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INTRODUCTION

The isothermal elastic-plastic problems of thick-walled cylinders
subjected to mechanical and/or thermal loadings have been solved by many
{investigators based on different theories or methods.1=4 The yield stress in
all isothermal theories is assumed to be temperature-independent. Although
good progress has been made recently in developing constitutive relations for
thermo-elastic-plastic and time~dependent inelastic theories,3:6 the research
effort in this area has not reached a state of completion. 1In addition, the
general solution of thermo—-elastic-plastic prcblems 1is still very difficult
and frequently very costly.6‘8 As 3 result, our research has been directed
towards the development of a special purpose computer program for solving
thick-walled cylinder problems of potential importance to the Army.

This report shows a numerical approach for analyzing the thermo-elastic-
plastic problems of thick-walled cylinders with temperature-dependent yield
stress. The cylinder 1s subjected to a combination of internal pressure and
temperature variation. The material is assumed to obey the von Mises' yield

criterion, the associated flow theory, and the isotropic hardening rule. Some

numerical results for the displacements and stresses are preseated.

THERMO-ELASTIC-PLASTIC THEORY
For small displacement analysis, the total strain-rate tensor Eij is
composed of corresponding elastic, plastic, and thermal components as follows:

éij - éij‘ + ::15P + éijr (l)

Referances are listed at the end of this report.
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On the basis of the above assumptions, we can readily find that

. 3 .
€4P = > (eP/a)syy 9
and
A = cP [3 24 39 TI/H (10)
- E = - - - —-——
2 ¢ 13 T
where
wE
H' = =— = === = B = 30/3¢c (11)
dep  l-w
30/dT = 30,/3T + €P(3H'/3T) (12)

and 0, is the initial yield stress.

Substituting Eqs; (2) and (9) into Eq. (1), one obtains the general
constitutive equations relating Etj to'aij and T. For numerical solutions by
the finite-element method or the finite-difference method, it 1is desirable to
find the inverse form which relates 611 to Eij and T. For the isotropic-
hardening, thermo—~elastfc-plastic theory, the explicit inverse relationships

are given below in a form slightly different from that shown in Reference 7.

. E v 1 :
o1y = 77~ [S1kd31 + 7= S158k - = syysialen

- (-E-- a 84y - (30/3T) iﬁlli (13)
1=2v 1+4'/3 o
vhere
9-302(1*'-1-2') (14)
3 316

- Ay,

:
i
»
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EQUATIONS FOR THICK-WALLED CYLINDER
For the lsotropic-hardening, thermo-elastic-plastic thick-walled

cylinders, the incremental form of Eq. (13) veduces to

Aoy = dgy ey - Aoy® , 1 =r,0,2 (15)
] where
4 E ( v s 1 Yoyty
. —— (== - -04'c
i I+v  1=-2v 13 8 19

Ea (30/3T) %'
bog® = [ - - -—-] 8T (16)
1-2v I+H'/3G o .

04" =0y — oy , Og = (optogto,)/3

In the quasi-static state with no body forces, the radial and tangential
stresses must satisfy the equilibrium equation,

r(3or/9r) = og - op (7
and the corresponding strains must satisfy the compatihility equation

r(9eg/3r) = €, - €¢g (18)
Consider a thick-walled cylinder of inner radius a and extarnal radius b, The
cylinder is subjected to inner pressure and temperature (p and T,), external
pressure and temperature (q and Ty), and end force (f). The houndary

conditions for the generalized plane—-strain conditions are

ot(a9t) =-p , T(a,t) = Ta (19)
gp(b,t) = -q , T(b,t) = Ty (20)
b
2n[ rozdr = umaZp + f (21)
a

where 4 18 0 or 1 for open-end or closed-end conditions, respectively. The

temperature distribution must satisfy the heat conduction equation subjected

to boundary conditions (19) and (20),




The sum of elastic and thermal strain-rates is assumed to be determined by the
Dubamel-Neusann law, |
!.:u‘ + ::“T = E-1{(1+v) ;ij-\DG“ Gkk] + ai‘&ij (2)
1a which E 1s Young's wodulus, v is Poisson's ratio, o is the thermal
expansion coefficient, T is the rate of temperature change, 6“ is the
Kronecker delta, and 0gy is the stress tensor.
The plastic strain-rate ::1.1’ is derivable from the plastic potential
g(ou) by the normality condition '
€y4P = X 3/2ay (3
where 1 is a positive scalar variable.
The ylield function for non-isothermal isotropic strain~hardening material

can be written as

P = £(0g4) - o (eP,T) (4)

vhere
eP = [ ¢P At (s)
¢P = (::- €14P €44P)1/2 (6)

and o(cP,T) represents the dependence of yield stress on the accumulated
increments of effective plastic-strain and temperature. When the von Mises'

yield criterion and sssociated flow rule are adopted,

3

and

(8)

1
81y = o1y - 3 okkS1j




19 ( aT) 1 3T (22)
- s r—- - = oous
r dr or k 3t

where k denotes thermal diffusivity. For the special case of steady state

distribution, the temperature is given by

T = Tq + (Tp=Ta) log(r/a)/log(b/a) (23)

INCREMENTAL FINITE-DIFFERENCE FORMILATIONS

For loading beyond the elastic limit, an incremental approach of the
finite-difference formulation is used. The cross-section of the tube is
divided into n rings with ry=a,r3,.ss, Tk™P,s+s,Ins+]"b, where p is the radius
of the elastic-plastic interface. At the beginning of each increment of
loading, the distribution of temperature, displacements, strains, and stresses
is assumed to be known and we want to determine Au, Aey, Acg, Atg, Ady, Acg,
Ao, at all grid points for the applied incremental loading, Ap, Aq, Af, ATy
(1 =1 to atl), Since the incremental stresses are related to the incremental
strains by the incremental form (Eq. (15)) and Au = ridecg, there exist only
three unknowns at each station that have to be determined for each increment
of loading. Accounting for the fact that the axial strain ¢; is independent
of r, the unknown variables in the present formulation are (Acg)y, (Aeg)y, for
i1i=1,2,...n,n+l, and Aej.

The equation of equilibrium (17) and the equation of compatibility (18)
are valid for both the elastic and the plastic regions of a thick-walled tube.

The finite-difference forms of these two equations at { = 1,...,n are given by

c1(aog)y + c2(80g)y + c3(A0p)g4] = 5 (24)
and

c1(deg)y + c2(Acp)g + c3(deg)is] = ¢4 {25)




On the basis of the above assumptions, we can readily find that

. 3 .
€4P = > (eP/a)syy 9
and
A = cP [3 24 39 TI/H (10)
- E = - - - —-——
2 ¢ 13 T
where
wE
H' = =— = === = B = 30/3¢c (11)
dep  l-w
30/dT = 30,/3T + €P(3H'/3T) (12)

and 0, is the initial yield stress.

Substituting Eqs; (2) and (9) into Eq. (1), one obtains the general
constitutive equations relating Etj to'aij and T. For numerical solutions by
the finite-element method or the finite-difference method, it 1is desirable to
find the inverse form which relates 611 to Eij and T. For the isotropic-
hardening, thermo—~elastfc-plastic theory, the explicit inverse relationships

are given below in a form slightly different from that shown in Reference 7.

. E v 1 :
o1y = 77~ [S1kd31 + 7= S158k - = syysialen

- (-E-- a 84y - (30/3T) iﬁlli (13)
1=2v 1+4'/3 o
vhere
9-302(1*'-1-2') (14)
3 316

- Ay,

:
i
»




O S T

vhere
€l *rgy] -~ 214 , C2= -Fi41 +TL , C3= T}
¢4 = (ri41-r1)(er-ep)y - ril(ce)1+1 - (e0)1]
cs = (ri41-r1)(0g=or)g = ril(op)a+] = (op)4) (26)
Substitution of the incremental stress—strain relations (15) into Eq. (24)
leads to
ce{acg)y + c7(dee)g + cgllecg)esel + co(ler)i14] + c10 g = c11 (27)
where
ce = c1(d12)q + c2(d22)g3 , cg = c3(d12)1+41
c7 = c1(d11)g + c2(d21)g » c9 = e3(d1 141
e10 = ¢1(d13)4 + c2(d23)4 + c3(d13)141
c11 = c1(8op®) g + c2(80p®)g + ¢3(20r°)iy]
+ c2(op~ag)g + c3[(ar)1 = (op)i+1l (28)
The finite-difference forms of the boundary conditions (19), (20), and (21)
are
(d12)1(2eg)y + (d11)1(Aep) ] + (d13)1 Aeg = =Ap + (80¢°)) (29)

(d12)n+1(820)n+1 + (A1) n+1(0crdn+l + (413)n+] Aez = =Aq + (Bor®)ns] (30)

and
n
121 [c12i(8eg)g + c13l(aer)y + c141(Beg)ger + ci5ilher) 4]
n n
+ (] c161)Ae‘ = ua?ap + Af/n + ] c171 (31)
i=] {=1
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Ary = rq4} -3 , cj2l = (Arg)re(dz3)¢

c1al = Grprg(a1dt , eral = (Brypdris1(d23) 141

c1st = (Ar)ri4(d13)g
crel = (Ary)[ri(d33)1 + ri+1(d33) 141}
c17! = (Brg)[r1(80z°)g + r141(2805°)141] (32)

Now we can form a system of 2n+3 equations for solving 2n+3 unknowns, (Aeg)y,
(beg)y, at 1 = 1,2,...,n,n+]l and Aez. Equations (29), (30), and.(31) are
taken as first and last two equations, respectively, and the other 2n
equations are set up at 1 = 1,2,.,.,n using equatione (25) and (27). The
final system is an unsymmetric matrix of arrow type with the nonzero terms
appearing in the last row and column and others clustered about the main

diagonal, two below and one above.

NUMERICAL RESULTS AND DISCUSSIONS

The numerical results for two particular problems follow. The first
problem is a closed~end thick-walled cylinder subjected to varying internal
pressure p and temperature T as shown in Figure 1. The heating is uniform
throughout the thickness, but the initfal yield stress is temperature-
dependent as shown in Figure 1. The other material constants are E = 86,666
psi, v= 0,3, w=0,0, a= 0,0. The numerical results for the radial
displacements (ug, and u) at the inside and outside surface are shown in
Figure 2. The percentage of plastic zone is also shown in the figure by the

dotted line. The entire cylinder is elastic during the time interval 10 to

12. The results for the three stress components at selected time t = 4, 8,
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10, and 13 are shown in Figures 3 through S. The differences for the

displacements and stresses at t = 4 and 8 clearly demonstrate the effect of
temperature~dependence of the yield stress. The same problem with the
plane-strain condition has been solved by the Automatic Dynamic Incresental
Analysis (ADINA) program.8 Por comparison purposes, the ADINA results for the
radial displacement at the outside and the residual stress distribution
through the wall at time T = 10 are also shown in Figures 2 and 4, The agree-
ment is excellent for the stresses and good for the displacement. The small
differences in the displacement response may be due to the end conditions and
the methods of approaches. The mumerical results reported here sre based on
the finite-~difference formulations with n = 100,

As a second example, let us consider a closed-end tube subjected to inner
temperature T, only. The numerical results were based on the following
parameters: b= 2", a= 1", 0= 100, ve 0,3, E= 30 x 10° psi, w = 0.0, ca =
7.75 x 10 1n./in./°F, 0o = 30 x 103 pet, 0/6p = 1.0 =T/2 x 10~3/°F. When
the temperature gradient is of sufficient magnitude, yielding will first
expand from the inside. At larger temperature gradient, the plastic zone will
expand from both the inside and outside surface toward the interior. The
relation between the inside temperature and elastic-plastic interface is shown
in Figure 6. The stresses in a closed-end cylinder subjected to temperature
gradient of 400°F are shown in Ftgure 7. The special case when the yield
stress is assumed to be temperature-independent was considered in an earlier
papar.? Those earlier results are shown in Figures 6 and 7 by the dotted
lines. A comparison of the results between the solid and dotted lines shows

the effects of temperature-dependence of the yield stress.
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The finite-difference forms of the boundary conditions (19), (20), and (21)
are
(d12)1(2eg)y + (d11)1(Aep) ] + (d13)1 Aeg = =Ap + (80¢°)) (29)

(d12)n+1(820)n+1 + (A1) n+1(0crdn+l + (413)n+] Aez = =Aq + (Bor®)ns] (30)

and
n
121 [c12i(8eg)g + c13l(aer)y + c141(Beg)ger + ci5ilher) 4]
n n
+ (] c161)Ae‘ = ua?ap + Af/n + ] c171 (31)
i=] {=1




This report presents the numerical results for a closed-end cylinder
subjected to varying internal pressure and/or temperature. The thermal
problem is due to uniform heating or thermal gradient. 1If the temperature
disgtribution 1s solved by a transit analysis, the corresponding thermal

stresses can be calculated. The result of this transit thermal problem is to

be reported at a later date.




Ary = rq4} -3 , cj2l = (Arg)re(dz3)¢

c1al = Grprg(a1dt , eral = (Brypdris1(d23) 141

c1st = (Ar)ri4(d13)g
crel = (Ary)[ri(d33)1 + ri+1(d33) 141}
c17! = (Brg)[r1(80z°)g + r141(2805°)141] (32)

Now we can form a system of 2n+3 equations for solving 2n+3 unknowns, (Aeg)y,
(beg)y, at 1 = 1,2,...,n,n+]l and Aez. Equations (29), (30), and.(31) are
taken as first and last two equations, respectively, and the other 2n
equations are set up at 1 = 1,2,.,.,n using equatione (25) and (27). The
final system is an unsymmetric matrix of arrow type with the nonzero terms
appearing in the last row and column and others clustered about the main

diagonal, two below and one above.

NUMERICAL RESULTS AND DISCUSSIONS

The numerical results for two particular problems follow. The first
problem is a closed~end thick-walled cylinder subjected to varying internal
pressure p and temperature T as shown in Figure 1. The heating is uniform
throughout the thickness, but the initfal yield stress is temperature-
dependent as shown in Figure 1. The other material constants are E = 86,666
psi, v= 0,3, w=0,0, a= 0,0. The numerical results for the radial
displacements (ug, and u) at the inside and outside surface are shown in
Figure 2. The percentage of plastic zone is also shown in the figure by the

dotted line. The entire cylinder is elastic during the time interval 10 to

12. The results for the three stress components at selected time t = 4, 8,




1.

2.

4

5.

6.

7.

REFERENCES

D. R. Bland, “"Elastoplastic Thick-Walled Tubes of Work-~Hardening Material
Subject to Internal and External Pressures and to Temperature Gradieats,”
Journal of the Mechanics and Physics of Solids, 1956, Vol. 4, pp. 209-229,
S. C. Chu, "A Mumerical Thermo-Elastic-Plastic Solution of & Thick-Walled
Tube,” AIAA Journal, Vol. 12, No. 3, February 1974, pp. 176-179,

J. D. Vasilakis and P. C. T. Chen, "Thermo-Elastic-Plastic Stresses in
Hollow Cylinders Due to Quenching,” Transactions of the TVenty-Fifth
Conference of Army Mathematicians, pp. 661-674, January 1980,

P, C. T. Chen, "Elastic-Plastic Thick-Walled Tubes Subjected to Internal
Pressure and Temperature Gradient,” Transactions of the Twenty-Seventh
Conference of Army Mathematicians, pp. 113-126, January 1982.

A. S. Argon (Bditor), "Constitutive Equations in Plasticity,” The MIT
Press, Cambridge, MA, 1975.

D. H. Allen and W. E. Haisler, "A Theory for Analysis of Thermoplastic
Materials,” Computers & Structures, Vol. 13, 1981, pp. 129-135.

S, Utku, M. S. M. Rao, and G. J. Dvorak, "ELAS 65 Computer Program for
Equilibrium Problems of Elastic-Thermoplastic Solids and Structures,” Duke
University Structural Mechanics Series No. 15a, November 1973.

K. J. Bathe, "ADINA - A Finite Element Program for Automatic Dynamic
Incremental Analysis,” Report 82448-1, Acoustics and Vibration Lab., MIT,

September 1975, (revised May 1976).

10




10, and 13 are shown in Figures 3 through S. The differences for the

displacements and stresses at t = 4 and 8 clearly demonstrate the effect of
temperature~dependence of the yield stress. The same problem with the
plane-strain condition has been solved by the Automatic Dynamic Incresental
Analysis (ADINA) program.8 Por comparison purposes, the ADINA results for the
radial displacement at the outside and the residual stress distribution
through the wall at time T = 10 are also shown in Figures 2 and 4, The agree-
ment is excellent for the stresses and good for the displacement. The small
differences in the displacement response may be due to the end conditions and
the methods of approaches. The mumerical results reported here sre based on
the finite-~difference formulations with n = 100,

As a second example, let us consider a closed-end tube subjected to inner
temperature T, only. The numerical results were based on the following
parameters: b= 2", a= 1", 0= 100, ve 0,3, E= 30 x 10° psi, w = 0.0, ca =
7.75 x 10 1n./in./°F, 0o = 30 x 103 pet, 0/6p = 1.0 =T/2 x 10~3/°F. When
the temperature gradient is of sufficient magnitude, yielding will first
expand from the inside. At larger temperature gradient, the plastic zone will
expand from both the inside and outside surface toward the interior. The
relation between the inside temperature and elastic-plastic interface is shown
in Figure 6. The stresses in a closed-end cylinder subjected to temperature
gradient of 400°F are shown in Ftgure 7. The special case when the yield
stress is assumed to be temperature-independent was considered in an earlier
papar.? Those earlier results are shown in Figures 6 and 7 by the dotted
lines. A comparison of the results between the solid and dotted lines shows

the effects of temperature-dependence of the yield stress.
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This report presents the numerical results for a closed-end cylinder
subjected to varying internal pressure and/or temperature. The thermal
problem is due to uniform heating or thermal gradient. 1If the temperature
disgtribution 1s solved by a transit analysis, the corresponding thermal

stresses can be calculated. The result of this transit thermal problem is to

be reported at a later date.
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