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) Preface
~.‘ Rt —
| This thesis is a preliminary design study of a toroidal electro-
:% static analyzer with multiple, off-center slits. The use of off-center
:; slits provides one with multiple data channels, with each channel
. sampling at a different energy. Thus, energy spectra can be obtained
_i; in a fraction of the time normally required by an analyzer with a
‘f; single entrance-exit slit pair.
; I would like to thank my thesis advisor, Major James Lange, for
fg his encouragement and frequent help which was so essential for the
.
? completion of my thesis. I am also grateful to 1Lt John Glessner and
'j! . 1Lt Glenn Param, whose conversations were of frequent aid.
f‘ Finally, I wish to give my special thanks to my wife, Carol, for
i her patience and assistance throughout my thesis. If not for her
’ loving support, this paper might never have reached its completion.
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-
4
7S]
5
2
3
o

P PYPARVAR ¢ -

ii




Contents

Page

Preface L] L] . L] 1 4 . L] . L] * . . L4 L) . [ ] L . . L] L] L] L) L] L] L] . . L) ii
List of FIBUTES o & ¢ o ¢ ¢ o o © ¢« ¢ o o o o o s a s s o o o o v
List of symbols L] L] - L] L] L 2 . * L] L] . L ] L] * L] L] . . o L] L) L] . L] . vii

ADSETACE & & & ¢ o o o o o o o ¢ o o o o o o 6 6 s 8 o s e e o ix

I L] Introduction L) . . L] L4 . L4 . * . L] L] L] L] . . . L] . L] . . L] 1
A. Background . . ¢ o ¢ ¢ ¢ 4 4 s 6 o e s 0 s e e e s s 1
B L] Problem L] . L] L . L] L] L] L] L4 L] L] . L] L) L) L] L] o L] L] L] 6
C. Coordinate SyStem « « « o« o o o o ¢ o o s o o o o o 6
D L] Approach L] . L] L] L] L] L] . L] L ] . . L] L d . L4 L] . L L] L] L4 7

o

II. ElectroStatiCS o o« o ¢ ¢ o o s o ¢ o o o o o o o s o o o o

“ . A, Overview ¢ « o « o o o ¢ o o o s o s o o v o 0 s s . 9
B. Electrostatic Equations . . « « ¢« « & ¢ o o » & o & 9
C. Electrode Voltage . . « ¢ o ¢ o o o o o ¢ o o o o o 13
D. Simplified Electric Field Equations . . « + « « « « 13

III. MeChaniCS ¢ o e 9 e 6 85 e & & " 6 & T e ¢ » * & & o o o s 15

A . overView e & ® & o ¢ o s o & ° ¢ o 1 5

B. Equations of Motion . . « ¢ ¢ ¢ o ¢ ¢ ¢ o ¢ ¢ ¢ « o 16
C. Velocity Change at Field Boundary . . . « « « » . . 16
D. Angular Equation of Motion . . « « « ¢ &+ o o o ¢ ¢ o 17
E. Radial Equation of Motion . . . « + ¢« &+ « & o = « « 19
F. Axial Equation of Motion . + « « ¢ « o o« s o ¢ o « » 23
G. Summary of Key Mechanics Equations . e e s s e o o 24
IV, OpPLIC8 v o o o o« o o o o ¢ o o o 0 s o ¢ o o o o o o o o & 25
A, Overview . . o ¢ o o ¢ o o o » o s o o = s o s o o o 25
B. Entrance Coordinate System . « « « ¢ o« ¢« v ¢ ¢« « o « 26
C. Exit Coordinate System . . « ¢ « ¢ o o o o ¢ o o« o » 28
D. Refraction at the Field Boundary . . « ¢+ « ¢« « ¢« « « 30
E. Radial Image Location . « ¢« o ¢ « ¢« « o s o s« ¢« o+ o 35
F. Axial Image Location . . « ¢ o o « ¢ o ¢ ¢« s ¢ o « « 36

38
39

G. Radial and Axial Focal Points . « « ¢« « & o « &
H. Newtonian Lens Equations ., « « « « o s s « s o &
I. Post-Electrode Ion Location . . . +« « « ¢« &« « &

e o o @
E
(=]

o J. Radial and Axial Magnification . . « « « « o« « 41

- K. Energy Dispersion . . . ¢« ¢ ¢ ¢« ¢« 2 o+ o ¢ ¢« o o o « 43
iii

s R R T o S O S SR P T




L.
M.
N.

meee Znuss dinsJhee siame 4 LAIRA e A= i~ o)
MEIETL IR L IR WANE Yhe T AT e e
Contents

Resolut 10N ¢ ¢ ¢ ¢ o o ¢ o o e 0 o
Transmission e o e % * o * ® o s o
Summary of Key Optic Equations . . .

v. Applications ® o 8 4 6 o e % ° o e ° o e s

A‘
B.
c.
D.
E.
F.
G.
H.
I.
J.

Bibliography
Appendix .

vita . . .

OVEIVEIEW « o o o o o o o o o o o & s
Off-centet Slits e ® ® & ¢ o o o © o
Instrument size-Maximum Compactness
Simplified Optic Equations . . . . .
Trade~offs and Constraints . .
Ion Path vs Field Error . . .
Entrance Angles vs Field Error . . .
Total Beam Current . « « ¢ o o o« s o
Conclusion + ¢« o« o v ¢ o o o o o o
Recommendations . . ¢ o o ¢ o o o o

54
56
60
62
63
66
69
72
74
74

75
76

92

iv

PR A B I S I g I N IR L R T P S N TP
L VAR R I SOOI R T BT I P IR N TR TR I, B S SR A AT A S S WP N W R




1

2

......
............
.........

List of Eigpres

Figure

Parallel Plate Example - Side View . . . . . .
Cylindrical Coordinate System . . . . . . . .
Mid-Electrode Surface and Object/Image Planes
Entrance/Exit Coordinate Systems . « « « « o« &
Entrance Angles « ¢ ¢ ¢ ¢ ¢ ¢ o o o o ¢ o o o
Electrostatic Snell's Law . . « . « « « « « &
Refraction at Field Boundary . . + « ¢ « & « &
True versus Apparent Source . o « o ¢ ¢ o o o
True versus Apparent Radial Image Plane . . .
Graphic Definition of n+ and N ¢ v o o o o .
Rotation of Cylindfical Coordinate System . .
Axial Component of Exact Electric Field . . .
Upper Energy Limit of Off-Center Slits . . . .
Lower Energy Limit of Off-Center Slits . . . .
Energy Range of Off-Center Slits . « « « « .+ &
Angular Extent of Electrodes . « « &« « ¢ « o o«
Location of Axial Focal Point . . ¢ « « + « &
Location of Primary Entrance Slit . . . . . .
Location of Radial Image Plane . . + + + o+ « &
Location of Axial Image Plane . . . « « + o &
Radial "Focal Length" . . ¢« « . « ¢« ¢« ¢ o & &

Axial "Focal Length" . . . ¢« ¢« v ¢ ¢ ¢« ¢ o« o &

L AT TSI T G S PP - PPN S AP T .

Page
.2
. 4
. 5
.26
. 28
. 30
.32
. 33
. 3%
. 46
. 55
. 68
. 77
. 78
. 79
. 80
. 81
. 82
. 83
. 84
. 85
. 86

DRI R |




Figure Page
23 Axial Magnification . « ¢ ¢ o« o o ¢ ¢ ¢ o o ¢ o o o 0 e e 87
246 ReSOLution . « ¢ ¢ ¢ ¢ o s o o o o o o o ¢ o o o s s o s 88
25 TransmiSSion . « ¢« ¢ ¢ o o ¢ o o o ¢ o o 0 s s 0 s o o . 89
26 X Error in Radial Electric Field . . .« . « . ¢ ¢« « & - & 90

27 Equipoten,tial Curves e & ©® & ©® & o e 8 o & e o o o * o o 91

SO T B A AN

' ECRY]
s

'xnn

JS—
- ;e
"y o
» Te
il
‘.
-

e

RIS
<
-

~ o« e . . . -
3 = LI a PULIP YL T VI § ....A_n_g_._.l




-

©

1]
L]
mL.
[

e
"
”l"

PosCo
P1sCa
B1,B2,B83
U(p,z)
Uo

E_,E,.E,

¢
Eo

Mo

Y
M=Mgy (1+Y)
Vo

8
v'=v,(1+48)
v

List of Symbols

cylindrical coordinates

radial, radii of inner/outer electrodes
éxial, radii of inner/outer electrodes
radial/axial radii of mid-electrode surface
angular extent of electrodes

dimensionless, radial coordinate
dimensionless, axial coordinate

radial/axial coordinates of a point in entry slit
radial/axial coordinates of a point at field boundary
constants in electric field series solution

electric potential

* voltage on electrodes

electric field components

central path, radial electric field strength
specific ion mass

parameter, much less than one

mass of any ion

specific ion velocity

parameter, much less than one

ion velocity outside of field

ion velocity inside of field

ion unit charge

vii




w— Tt ] WY WY — —— -
e T At S R e St Mg A it Sl

------

™
~

11
a3

>
»
'
~
1
o
& o

Rrel

abs
T(n)

w ’ .""

K (w' = Kag)

R
a . ta o e

[ I ...

List of Symbols

centripetal force equation, defines Mg,vo,Eo

ratio of radii, math constant
geometrical, math constant

math constant
specific kinetic energy

kinetic energy of ion outside of field

relative energy of an ion

radial/axial entry angles
radial/axial exit angles
entrance coordinate system

exit coordinate system

LIS Jiad bendh Sl Shadt gt

object plane location, primary entrance slit location

radial/axial image plane location, exit slit location

radial/axial focal point locations
radial/axial "Focal lengths"
radial/axial magnifications
relative energy resolution
absolute energy resolution
transmission

entry/exit slit widths

entry slit width parameter

viii

PR L W PSP PP




[
»

§Te
D
l' oo

i’

YT
AP
Pt L

TP ¥ &
e re

v
PRENERER T
‘ e

R
s
PRI )

Abstract

The design of a toroidal, electrostatic analyzer is discussed
with special emphasis on the instrument providing multiple channels
of data by sampling different points of the energy spectra
simultaneously., Two additional results of this study are that a
.toroidal analyzer can have four times the resolution of a spherical
analyzer and can cover sixteen times as much of the energy spectra
(with a fixed electrode voltage).

The electrostatics, equations of motion, and the optic equations
are discussed. The applications chapter discusses the use of multiple,
off-center slits, the minimization of the size of the instrument, the
trade-offs that must be made in designing an instrument, the effect of
field errors, the minimization of the effects of the field errors,
and the total beam current as seen by the detector. Included in the
Appendix are design curves that should be of assistance to the reader

in designing his own instrument,
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I. Introduction

A. Background

Electrostatic analyzers are used to measure the charge to energy
ratio of ions. Their function can perhaps best be explained with a
simple example. Let an ion of mass, M, and charge, q, enter a pair of
parallel plates (see Figure 1) with energy, T, = % Msz. We will
assume that the electric field is purely in the y-direction and that

the initial conditions are x(o) = O, X(0) = Voo y(o) = 0, y(o) = 0.

The equation of motion is given by

- My = qEy (1-1)
with solution
= 3EY .2 -
y(t) T (1-2)

The ion travels through the electrodes in a time, t; = L/Vx' We may

now write equation (1-2) as

2
y(t,) = (51,-}—-> (f‘-) (1-3)
0

Equation (1-3) shows us that the ion's position, as it exits the

electrodes, is a direct measure of the ion's charge to energy ratio.

e

:i: Traditionally, an electrostatic analyzer has fixed entrance and
w. N

&: exit slits attached to it. Only those ions with a specific charge to
E! energy ratio will be transmitted. A detector behind the exit slit

provides a count of the number of ions with this specific charge to

M TMIPE WP R S TP S RS S IR P PP UL U J W Sy PORP R R WA WAE W WP G T W WAL JPNE. L WAL AL S SP. GHIRIP G WP SO GPN - S S S G W
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Figure 1 - Parallel Plate Example - Side View
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energy ratio. By varying the voltage applied to the electrodes, a
complete q/To spectra can be obtained. Furthermore, if q is known,
then the energy spectra can be measured directly. In this paper the
charge will be folded into the centripetal force and will not show
explicitly as q/To. The energy will be given by itself without
reference to the charge.

The four most common types of electrostatic analyzers have
parallel plate electrodes, concentric cylindrical electrodes,
concentric spherical electrodes, and toroidal electrodes. The
toroidal electrode surfaces are described by two distinct radii,

r and R, with different centers (see Figure 2). The toroidal elec-
trodes are more general in that they contain the cylindrical
electrodes, R = o, and the spherical electrodes, R = r, as special
cases.

The parallel plate analyzer is restricted in its resolution due to
the limited angle through which it can deflect the beam. The
cylindrical, spherical, and toroidal analyzers all have better
resolution than the parallel plate analyzer. Because of their
rotational symmetry, they can deflect the ion beam through a larger
angle, thus achieving better energy dispersion. However, the
cylindrical analyzer has no axial focusing, thus the beam spreads out
axially, which lowers the beam intensity. Due to their double curva-
ture, both the spherical and toroidal analyzers have axial focusing,
which helps to maintain the beam intensity. Since the cylindrical and
spherical analyzers are both special cases of the toroidal analyzer,

only the toroidal analyzer will be developed in this paper. When

e A'A!..'_;‘-"
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Figure 2 - Cylindrical Coordinate System
(From Ewald and Liebl, ref. 2)
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Figure 3 - Mid-Electrode Surface and Object/Image Planes
(From Ewald and Liebl, ref. 2)




appropriate, cylindrical and spherical analyzer formulas will be
provided by taking the proper limits of the toroidal analyzer formulas.

Electrostatic analyzers generally have high resolution and high
transmission curves, but they are limited to an energy range of about
10 ev to 100 kev. The lower energy limit occurs when the electrode
fields are reduced to about the same magnitude as the self-fields of
the ion beam. The upper energy limit is due to voltage breakdown
across the electrodes.

Electrostatic analyzers are much lighter and have simpler power
requirements than do analyzers which use magnets. They are thus
well-suited for space applicationsg, such as solar wind experiments.

They are also useful in plasma experiments in the laboratory,

B. Problem

Generally, the electrostatic analyzer provides only a single data
channel. 1In certain applicationa, as in pulsed plasma experiments,
there is only a very limited, total observation time. This makes it
difficult to gather sufficient data in a single experiment. It is
hoped that by extending the cross radius R through a full 2n
revolution, that is the radius that sweeps perpendicular to the main
ion path (see Figure 2), that an instrument can be designed that
provides multiple data channels, each channel sampling a different

energy.

C. Coordinate System

The coordinate system that will be employed is the cylindrical
coordinate system r, ¢, z shown in Figures 2 and 3. The radial radii

of the electrodes are ra and rb. The cross or axial radii of the

o,




electrodes are Ra and Rb' It will be assumed that Ra and Rb have a
common center of curvature. The angular extent of the electrodes in
the Z = constant plane is ¢ = ¢e. The angular extent of the electrodes
in the ¢ = constant plane is 9, where 6 will be allowed to sweep
through a full 27.

The mid-electrode surface, halfway between the two electrodes, is
described by the.radii r=a, and R = Re, as shown in Figure 3. The
central path through the electrodes is given by r = a, and z = 0. It
will be assumed that the ions enter the electrodes near this central
path with small entry angles such that the ions always remain in the
close vicinity of the central path.

In most places in this paper, the dimensionless coordinates p and

¢ will be used where p and [ are defined by

(r - a))
e
z

The assumptions in the previous paragraph require that p and ¢ be

much less than one at all times.

D. Aggroach

The electrostatic equations will be obtained from the literature
and modified for use in this paper. Equations of motion will be set
up and solved, thus describing the trajectory of an ion through the
electrodes. The solutions to the equations of motion will then be
manipulated so as to produce optic equations, which provide a more

convenient description of the ion behavior. The resolution and

A T T T Pt P 8 e e - S b e . R N . . . . B .
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transmission will also be developed at that time. Applications of the
optic equations will then be discussed with special attention paid to
the behavior of off-center slits. It is the use of off-center slits
that permits the analyzer to sample the energy spectra at various
points simultaneously, thus providing multiple channels of data.

The trade-offs that are required in designing an actual instrument
will then be discussed, with an accent on minimizing the size of the
instrument. Design curves involving the various system parameters are
presented in the Appendix to assist the reader in designing an
'instrumenF suitable to his particular needs.

The effects of errors in the series solutions to the electric
fields are discussed with respect to how they impact on the resolution
and transmission. The effects of these errors can be minimized with
the use of secondary entrance slits which restrict the entrance angles.

Finally, a qualitative discussion is given on the statistical
problem of ion flux through the various slits and the electrodes as it

relates to the total ion current seen by the detector.
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I1, Electrostatics

A, Overview

The equations for the radial and axial electric fields, the
electrostatic potential, and the equipotential surfaces are listed,
as derived by N. Svartholm (Ref 1:196-197). The variables and
constants involved are defined and derived. The connection between
the voltage, Uy, on the electrodes and the central path electric
field strength, Ey, is derived. Finally, approximations are made to
arrive at the final form of these equations that will be used in

subsequent chapters.

B. Electrostatic Equations

As mentioned in the Introduction, the electric field strength
equations were obtained from the literature. We will assume that the
electric field and the electric potential are both zero outside of the
electrodes. Fringing fields will be neglected in this treatment. It
will further be assumed that the electrodes are charged to U, and
that the zero equipotential surface is midway between the two
electrodes, for small electrode gaps. The electric field is assumed
to possess cylindrical symmetry with respect to the z-axis and mirror
symmetry with respect to the z = 0 plane. If the electric field is

given in the z = Q plane near r = a, by the series expansion

EC(p) = Eoll + B1p + B2p? + Bspd + . . .] (2-1)

P P T . e ISR AP I WL S Tl Sl S S o APYS PRV WS SUIN  T S z._.'...-.".h...-._j
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where e (2-2)

then according to N. Svartholm (Ref 1:196), the electric potential and

the electric field strength in an annulus surrounding r = a,s is

given by
1 1
u(p,z) = -ane[D + %3102 + 58203 + zBaD“
1 2 1 2
- '2'(1 + Bz + -2'(1 - B1 - 2B2)pg
- %(1 - By + B2 + 3B3)p?g?
+ 321 = By + 4Bz + 685)C"] (2-3)
Er(D’C) = Eol1l + Bip + B2p? + B3p’
+ 21 =By + By v 38R + H(1 = By + 482 + 682)07)
(2-4)
E (p,2) = Eol-(1 + By)g + (1 - By - 282)p8
- (1 - 8, + Bz +383)p%¢C
+ E(1 - B, - 4Bz + 683)5°] (2-5)
4
where L == (2-6)
e
The potential has been set up for U = O, when r = a,z= 0.
When the potential is set to
U(p,g) = -E¢a 0 (2-7)

10
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where 0 is a constant, then the equipotential surface with this

particular potential value is given by (Ref 1:197) as

p=0- %3102 + (%sz - %82)03 + %[1 + B - (1 + B2 - 28,)0)¢?

(2-8)
The constants B, and B, are given by H. Ewald and H. Liebl
(Ref 2:873) as
Br = ~(1 + 28) (2-9)
e
- 3¢ 2 ' 2 -
B2 1+ Re +a, (1 + Re )/ZRe (2-10)
where R ' = 4R (2-11)
e dr
z=0
In our case, we have
R=R + (r -a) (2-12)
e e
therefore, Re' =1 (2-13)
This gives us
2
By = 1 + 28 4 2e (2-14)
Re  Re

It appears that Ewald's values for B, and B; were arrived at by
one of his associates, R. Albrecht (Ref:3), who used a general, but
difficult, conformal mapping approach involving figures of revolution.
A simpler approach was suggested by H. Wollnik (Ref 4:165-167), for
the special case when Ra and Rb are concentric, as is the case here.
By symmetry, one can assume that the equipotential surfaces have the
same shape as the electrodes. Conservation of electric flux can be

used to relate the electric field, Eg, for r = as to the electric

11
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field, E, for r # a. This gives

Therefore,

us, see figure 2,

E(rd$) (Rd6) = Eo(aed¢) (Rede) (2-15)
where r = ae(l + p) (2-16)
R = Re + (r - ae) (2-17)

E = Eg (3]3) <5R£) (2-18)

This gives us immediately

=

or
E.Eo 1 1 (2-19)
(1 + p) (1+§—§p)
e
Equation (2-18) can be written, to second order in p, as
P
2 ae . ae’ 2 2
E'Eo(l-p#p)l-zp+§?9 (-20)
or
2
= - 3¢ e , 3 |,2 -
E = Eo{l + (11»Rep+ 1+Re+@p (2-21)

By = '(1 + %E) (2-9)

1+ ;_:- + %:;) (2-14)

These values for B8; and 8, are consistent with those given by
Ewald. It should be noted equations (2-3), (2-4), and (2-5S) apply to
either a cylindrical, spherical, or toroidal system. It is the choice
of a, and R, that determines to which system the equations apply.

For the cylindrical system Re = ®, for the spherical system R, = ag»

12
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and for the toroidal system most any choice of R, and a, is

permissible.

C. Electrode Voltggs

The voltage, Uy, that is applied plus/minus to the electrodes, is

related to the central path electric field strength, Ey, by
{
v, - U, = -_/; Fodl (2-22)
Ta

With Ub = +lyp, Ua = =Uy, and integrating along a radial path in the

z = 0 plane, we get

2U, -fplk aedp (2-23)
Pa

By using equation (2-19) for the electric field, and setting

P = -pb, we arrive at

a
Ey = e (2-24)
e M [(1e Ry “"’b”
e _ - 2e
(Re 1) (1 Repb (1 +p,)
The electrodes are separated by a distance d, defined by
- (2-25)

pb 2a,

Eo, the central path electric field strength,is thus determined
by equation (2-24) in terms uof the electrode geometry and the applied
voltage. To apply it to the spherical case, it is necessary to take

the limit as R, approaches a,, and to apply L'Hospital's rule.

D. Simplified Electric Field Equations

For the purposes of this thesis, we will need U(p,;) only to

second order in p or f, and we will need E.(p,;) and E,(p,g) only to

13
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first order in p or . Applying these constraints to equations (2-3),

(2-4), (2-5) leaves us with

U(D,C) = —ane[o + %8102 - %(1 + B1)§2 (2-26)
Er(p) = Eoll + B1p) (2-27)
Ez((,) = Eol-(1 + Byl (2-28)

It is these three equations that will be used in the mechanics

chapter in the equations of motion.

e A s
.

4 [
L4

VLR

3
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e III. Mechanics

- A. Overview
R; The pattern of development of chapter III closely follows that

:i; used by H. E. Duckworth and S. N. Ghoshal (Ref 5:210-221), who will

not be further cited. Certain notational changes are made to improve

the similarity in form between the radial and axial equations and to

R e
e
]

E..
r

generalize the radial solution. The most important change from
Duckworth's notation is the transformation of the radial solution to
explicitly include the ion energy.

The primary goal of the mechanics chapter is to arrive at solutions

(!r‘ . for the vadial and axial motion of the ions inside of the electrodes.
The equations of motion are the standard, cylindrical equations of
motion.

By invoking conservation of energy, the centripetal force equation
and the electrostatic potential, the velocity change as the ion
penetrates the field boundary is derived. This result is coupled with
conservation of angular momentum to get a solution for the angular

equation of motion.

By combining the solution to the angular equation of wmotion,

centripetal force equation, and the radial electrostatic field, the

ey
El- radial equation of motion can be solved., It is in this section that a
F:; connection is made between certain math constants in the radial

equation and the energy of the ions, relative to the mean energy, Ty,

)

o
P

to which the system is tuned.

—r vy
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By combining the solution to the angular equation, the centripetal
- force equation, and the axial electric field, the axial equation of

motion can be solved, thus completing the mechanics chapter.

B. Equations of Motion

The equations of motion are

MY - Mr¢? = eE, (3-1)

vl (r2$) = eEy = 0O (3-2)
dt TR T

MZ = eE, (3-3)

The change of the ion is e = +1.609 x 10-19 coulomb, and the ion mass,

M, is defined to be
- M = Mg(l+Y) (3-4)

where Y is assumed to be a small number. M; will be defined shortly- by

the centripetal force equation.

C. Velocity Change at Field Boundary

For an ion of mass, M, and a velocity
v' = vo(1+B) (3-5)

outside the electric field, with B assumed to be a small number, the
velocity, v, of the ion just after it enters the field is given by the

energy balance equation,

Lmv'?y = L pe? -
3 M(v'<) 3 Mv’ + eU (3-6)
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This can be rearranged as

v = \/(v')2 - %‘}‘1 (3-7)

For an ion of mass My and velocity vy undergoing pure angular
motion in the field along p = o and z = 0, the centripetal force

equation is

Fo= Mo ;. F, = eEof (3-8)
ae
This gives
eEgae = -Mgvo? (3-9)

By combining equations (2-9), (2-26), (3-4), (3-5), (3-7), (3-9),

rearranging, and expanding to second order in p, ¢, B, or Y, we arrive

(1 . at
v = vo[}+8-p+§(%§) (p2-§2)+p(%+ﬁj] (3-10)

This is the velocity, v, of an ion in the field that started with a
velocity, v' = vo(1+B), outside of the field. Equation (3-10) will also

be needed to first order:
v = vo(l+B-p) (3-11)

D. Angular Equation of Motion

The ion velocity component along the central path is the angular

velocity, Voo which is given by

vy = vels. (3~12)

” 17

| R S R P SO A AP P U . . y
-~ AP lea P NPT W VO P U S S U S S L S S U




Tt

A W ) o
Al el ol oh o4 e s

v
"

.....

.« N

where 0, is the angle between the ion path and the central path. v is
the ion velocity inside the field after it enters at the point (p;,Z1).
Since the entrance angles were assumed to be small, we can use the
approximation, cos(0;) =1 - % a,2. By combining this with the
equations for v, (3-10), and for Ves (3-12), expanding and retaining

only second order terms in B, Y, P1, and [;, we have
. 1 /ae 2_, 2 B.y\_1 -2 -
vy = vo[}+8-p1+§ (iz) (p1°-C, )+01(5+Y) 3 01 ] (3-13)

We can also write

: N -
¢ = 1 ag(l+p,) (3-14)
We thus have
. Vo 1 2,1 fag 2_, 231 2
1 = — | 14B8-2p)-5B01+Yp1+2p) “+5 (p1°=51°)-5 o, (3-15)
ae 2 2 \R, 2

The second equation of motion gives us conservation of angular

momentum, from which we can write
r2p = 1,24, (3-16)

By substituting the equation for 61, (3-15), into equation (3-16) and

o 13
solving for ¢ to second order in 8, Y, p, P1, L1, and 0,, we arrive at

¢ = L2 1+B-2p-2p8+392-pl2+§Bpl+plY-l 012+l (Eﬁ) (p12-0:D)| (3-17)
ae 2 2 2 Re

This equation describes the angular motion of an ion, but it is
nonlinear and coupled. The ¢ equation was derived to second order only

L]
to keep from losing first order terms. To first order, the ¢ equationis

¢ = L2 (148-20) (3-18)
de

18
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This equation for & will be used in the radial equation of motion.
It will also be useful to drop the $ equation to zeroth order and

integrate with respect to time.

vot

¢ = z (3"19)

This equation will be useful later in eliminating (t), from the radial

and axial solutions, in favor of (¢).

E. Radial Equation of Motion

As r = a,(1+p), we have T = a,0; therefore, the radial equation of

motion (3-1) can be transformed to
Ma s - Mag(1+p) ()% = eEp (3-20)

By combining the equations for 8; (2-9), Ep (2-27), M (3-4), the
centripetal force (3-9), and 5 (3-18), with the radial equation (3-20),

we arrive, to first order in 8, Y, and p, at

b= (-}1)2 [(Y+28) - of -f,f)] (3-21)

€

By defining the following three new constants

e? = %f (3-22)
xz = 2 - 52 (3-23)
§ = Y—-)*.(-,Z_B (3-24)

we can transform the radial equation of motion to its final form

shown below

b+ xz(f-:-) o = xz(:—:) § (3-25)
19
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The particular solution is obviously Pp = §. The howogeneous

solution depends on the value of X2. For X2 = 0
PLlt) = A%t + B, (3-26)

We can eliminate (t) in favor of (¢) with the aid of equation (3-19).

By defining A, = A %% , we have

PR(9) = A1 + By (3-27)
There fore,
p(¢) = A10 + By + § (3-28)
For X? > 0, we have
Ppit) = Azcos(x§§t) + stin(xgﬁt) (3-29)
Therefore,
p(d) = Azcos(Xd) + Bysin(x¢) + § (3-30)
For X2 <0, we have
p(¢) = Ajcosh(X¢) + By*sinh(X¢) + & (3-31)

Since X2 <0, X is purely imaginary. We can then define x* as follows,
Hith Ii‘ = " -1 »
iX* = 1/et-2 = x (3-32)

By defining B; = iB;*, the third solution becomes

p(¢) = Ascos(X*®) + Biysin(X*¢) + & (3-33)

20
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By redefining X to be
X* = |2 - €2 (3-34)

then X* = X, and the third solution becomes identical in form to the
second solution.

The boundary conditions are declared to be

p(0) = p, (3-35)
= - ' (3’36)

where =,.' will be defined later in the optics chapter as the radial

entry angle. Applying these conditions gives us

X2 =0 p(9) = —=."¢ + p, (3-37)

X2 40  p(¢) = (px-s)cos(x¢)-f§- sin(X$) + & (3-28)

In the limit as X2+ 0, the solution for X? # 0 reduces to the
X? = 0 solution. It is thus seen that the trig solution (3-38)

contains both the linear solution and the hyperbolic solution.

The parameter & can be related to the kinetic energy of the ion.

We can define T to be the energy of an ion outside the field with

[T
.
-, -
.

mass M and velocity v', and Ty to be the kinetic energy of an ion of
y

mass Mg and velocity vgo. Therefore, we have

T = %M(v')z - §u0(1+v)v°2(1+8)2

RS ¥ S

»T

= To(1+Y) (148)2 (3-39)

Rk U R
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To first order in B and Y, we have

T =To(l + 2B + Y)

By applying the definition for § (3-24), we have

T = To(l + X%8) (3-40)
Solving for § gives us
1l (T =T _
5= 2x (—-—To ) (3-41)

By defining the relative energy, n, as

I =T

n T (3-42)

we have

5 = Yr,f (3-43)

It should be noted that T is the unperturbed kinetic energy of an
ion outside of the electrostatic field, whereas T, is the kinetic
energy of an ion inside the field. Specifically, T, is the kinetic
energy to which the analyzer is tuned. It is this energy that will
permit an ion to track the central path through the electrodes.

By substituting this expression for § (3-42) into equation (3-38),

we arrive at the final form of the radial solution:

o= (m - ,-('{r) cos(X$) - i‘-)r(-l sin(X¢$) + Y’{r (3-44)

a3

This form of the radial solution is in terms of the relative ion

energy, the point of entry, the entry angle, and the electrode

!

-
O et geometry.
A '
r
S
[~

-
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F. Axial Equation of Motion

As z = a7, we have i = aei; therefore, the axial equation of

motion (3-3) can be transformed to

Magl = eE; (3-45)

By combining the equations for B, (2-9), E, (2-28), M (3-4), and
the centripetal force (3-9), with the axial equation (3-44), we

arrive, to first order in B, Y, and {, at

- . 2

P o+ (393) L =0 (3-46)
ag

The standard solution to this equation is

z(t) = Acos(e-‘-';’i) + Bsin(e%) (3-47)
e

By invoking the equatioun for ¢ (3-19), we have
z(¢) = Acos(ed) + Bsin(c¢) (3-48)

The boundary conditions are declared to be
z(0) = 1, (3-49)

14 s —x ! (3-50)

where «,' will be defined later in the optics chapter as the axial

entry angle. Applying these conditions, we arrive at
]
2(¢) = zicos(ed) - E-sin(ch) (3-51)

This form of the axial solution is in terms of the point of entry,
the entry angle, and the electrode geometry. It differs in form from

the radial solution only in that the relative energy does not appear

23
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in the axial solution. This difference is principally connected to
the fact that the axial electric field is much smaller than the

radial electric field.

G. Summary of Key Mechanics Equations

For the convenience of the reader, certain key mechanics
equations which will be needed in the optics chapter are listed here

for future reference.

2 _ 3¢ -22
€ Re (3-22)
X? = |2 - €2 (3-34)
T =Ty
n = To (3-‘2)
o(¢) = (p, - i‘}) cos(X¢) -fJ)?(— sin(X$) + 3% (3-44)
2(6) = ricos(ed) - f-gl sin(eo) (3-51)
i
3
A
b,
. 2




RO B A A A AR e

IV. Optics

A. Overview

The pattern of development of chapter IV closely follows that used
by H. E. Duckworth and S. N. Ghoshal (Ref 5:210-221), who will not be
further cited. Many of the toroidal equations presented in this
chapter were developed in analogy to the cylindrical equations
produced by Duckworth and Ghoshal. Certain notational changes,
consistent with chapter III, are made to improve the similarity in
form between the radial and axial equations and to permit the equations
to explicitly contain the relative ion energy.

In this chapter, coordinate systems are established in the regions
outside the entrance and exit to the electrodes. The behavior of the
ions in these regions is worked out and refraction at the field
boundary is considered.

By combining the behavior of the ions outside the electrodes with
the solutions to the radial and axial equations of motion inside the
electrodes, the locations of the radial and axial image planes are
determined,

Further manipulation of the equations which specify the locations
of the image planes yields the location of the radial and axial focal
points, the radial and axial "focal lengths," and the radial and axial
Newtonian lens equations. It must be remembered that, while these
equations are patterned after the thin optical lens equations, the

electrostatic analyzer is not a thin optical lens and thus,6some of the

25
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results in the applications chapter (chapter V) are different from
what one might first expect.

By comparing post-electrode ion locations with pre-electrode
starting points, the radial and axial image magnifications, the energy

dispersion, the resolution, and the transmission are calculated.

B. Entrance Coordinate System

The space outside of the electrodes is assumed to be field-free,
thus the ion trajectories are straight lines. Cartesian coordinate
systems are therefore a natural choice for describing the motion of

the ions as they approach or leave the electrodes.

jon owl

;x"

Figure 4 - Entrance/Exit Coordinate Systems

At the entrance, ¢ = 0, the coordinates are x', y', z' with the
origin located at p = 0, ¢ = 0, ¢ = O (see Figure 4). The positive

x'-direction points away from the electrodes; thus, at the origin

26
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dx' = -a.d¢. The positive y'-direction matches the positive r or
p-direction; thus, at the field boundary dy' = dr = a,dp. The positive
z'-direction matches the positive z or Z-direction; thus, at the field
boundary dz' = dz = adz.

The angle ¢; is defined to be the angle between the x'-axis and
the projection of the ion path onto the x'y'-plane (see Figure 4). It
should be noted that if a; > 0, evaluated at the field boundary, then
p is decreasing., This is because the ion is moving in the (-x')
direction,

The angle u; is defined to be the angle between the x'-axis and the
projection of tire ion path onto the x'z'-plane (see Figure 4). It

should be noted that if «

2z > 0, evaluated at the field boundary, then

{ is decreasing. As in the radial case, this is because the ion is
moving in the (-x') direction.

The angles «; and a; will both be assumed to be small angles.
This is required in order to be consistent with the earlier assumption
in the electrostatics chapter that the ion path must remain in the
close vicinity of the central path through the electrodes. With the

assumption of small angles, we can write

-%% ¢ o = g%: , 0 = tan ((z;) = G;, (4-1)
= x'=

k) - 2 . [ -t (=) = o (4-2)
= X'=

]
This establishes the connect between =, and «; with the boundary

conditions (3-36), (3-50) used in the mechanics chapter.
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Figure 5 - Entrance Angles

By the use of simple geometry, we can arrive at expressions for

1 ] ' ., . .
i and «, in terms of the coordinates. Let us assume that the ion
originated from the off-axis point A' with the coordinates x' = &',

y' = agpo, z' = aglo (see Figure 5). Let us further assume that the
ion enters the field at a point with the coordinates x' = 0, y' = agp,,

z' = agf,. From the geometry, it is apparent that

] 1

tan (=) =« = 2% (po = 1) (4-3)
1 ] [ ] a

tan (=, =« = ﬁ- (Zo - C1) (4=4)

Equations (4-3) and (4-4) will permit the eventual elimination of

' . . .
. and = s in favor of the coordinates of the ion source and the

coordinates of the ion's point of entry into the electric field.

C. Exit Coordinate System

The exit coordinate system x", y", 2" has its origin located at
p=0,7=0, ¢ = ¢po (see Figure 4). The positive x'-direction points
away from the electrodes, but this time it is in the direction of the

ion motion; thus, at the origin dx" = +a,d¢. The positive y" and
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z"-directions match up with the positive p and {-directions
respectively; thus, at the field boundary dy" = a.dp and dz" = apdz.

The angle «: is defined to be the angle between the x'"-axis and
the projection of the ion path onto the x'y"-plane. As the ion is now
moving in the direction of increasing x'", the angle m: > 0 corresponds
to increasing p.

The angle 0=:_;_is defined to be the angle between the x'"-axis and the

projection of the ion path onto the x"z"-plane. We now have (similar

. " - 3 -
to the radial case) <, > 0 corresponding to increasing (.
. " .. .
We will assume that cr and m: are small angles. This is consistent

. . ' ' . .
with the assumption that « and «, are small angles and with time

??i reversal symmetry. With the assumption of small angles, we can write
'*'.._ n " ]
L s - & - tan (=) =« (4-5)
. T_r ¢=¢e x|l=0
” " ]
%% = £ = tan (=) =« (4-6)
$=0, x"=0

By using the equations for p (3-44) and for { (3-51), we can

" n
evaluate the differentials in expressions for «_ and x as

<" =90 = X[p) - ) sin(X6e) - « -7
~7) sin(X¢e) cos(X¢e) (4
r d¢ =t ( X ) r
cz'z' = %% = =g sin(ecbe) - “; COS(€¢e) (4-8)
$=de

" (1}
This gives us “r and *, in terms of the entry angles, the electrode

geometry, and the coordinates of the ion's point of entry into the

29




electric field. We will need «: and a: shortly to compute the ion

motion after it exits from the electrodes.

D. Refraction at Field Boundary

It would be apropos to investigate the effect of ion path bending

or refraction at the field boundary at this point before continuing.

freld
bamdqry

od Ts l‘J(

c - - -ae

Figure 6 - Elect-ostatic Snell's Law

For an ion penetrating a boundary with a finite potential change,
the velocity component parallel to the boundary, V,, is essentially
unchanged. It is the velocity component perpendicular to the boundary,
YL’ that is affected by the change in votential energy (Ref 5:173).

We thus have (see Figure 6) outside the boundary, sin («o) = W|/YLO’

and inside the boundary, sin («i) = W|/Yli' Solving these two equations

for V) and equating them gives us an electrostatic Snell's law:

Ylo sin (=) = YLi sin (=) (4-9)
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or for small angles

VJp “ = vli = (4-10)

]

We can equate V), te V' (3-5), to c; (4-3), and Vy; to v (3-11)

(o]
with ¢ = p,. We therefore have
Vic! = Ve, (4-11)
r 1
or
Vo(l + B) 28 (pg = p1) = Vo(1 + B - p1)s, (4-12)

Solving for x, to first order in B, p, and p;,we have
ae
“i =T (Oo - o1)

- (4-13)

141

]
By exact analogy, we also have in the axial case, xS« where

« is now an axial angle instead of a radial angle. Thus to first
order, we may ignore any ion refraction at the field boundary. This
is true at both the entrance or the exit.

Refraction could not be ignored in any study which was interested
in examining higher-order effects, such as image aberrations. To get
some feel for the effect of the higher order terms, we start again
with the electrostatic Snell's law (4-9). By assuming that the angles
are small, we can replace the sine function in equation (4-9) with the

tangent function:

Ylo tan (=) = YLi tan («;) (4-14)
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Figure 7 ~ Refraction at Field Boundary

1 ]
We can equate le to V' (3-5), x to«

. (4-3), and Yli to V (3-10)

with p = p1, £ = 0. By replacing tan (al) and tan (Ui) with the
formulas shown in Figure 7, we can solve for QC/Q' to get, to second

order in B, Por P1s

(1 +B-pr+p1t e % 013)
v 1+ 8)

K

(4-15)

o

In the rest of this paper, the refraction will be ignored, and %'

will be used to identify the x'-distance to the ion source. If we did
want to investigate the second order effects of refraction, we would
have to replace &' with &,, as calculated by equation (4-15). This

equation has been graphed in Figure 8 on the next page.
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:f.i . Of greater interest is the effect of refraction on the image
location. By applying an equation that will be developed later, the

radial Newtonian lens equation (gr =0, E: = L'), we get

55 - A8 (4-16)
r (1+B-px+012*§018)

2: is the ra@ial image location that will be derived later,
assuming no refraction. R;L is the radial image location when refrac-
tion is considered. Figure 9, on the previous page, shows equation (4-16)
graphed for several values of B. The ion energy T is greater than/less
than Ty as B is greater than/less than zero.

Figure 9 shows that ions with an energy T < Ty, tend to focus in a
shorter distance than those ions with T > Ty. Figure 9 also shows that
ions with an entry point such that p, > Q0 are focused farther out than
those ions with p, < 0. Just exactly where an ion ends up depends on
its particular values of T and p;. In general, as the ion energy
deviates from To and the entry point varies from p; = 0; the ion image
changes to a new location. 1If the exit slit is located at Q:, then the
refraction effects lead to a loss of ions. Along p; = 0, the error in
the image location is slightly stronger for T < Ty than it is for
T > To. These effects distort both the transmission curve and the

resolution. While these effects are definitely of interest, for purposes

of this study, they will be ignored in the rest of this paper.

E. Radial Image Location

From Figure 4, it can be seen that the y' coordinate of an ion

after it exits the electrodes is given by
y'(x") = y"(0) + x" tan (=) (4-17)
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or for small angles

vy (x") = y"(0) + x «" (4-18)

At x" = 0, we can equate y"(O) with agp(¢e). We can thus combine
the above equation (4-18) with the equation for p (3-44) evaluated at
¢ = ¢e, the equation for «: (4-7), and the equation for m; (4-3), to

get

y"(x") = n[‘% cos(Xd) + 7§ + ix- sin(X¢e)]

00 [;-5—, sin(Xgg) + 282X cos(X¢>e)]
x" an " .
+01 [ae(l + ET)COS(X¢e) +(§T7 - x X)sxn(X¢e)] (4-19)

It is desirable that all of the ions of a given energy, that
er originate from one given point A', be focused at the same point A:
after they exit the electrodes. This is possible if and only if the
coefficient of p, in equation (4-19) vanishes. By setting the
coefficient of p; to zero, we can solve it for x", thus determining
the location 2: of the radial image plane in terms of the other system

parameters. This gives us

2
x" = Ly = %ﬁr T cot(X¢e)]

&N X
[n' - %(i cot()(¢e)] (4-20)
L

F. Axial Image Location

Similar to the radial case, the 2" coordinate of an ion after it

gé exits the electrodes is given by

2"(x") = 2"(0) + X" tan(=) (4-21)
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or for small angles
z”(xll) - zll(o) + x" “: (4_22)

At X" = 0, we can equate Z"(0) with agt(¢,). We can thus combine

the above equation (4-22) with the equation for g (3-51) evaluated

at ¢ = ¢e, the equation for «, (4-8), and the equation for G; (4~4),
to get

,

2

ae‘ sin(ede) + E§¥: cos(e¢e)]

le(x") = _co e

=)

)

"

+1 ae(l + %;)cos(e¢e) + (%%; - x"e)sin(e¢e)] (4-23)

h

As in the radial case, we desire that all of the ions of a given
energy, .that originate from one given point A', be focused at the same
point A: after they exit the electrodes. This is possible if and only
if the coefficient of Z; in equation (4-23) vanishes. By setting the
coefficient of [, to zero, we can solve it for x'", thus determining the
location 2; of the axial image plane in terms of the other system

parameters. This gives us

2 '
sl . [?- okt coc<e¢e)]

[z' -2 cot(€¢e)] (4-24)

Note the extreme similarity of form of the axial equation (4-24) with
the radial equation (4-20). This will occur often as we proceed with

the Optics chapter.
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G. Radial and Axial Focal Points
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It is of interest to know where a parallel beam of ions into the

system will be focused.

of %y and £, as &' goes to infinity.

we have

8r

82

The locations of

respectively.

i

l%m E: = == cot(Xd,)
>0

Rim 2, = 28 cot(ch,)
g teo ¢

This is easily obtained by taking the limit

From equations (4-20) and (4-24),

(4-25)

(4-26)

the radial and the axial focal points are g: and g:

It is also of interest to know what ' would have to be in order to

provide for a parallel beam of ions out of the system.

In this case

2: and 1: separately would be equal to infinity. Solving equations

(4-20) and (4-24) for X' (now called E; and l; respectively), we get

Ly

Taking the limits

LU AP SR CIACE SR

2 ]
= 35+ 38 o cot(Xge)

X
2: - %% cot(Xdg)
2

+ E; cot(edy)

of
ol

%, - i‘g- cot (Ede)

as Q: and l; go to infinity gives us

Lim &' = 32 cot(xde)
" r X
lr >0

i

Lim l; = %f cot(edy)

2,

38

(4-27)

(4-28)

(4-29)

(4-30)

R




As expected, for reasons of symmetry, we have g; = g: Z g; and
g; = g; S g,. Thus the focal points (measured from the ends of the

electrodes) are located at

gr = 3 cot(Xdg) (4-31)
g, = <= cot(ede) (4-32)

H. Newtonian Lens Equations

Substituting g, (4-31) and g, (4-32) into the equations for

%¢ (4-20) and &, (4-24) gives us

" 2
Bro= 5+ 2 (4-33)

o 2
" a
p_-.- . Rz - e% + Q.gz (4-34)

The above equations can be rearranged as

2

(R - g0) (' - g) =+ g, ° (4-35)
" . ae? 3
(R, - g,) (R' -g,) =T +g, (4-36)

These two equations are almost identical in form with a Newtonian
lens equation. If the right-hand sides are defined to be fr2 and fzz.
respectively, then the form would match. Thus, the Newtonian lens

equations are defined to be

B -g) (A" - g) = £ (4-37)

(L, - 8z) (&' = g,) = f,? (4-38)

z
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with

2 2
2 . a 2 . _ .3 -
£.° = —S&- + g, XTsTni (%o, (4-39)

£,2:2 .52, ac’ (4-40)
z "~ g2 &2 €5$1n!zc¢e5

It must be noted that while f, and f, are called the radial and
axial focal lengths, they are merely definitions of convenience that
permit us to write the lens equations, which are themselves only a

convenient form. It is gy and g, that are actually important.

I. Post-Electrode Ion Location

The location of an ion is given by y"(x") (4-19) and z"(x") (4-23).
It will be convenient later if these two equations are transformed

now to simpler forms.

r"n . By setting x" = L_, the p, coefficient vanishes in equation (4-19),
giving us
-cos(Xbg) + 1 + X&r sin(X,)
y"(lr") = ael%[ e _a_e_ e

-po[;% sin(Xde) + %$ cos(X¢e)]] (4=41)

The radial, Newtonian lens equation (4-37) can be rewritten as

" £fr2
ll‘ = T'—{Tr + gr (4‘42)

By combining the equation for y"(Qg) (4-41) with the equations for
Q: (4-42), g, (4-31), and f, (4-39), we can obtain a new expression for

y"(ﬂ,:):
"'7 y"(il:) = a, Yny[l + (frfj_L—g—r)] -Po (Trg_‘z;) (4-43)
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This equation expresses the radial location of an ion in the radial
image plane as a function of the ion's relative energy, N, and its
radial starting position, po.

By setting x" = 2:, the g, coefficient vanishes in equation (4-23),

giving us
wro™ ae Sin (coe) + Lz cos{cod,)
2"(2;) = -aglo | S, e % e (4=44)

ii The axial, Newtonian lens equation (4-38) can be rewritten as
:“ " f 2
3 L, = zj-%?jig + g (4-45)
b
t! By combining the equation for Z"(l;) (4-44) with the equations for

. 2; (4-45), g, (4-32), and f, (4-40), we can obtain a new expression

: for z"(lg):

G . Z"(Q:) = —aeC_,o([Tf'_%z) (4-46)

This equation expresses the axial location of an ion in the axial
image plane as a function of the ion's axial starting position, Zo.

Note that it is independent of the ion's relative energy, n.

J. Radial and Axial Magnification

Let the entrance siit have a radial width of w; = 2ag00»
symmetrically located about p = 0, i.e., the edges of the slit are
located at p = tp,. The width of the image of the entrance slit in the

radial image plane is

wp = ¥"(py) = y"(=pg) (4-47)
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By equation (4-43), we have

-
" n f
vp = aef 3y |1 (2 gr)] po(TrE4)
-a {Tl r14—( fr ’ + pof—t— (4-48)
e{X? &) (2 g)
h
or
- n
= - ~fr o fr -
v = 2o (pg) < v (T ) (4ot®)
n
If we define the radial magnification to be G, = %& » we then have
r
= fr -
6 = (7 250) (4-50)

Similarly, let the entrance slit have an axial height of
w; = 2aglo, symmetrically located about 7 = 0, i.e., the edges of the
slit are located at r = 1tZg. The height of the image of the entrance

slit in the axial image plane is
wy = 2"(go) - 2"(=Lo) (4-51)

By equation (4-46), we have

W, = —aeCo(f;—f:z—g—z) + ag(-Co) (F-E-E_g;') (4-52)

or w; = ‘ZaeCO(I'.—f;z_g:) = -, (Ff_z?z') (4-53)

"
If we define the axial magnification to be G, = 5%- we then have
z
Gz -(—,—fi—) (4=54)
L - 8

It is now possible to write the post-electrode ion location

equations (4-43) and (4-46) in their most compact form. Substituting
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the equations (4-50) and (4-54) for G, and G,, respectively, into

equations (4-43) and (4-46) yields

y"'(n,00) = ag 7’-} [1+6:] - 0oGy (4-55)

2"(2o) = -a,%0G, (4-56)

It must be noted that, in this section, p¢ and , are performing
double duty. In the derivation of G, and G,, po and ;o were specific,
fixed values. Tn the two equations above, they are again arbitrary,

as per their usual usage.

K. Energy Dispersion

The energy is a measure of how far the image of a beam of ions is
displaced because the ion energy is not the energy to which the system
is currently tuned. This displacement is called D.

The radial energy dispersion, D,, and the radial energy dispersion

coefficient, K., are given by (Ref 4:179), (Ref 5:215), (Ref 6:27)

Dy = Ken (4-57)
where Ke = %ﬁr (4-58)

With the aid of the equation for y" (4-55), we have
ae

Kp = 37 (1 +Gp) (4-59)

Similarly, the axial energy dispersion, Dz, and the axial

dispersion coefficient, K,, are given Ly

D, = K,n (4-60)
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where K, = Iy (4-61)
However, with the help of the equation for z" (4~56), we have

K, =0 (4-62)
Therefore, D, =0 (4-63)

There is no axial energy dispersion, at least not to first order.
This is understandable as the major velocity components lie in the
radial plane and the axial velocity component is small, One could try
to rework the axial equations as a second order approximation, but the
axial equation of motion is of a form for whicﬁ no general method of
solution exists. Therefore, it will not be pursued here.

¥

It should be noted that n contains Ty, in the denominator and thus,

Dy varies inversely with the mean energy, Tg.

L. Resolution

The absolute resolution is the reciprocal of the minimum difference
in absolute energy that can be resolved as two separate lines by the
system (Ref 4:179). The relative resolution is the reciprocal of the
minimum difference in the relative energy that can be resolved as two
separate lines when the system is tuned for the absolute energy, Tg.

The beam image moves inward or outward linearly with n, as 7n is
decreased or increased. This is expressed by the radial dispersion

equation

Dy = K, = 3% (1 + G)n (4-57)
(4-59)
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By inspection of the y" equation (4-55)
:!! y"'(n,po) = ae{ %} (1 +6G,) - PG, (4-55)

- - 0 . . I3
it can be seen that, for a positive change b, in pgy, the image moves

inward by b?, where

by = =b Gy (4-64)

If the entrance and exit slits are symmetrically located about

0), and have widths w' and w" related by

©
]
o
-
~
<
]
<
[}

w' = Gpw' (4-65)

then a beam of ions of energy n = 0, with py = 0 and «; = 0, will have
its image located at y" = 0 (see Figure 10). If the relative energy

% - is increased, the beam image will move outward until it just touches
A

w . wll G wl
5 the edge of the exit slit located at y" = 5 = 2 .
‘ '

Po to o the beam image will move back toward the center of the exit
e

By increasing

slit. The relative energy can then be increased again until it
reaches a value defined as n' in which the beam just touches the outer
edge of the entrance slit and the beam image just touches the outer
edge of the exit slit. The relative energy n* is the maximum relative

energy a parallel beam of ions into the system can have and still be

transmitted through the system.

Similarly, one can decrease the relative energy until the beam

v image just touches the inner edge of the exit slit located at

Ve ! - ' !

- y" = A . . By decreasing po to -2L-, the beam image will move
e back toward the center of the exit slit. The relative energy can then
-4

—

be decreased further until it reaches a value defined as N in which
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the beam just touches the inner edge of the entrance slit and its
image just touches the inner edge of the exit slit. The relative
energy N is the minimum relative energy a parallel beam of ions into

the system can have and still be transmitted through the system.

" 1 ]
By setting y" = %T = E%;— » Po = %%— , and n = n+, and inserting
€

these values into the equation for y" (4-55), we get

+

) Grw' _ n w'
-—i—'— ae YT (1 + Gr) - E;: Gr (4-66)
Solving this equation for n+ yields

v . _XGru' (4-67)

"t IE v D

-y - ] - 1 ] -

By setting y" = ) L. , Po === , and n =N, and inserting

2 2 23,

these values into the equation for y" (4-55), we get

-Grw' n w
—_—=a (1 +G.) + 5—G (4-68)
2 el X7 r 2a, T
Solving this equation for n yields
nT o= —XGxv (4~69)
ag(G, + 1)
The relative resolution is thus
1 + = 2X%Gpw' -
T, " " TG+ D (4=70)
rel e r
or Reep = w1 * i) (4-71)
rel  2X‘w Gr
By equation (3-42)
n=4=To (3-42)
To
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F;% .- Therefore
tg ' = Ton' + To (4-72)
[ T" = Ton + To (4-73)

The absolute resolution is thus

~_11T =T =T =Te(n' - n) = RT" (4-74)
abs rel
Therefore
Rabs = 57a8v= (1 + — (4-75)
abs ¥ 2XTy"T ( Gr)
and Raps = B%%l (4-76)

That the absolute resolution varies inversely with T, is
understandable in that, as the energy of the ion beam goes up, it is
increasingly difficult to separate the T ions from the T ions by the
width of the exit slit., This result agrees favorably with Paolini's

results (Ref 7:584) once one realizes that Paolini has written the

reciprocal of the resolution.

§§f A comparison can be made now between the resolutions of the three
:! curved systems: cylindrical, spherical, and toroidal, For reasons
:;~ that will be explained in the Applications chapter, G, will be set

'ﬁs equal to one. By taking the appropriate values of Re, we get

[

B . . . . .2 _

B Cylindrical: R __, iﬁ% (4-77)
B . a

- Spherical: Roop = ;% (4-78)
¢

T - , a

- Toroidal: Ry = 75-37 (4-79)
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The spherical case has twice the resolution of the cylindrical
cagse. It will be shown in the Applications chapter that, x? 2 %.
Therefore, the toroidal case has as much as four times the resolution

of the spherical case. This is clear motivation for picking the

toroidal system over the other systems.

M. Transmission

The transmission, T(n),is the fraction of a beam, at a specific
energy n, that passes through the exit slit divided by the fraction
that passed through the entrance slit. We can ignore ion losses inside
the electrodes as we have already assumed that all of the ions remain
near the central path. The transmission is thus the fraction overlap
of the beam image with the exit slit.

To get the transmission we need to know the location of the edges
of the beam image. The edzes can be located with the aid of the

equation for y" (4-55), keeping in mind that there is an image

inversion, that the entrance slit edges are located at po = % e
e 9
and w" = G.w'. The inner edge of the image, y:, is given by
" w'
y-al (1+c)-—c| (4-80)
L ei%' r Zae r
The outer edge of the image, y;, is given by
" n v'
y-al (1 +Gr) + 20— Gy (4-81)
U e|X? r 2a, T

When n > 0, y; is outside the area of the exit slit. Thus, the

transmission is

T(n) = S n>o0 (4-82)
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1
or T(n) = 1 - -2 (1 + = > 0 (4-83)
n Wt (L g) n

When n > 0O, y; is outside the area of the exit slit. Thus, the

transmission is

i (%)

() = Syt n>0 (4-84)
or () = 1+ 75y (1 + G—lr) n n>0 (4-85)

These two forms can be combined into a single equation that is

good for all n, as shown below

w

T(n) = 1 - 7% (1 4 G—lr) In| (4-86)

Recalling the equation for the relative resolution n (4-71), we can

write the transmission in its final form as

T(n) =1 - 2R (4-87)

rel |n‘

A comparison is readily made between the transmissions of the three
curved systems. As developed here, all three have transmission
curves that have the shape of an isosceles triangle with a peak value
of 100Z. The difference between the curves is how sharp they are, and
that is strictly a function of the resolution., Thus, the toroidal

system has the sharpest transmission curve.
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N. Summary of Key Optics Equations

For the convenience of the reader, the key optics equations

listed here for future reference.

Radial Entrance Angle, ¢;

“; = %% (po - P1)

Axial Entrance Angle, «;
v _ a8
%z = f% (Co - 1)

Radial Exit Angle, =,
= -x(pl - %}) sin(Xpe)-=. cos(Xdy)

Axial Exit Angle, <,

a: = -¢ ) sin(ede) - =, cos(ede)

Location of Radial Focal Point, gr

gr = 5% cot(xd,)

Location of Axial Focal Point, g,
ae

8z = = cot(edg)

Radial Newtonian Lens Equation

(A, - g) (&' - g) = £.°

Axial Newtonian Lens Equation

(&, - g,) (L' - g,) = £,°?
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(4-3)

(4-4)

(4-7)

(4-8)

(4-31)

(4-32)

(4-37)

(4-38)
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Radial "Focal Length", f.
2 2
2 a 2 a
' =S * 8 " XRIntOG0)

Axial "Focal Length", f,

2 an

2 _ 8e 2 _
£z cr * 82 czsin’(e¢e5

Radial Magnification, G,

fr
r T - g,

Axial Magnification, G,

fz

S, = Tg

Radial, Post-Electrode Ion Location (x" = 2.")

Y"(n’po) = a, I X% [1 + Gr] - DOGr
Axial, Post-Electrode Ion Location (x" = QZ")

z"((__’,o) = -aez;oGz

Radial Energy Dispersion, D

D, = K.n
Radial Energy Dispersion Coefficient, K,

K, = %% (1 + G;)
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Radial, Relative Energy Resolution, R

1

aF
Rrel = 2X4w (1 * [

Radial, Absolute Energy Resolution, R

- Rrel
abs To

R

Transmission, T(n)

() = 1 - 2R, |n]
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Radial Image Displacement, br" (when entrance slit moved by bt')

(4-64)

(4-71)

(4-76)

(4-87)




L A P
fale

u
>.
b
g
.

4
FRERN

T

i

.‘ ’:l

M

ML R LA S, T T - gy y——

V. Applications

A. Overview

The results from the previous chapters are used in this chapter to
work out the behavior of off-center slits. It is the use of off-center
slits that gives this analyzer its chief advantage - that of being able
to sample different parts of the energy spectra at the same time with
a single voltage on the electrodes.

Criteria are developed for minimizing tt: size of the instrument.
This leads to a simplified set of optic equations and lays the
foundation for discussing the various trade-offs that must be made in
designing an electrostatic analyzer.

Errors in the series solutions are then considered as functions of
the deviation from the central path. A discussion is given on how
these errors affect the resolution and the transmission. This leads to
choosing secondary entrance slits so as to restrict the entry angles
so that the ions will remain in regions with no more than a given
error in the series solutions to the electric fields.

Finally, a qualitative discussion is given on how to determine the
total beam current from what is known about the original ion population.
This information is needed in order to make a choice of the entrance
slit size when trading-off between the resolution and the detector
sensitivity. It is also needed for analyzing the data provided by the

instrument.
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Figure 11 - Rotation of Cylindrical Coordinate System
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B. Off-Center Slits

One of the attractions of a toroidal, electrostatic analyzer is
that the radii, Ra and Rb’ can be allowed to sweep through a full 27
(see Figure 2). This eliminates one pair of edges and their fringe
fields. Also, ions can be admitted at any point on the circle, R = Re,
and all of the previous results still hold, although a new coordinate
system is needed.for each new entry point,

These new coordinate systems differ only in that they have been
rotated about the center of curvature for Re (see Figure 11). This
rotation yields a new entry point and a new coordinate system, but the
equations used for the new coordinate system are identical in form to
the original equations used for the original entry point and the
original coordinate system.

The advantage of the additional entry points is that their antrance
and exit slits can be placed at various off-center locations. This
permits the user to sample different mean energies simultaneously.

As the voltage on the electrodes is changed, the multiple channels

sweep different segments of the energy spectra at the same time.

This results in a complete spectra in far less time, which can be

critical in experiments with a limited total observation time. A

specific example that comes to mind is a pulsed plasma device.

P

,

;i: The equation which describes the behavior of off-center slits is
t%

Vs " o 2 - _
“ y" = a_{X*n(1 + G_) = poG_} (4-55)
b

o This can be rewritten as

b

; 1 ¥

d _— n-[x (1 + G ] [a *Docr] (5-1)
" r e

b
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By letting py be the center of an off-center entrance slit and y" be

the center of the off-center exit slit, equation (5-1) determines the

mean, relative energy that is being sampled by that pair of slits.
The voltage that is being applied to the electrodes is hidden

inside of n. The relative energy, n, is given by

n=2zTo (3-42)
To
1 2
where Ty = 5 Mov .
From the centripetal force equation (3-9), we have
1 g v 2 = —€Eode (3-9)
2 70v0 2
From the electrostatics section, we have
2Ug
Ep = . 2-24
0 ae n (1 + e?pp) (1 - pyp ] ( )
(e? - 1) (1 -€%p,) (T +p)
b b
where p, = 4 (2-25)
" b 2a
e
where d is the electrode separation, Therefore, we have
-er
To =
1 -4d d
= » |1+ %) (=)
£ = (5-2)
2
_gd (! .£L.)
(l 2a ) * 7a
e e

Equation (5-2) gives the mean, absolute energy, Ty, for which the
on-center slits of the analyzer are tuned, in terms of the electrode

geometry, the unit charge, and the applied voltage, Up. It must be
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remembered that Ey is intrinsically negative; therefore, equation (5-2)
yields a positive value for Ty.
By combining the equations for T (5-1), To (5-2), and n (3--42),we

arrive at

T=(n+ 1T

-eUg;i
. -1 £n (1+;ad) (1—%;)
(1 - 5:31) (1 ) _jl_) (5-3)
a, Zae

This expression gives the mean, absolute energy, T, for an off-center
pair of slits, in terms of the location of the entrance and exit slits,

the unit charge, the electrode geometry, and the voltage applied to

the electrodes.

The range of energies that can be covered,for a fixed voltage, is

determined by the available range of values for y'" and p,. To avoid
ambiguity, for each radial, R, there should be only one entrance slit.
The number of exit slits is limited only by the size of the detector
behind each slit. The pattern of exit slits can be repeated over and
over again, each group with a different entrance slit and thus
sampling a different segment of the energy spectrum. The number of

groups is limited only by the size of the detectors.

The absolute energy T (5-3) has been plotted as T/eU, versus €?

in the Appendix (see Figures 13, 14, 15), where e is defined to be the
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unit charge. 1In these three figures, I have set the radial

magnification to Gr = 1; the electrode gap to d = a./50; and the

"
maximum displacement of the entrance/exit slits to L= po = *.01.
e

In Figure 13, the upper energy limit, T,/eU;, of the off-center slits
"

is plotted, so we have %- = pg = +,01. In Figure 14, the lower energy
e

limit, TQ/er, of the off-center slits is plotted, so we have

%: = po = -.01. 1In Figure 15, the difference between Figures 13 and
14 has been plotted as AT/eUp. This difference is the maximum range
of energies (divided by eUg) that the system can sample simultaneously
at a fixed voltage. For a given value of €2, the energy, To/elUo,
being sampled by the on-center slits is the average of the corre-
sponding values from Figures 13 and 14.

To use these figures: first, choose a value for ¢’ and then read
é%%- ’ é%% ’ ég% off the given curves; second, multiply by a
particular value U, for the electrode voltage. This will give you

Tu’ Tl' and AT in terms of ev. T,, in ev, is the average of T, and Ty,

To illustrate this let us pick €? = 1.94. We then have (in ev),

Tu = 58Uy, TQ = 42Uy, and AT = 16Ug. For Uy = 160 volts, we then get
Tu = 9,28 kev, Ty = 8.0 kev, TQ = 6.72 kev. AT is 2.56 kev, or about
327 of Typ.

By comparison, for a cylindrical system, we have €? = 0. Therefore,
in ev, Tu = 50.2Uy, TQ = 49,70y, and AT = .5Uy. AT is about 1Z of Ty.
For a spherical system, €2 = 1. Therefore, in ev, we have Tu = 50.5Uy,
To = 49.5U,, and AT = Ug. AT is about 2% of T,. For a toroidal system,

2

the optimum value of ¢ is 1.94 (this is discussed later in this chapter).

This gives us, in ev, T, = 58Uo, Ty = 42Uo, and AT = 16Uo. AT is
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about 32Z of To. The toroidal system clearly has the advantage over
the other two systems.
The energy range sampled, AT, grows as Iezl + 2., By good fortune,

the resolution also is maximized by |e?| + 2 (to be shown later). It

is the improvement in the energy range and resolution that makes the
toroidal system more attractive than the spherical system.

A discrete sampling of the energy spectra can be obtained by
driving the applied voltage with a staircase waveform. If the steps
have a slight ramp shape, then a continuous spectra can be obtained
while the jumps prevent unnecessary overlap.

Due to the linearity of the equations involved, the resolution of
an off-center pair of slits is the same as it is for the on-center

slits, and is given by
; a 1
" . Rrel - a-!%'- <1 + E—> (4-71)

The transmission curve is unchanged in shape, but it is shifted
in the relative energy. If n' is the relative energy for which the
off-center pair of slits is tuned, as per equation (5-1), then the

transmission is given by
= - - ' -
T(n) =1 2Rre1(|n| n') (5-4)

C. Instrument Size-Maximum Compactness

If one neglects the size of the instrument for a moment and tries
instead to maximize the resolution, one quickly discovers that no
physically realizable maximum exists with respect to the parameters
a, and Re' A maximum does exist for the parameter ¢ in a form which

requires X = 0; therefore, X6, = 0, which forces the slits outwards to
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infinity., If 2', the object distance, is set to &' = K*g., a multiple
of the distance to the focal point, the problem remains for the
parameters a, and Re’ while the maximum with respect to ¢e now
requires X¢e =nm, n=0,2,4 .... Unfortunately, this choice of x¢e
requires that the entrance and exit slits be located at infinity.

The above discussion immediately brings home the need to hold down
on the size of the instrument, especially the separation of the two

slits. The Newtonian lens equation gives us
1" ' - 2 -
(lr - gr) ¢ gr) £ (4-37)

It can be shown with elementary calculus that if the product
AB = constant, then the sum, A + B, is a minimum if A = B, This gives

us the requirement

Qr" = 4! (5-5)

Therefore, equation (4-37) becomes
] 2 = 2 -
L' - gr) fr (5-6)
It is obvious that &' is a minimum if
g, = 0 (5-7)

At first thought, it would seem that having the focal point
located at zero is unreasonable, but it must be remembered that this
is not a thin system. It is entirely possible to have the focus
located at zero. Having the focal point located at zero means that it

is located in the plane that contains the exit end of the electrodes.
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By equation (4-31), we have

- 3¢ -
8. = cot(X¢e) (4-31)
g, = 0, implies that
hif
Xo, = 3 (5-8)
n

We could set.x4>e equal to higher, odd multiples of but we must

30

have ¢e less than 2m and this would require that X increase.

Unfortunately, increasing X decreases the resolution. Thus, the best

resolution is maintained by discarding the higher, odd multiples of g.

Therefore, the best compactness can be accomplished by requiring that
m

nwo_ gt = 1
lr = 2" and X¢e =3 -

D. Simplified Optic Equations

The requirements imposed by equations (5-5) and (5-8) (from the

previous section) give us the following simplified optic equations:

m
% = 3% (x2 = |2 - e2]) (5-9)
(3
Re
g =0 (5-10)
2e fe -
g, = coc( x) (5-11)
' = " = = 2& —-—
pag et eSS (5-12)
f 2
g —tf22 (5-13)
A 22 - A
X ~ &
- de -
£, = esm(ﬁ) (5-14)
X
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G =1 (5-15)

c, - .a.;_f.z_ (5-16)
-x_ - gz

el X—";'%r (5-17)

T = 1= 2% (|n| - n") (5-18)

(for on-center slits n' = Q)

The last two equations can be further simplified if we set

w' = Ka,. Typically, K has values on the order of 10-2. This gives us
R, = ooy (5-19)
rel KX
T™(n) = 1 - =25 (|n| - n") (5-20)
KX
tl ’ These simplified equations are graphically represented in the

Appendix. In several cases, the equation has been divided by a, before
plotting so as to get a curve of greater utility. The curves have been
plotted with the restriction that ¢e < 21 and most of them have a
common €? horizontal axis. These curves should make it easier for the

reader to select parameters for his own instrument,

E. Trade-offs and Constraints

The selectable parameters are a, Re, ¢e, K (the slit width), and

d (the electrode gap). These parameters determine L', Rr" (the slit

locations), R (the resolution), and strongly affect the voltage

rel
supply requirements, the ion beam current, and thus, the detector
;i sensitivity requirements. Any constraints which are imposed on these

additional parameters strongly impact on the allowable values of the

v
)
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L o selectable parameters a» Re, 0> K, and d. Some guidelines can be

worked out in advance without knowledge of any specific application.

- ot
‘. L S
O
N WL
- N AR

The resolution goes to infinity as X? approaches zero, or as €2

P e

approaches two. We are restricted, however, to values of €2 such that

x=VIZ-c'2 ; (5-21)

.k
IS

Values of X < %.. force ¢e > 2n, which is physically impossible.
Also, as X approaches zero, the slits move out toward infinity and we
again have a size problem.

An examination of the curve for Qz"lae (see Figure 20), shows the
existence of several poles. Advantage can be taken of the poles by
picking a value of €2 close to the pole such that lz" = Qr". This
would make the radial and axial image planes coplanar. Perhaps the
best reason for doing this is to hold down axial extent of the ion
beam in the radial image plane. This is not essential but would help
to avoid unwanted losses at the axial ends of the exit slit, which
must be located in the radial image plane. It also helps to keep the
beam intensity up and to hold down on the axial size of the detector,
permitting more groups of detectors to be used.

A numerical search of the region between ¢? = 2 - %z and the

first pole to the left yields

2~ 1.897 (5-22)
|
2 " 2 "
it N S AR 3.116 (5-23)
ae ag e
K*R = 9,708 (5-24)
rel
64
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A numerical search of the region between €2 =2 + %E and the

first pole to the right yields

€2 = 2,115 (5-25)
2 1" 2 [1] '
. 2951 (5-26)
e ae ae
*
K*R_, = 8.708 (5-27)

The first value for € [equation (5-22)] has a higher resolution
fj; ‘than the second value for €? [equation (5-25)]. This is at the

expense of having the slits farther away, which requires a larger

’:! instrument., It should be remembered that these values only pin down
L'~.
o €2 = %ﬂ , and not the actual values of a, and R,.

-"_' e
- It is the size constraints that heavily influence the choice of

h. E ) a, and R,. This breaks down into two major considerations: first,
how much room is available for the electrodes; second, where do the

- slits have to be with respect to the electrodes. If one accepts the

™
e e
’ .
R -

constraint imposed earlier that lz" - lr" and if the size of the

»
(

q‘T ','r".' '.“‘.‘-‘ :

electrodes is the primary concern, then one would pick R,, and
calculate a, from €? in equations (5-22) or (5-25). If the location

of the slits is the primary concern, then one would use equations

T

v

(5-23) or (5-26) to determine a,, and then R, would be calculated from

.“.
o equations (5-22) or (5-25).
e
P A complication in choosing a, and R, is that the outer electrode
.
b".' . d - g '3
& has an actual size of r,=a, +; and Rb Re * 3 where d is the
:; electrode gap. The choice of d directly affects the voltage that
4
must be applied to the electrodes to get a given value of Ey, the

g
!
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central path electric field strength, via equation (2-24). This
impacts on the voltage supply requirements.

A further complication is that with a, and Re chosen (and thus €?),
one must now pick K to get the resolution desired via equation (5-19).
As K gets smaller, the ion current goes down and this impacts on the
detector sensitivity required., The detector sensitivity is further
affected by the strength of the ion source that will be presented to
the analyzer entrance slit.

The choices are not easy and will probably require many trials
before an acceptable compromise is reached. Hopefully, the curves in

the Appendix will speed up the initial selection process.

F. Ion Path vs Field Error

It was initially assumed that all ions would have trajectories
‘jr' . near the central path and that the electric field could be given by
equations (2-34) and (2-35). However, as the ions radially deviate
from the central path, the error grows in the series approximation to
the radial field. By comparing the series solution to the exact
solution assumed by H. Wollnik (Ref 4:166) [equation (2-20)], it is
possible to estimate the percent error in the series solution as a
function of p, the deviation from the central path. The percent error

is defined as

B.(P) - Eylfinik |

100 (5-28)
Ewge}nik

% radial error =

with ¢ = 0.

This equation has been plotted in the Appendix (see Figure 26).

It should be noted that the curve shows that the percent error grows
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more rapidly for positive p than it does for negative p. In both
cases, the series solution underestimates the strength of the radial
field.

Starting from an on-center slit, the underestimation of the radial
field is going to result in the ion pattern being shifted toward
lower values of p. The pattern is fixed at p = 0 because the percent
error is zero for p = 0. Lower energy ions that traverse the p < O
region will be transmitted in lower numbers than expected. Contrawise,
the higher energy ions which traverse the p > O regicon will be
transmitted in higher numbers than expected. In fact, due to the
greater error when p > 0, more high energy ions will be picked up than
low energy ions are lost. This will shift and distort the trans-
mission curve. Also, the resolution will be slightly less sharp than
expected because of the field errors.

The axial field series solution usually overestimates the true
field strength, but the percent error is symmetric about ¢ = 0, and
has no effect on the resolution,

I1f one considers Figure 12, one can see that the percent error in
the axial field is given by

E () - sinfE (p*)
z Wollnik

. - N _
% axial error SinfE (o%) 100 (5-29)

Wollnik

o1
where p* = £z<\/(1 + €2p)? + (€%)? -1> (5-30)

The overestimation of the axial means that fewer ions will be

focused back onto the slit. As this effect is weaker for p > 0, the

high energy ions will have their transmission reduced less than the
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lower energy ions. This increases the distortion in the transmission
curve caused by the radial field errors. However, it does nothing to
the resolution.

A rough estimate of the axial field errors can also be gained by
the use of equation (2-8). This equation gives the equipotential
curves in the half plane (¢ = constant) as curves of p = f(z). This
has been plotted with €? set equal to two (see Figure 27). Included
in the graph is an equipotential curve through p = 0 and { = 0, as
envisioned by H. Wollnik (Ref 4:166). Note that the error is
symmetric about { = O.

As the off-center slits are more likely to direct their ions
through regions away from the central path, their resolution and

transmission curves are more likely to suffer distortion and

degradation due to the field errors than are the on-center slits.

G. Entrance Angles versus Field Errors

1f one picks a maximum percent error that will be tolerated in the
radial electric field, then, with the help of Figure 18 in the
Appendix, a value for the maximum permissible p can be chosen. The
question remains: what is the maximum permissible radial entrance

angle, ar'

, such that p < Pmax for all ¢? To get an answer, we need
the solution to the radial equation of motion:

0(¢) = (p. -Y'}) cos(X¢) - % sin(X0) + 3% (3-44)

By equation (4-3), we have

“r' = —:—% (Do - Ol) (4-3)
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or

@ '9/'
P = pp = =E——— (5-31)
de
Therefore,
[+ 4 'l' n "‘r' . n
p(d) = (po - —F—— - cos(x$) = —— sin(X¢) + o5
ag X X X

(5-32)

The geometry of the instrument will pin down &', a,, and X. po
can be set equal to the radial center of the entrance slit of interest,
and n can be calculated from equation (5-1) for the pair of slits
being considered. Rho is constrained by p < Prax® 23S selected from
Figure 18 in the Appendix. A computer search can now be made, with ¢
as the independent variable, to find the value of ¢r' that yields
p £ Prax® Due to the asymmetry of Figure 18, there exists two values
for ar': one for ions that leave the entrance clit heading outwards
(p > 0), and one for ions heading inwards (p < 0).

By adding a secondary entrance slit behind the primary entrance
slit, ions with too large of a radial entrance angle can be eliminated.
The edges of the secondary slit are situated so as to be consistent
with the two values of cr' just computed. This will ensure that the
ions are constrained to the region surrounding the central path with
a percent field error less than or equal to the maximum error that one
has chosen to tolerate.

]

A similar calculation can be done for the axial entry angle, e

The solution to the axial equation of motion is

¢(¢) = gy cos(s¢) - :§~ sin(e¢) (3-51)
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where

' =28 (o - C) (4=4)
or
@ IQI
L1 = go - —E— (5-33)
e
Therefore,
@ '2«' « [}
(o) = (go - —%;—- cos(ed) - —%— sin{e¢) (5-34)
e

The geometry of the instrument will pin down &', ag, and €. [
can be set to the axial center of the entrance slit, 7y = 0. Zeta is
. < . . . _ .
constrained by < nax’ where Cmax is obtained from equation (5-29)
A computer search can now be made, with ¢ as the independent variable,

to find the value of =, that yields ¢ < Cnax’ Due to the symmetry

' exists.

involved, only one value of «,
The entrance slit is relatively narrow in the radial direction,
and the radial entrance angle permitted by the primary and secondary
slits uoes not vary too much from Gr' (max) for ions that enter near
the radial edge of the slit. However, the entrance slit is relatively
long in the axial direction. To hold down on the deviation of the

' (max), the axial

maximum permissible, axial entry angle from <
secondary slit edges need to be far away from the primary slit, i.e.,
as close to the electrodes as possible. This can be accomplished with
a single secondary slit located near the electrodes with both the
appropriate axial and radial edges.

The existence of the secondary slit accomplishes four things:

first, it limits ion trajectories to the central region; second, it
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prevents ions from straying from one group of exit slits to another
group causing an ambiguity in the data; third, it defines the soli
angle of acceptance of the primary entrance slit; and fourth, it
serves to hold down on the fringe fields. It might also be desirable

to place a matching secondary slit on the exit end of the electrodes.

H. Total Beam Current

The total beam current must be arrived at with statistical
mechanics. The procedure will be qualitatively outlined below. No
exact equations will be given since the problem is too dependent on
the particular experiment for any one set of equations to be of much
use. There are four statistical populations that must be worked out
in order to get the beam current.

The first population is the ionized plasma that is under
observation. This part of the problem is solely a function of the
experiment being conducted.

The second population is the plasma that comes through the primary
slit. This part of the problem is essentially that of a gas escaping
through a small hole in a container with an unlimited supply of gas in
the container. One must also take into account whether or not there
is a net motion of the plasma relative to the primary entrance slit.
If the plasma is dense or hot, as in a pulsed plasma device, then
plasma effects such as magnetohydrodynamics may have to be considered.
In general, the second population will have a higher average energy
than the first population. It will also have an angular distribution
that is peaked in the forward direction.

The third population is that portion of the second population

that clears the secondary slit., It can be determined by integrating

12
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the second population over the solid angle defined by the primary

o and secondary slits.
The fourth population is that portion of the third population
that clears the exit slit.

It can be determined by multiplying the

third population's distribution function by the transmission function

and then integrating over energy. The result of the integration is
the total beam current as seen by the detector.

If the primary slit width and length have been carried along as
unspecified parameters, then we will now have the beam current as a

.- function of the slit's width and length. It will now be possible to

make the trade-off between detector sensitivity and the resolution by
selecting the appropriate slit width and length.

The only problem with all of this is that, if the first
population's distribution function were known, then we would not need
at ail.

the analy:._v If an approximate model is available, the above

procedure can be used to select the primary slit. In general, one
needs to start with the detector and work backwards so as to connect
the detector data to the original population. This can be made
simpler if one assumes that the original population obeys Maxwell=-
Boltzmann statistics. It is still essential to know how the plasma

is moving with respect to the primary slit.

One fact that simplifies things is that the resolution and
transmission are in terms of the ion kinetic energy, T, outside the
field and the kinetic energy, T,, of an ion that obeys the centripetal
force equation., This gets one outside of the electrodes but inside
the secondary entrance slit.

The secondary entrance slit only clips

the angular distribution and does not really affect the energy
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spectra. Thus, the detector data can be directly related to the

number of ions passing through the primary slit with a specific energy.

I. Conclusion

A toroidal geometry, electrostatic analyzer has several distinct
advantages: first, it can be used as a multi-channel analyzer
sampling different segments of the energy spectra at the same time;
second, the ranée of energies that can be sampled simultaneously is
more than an order of magnitude wider than it is with either a
cylindrical or a spherical system; and third, the resolution is
significantly higher than it is with either a cylindrical or a
spherical system. These advantages definitely enhance the speed and

accuracy of the electrostatic analyzer.

J. Recommendations

My recommendations are twofold. First, the fringe fields need to
be treated more accurately. Perhaps Albrecht's work (Ref:3)
will be of some help. Second, the image aberrations need further
studying. This will necessitate an investigation of higher order
terms in the electrostatic equations, the mechanic equations, and the

optic equations.
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i Appendix

Representative Design Curves

Shown on the following pages are graphs which should help the
reader to design his own instrument. Most of these curves have been

2_axis, where €2 is the ratio of the two radii,

plotted with a common €
a .

Es » of the mid-electrode surface. It should be noted that several of
e

the curves have been divided by a,, to get curves that are of greater

utility.
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