The rate of decrease in the variance of higher order crossings is obtained for stationary Gaussian m-dependent sequences. This result provides a fast approximation to the variance of the number of axis crossings of oscillatory processes. In some sense, we fill in a gap not answered by the Higher Order Crossings Theorem regarding the monotonicity of higher order crossings.
THE ASYMPTOTIC VARIANCE OF HIGHER ORDER CROSSINGS

by

Benjamin Kedem

and

George Reed

Department of Mathematics
University of Maryland
College Park, Maryland
20742

MD82-52-BK/GR
Tr82-43
August 1982

Approved for public release; distribution unlimited.
THE ASYMPTOTIC VARIANCE OF HIGHER ORDER CROSSINGS

by

Benjamin Kedem

and

George Reed

Department of Mathematics
University of Maryland
College Park, Maryland
20742

ABSTRACT

The rate of decrease in the variance of higher order crossings is obtained for stationary Gaussian m-dependent sequences. This result provides a fast approximation to the variance of the number of axis crossings of oscillatory processes. In some sense we fill in a gap not answered by the Higher Order Crossings Theorem regarding the monotonicity of higher order crossings.

Key Words and Phrases: difference, stationary, Gaussian, m-dependence, axis-crossings, correlation functions.

AMS 1980 Subject Classification: Primary 62M10;
Secondary 62M07, 62H30

This research has been supported by the Air Force Office of Scientific Research Grants AFOSR 80-0211.
THE ASYMPTOTIC VARIANCE OF HIGHER ORDER CROSSINGS

By Benjamin Kedem and George Reed

1. Introduction

The computation of the variance of the number of axis crossings by a stationary process entails technical difficulties in both the continuous and the discrete time cases. What makes this problem so intractable is that the variance is expressed via quantities which involve conditional intensities and fourth order orthant probabilities which are difficult to compute. This is so even in the Gaussian case. See Cramer and Leadbetter (1967), Sec. 10.7, Cox and Isham (1980) pp.33,87, Kedem (1980) p.68. On the other hand when the process is sufficiently oscillatory, it is possible to estimate the variance under suitable conditions by a simple expression. This is shown here by examining the variance of the higher order crossings.

The notion of higher order crossings has been introduced by Kedem and Slud (1981), (1982) as follows. Let \(\{Z_t\}_{t=-\infty}^{\infty} \) be a stationary discrete-time process and define a sequence of binary processes by

\[
X_t^{(k)} = \begin{cases}
1 & \text{if } V^{k-1}Z_t \geq 0 \\
0 & \text{otherwise}
\end{cases}, \quad k = 1,2,\ldots,
\]

where \(V \) is the backward-difference operator, \(VZ_t = Z_t - Z_{t-1} \).

Then

\[
D_{k,N} = \sum_{t=1}^{N-1} I[X_{t+1}^{(k)} \neq X_t^{(k)}]
\]
is the number of axis-crossings by $\{V_{k-1}^t Z_t\}^N_{t=1}$, and is called the (number of) higher order crossings of order k associated with $\{Z_t\}$. The main result of higher order crossings is (Kedem and Slud (1982)) The

Higher Order Crossings Theorem (HOCT): If $\{Z_t\}$ is a strictly stationary process with finite variance and $P(Z_t = Z_0 \forall t) = 0$ and if the spectral distribution function F satisfies the condition $dF(\pi) > 0$ then

(i) $\{X_t^{(k)}\} = \left\{ \begin{array}{ll} \ldots 01010101 \ldots & \text{with probability } 1/2 \\ \ldots 10101010 \ldots & \text{with probability } 1/2 \end{array} \right.$

(ii) $\lim_{k \to \infty} \lim_{N \to \infty} N^{-1} D_{k,N} = 1$ with probability 1.

Thus we see that $D_{k,N}$ eventually increases with k for sufficiently large N. This monotone property of higher order crossings can be associated with the amount of information they carry as exemplified in Kedem and Slud (1981), where a discrimination statistic made of higher order crossings is introduced. However the HOCT does not tell us the rate of increase in the $D_{k,N}$. The present paper provides a refinement of the HOCT in that we establish under some conditions the rate of decrease in $\text{Var}(D_{k,N})$ as $k \to \infty$ for fixed N. The fact that this variance should decrease is apparent from the HOCT since the probability of two consecutive 1's in $\{X_t^{(k)},_{t=1}^N\}$ approaches zero. More precisely, define the intensity associated with $\{X_t^{(k)}\}$

(3) $\lambda_j^{(k)} = P(X_t^{(k)} = 1|X_{t-j}^{(k)} = 1), \quad j = 1,2,\ldots,$
Then our main result states that

Theorem 1. Let \(\{Z_t\} \) be an m-dependent stationary Gaussian sequence. Then for fixed \(N \)

\[
\lim_{k \to \infty} \frac{\text{Var}(D_{k,N})}{(N-1)\lambda_1^{(k)}} = 1.
\]

The limit (4) certainly holds for any finite moving average. An explanation of (4) is provided by the intuition that by the HOCT, \(\{X_t^{(k)}\} \) "becomes Markovian" and \(\lambda_1^{(k)} \to 0 \) as \(k \to \infty \). Note that if \(\{X_t^{(k)}\} \) is truly Markovian then \(\text{Var}(D_{k,N}) = (N-1)\lambda_1^{(k)}(1-\lambda_1^{(k)}) \) which yields (4) when \(\lambda_1^{(k)} \) approaches zero. See Kedem (1980) Chapter 3.

Since for moderate and large \(k \), \(\{V^{k-1}Z_t\} \) becomes oscillatory, i.e., \(D_{k,N} \) is large, it is apparent from the HOCT that (4) sheds a great deal of light on the behavior of the variance of \(D_{1,N} \) (number of axis crossings) for oscillatory processes. It should be noted that (4) is not entirely intuitive since in general we have

\[
\frac{\text{Var}(D_{k,N})}{(N-1)\lambda_1^{(k)}} \leq \frac{D_{k,n}}{(N-1)\lambda_1^{(k)}} \leq (N-1)(1-\lambda_1^{(k)})
\]

for all \(k \), and for \(N \geq 2 \). Other than \(N = 2 \), this general bound has little resemblance to (4). On the other extreme, many simulations with low order autoregressive moving average processes, at least for small \(k \), suggested that the limit should be close to zero. It is only as \(k \) increases that (4) holds. It seems to us therefore that for large \(k \), in light of our earlier comment, the
assumption that \(\{X_t^{(k)}\} \) is approximately Markovian is not entirely unrealistic as it immediately leads to (4). In this paper however this assumption is not made.

The proof of Theorem 1 is carried out by first proving a series of lemmas. In Section 2 we establish a two sided inequality while in Section 3 we construct certain continuous differentiable functions which establish the rates of convergence of the correlations of \(\{v^kZ_t\} \) as \(k \to \infty \).
2. An Inequality

In order to prove and motivate Theorem 1 we need to establish a few basic facts concerning axis crossings by Gaussian sequences. From now on it will be convenient to suppress k in $\lambda_j^{(k)}$ and in $X_t^{(k)}$ and we shall simply write λ_j and X_t with the understanding that both quantities depend on k.

First observe that $D_{k,N}$ can be written as a sum

\[D_{k,N} = d_2 + d_3 + \ldots + d_N \]

where

\[d_t = X_t + X_{t-1} - 2X_t X_{t-1} \]

and is also a function of k since X_t is.

Lemma 1. Let $\{Z_t\}_{t=0}^\infty$ be a stationary Gaussian process. Then uniformly in t

\[\text{Cov}(X_{t-j}, d_t) = 0, \quad j = 0, \pm 1, \ldots \]

Proof. The Gaussian assumption implies that

\[
\text{Cov}(X_{t-j}, X_t + X_{t-1} - 2X_t X_{t-1}) = \left[\frac{1}{2} \lambda_j - \frac{1}{4} \right] + \left[\frac{1}{2} \lambda_{j-1} - \frac{1}{4} \right] - 2\left[\frac{1}{4} \lambda_1 + \frac{1}{4} \lambda_j + \frac{1}{4} \lambda_{j-1} - \frac{1}{4} - \frac{1}{4} \lambda_1 \right] = 0
\]

by noting that $\lambda_j = \frac{1}{2} + \frac{1}{\pi} \sin^{-1} \rho_j$ where ρ_j is the correlation function of $\{Z_t\}$. (See Kedem (1980), p. 33.) The orthogonality relation (7) implies that X_{t-j} and d_t are independent since both variables are binary. We can therefore rewrite Lemma 1 as
Lemma 1'. Let \(\{Z_t\}_{t=-\infty}^{\infty} \) be a stationary Gaussian process. Then

\[
\text{Cov}(g(X_{t-j}), d_t) = 0, \ j = 0, \pm 1, ...
\]

for any function \(g \).

Next we examine the relation between \(X_{t-j}X_{t-j+1} \) and \(d_t \). Unlike the orthogonality relation (7) the covariance between the last two quantities cannot be evaluated directly but may be approximated. Without loss of generality we will focus on

\[
\text{Cov}(d_2, X_t X_{t-1}).
\]

Lemma 2. Let \(\{Z_t\}_{t=-\infty}^{\infty} \) be a stationary Gaussian process. Then we have the two sided inequality

\[
\max(\frac{1}{4} \lambda_{t-1} - \frac{1}{4} \lambda_{t-3} - \frac{1}{2} \lambda_1 + \frac{1}{2} \lambda_2, -\frac{1}{4} \lambda_{t-1} + \frac{1}{2} \lambda_{t-3} - \frac{1}{2} \lambda_1 + \frac{1}{2} \lambda_2) \leq \text{Cov}(d_2, X_t X_{t-1}) \leq \frac{1}{2} \lambda_1.
\]

Proof. First note

\[
\text{Cov}(d_2, X_t X_{t-1}) = \text{Ed}_2 X_t X_{t-1} - \text{Ed}_2 \text{Ex}_t X_{t-1} \leq (\text{Ex}_t X_{t-1})(1-\text{Ed}_2) = \frac{1}{2} \lambda_1.
\]

For the left hand side we have four cases corresponding to the "removal" of either \(X_1 \) or \(X_2 \) or \(X_t \) or \(X_{t-1} \). Thus for example if we "remove" \(X_1 \) we have

\[
-2\text{Ex}_1 X_2 X_{t-1} X_t \geq -2\text{Ex}_2 X_t X_{t-1} = -2[-\frac{1}{4} + \frac{1}{4} \lambda_{t-3} + \frac{1}{4} \lambda_{t-2} + \frac{1}{2} \lambda_1]
\]

from which follows that
\[
\text{Cov}(d_s, X_t X_{t-1}) \geq \left[-\frac{1}{4} + \frac{1}{4} \lambda_{t-1} + \frac{1}{4} \lambda_{t-2} \right] + \left[-\frac{1}{4} + \frac{1}{2} \lambda_{t-2} + \frac{1}{4} \lambda_{t-3} \right] \\
+ \left[-\frac{1}{2} \lambda_{t-3} - \frac{1}{2} \lambda_{t-2} - \frac{1}{2} \lambda_1 + \frac{1}{2} \lambda_1^2 \right] \\
= \frac{1}{4} \lambda_{t-1} - \frac{1}{4} \lambda_{t-3} - \frac{1}{2} \lambda_1 + \frac{1}{2} \lambda_1^2
\]

and similarly for the other three cases.

Now observe that in general

(10) \[\text{Var}(d_t) = \lambda_1(1 - \lambda_1) \]

and therefore by Lemma 1, Theorem 1 is proved if we can show that \(\text{Cov}(d_s, X_t X_{t-1}) = \text{Cov}(d_s, d_t) = o(\lambda_1) \) for arbitrary \(t, s \). However this is not immediate from Lemma 2 and requires some careful considerations to be discussed rigorously in the following Section. It should be made clear though that (9) is instrumental in proving that \(\text{Cov}(d_s, d_t) = o(\lambda_1) \). We can support this claim by resorting to an example heuristic in nature.

Example 1. Assume \(X_t \) is Markovian. Then \(\lambda_j = \frac{1}{2} + \frac{1}{2} (2 \lambda - 1)^j \)

and so

\[
\frac{1}{4}(\lambda_{t-1} - \lambda_{t-3}) = \frac{1}{2} \lambda_1(\lambda_1 - 1)(2 \lambda_1 - 1)^{t-3}.
\]

Then the left hand side of (9) becomes

\[
\text{Cov}(d_s, X_t X_{t-1}) \geq \max\left(\frac{1}{2} \lambda_1(\lambda_1 - 1)(2 \lambda_1 - 1)^{t-3} - \frac{1}{2} \lambda_1 + \frac{1}{2} \lambda_1^2, \right. \\
\left. -\frac{1}{2} \lambda_1(\lambda_1 - 1)(2 \lambda_1 - 1)^{t-3} - \frac{1}{2} \lambda_1 + \frac{1}{2} \lambda_1^2 \right) = o(\lambda_1)
\]
since $\frac{1}{2} \lambda_1$ is always eliminated from one of these last two expressions regardless of whether t is odd or even. Thus for a Markovian X_t (9) and Lemma 1 imply

(11) \[\text{Cov}(d_2, d_t) = o(\lambda_1) \]

Another indication that (11) is plausible is furnished by the next numerical example.

Example 2. Assume $\{Z_t\}$ is a Gaussian white noise. Then

(12) \[\lambda_1 = \frac{1}{2} + \frac{1}{\pi} \sin^{-1}(-\frac{k}{k+1}) \]

and

(13) \[\lambda_2 = \frac{1}{2} + \frac{1}{\pi} \sin^{-1}\left[-1 + 2\left(\frac{k}{k+1} \right)^2 + 2\left(\frac{2k+1}{(k+1)^2(k+2)} \right) \right]. \]

Incidently, here we see the direct dependence of λ_1, λ_2 on k. Now define λ^*_2 by

(14) \[\lambda^*_2 = \frac{1}{2} + \frac{1}{\pi} \sin^{-1}\left[-1 + 2\left(\frac{k}{k+1} \right)^2 \right] \]

We maintain that as $k \to \infty$ λ^*_2 approximates λ_2 very closely. This can be best seen from the following calculations.

<table>
<thead>
<tr>
<th>k</th>
<th>λ_2</th>
<th>λ^*_2</th>
<th>λ_1</th>
<th>$\lambda_2 - \lambda^*_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^3</td>
<td>0.97155556</td>
<td>0.97154135</td>
<td>0.001422932</td>
<td>0.00001421</td>
</tr>
<tr>
<td>5×10^3</td>
<td>0.98726994</td>
<td>0.98726865</td>
<td>0.00636567</td>
<td>0.00000129</td>
</tr>
<tr>
<td>10^4</td>
<td>0.99099766</td>
<td>0.99099720</td>
<td>0.00450140</td>
<td>0.00000046</td>
</tr>
<tr>
<td>10^5</td>
<td>0.99715295</td>
<td>0.99715295</td>
<td>0.00142353</td>
<td>0</td>
</tr>
<tr>
<td>10^6</td>
<td>0.99909968</td>
<td>0.99909968</td>
<td>0.00045017</td>
<td>0</td>
</tr>
</tbody>
</table>
We see that as \(k \to \infty \) the white noise case implies

\[
\lambda_2 = \lambda_1^* + o(\lambda_1).
\]

This can also be verified directly from (12)-(13). It follows that as \(k \to \infty \)

\[
\lambda_2 = \frac{1}{2} + \frac{1}{\pi} \sin^{-1}(-1+2\rho_1^2) + o(\lambda_1) \\
= \frac{1}{2} + \frac{1}{\pi} \sin^{-1}(-\cos 2\pi (\lambda_1 - \frac{1}{2})) + o(\lambda_1) \\
(16) \\
= \frac{1}{2} - \frac{1}{\pi} [\frac{\pi}{2} - 2\pi (\frac{1}{2} - \lambda_1)] + o(\lambda_1) \\
= 1 - 2\lambda_1 + o(\lambda_1).
\]

But in general, for any Gaussian stationary sequence

\[
(17) \quad \text{Cov}(d_t, d_{t+1}) = -\frac{1}{2} + \lambda_1 + \frac{1}{2} \lambda_2 - \lambda_1^2.
\]

and so, in the white noise case

\[
\text{Cov}(d_t, d_{t+1}) = o(\lambda_1) - \lambda_1^2 = o(\lambda_1).
\]

This example indicates that we may also have \(\text{Cov}(d_t, d_s) = o(\lambda_1) \), \(s \neq t \), for any two terms in (5). However the proof of this assertion requires the establishment of some further facts and the use of (9).
3. Proof that \(\text{Cov}(d_t, d_s) = o(\lambda_1) \)

As stated in Section 2 it is sufficient to show \(\text{Cov}(d_2, X_t X_{t-1}) = o(\lambda_1) \) in order to complete the proof of the theorem. From (9) it is clear that \(\text{Cov}(d_2, X_t X_{t-1}) = o(\lambda_1) \) so the problem reduces to showing \(o(\lambda_1) \leq \text{Cov}(d_2, X_t X_{t-1}) \) using the left hand side of (9).

It is more convenient at this point to express \(\lambda_t^{(k)} \) in terms of the correlations of the \(k \)th differenced process, \(\rho_{t,k} \). From Kedem (1980) we have \(\lambda_t^{(k)} = \frac{1}{2} + \frac{1}{\pi} \sin^{-1} \rho_{t,k} \). Ignoring the \(\lambda_1^j \) term in (9) and suppressing the \(k \), it will be sufficient to show

\[
\lim_{k \to \infty} \left(\frac{1}{4\pi} \sin^{-1} \rho_{t-1} - \frac{1}{4\pi} \sin^{-1} \rho_{t-3} - \frac{1}{4} - \frac{1}{2\pi} \sin^{-1} \rho_1 \right) / \left(\frac{1}{2} + \frac{1}{\pi} \sin^{-1} \rho_1 \right) = 0
\]

or

\[
\lim_{k \to \infty} \left(-\frac{1}{4\pi} \sin^{-1} \rho_{t-1} + \frac{1}{4\pi} \sin^{-1} \rho_{t-3} - \frac{1}{4} - \frac{1}{2\pi} \sin^{-1} \rho_1 \right) / \left(\frac{1}{2} + \frac{1}{\pi} \sin^{-1} \rho_1 \right) = 0.
\]

The solution involves two ideas. First treating all functions of interest as functions of \(\rho_{1,k} \) since this is the basic variable at hand as is apparent from the HOCT, and secondly, circumventing the problem that both numerator and denominator in (17), (18) go to zero by constructing an equivalent limit with continuous differentiable functions and using l'Hôpital's rule.

The following lemmas will show how to construct the equivalent limit by replacing \(\rho_{t,k} \) with an appropriate function. First define the following notation associated with the \(k \)'th and \((k+1) \)'st differences.
\begin{align*}
\rho_{v,k} &= \rho_{1,k+1} \\
\rho_{v,k}^{(r)} &= \rho_{r,k+1} \\
R_{v,k} &= \frac{\rho_{v,k+1} - \rho_{v,k}}{\rho_{1,k+1} - \rho_{1,k}}
\end{align*}

C^1 \equiv C^1[-1,1] = \text{set of continuously differentiable functions on the interval } [-1,1].

Again, as above, whenever it is not confusing the subscript \(k \) is suppressed.

Lemma 3. If \(\lim_{k \to \infty} R_{v,k} \) exists then for each sequence of ordered pairs \(\{(l_1,k,l_r,k)\}_{k=1}^{\infty}, r \text{ fixed integer } \geq 2 \), there exists a function \(\rho_r(l_1) \in C^1 \) such that

(i) \(\rho_r(l_1,k) \equiv \rho_{r,k} \)

(ii) \(\lim_{l_1 \to -1} \frac{d\rho_r}{d\rho_{l_1}} \equiv a_r \) is independent of the function constructed.

(iii) \(a_r \) satisfies the difference equation:

\[
a_{r+1} - 2a_r(1-2a_1) + a_{r-1} = (-1)^r 2
\]

where

\[
a_1 = \lim_{l_1 \to -1} \frac{d\rho_l}{d\rho_{l_1}}.
\]

\[
a_0 = 0.
\]

Note that \(\rho_1 \) is \(\rho_{1,k} \) but at the same time it is used as the variable of differentiation. Also, \(a_1 \) is defined differently from \(a_2, a_3, \ldots \).
Proof. We first construct $\rho_1(\rho_1)$ from the pairs
\[\{(\rho_1,k,\rho_{\nu,k})\}_{k=1}^{\infty} \]
and then the other functions will be produced inductively.

By a direct computation we have \[\lim_{k \to \infty} \rho_1,k = -1 \]
and it has also been shown that \(\{\rho_1,k\}_{k=1}^{\infty} \)
is a strictly decreasing sequence (Kedem (1982)) to -1. In what follows the two equivalent notions of \(k \to \infty \) and \(\rho_1 \to -1 \) are used interchangeably without loss of generality.

Since \(\{\rho_1,k\}_{k=1}^{\infty} \) is strictly decreasing, for any finite set of values \(\{(\rho_1,k,\rho_{\nu,k})\}_{k=1}^{n} \) we can construct a function
\[\eta_1^{(n)}(\rho_1) \in C^{1}[\rho_1,n,\rho_1,1] \]
such that
\[\eta_1^{(n)}(\rho_1,k) = \rho_{\nu,k} \quad \text{and} \]
\[\frac{d\eta_1^{(n)}}{d\rho_1}(\rho_1,k) = R_{\nu,k}' \]

If we let \(\eta_1^{(n+1)}(\rho_1) \) be the extension of \(\eta_1^{(n)}(\rho_1) \) then we can define
\[\rho_{\nu}(\rho_1) = \lim_{n \to \infty} \eta_1^{(n)}(\rho_1) \quad \text{for} \quad \rho_1 \in (-1,\rho_1,1] \]
and \[\rho_{\nu}(-1) = \lim_{k \to \infty} \rho_{\nu}(\rho_1,k) = \lim_{\rho_1 \to -1} \rho_{\nu}(\rho_1) \]
and \[\frac{d\rho_{\nu}(-1)}{d\rho_1} = \lim_{k \to \infty} R_{\nu,k} = \lim_{\rho_1 \to -1} \frac{d\rho_{\nu}}{d\rho_1} \]

By the construction of \(\eta_1^{(n)}(\rho_1) \), \(\rho_{\nu}(\rho_1) \in C'(-1,\rho_1,1] \) and since \(\rho_{\nu}(-1) \) is well defined by the HOCT and \(\frac{d\rho_{\nu}}{d\rho_1}(-1) \) is well defined by our assumption \(\lim R_{\nu,k} \) exists, then \(\rho_{\nu}(\rho_1) \in C' \).
To see that \[\lim_{\rho_1 \to 1} \frac{d\rho_V}{d\rho_1} \] is independent of the construction of \(\rho_V(\rho_1) \), note that any \(C^1 \) function satisfying (i) must satisfy \[\lim_{\rho \to 1} \frac{d\rho_V}{d\rho_1} = \lim_{k \to \infty} R_{V,k}. \] This is so simply since by construction for every \(\epsilon \exists K \) for \(k > K \) \(|R_{V,k} - \frac{d\rho_V}{d\rho_1}(\rho_1,k)| < \epsilon \).

And so \(\lim_{k \to \infty} R_{V,k} \) is independent of the construction of \(\rho_V \).

We can now define the functions \(\rho_r(\rho_1) \). Since \(\rho_V = \frac{(2\rho_1 - 1)}{2(1-\rho_1)} \) we have

\[\rho_{2,k} = -2(1-\rho_{1,k})\rho_{V,k} + 2\rho_{1,k} - 1. \]

So we can define

\[\rho_2(\rho_1) = -2(1-\rho_1)\rho_V(\rho_1) + 2\rho_1 - 1. \]

In general, assume the existence of \(\rho_{r-1}(\rho_1), \rho_{r-2}(\rho_1) \in C^1 \). Then from the fact that \(\rho_V^{(r)} = \frac{(2\rho_{r-1} - \rho_{r-1} + 1)}{2(1-\rho_1)} \) we obtain

\[\rho_{r,k} = -2(1-\rho_{1,k})\rho_V^{(r-1)}(\rho_1,k) + 2\rho_{r-1,k} - \rho_{r-2,k} \]

and we can define

\[\rho_r(\rho_1) = -2(1-\rho_1)\rho_{V}^{(r-1)}(\rho_1) + 2\rho_{r-1}(\rho_1) - \rho_{r-2}(\rho_1) \]

where \(\rho_V^{(r-1)}(\rho_1) \in C^1 \) can be defined since we can always construct a function \(\rho_V^{(r-1)}(\rho_V) \) using the same sequence of pairs and the same constructions that we used for \(\rho_{r-1}(\rho_1) \), so let \(\rho_V^{(r-1)}(\rho_1) = \rho_V^{(r-1)}(\rho_V(\rho_1)) \) a composition of \(C^1 \) functions.
Hence for each r there exists $\rho_r(p_1)$ satisfying (i) and (ii). To generate the difference equation in (iii) consider

$$\rho_{r+1}(p_1) = -2(1-p_1)\rho_{r-1}(p_1) + 2\rho_r(p_1) - \rho_{r-1}(p_1).$$

Differentiate

$$\frac{d\rho_{r+1}}{dp_1} = 2\rho_r(p_1) - 2(1-p_1) \frac{d\rho_{r-1}}{dp_1} + 2 \frac{d\rho_r}{dp_1} - \frac{d\rho_{r-1}}{dp_1}$$

and take the limit as $p_1 \to -1^+$

$$(22) \quad a_{r+1} = 2(-1)^r - 4(\lim_{p_1 \to -1^+} \frac{d\rho_{r-1}}{dp_1}) + 2a_r - a_{r-1}.$$

We can write $\frac{d\rho_r}{dp_1} = \frac{d\rho_{r-1}}{dp_1}$ but note that

$$\lim_{p_1 \to -1^+} \frac{d\rho_r}{dp_1} = \lim_{p_1 \to -1^+} \frac{d\rho_{r-1}}{dp_1} \quad \text{or} \quad \lim_{p_1 \to -1^+} \frac{d\rho_{r-1}}{dp_1} = a_{r_1}$$

and therefore

$$(22) \text{ becomes } \quad a_{r+1} = 2(-1)^r - 4a_{r-1} + 2a_r - a_{r-1}$$

which can be rewritten to give the difference equation in (iii).

This completes the proof of Lemma 3.

Lemma 4. If $\lim_{k \to \infty} R_{v; k} = 1$ then $a_r = (-1)^{r+1} r^2$.

Proof. $\lim_{k \to \infty} R_{v; k} = 1$ means $a_1 = 1$ so that the difference equation becomes:

$$a_{r+1} + 2a_r + a_{r-1} = (-1)^r r^2.$$

A specific solution is $a_r = (-1)^{r+1} r^2$. The general solution
to the homogeneous equation $a_{r-1} + 2a_r + a_{r-1} = 0$ is

$$a(-1)^r + 8(-1)^r r.$$

But using (20) $a_2 = -4$ and using (21) (or simply (22)) with $r = 2$ with $r = 3$ $a_3 = 9$. These conditions result in $\alpha = \beta = 0$ and thus $a_r = (-1)^{r+1} r^2$.

Lemma 5. $\lim_{k \to \infty} R_{v,k}^r = 1$ if the process is m-dependent.

Proof. The result can be derived from the expression for ρ_1,k given in Kedem and Slud (1981):

$$\rho_{1,k} = \frac{\left(\begin{array}{c} 2k \\ k-1 \end{array}\right) + \rho_1 \left(\begin{array}{c} 2k \\ k \end{array}\right) + \left(\begin{array}{c} 2k \\ k-2 \end{array}\right) + \ldots + (-1)^k \rho_{k+1}}{\left(\begin{array}{c} 2k \\ k \end{array}\right) - 2\rho_1 \left(\begin{array}{c} 2k \\ k-1 \end{array}\right) + \ldots + (-1)^k 2 \rho_{k}}.$$

(23)

For white noise, it is a straightforward computation since $\rho_{1,k} = 0$ for $i > m$, let $k > m$ so that there are no new correlation terms in (23) as k increases. Then $\rho_{1,k+1} - \rho_{1,k}$ can always be written as the quotient of two finite polynomials in k: $P_1(k)/P_2(k)$. Since there are no new terms in the expression, as k increases, then $\rho_{v,k+1} - \rho_{v,k}$ will be the quotient of the same two polynomials only in $k + 1$: $P_1(k+1)/P_2(k+1)$. Hence $R_{v,k}^r = \frac{P_1(k+1)}{P_1(k)} \cdot \frac{P_2(k)}{P_2(k+1)}$ and since these are finite polynomials in k, $\lim_{k \to \infty} R_{v,k}^r = 1$

With these results, it is now possible to evaluate (18) and (19). If t is even consider (18). Using Lemma 3 we can write
an equivalent limit by replacing $\rho_{t,k}$ with $\rho_t(\rho_1)$ and considering:

(24)
\[
\lim_{\rho_1 \to 1} + \left(\frac{1}{4\pi} \sin^{-1} \rho_{t-1}(\rho_1) - \frac{1}{4\pi} \sin^{-1} \rho_{t-3}(\rho_1) - \frac{1}{2} \frac{1}{\pi} \sin^{-1} \rho_1 \right) / \left(\frac{1}{2} + \frac{1}{\pi} \sin^{-1} \rho_1 \right).
\]

Using l'Hôpital's rule:

(25)
\[
\lim_{\rho_1 \to 1} + \frac{1}{\sqrt{1-\rho_1^2}} \frac{\frac{1}{4} \frac{1}{\sqrt{1-\rho_1^2}} - \frac{\frac{1}{4}}{\frac{\frac{1}{2}}{\sqrt{1-\rho_1^2}}} - \frac{1}{2} \frac{1}{\sqrt{1-\rho_1^2}}}{\frac{\frac{1}{2}}{\sqrt{1-\rho_1^2}}}
\]

This limit can be evaluated if we assume m-dependence. Using

(26)
\[
\frac{1}{4} \frac{a_{t-1}}{\sqrt{|a_{t-1}|}} - \frac{1}{4} \frac{a_{t-3}}{\sqrt{|a_{t-3}|}} - \frac{1}{2}.
\]

When t is even

\[a_{t-1} = + (t-1)^2, \quad a_{t-3} = + (t-3)^2\]

and (26) equals

\[\frac{1}{4}(t-1) - \frac{1}{4}(t-3) - \frac{1}{2} = 0.\]

When t is odd a similar computation shows (19) reduces to zero as well. So for all t
\[\text{Cov}(d_2, X_t X_{t-1}) = o(\lambda_1).\] This completes the proof of the theorem.
Since by Lemma 5 \(\lambda_1^{(k)} / \lambda_1^{(k+1)} \to 1, \ k \to \infty \), we also have

Corollary 1. Under the same conditions as in Theorem 1

\[
\lim_{k \to \infty} \frac{\text{Cov}(D_k, N, D_{k+1}, N)}{(N-1) \lambda_1^{(k)}} \leq 1.
\]

Proof. Use Cauchy-Schwarz inequality.

As the \(m \)-dependence assumption was used only in showing that \(R_{ij} \to 1, \ k \to \infty \), it is clear that the theorem can be extended to cover a more general case for which this requirement still holds provided \(\rho_j \) approaches zero fast enough. We conjecture that Theorem 1 holds true at least for stationary autoregressive moving average Gaussian sequences. The proof of this requires a more careful examination of (23).
References

