation has more than 80 attributes, two or

K more screens of display will be required. After a screen

has been displayed, an automatic pause will allow the DBA

'4 to examine the list as necessary. When ready, the DBA

will signal for a continuation of the listing by pressing

the <RETURN) key. Then the next set of attributes will

be displayed either until the screen is full or the last

attribute has been displayed. Application considerations

93

U ~ - m m mmi- m- i. - . . . .



reflect the objectives of the system for which the screen

is being designed. They are the data or information build-

ing blocks which make up a screen display (Ref 7:14). The

application consideration for FD is the input of accurate

functional dependencies that will aid the system to cor-

" rectly normalize relations.

-.* NORMALIZATION OF RELATIONS

The automatic normalization of relations into Third

Normal Form (3NF) will produce relations that can signif-

icantly decrease the idiosyncrasies of relational data-

bases. By reducing unnormalized relations into 3NF rela-

tions, the obvious problems of redundancy of data and

other addition/deletion anomalies can be eliminated while

maintaining the integrity of the data.

The module NORMALIZE is designed so that it is trans-

parent to the DBA. After the module FD has aided the DBA

in defining functional dependencies, NORMALIZE will be

called by the executive TNT module to reduce the relation

in question to 3NF. NORMALIZE is passed a pointer value

that points to the relation that has just had its functional

dependencies defined. With this pointer, NORMALIZE can

access the relation and perform the needed normalization.

a_ Due to the significant amount of time spent in the

beginning of this effort towards understanding the Roth

Database System and pinpointing potential modifications,

this normalization segment was designed and the Program

Design Language (PDL) for each module was written (can be

94

" , . ,, " "' - " ' " llmm N nN Inmm mnl N " n. ukm~mlm m m ' ,, mmt,,,lm ,m ,,,w-m I



found in Appendix D of this document), but was not imple-

mented. Implementation should be of little effort for a

team of qualified PASCAL programmers.

MINIMAL SET

The design of the normalization segment of this

effort closely follows Ullman's work. By constructing a

minimal set of functional dependencies, the resultant

family of dependencies is in 3NF (Ref 6:133-4).

The main thrust of the module NORMALIZE is sequential

in nature. That is to say, one procedure follows another

one and so on until the last procedure is executed. Also,

the output of one procedure is the direct input of the next

procedure. The procedures are designed with the concept

of functionality in mind. Each module performs a specific

function and only that function. There are six submodules

(procedures) that module calls into execution.

Ullman states three requirements are necessary for a

set of functional dependencies (FDs) to be a "minimal set"

and subsequently in 3NF. First, he says that each FD in

the family of FDs can only have one dependent attribute in

the dependency. This step entails creating as many new

FDs as there are dlependent attributes in the original FD.

These new FDs will be substituted for the original FD.

For example, if the FD of A B 10 C D E exists in a

family of FDs, then the result of this step would appear

as the following:

A B - C

95



A B -0 D

A B ab E

As can be seen, the original FD with three dependent

attributes was replaced by three new FDs. rhe signifi-

cance and meaning of the original FD has not been lost

in this step because FDs with similar determinant attri-

butes can later be regrouped as needed.

The second requirement for establiohing a minimal set

is to remove dependencies that are found to be redundant

in their definition. This means to remove the FDs which

have a subset of determinant attributes that determines

the same set of dependent attributes. For instance, if

the FDs A B -- s C and A - C exist, then the FD

A B -- o C should be eliminated because the FD A - C

will still exist and because if A by itself implies C,

then why retain the FD where A and B implies C. This

step has eliminated the redundancy of the FDs.

The third requirement is to remove all transitive

dependencies within the family of FDs. A transitive

dependency exists if a dependency can be removed from the

family of dependencies and the resultant set is an equiv-

alent family. If three FDs exist in a family of FDs such

4 as: A - C, A- X, and C - X; then it can

be seen that A implies X directly in one dependency as

well as through the attribute C, i.e., A - C and

C -a X. Because a transitivity exists, the FD

A X should be eliminated.

96

nnn aU~ lI nm~u m ,lla ,ni m . b-a ,,a.-,,,,,r. ,d . ., ..



At this time, the construction of a minimal set of

-. functional dependencies is complete. In addition, each

dependency, if treated as a relation itself, would satisfy

the definition of a relation in 3NF (Ref 6:194).

Because relational databases strive to reduce redun-

dancy of data, a process beyond deriving the minimal set

is necessary to continue this effort of reduction of

redundancy. This process is one mentioned in an earlier

section; that is, the grouping together of dependencies

with similar determinant attributes. This will eventually

eliminate the creation of two (or more) relations with the

same determinant attributes.

Once a minimal set has been derived and FDs with

similar determinant attributes have been grouped as

single FDs, then the last step will be to create separate

relations out of each FD within the family. For instance,

if the FD A B -- o C existed in a family of FDs, then a

relation would be created with the attributes A, B, and C.

The key would be the attribute set A B.

CONCLUSION

Unnormalized relations in a relational. database

can be automatically reduced to 3NF if functional depend-

encies are provided for use by this system. This effort

produced a system which interfaces with the Roth Database

System and which when fully implemented can interactively

0 query the DBA for functional dependencies of a relation

97



and reduce the relation to an equivalent set of relations

-in Third Normal Form.

98

a''



APPENDIX C

. Program Design Language Code

for NORMALIZE Submodules

Module HIGH LOW

* PURPOSE Sort FDs of the relation that NREL points to *
* in a descending order, by the number of *
* attributes ineach FD's determinant attribute *
* set. *
* GLOBAL VARIABLES USED *
* NREL - pointer to relation in question. *

* GLOBAL VARIABLES MODIFIED None. *

********************** ***********************************

PROCEDURE HIGHLOW

(I: BEGIN
USE QUICK SORT METHOD FOUND IN FUNDAMENTALS OF DATA

STRUCTURES, HOROWITZ and SAHNI, COMPUTER SCIENCE
PRESS, 1976, pp 347-350.

END.

4

:} 99



Module BREAKOUT

* PURPOSE: Insure that each functional dependency (FD) *
* contains only one attribute in the dependent *
* attribute set. This is accomplished by tra- *
* versing the linked list of FDs, selecting those*

"* that contain two or more attributes in the *

dependent set, and then creating "new"(equiv- *
• alent) FDs that have the same determinant set *
* of attribute(s) witha single attribute as the *
* dependent set (ie, the FD "A B C -- D E" would *
• produce the FDs "A B C -- D" and "A B C-- E").*

* GLOBAL VARIABLES USED : *
* NREL - pointer to relation in question. *
* TFD - functional dependency record structure. *
• PART - attribute record structure. *

• GLOBAL VARIABLES MODIFIED: None. *

PROCEDURE BREAKOUT

BEGIN
SET TPTRI TO NRELA.NEXTFD (* head of list *)

(I DOWHILE TPTR1) NIL
BEGIN

DOWHILE NUMBER DEPENDENT ATTRIBUTES> 1
BEGIN

CREATE NEW FD STRUCTURE
MOVE DETERMINANT SET TO NEW STRUCTURE
MOVE 1st DEPENDENT ATTRIBUTE TO NEW STRUCTURE
REMOVE 1st DEPENDENT ATTRIBUTE FROM TPTR1A.TOPTR

LIST
INSERT NEW FD STRUCTURE INTO FD LIST

ENDDO
ADVANCE TPTRI DOWN FD LIST ONE RECORD

ENDDO
END. (* BREAKOUT *)

4

',...100

an



Module RMOVE SUBS

* PURPOSE Remove dependencies which have subsets of *

9 * determinant attribute(s) as determinant *

• attributes in other funtional dependencies *
• which determine the same single dependent *

• attribute. *

• GLOBAL ATTRIBUTES USED *
• NREL - pointer to relation in question. *

GLOBAL VARIABLES MODIFIED : None. *

• INTERNAL VARIABLES USED *

* MAINPTR - pointer to FD in question. *

• AUXPTR - pointer to possible subset FD. *

PROCEDURE RMOVE_SUBS

BEGIN
SET MAINPTR TO 1st FD (* head of list *)
SET AUXPTR TO MAINPTRA.NEXTFD
DOWHILE MAINPTRA.NEXRPTR NIL

BEGIN
DOWHILE AUXPTR<> NIL

BEGIN
IF MAINPTRA.TOPTRA.PARTNAME EQUALS

AUXPTRA.TOPTRA.PARTNAME THEN
IF AUXPTR DETERMINANT SET IS SUBSET OF MAINPTR

DETERMINANT SET THEN
REMOVE MAINPTR FD

ADVANCE AUXPTR ONE FD DOWN LIST
ENDDO

ADVANCE MAINPTR ONE FD DOWN IN LIST
SET AUXPTR TO MAINPTRA.NEXTPTR

ENDDO
END.

I
1.

10

lo



Module RMOVETRANS

* PURPOSE : Searches linked list of FDs to find transitive*
* dependencies and then removes them. *

* GLOBAL VARIABLES USED *

* NREL - pointer to relation in question. *

* GLOBAL VARIABLE MODIFIED : None. *

* INTERNAL VARIABLES USED: *

* MAINPTR - pointer to possible 1st dependency of *

transitive dependency.
* SNGLPTR - pointer to 1st dependency in list that has *
* single attribute in determinant set. *
* AUXPTR1 - extra pointer. *
* AUXPTR2 - extra pointer. *

PROCEDURE RMOVE TRANS

BEGIN
SET SNGLPTR TO 1st FD WITH SINGLE DETERMINANT SET
SET MAINPTR TO 1st FD IN LIST (* head of list *)
DOWHILE MAINPTRA.NEXTFD NIL
BEGIN

DOWHILE AUXPTR1.NEXTFD <> NIL
BEGIN

SET AUXPTR1 TO SNGLPTR
SET AUXPTR2 TO SNGLPTR
IF MAINPTR DEPENDENT ATTRIBUTE SET EQUALS

AUXPTRl's DETERMINANT ATTRIBUTE SET THEN
DOWHILE AUXPTR2 (>NIL

BEGIN
IF AUXPTR2's FD EQUALS FD MADE UP OF

(MAINPTR's DETERMINANT SET AND AUXPTRl's
DEPENDENT SET) THEN

'I REMOVE AUXPTR2's FD
ADVANCE AUXPTR2 DOWN LIST ONE RECORD

ENDDO
ADVANCE AUXPTR1 DOWN LIST ONE RECORD

ENDDO
ADVANCE MAINPTR DOWN LIST ONE RECORD

ENDDO
END.

102



7

A

Module REGROUP

* PURPOSE Consolidation into a single functional *
* dependency all dependencies that have similar *
• determinant attribute sets. *

* GLOBAL VARIABLES USED *
* NREL - pointer to relation in question. *

* GLOBAL VARIABLES MODIFIED : None. *

* INTERNAL VARIABLES USED *

•* MAINPTR - pointer to FD in question. *
i * AUXPTR - pointer to possible FD to be joined. *

PROCEDURE REGROUP

BEGIN

SET MAINPTR TO HEAD OF FD LIST
SET AUXPTR TO HEAD + 1 OF FD LIST

DOWHILE MAINPTRA.NEXTFD NIL
BEGIN

DOWHILE MAINPTR's DETERMINANT SET EQUALS

BEGI AUXPTR's DETERMINANT SETu BEGIN

ADD AUXPTR's DEPENDENT ATTRIBUTE(S) TO MAINPTR's
DEPENDENT ATTRIBUTE SET

DISPOSE OF AUXPTR's FD (* remove it *)
ENDDO

ADVANCE MAINPTR DOWN LIST ONE FD RECORD

SET AUXPTR TO MAINPTR
ENDDO

END.

'4

4

i103



Q2

Module NEWREL

* PURPOSE Create relations from the regrouped *

functional dependencies.
* •

* GLOBAL VARIABLES USED *
* NREL - pointer to relation in question.- *
* GLOBAL VARIABLES MODIFIED None. *

i* *

PROCEDURE NEWREL

BEGIN
DOWHILE NRELA.NEXTFD NIL

BEGIN
CREATE RELATION STRUCTURE
SET NORMALIZE SWITCH TO "ON"
DISPLAY ATTRIBUTES
QUERY DBA FOR NEW RELATION NAME
BUILD ATTRIBUTE LIST FROM FD's DETERMINANT AND

DEPENDENT SETS
LINK KEYPTR LIST FROM FD's DETERMINANT SET
SET NEXT FD TO NIL
SET SECURITY RECORD FROM NREL SECURITY RECORD INFO
SET MODIT, TEMPEXIST, and ATTACH FROM NREL's INFO
SET FILER FROM NREL's FILER
INSERT THIS NEW RELATION INTO RELATION LIST

IMMEDIATELY BEHIND NREL's RELATION
DISPOSE OF NRELA.NEXTFD (* remove head FD from list *)

ENDDO
END.

6

U

" 104



. .. . . .--- - - - .-- • r-- -.; - , . . _ . . .. . . . - -

0

VITA

Charles T. Travis was born July 12, 1949, in Brewton,

Alabama. He graduated with a B.S. in Computer Science in

1972 from the University of Southern Mississippi. On

March 18, 1983, he graduated with an M.S. in Information

Systems from the Air Force Institute of Technology.

Permanent Address: 317 Farrell Street
Picayune, Mississippi 39466

1i 5

(..

i'n

-



* *rp'* t% 4

44 , 4 
L

- ~ I r- " .

. tl '0. 4AL

k r4

4C

ANN t -. 4' ; '

-MF 4 - .r

Alle I F !)i w :II





AD A27 4% 1NFAT UOMATED WSIFM FOR NORMAL IAr IN Of
R At]N S RU AI*OCF INSTl OF ITCHi WRIOLLI EAT1RS(IN

ArF OHSCHOL F NGINEERINGC C I TRAVIS IA MAR Al

N~~~ R4I '2 NNEWlI



L11J2- 1

_ o 2 2.0

1.2 =4. 11.

ICROOP REOUIO ETHR
E NuILB*A OF~ SA43-



SUPPLEMENTARY

INFORMATION



ERRATA

AD-A127 496

Page 86 is not missing. Document was misnumbered, per AFIT.

DTIC-DDAC

9 Dec 83



ATE

LMED


