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Abstract

Current methods of characterizing the quality of laser
beams were found to be generally insufficient. Since lasers
are gaining more use in many applications, an improved set
of quality criteria must now be developed. This thesis re-
port investigated characteristics of random phase aberrations
and its effects on the far-field irradiance distribution of
lasers. A numerical model was developed to simulate non-
diffracéion-limited beams. Several simulations were done to
study the irradiance profiles for varying degrees of aberra-
tions. It was found that phase aberrated beams can be ex-
pressed as the sum of two beams: one is the diffraction-limi-
ted beam attenuated by a factor F which is a function of
the phase distortion, and the second, a much wider beam .whose
amplitude and lateral extent is a function of tﬁe variance
and the form of the phase aberration. By assuming the shape
of this ‘secondary' beam to be Gaussian, its extent can be
measured by calculating the variance, 0'2, of the Gaussian
distribution. A numerical code was devised to determine the
two parameters by a least squares curve fitting method. A
proposed list of procedures is included in the report to
measure these parameters experimentally using data derived
from the 'power in the bucket' method. The quality of a
laser beam is dependent on the degree of phase aberrations
introduced into the system. F and(Tzdescribes the amount
and form of the phase aberration, thus providing a better

criteria for beam quality determination.

vii
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CHARACTERIZATION OF LASER BEAM QUALITY

I. Introduction

The requirement for precision laser systems is being re-
cognized increasingly in applications involving weapons sys-
tems and in medical research. In many applications, this is
achieved using advances in state-of-the-art laser technolo-
gy. However, a persistant problem in engineering applica-
tions of laser physics is how to characterize the quality of
a laser beam. Although several criteria for beam quality are
presently in use, there is no general agreement as to how
the relevant Figures of Merit (FOMs) are to be measured.

Most existing characterization of beam quality attempt to des-
cribe the quality of the beam by specifying a single number,
such as the 'number of times diffraction-limited' or the
far-field divergence angle. A measure of quality for any
system should lie in its ability to reproduce theoretical or
ideal expectations. For example, if a beam is propagated
through an optical device, the output of this device should
reproduce the input exactly. Thus, for optical systems, in-
cluding lasers, a measure of quality should be a comparison
of its measured irradiance profile with the ideal profile.
Lack of ¢ ality ° an inherent result of imperfections or
aberration, :n the optical device used, e.g. mirrors, aper-
tures, or lenses, as well as the laser medium and atmosphe-

1




ric turbulence. Therefore a good measure of beam quality

is the full description of the aberrations present in the
system., Most of the existing and widely used criteria fail
to fully describe these aberrations. This thesis report
proposes a new set of characterization criteria which will
describe beam quality by characterizing the aberrations pre-

sent in the system.

Tasks

1. Critical survey of existing beam quality criteria

and methods of beam quality measurement. Determine the most

current and widely accepted criteria for beam characteriza-
tion.

2. Development of an improved characterization criteria
to completely describe the quality of a laser beam. If the
current quality characterization methods are found to be in-
adequate, the thesis will propose an improved set of FOMs
which will provide greater accuracy in beam quality descrip-
tion and characterization.

3. Describe standard procedures for the measurement

of the FOMs arrived at in task 2.

Scope and Assumptions

P+ oo
B P A0
R P A

This work will be limited to scalar diffraction theory.

- Only the scalar amplitude of one transverse component of

&Z the field will be crnsidered.

;i Nondiffraction~-limited beams are a direct result of

E! - imperfections in the optical device as well as beam attenua-
L 2
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tion due to characteristics of the medium of propagation.
Determining beam quality is typically accomplished in an
experimental set-up under laboratory conditions. As such,
the effects of the medium on the irradiance distribution of
the beam are neglected in this report. Only distortions
generated within the lasing cavity or imperfections in the
mirror surfaces are assumed to result in the nondiffraction-

limited nature of the laser beanm.

Organization and Approach to the Problem

A systematic approach or plan of attack was devised to
ensure that an optimum solution to the thesis problem is
reached. These are listed below.

1. Phase I: Critical survey of existing beam quality
criteria and methods of beam quality measurements. This
phase included an.extensive survey of current literature and
materials on the subject. Materials from numerous enginee-
ring and scientific literatures were used as well as mate-
rials from Air Force and Department of Defense published re-
ports.

2. Phase II: Development of a list of currently used
methods including an outline of the procedures employed to
measure the FOMs. In addition, methods of determining spot
size and beam divergence were reviewed and documented.

These are listed and discussed in detail in Chapter II.

3. Phase III: Development of a more complete quality

characterization criteria for laser beams. The critical sur-

3
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vey of Phase I indicated that the current methods used are
generally insufficient to describe the quality of the beam.
A more accurate set of criteria was developed during this
phase. Phase aberrations and diffraction theory of phase
aberrated beams were studied during this phase. A computer
code was developed to model the propagation of phase aberra-
ted beams and to allow the study of irradiance profiles in
the presence of random phase aberrations.

4., Phase IV: Numerical and analytical methods were
investigated, during Phase IV, which were to measure the
FOMs derived in Phase III. A code was developed to numefi-
cally determine values of the FOMs by fitting the actual aber-
rated data with a proposed mathematical expressibn for the
nondiffraction-limited beam.

5. Phase V: Development of an experimental procedure
to measure the FOMs developed in Phase III and Phase IV of
the study.

Chapter II, of this thesis report, examines the various
methods of beam quality characterization currently used. It
includes a discussion of the theory and procedures practiced
when measuring these FOMs. Chapter III discusses the deve-
lopment of a computer model to simulate nondiffractinn-lim-
ted laser beams, while Chapter IV reviews the results found
from several simulations of non-ideal beams. From these re-
sults, a new set of FOMs was devised and a numerical method
of measuring the FOMs was derived. Chapter V discusses the

4
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merits of the new FOMs when characterizing beam guality and

proposes a list of procedures to measure these parameters

experimentally.
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II. Current Methods of Characterizing Laser Beams

An extensive literature survey was undertaken, during
.xl Phase I, to identify currently used methods for character-
s izing the quality of laser beams. This chapter outlines
the various figures of merit used to determine beam quality.
The next section lists a number of FOMs currently used (Ref
22), while subsequent sections describe the procedures used

to measure the three most widely accepted quality criterions.

Existing Figures of Merit

1. 'Power in the bucket' method- provides a compari-

son of theoretical and experimental data which is the basis
for beam quality determination. Beam quality measurements,
involving the 'power in fhe bucket' method, are normally
performed measuring some 'width' of the central maximum of a
diffraction pattern at the far-field of a laser beam. This
is then compared with some diffraction-limited calculated

- 'width'., From the comparison of the two widths, one measure
of beam quality is obtained (Ref 2).

2. Beam Divergence~ a measure of the spread of a laser
beam propagating in a medium, as a function of distance from
the laser source. A comparison of the experimental diver-
gence and theoretical divergence provides one quality mea-
B sure. In addition, the smaller the divergence angle, the

higher quality the laser is said to be. This is especial-

6
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ly true in applications involving the need to deliver the
maximum amount of energy into a very small target area.

3. Strehl Ratio- calculates the ratio of the on-axis
irradiance of the aberrated system versus the on-axis irra-
diance of the diffraction-limited beam. From this ratio,
the amount of distortion introduced in the system can be ap-
proximated.

4. Focusing Efficiency- indicates the percentage of the
total power in the exit pupil which is focused into a speci-

fied ‘bucket?'.

Total Power in the Bucket

For a laser beam with a symmetric Gaussian profile and

waist w , the intensity distribution is given by:
2,2
I(r) = 1(0)e™28 /¥ (2.1)

where I(r) 1is the beam irradiance as a function of radius
r , and I(0) is the maximum on-axis intensity. Figure 1
shows a representation of the Gaussian beam as a function of
the beam radius r .

Integrating equation 2.1 over the radius of the beam

gives the total power within the entire beam. Thus,
R

-2r2/w2

P(R) = [I(0)e 2Mr dr (2.2)

0
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A solution to this integral results in,

' 2,2
2 -2R%/w

The ratio of P(R) to the total power P@9) is expressed

as:

P(R) 2R/ (2.4)

Equation 2.4 gives the normalized power of a Gaussian beam

transmitted through an aperture radius of R . When R>>w
the power transmitted is maximized at 1 . By varying the

values of R , a relationship between total power and aper-

|- G

ture size is derived. A typical Power-Radius (P-R) plot is

shown in figure 2. If the beam emanating from a laser is
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propagated through a series of aperture radii, a comparison
of actual measurements with the theoretical diffraction-lim-
ited beam provides one measure of beam quality. A 'good'
laser beam would closely approximate the P-R plot of the dif-
fraction-limited beam and the numerical results of equation
2.4. Figure 3 shows a typical beam quality measurement ar-
rangement. A lens is used to provide far-field conditions

at a reasonable distance from the laser. At the focal plane,
a variable iris is placed with a power measurement device im-
mediately behind it. With the iris fully opened, a measure
of the total power through the aperture is taken to deter-
mine the total power output of the laser. By varying the
diameter of the iris or aperture, the relationship between

9




Letector

QO |~

Variatrle
Lens Aperture

- figure 3, General =Zeam guelity set-up,

transmitted power and aperture radius is determined. The ra-
tio of this power with the total laser power is the norma-
lized transmitted power. Figure 4 is a typical plot showing
the P-R curves for non-ideal and diffraction-limited lasers.
Although a comparison of the non-ideal Gaussian P-R

curve with the diffraction-limited Gaussian P-R curve pro-
vides a quantitative measure of beam quality, a single num-
ber is typically associated with this measure. Lasers are
often characterized as being 'n times diffraction-limited'
(Ref 8). There is no standard way to determine the 'n times
diffraction-limited' number. One method of computing the 'n
times diffraction-limited' number is dividing the radius cor-
responding to a measured percentage transmission by the theo-

10
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Qif retical radius which would transmit the same measured trans-

mission percentage (Ref 7). For example, figure 5 shows the
intensity distribution for a non-ideal laser beam and a Gaus-
sian diffraction-limited laser beam. In the ideal case, an
aperture radius of 2 mm is required to transmit 70% of the
power while in the non-ideal case, a 4 mm radius is required
to achieve the same amount of power. The laser is then said
to have a 'diffraction-limited' number of 2 . The 'times
diffraction-1imited® number can also be defined as the ratio
of the transmitted power of an ideal beam with that of the
non-ideal beam at the radius corresponding to the laser beam
waist. For example, if at the beam waist, the diffraction-
limited laser was transmitting 86% of the power, while the
non-ideal laser 43%, then the corresponding 'number of times

12
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diffraction-limited' is 2 .

Beam Divergence and Spot Size Measurements

A generally simple method to characterize a laser beam

U - . Y
Palal el ey

is by describing its far-field profile. Many use the diver-
o gence angle as a measure of this quality. Depending on the
application, the divergence angle will vary. For most sys-
tems where maximum energy is desired on a small area at pos-
: sibly great distances away, the divergence angle should be
}5 very small. The divergence angle, ©(z) 1is the half-angle

spread to the point at which the beam irradiance falls to

l/e2 of its central value and is described in equation 2.5

f and illustrated in figure 6.

0 (2=00) = )\/'Nwo (2.5)

13




One method to determine quality using spot size measure-
ments, is by comparing the measured spot size and the theore-
tical spot size determined in the far-field. However, mea-
surement of spot size, and for that matter divergence, is
not an easy task. This section will now attempt to describe
several methods to determine these parameters for lasers with
symmetric Gaussian intensity distributions. The most straight
forward technique to measure spot size is to scan the beam
with a pinhole or slit. However, this technique is now con-
sidered unacceptable since in addition to being slow and
tedious, it is very sensitive to the scanning path across the
beam (Ref 23). The scanning knife-edge method is then used
to alleviate these shortcomings. The technigque makes use of
the waveform generated when the beam is interrupted by a
straight-edged chopper moving at a uniform speed (Ref 18).
Suzaki and Tachibana (Ref 20) used a rotating chopper with
the knife-edge and calculated the beam radius w using equa-
tion 2.6.

w = O.7803C\Jr(t2 -t (2.6)

)
In equation 2.6, W is the angular velocity of the chopper,

r the distance from the rotating center of the rotating chop-~
per to the laser beam axis, and the quantity t2 - tl is the
time interval for the output to go from 90% to 10% of the
total laser power. The spot size given by equation 2.6 was

14
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derived using the result that the normalized power P(R)/P(0)

is given by the error function. Thus, w can be found from

the curve of P(R)/P(0).
:S There are still some defects to using the knife-edge
scanning technique. The scanning rate must be maintained at
a uniformly constant speed and the spot size must be calcula-
ted after fitting a variation of the output power from the
detector to an error function. Yoshida and Asakura (Ref 23)
proposed measuring the spot size of Gaussian laser beams by
scanning the beam with an opaque ribbon. The spatial inten-
sity distribution I(x,y) of a Gaussian Laser beam is given

by:

y I(x,y) = 2B40) o-(2xP+2y?)/w? (2.7)

(O = TrWZ
-0 where P(0) is the total laser power, W 1is the spot size
measured at the l/e2 distribution point and x and vy
are Cartesian coordinates measured from the beam center per-
pendicular to the axis of propagation. By scanning an opaque
ribbon across the beam, the minimum output power from the
photodetector is realized when the ribbon reaches the center
= of the beam. From ficqure 7 and setting the ribbon width to

be 2a , the minimum power output is given by:

fPSOZ (2x +2y )/w dx dy

=00 ~Q0

{f} 2P O) - (2x? +2Y )/wdxdy (2.8)
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Fizure 7, Intensity distribution of a Gaussian te=m in
wnich the center is interrunted ty =zn crac:e
rivbon with width equzl *o 2=z,

From equation 2.8 the following is derived:
P 1
m ]
= erfc 2¢ a/w 2.9
P(0) ( /W) ( )
oo
1 "‘t 2
where, erfc(z) = (2/M?) e dt (2.10)
z

From equation 2.9, if the opaque ribbon width 2a is known,
then the spot size w can be determined by measuring the
value of Pm/P(O) . With this technigque, the consistency of
the speed of scan is not a critical factor to contend with

as was the case for the knife-edge method.

16




K

— = — ., 4

!’wo /Jﬁ_/ k)
Laser 1\ T

hiid

ik

K]'—le—u

Figure 8. Typical laser set-up from which beam parameters
are determined.

By definition, divergence is measured at the l/e2 point
of the far-field irradiance distribution. As such, measure-
ment of the divergence for some lasers might be impractical.
Therefore, lenses are used, as shown by Suzaki and Tachibana
(Ref 21), to determine the divergence by measuring the spot
size at the focal plane of the lens and knowing its focal
length., When a beam passes through a lens of known focal
length, the beam radius in the focal plane We is indepen-
dent of the lens position on the beam axis. This is due to
the fact that the field at the focal plane is proportional
to the far-field pattern of the incidence beam which depends

on the beam waist radius, but not on its location (Ref 1).

17




Then, v, = £ 8(09) (2.11)
where, f is the focal length of the lens and, ©(00) is the
half-angle far-field divergence angle. Wf can be measured
using one of the beam spot size measurement techniques out-
lined above. If f 1is known, the half-angle far-field di-
vergence angle ©(00) can be found mathematically, by equa-
tion 2.11.

Measurements of beam divergence using lenses are, unfor-
tunately, not always accurate. Many times the precise loca-
tion of the focal plane is difficult to determine. Sollid,
et al (Ref 19) proposed a lens-less method to determine beam

divergence of Gaussian-shaped laser beams. The propagation

of a Gaussian beam is shown in figure 8. Given two values

(
of spot sizes, wl(z) and w2(z) and using equation 2.12,
the beam waist w, can be calculated.
L
;B v (e 2-(Az /TP
Vo T 3, 2 3.2 (2.12)
201+( /2 Az ) 2(w-vd)? )
When the beam waist location is known (2=0), and using the
ff expression for extracavity propagation, equation 2.13,
Ei w(z 2,%
- ¥z 2 (14 (B2 )P (2.13)
:-:; (]
where, (2] =>\ /Tw (2.14)
F g o
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the beam waist can be calculated using the reduced equation,

2.15.

wg = %wz(li (1-(2>\Z/7Tw2)2)% (2.15)

According to Sollid, et al, only one measurement of w(z)

is required to calculate Wy using equation 2.15. The pro-

%ﬁ posed method is to insert beam attenuators of known density
B. in front of the laser, while the energy is exposed at plane
ﬁ} z on a sharp-threshold energy sensitive medium. See figure
9 for illustrations. The irradiance distribution produced
at the film plane by laser intensity Io attenuated by a

thickness of material d , with absorption coefficient & is

(" 2,2
I(r) = 1_ "2 /v - &)

(2.16)
The radius to a given exposure density on the film is mea-
sured, corresponding to constant I(r) in a given exposure.
From equation 2.16, w(z) can be determined from pairs of
measurements involving the same exposure density but diffe-

rent radii r, f rj and di f dj . Thus,

2 2

Qle; - &) (2.17)

w(z) =
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fignre 9, Attenuator methosd for detiernining diverzance,

where (X is the attenuator absorption coefficient. With
w(z) Kknown, from egquation 2.16, W, can now be calculated
using equation 2.15. From equation 2.14, the far-field half-
angle divergence angle © can be determined.

Huguley (Ref 12) used a heat-sensitive 'scanning wire'
to characterize the laser beam profile and determine laser
spot and waist size. The scanning wire, which lies in the
direct path of the laser beam, will be heated proportionally
to the power density which it intercepts. The heating will
result in a proportional change in resistance. When the
wire is scanned across the beam, the resistance change will
follow the energy profile of the laser beam. The heat sen-
sitive wire method compares very well with the scanning edge
and scanning slit methods. Comparative plots of the diff-

erent methods are shown in figure 10.
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It is a well known fact, that the spatial intensity
distribution of an imaging system, in the far-field, is com-
pletely described by the Fraunhofer approximation to the Huy-
gen-Fresnel principle (Ref 6:57-76). The far-field inten-
sity pattern is expressed, simply, as the Fourier transform
of the field immediately behind the diffracting aperture of
an optical system. Figure 1l illustrates this point, and de-
signates U'(x,y) as this field. In general, the illumina-
ting field, U(x,y) in figure 11, can be any function. For
some lasers, U(x,y) 1s Gaussian in profile. The field

which immediately follows the aperture is expressed as,
U'(x,y) = Ulx,y) t(x,y) : (2.18)

where, t(x,y) is the transmittance function associated
with the aperture, and U(x,y) the incident field. Then
the far-field or Fraunhofer field strength U(xl,yl) is gi-
ven by Goodman (Ref 6:61) as: |

2

, . 2
1 eszeJk/Zz(x1+yl)

U(x,y) = -f7r
jA z

o0

-j2 7T/>\z(xx1+yy1)

X U'(x,y)e axdy

- 0o (2.19)

The associated far-field irradiance is then expressed as:
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Aperture Plane y//////

Observation Plane

Figure 11. Wave propagation into the Fresnel reglon
and beyond.

(o o]
-2
%x——(xx +YY.) 2
I(xl'yl)= (xl’yl) 22 Ti;‘z7;(x,y)t(x,y)e z 1 1 dxdy
=00

(2.20)

Equation 2.20 represents the observed intensity distribution,
in the far-field, for a diffraction-~limited optical system.
When wavefront error exists in the system, due to aberra-
tions, the optical system could be thought of as being illum-
inated by an ideal wave but a phase shifting plate exists
within the aperture. The phase error ¢(qu) can be ex-

pressed as:

¢(x.y) = k W(x,y) (2.21)
23
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where Kk = 27T/X and W(x,y) 1is the effective path-length
error. With aberration included, equation 2.20 is rewritten

as:

o .
-j2T,
. %K-(xx +YY,) 2
I(x'y)NDL= 'lrj:ﬁ(x,y)t(x.y)e3¢(x'y)e z 1 1 dxdy
z
- 00

(2.22)

Chapters III and IV, of this report, will investigate aber-
ration effects on diffraction theory in more depth. When an
optical system suffers from aberrations, the peak value of
its intensity distribution is less than the peak value of the
same system in the diffraction-limited case. The ratio of
these peak values, known as the Strehl ratio, indicates the
amount of aberration present in a system, thus providing a
powerful measure of laser quality. The Strehl ratio is gi-

ven as,

I .
S.R. = —akerrated (2.23)

Idiffraction-limited on-axis

According to Gaskill (Ref 5), a Strehl ratio of 0.8 or higher
is often considered characteristic of an optical system which

is effectively unaberrated.




III. Modeling Phase Aberrated Laser Beams

Imperfections in the optical system, called aberrations,

are the major contributors to the nondiffraction-limited na-

ture of a laser beam. Specific sources of optical aberra-
tions that produce nondiffraction-limited beams range from
distortions generated within the lasing cavity to imperfect

mirror surfaces encountered in the exterior (and interior)

optical trains. In characterizing laser beams, it is neces-

sary to describe the nature and the form of these aberra-

tions. To do this, effects of aberrations must first be

studied. Two types of aberrations reduce the quality of op-

tical systems and hence, the output of these systems. These

are amplitude and phase aberrations. Studies have indicated,

however, that the aberrations due to purely amplitude dis-

tortions are not as severe compared to effects due to random

phase aberrations (Ref 8).

In order to study the effects of random phase aberra-
tions on the irradiance profile of laser beams, a numerical
model was developed to simulate the propagation of nondif-
fraction-limited laser beams. The function of the code is
to numerically integrate the Huygen-Fresnel integral to de-
termine irradiance. The code was devised to allow for two-
dimensional numerical integration. The need for two-dimen-
sional integration was realized to allow for flexibility in
choosing aperture type and dimension. The model determines
irradiance distributions for both circular and rectangular

25
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apertures. The following sections will discuss the genera-

lities and assumptions used in developing the model in more
detail, and reviews the theory of phase aberrations and also,
the theory of diffraction in the presence of phase aberra-

tions.

Theory

The general form of the Huygen-Fresnel integral is

shown in equation 3.1:

. , 2.2
o JKZ jk/2z (x1+yl)

U(x,,Y,) = ——— e
1771 j)\z

m _-W
(x y) (x x1+Y, Y )
U'(xo,yo)e22 e JXT 1 1

X dxodyo

=00 (3.1)

where U(xl,yl) is the field strength at the observation
plane with Cartesian coordinates x; andy; . and U'(xo,yo)

is the field strength at the aperture plane with coordinates

b
.
Lo
L~

Xo and Yo * The distance between the aperture and the

plane of observation is 2z and the wavelength of the signal

is A, . By applying the Fraunhofer approximation to equa-

PINDS ¢ AR

Lal ad

v

tion 3.1 the field strength at the far-field reduces to:

oJkz 3 K (2 +y1 if:Qx X +y Y1)
Urk,rygle dx _dy

U(xl'yl) = J—re

(3.2)
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Hence, at the far-field or Fraunhofer region, the field
strength is simply the Fourier transform of the aperture
plane field strength multiplied by constant phase terms. The
irradiance I(xl,yl) is the square of the absolute of equa-

tion 3.2, or,

o0

B 2I(x X,+yY ¥V.) 2
T(x ) = - U'(x e z' o'l “o 1dx dy
1'7) 2 o'¥o 0%Yo
(A2z)
- (3.3)

Notice that in equation 3.3, the phase terms of equation 3.2
disappear.
As briefly discussed in Chapter II, the aperture plane

field strength U'(xo,yo) can be expressed as:

U'(XO'YO) = U(xo,Yo)t(xopYo) (3.4)

where, U(xo,yo) is the field strength incident on a limit-
ing aperture with transmittance t(xo,yo). In order to
achieve far-field conditions, the Fraunhofer condition must

be satisfied. At optical frequencies, the conditions required
for satisfying these conditions can be severe. For example,
at a wavelength of 0.6 micrometer and an aperture width of

2.5 cm, the observation distance must be 2z>>1600 meters.

In many instances, meeting the condition is not readily real-
ized and, in most cases, impractical. As will now be shown,
the use of ideal lenses will alleviate these deficiencies
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and provide far-field conditions at the focal plane of the
lens.
The phase transformation function of a lens is given by

Goodman as:

ik 2. 2
(x_+y>)
e 24 ©-o (3.5)

_ . JjknD
Ul(xo’yo) =€

where, D 1is the width of the lens at the center and f ,
the focal length. If the incident field U(xo,yo) is trun-
cated by a limiting aperture with transmittance t(xo,yo)

and focused with an ideal lens of focal length £ , then the

field at the aperture plane can be expressed as:

-]k 2.2
- Ut (X ,y)=U(x_,y. )¢l )eJkmDg 26 o"¥o! (3.6)
(¢ M o' Yo/ = Kot ¥/ B Xgr Y :
Substituting equation 3.6 into equation 3.1 will result in
the cancellation of the quadratic term within the integral

when 2z=f , thus, simplifying equation 3.1 into:

. (o o]
( ) ekt %%(x§+yf) ( )t ( )
U(x,,y =Te U(x_,y dt{x .,y
1741 DY o'fo T; o
-j2
=00 -]T(xx +yy )
Xe £ °© © dxodyO
(3.7)

The irradiance is simply the square of the Fourier transform
of the product of the incident field and the aperture trans-
mittance function.
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In the presence of aberrations, the irradiance function

beconmes,

r ¢
_ 1 b (Xo’yo)
I(xl.yl) = T)\—f-)z Ml(xo,yo)t(xo,yo) e
-ﬁ%(x X1+Yoy;)
X e °© © dx_dy (3.8)

where, ¢(xo,yo) represents the aberration function.

Amplitude distortions can be a contributing source to
the nondiffraction-limited nature of a laser beam. However,
their comparative contribution is much less than the contri-
bution arising from phase aberrations (Ref 8). In this
report, only small-distortion random phase aberrations will
be assumed to contribute to the nondiffraction-limited nature
of the beam,

The contribution of the aberration function to the on-
axis irradiance at the focal plane can be assessed using the

Strehl criterion (Ref 3:464),

I(x=0 2
=S - Ad (3.9)

where, (Z&¢)2 is the variance of the phase aberration func-
tion. When phase distortions are small (less than 1/5 A.),
the normalized intensity at the center of the observation

plane at focus is independent of the nature of the aberra-

29




ii IR tion and is proportional to the variance of the aberration
function.
Phase aberrations are generally due to imperfections in
'f: the optical device such as a laser. In this report, phase
aberration will be represented as the Fourier series expan-

sion of a function which satisfies the condition:

¢ -51x x {%1x
=51y <y <%ly
f(x,y) = rect(x)rect(y) = J

0 elsewhere

(3.10)

A graphical representation of this function is shown in fi-
gure 12. Thus, the phase aberration function for non-dif-

fraction-limited beams can be represented as:

N

R ¢(x,y) = g%%{ Ancos(n7r%§)cos(n7T%§)] (3.11)
- n=1

where, An is a randomly generated coefficient represen-
ting the amplitude of the phase distortion, and 1x and

ly are the corresponding aperture widths in the x and vy
directions. The coefficients are randomly generated by a

random number generator.

The Numerical Model

In developing the computer model, the incident field

30
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figrre 12, The recienzuler funcsion,

is assumed to be Gaussian in intensity, truncated by an aperQ
ture (either rectangular or circular), and focused by a per-
fect thin lens. The system is assumed to be aberrated by the
function ¢(x,y) of equation 3.11. For the sake of simpli-
city, however, only the x-component of equation 3.11 is con-
sidered to contribute to the aberration. Thus, U'(xo,yo)
of equation 3.1 becomes:
_(x2+y2) s
U (%7, )=e 'owz'o oJknD %%(xg+Y§>EJ ¢(Xo)

rect(x_,v._)
(X r¥y)

(@]
(3.14)

where, w 1is the spot size at the aperture. For a rectangu-
lar aperture, with transmittance function described by equa-
tion 3.10, the limits of integration can be changed, thereby
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reducing the form of the nondiffraction-limited irradiance

profile to:

Elyklx , .2 2
LY _(xo+yo)1 —ik 2 2 .
1 > S (Xgryg) J¢(X)
- o ‘o o
I(xl,yl)-———— 9 e e e
(Az)
=5ly-%1x -
jk (Y2+ 2 -327 2
X *y,) j7;-(><><+yy)
e eZz 0 -0’ 4 z o1 ‘o'l dxodyo

(3.15)

The function of the computer code is to numerically in-
tegrate equation 3.15. For circular apertures, only the in-
tegration limits of equation 3.15 are changed. Note that the
quadratic terms are left inside the integral since 2z 1is not
necessarily always equal to f . This is especially conven-
ient when the irradiance profile of beams not at lens focus
is desired. Numerical integration is accomplished using a
modified form of the trapezoid rule (Ref 14).

Modeling nondiffraction-limited beams in two dimensions
provides greater flexibility in studying non-symmetrical
laser beamz. In addition, the form of the phase aberration
function is not necessarily separable in x and y . Such
is the case with the aberration function of equation 3.11l.
The x component of the aberration cannot be separated and
treated independently from its y component.

Figure 13 shows a simplified flow diagram of the code.
Appendix A includes the program listing and a sample data
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output from this numerical code. The following sections will
briefly describe the three main parts of the code: input,out-

put, and operation.

Inputs. 1. Laser wavelength.
2. Aperture type- circular or rectangular.
3. Aperture dimension-
-if rectangular, the width of the aper-

ture in x and vy directions.

-if circular, the radius of the aper-
ture.

4, Extent of the observation plane.

5. 2z - distance of the observation plane to
the aperture.

6. f - the focal length of the lens.

Operation. The code determines‘the irradiance distri-
bution of an aberrated optical system. Only the distribu-
tion in the x axis at the y=0 reference point of the ob-
servation plane is calculated. The integration process
arranges the aperture plane into a 20x20 array. A bigger
array is certainly more desirable, but due to constraints in
computer time and cost, this is not possible. However, for
the purpose of this study, the array size chosen was found
to be sufficiently accurate. Accuracy of the computer model
was determined by comparing results derived from the model
with theoretical results. Two important points were compared.
They are:

l. Axial distance of zero points from the central
axis (x=0), and
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2. Relative values of maximums and their points of

occurrences, e.g. lst side lobe, 2nd side lobe, etc.

The model was found to be accurate to within 2% of the theo-
retical results.

Fitty data points, in the observation plane, are calcu-
lated. This number of points was found to be adequate in
describing the irradiance distributions of simulated nondif-
fraction-limited laser beams. For each point in the obser-
vation plane, integration over the entire extent of the aper-
ture is necessary. As mentioned earlier, integration is done
using a modified form of the trapezoid numerical integration
rule. All points in the plane of observation are normalized
with respect to the on-axis (x=0,y=0) irradiance of the dif-

fraction-limited case.

Qutput. In this thesis, data points of irradiance ver-
sus the axis of observation were stored to tape. Plots were
generated by attaching the data tape into available Air Force
Institute of Technology computer/plotter packages. In this

report, data plots were generated using the HPPLOTTER.
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IV, Characterizing Phase Aberrated Laser Beams

Chapter II of this thesis report reviewed the current
methods used to characterize laser beams and thée procedures
used to measure them. Chapter III discussed the development
of a computer model to numerically simulate nondiffraction-
limited beams at the focal plane of a lens. From this model,
certain characteristics of phase aberrated beams were found
to contribute to the overall quality measure of laser beams.
When describing the guality of beams, it is important that
these characteristics are measured. Most of the existing
characterization criteria do not attempt to describe these
characteristics. This chapter proposes measuring these pa-
rameters when characterizing the quality of laser beams. A
method to measure these parameters by a least squares curve

fitting method will also be discussed.

Characteristics of Nondiffraction-limited Beams

The Strehl criterion of equation 3.9 determines the on-
axis normalized irradiance of a nondiffraction-limited beam.
An important parameter which the Strehl criterion do not
describe, however, is the lateral extent of the aberrated
beam. The energy removed from the on-axis beam is re-distri-
buted into the outskirts of the main beam. This scattered
energy forms a 'halo' around the main beam. Hogge, Butts,
and Burlakoff (Ref 8) showed that the nondiffraction-limited
beam can be expressed as the sum of two beams. One beam is
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the attenuated diffraction-limited beam, the other is a much
wider beam whose amplitude and lateral extent depend on both
the variance and the functional form of the aberration.

By assuming the shape of the 'halo' to be Gaussian, a
mathematical expression is hereby introduced describing the
nature of the nondiffraction-limited beam. The form of this

expression is:

FI (x) + (1= F) e'XZ/Z"72

o 2'11'0‘2 (4.1)

where, FIo(x) is the 'first' beam described as the diffrac-
tion-limited beam attenuated by a factor F . The second
term of equation 4.1 represents the 'secondary' beam or ‘'halo’
which is Gaussian in shape with variance 0'2 .

Using the computer model descibed in Chapter III, re-
sulting irradiance distributions at the focal plane of the
lens were analyzed. In these simulations, the laser beam
was assumed to have a waist of 0.45 mm, truncated by a rec-
tangular aperture (1 mm x 1 mm), and focused by a lens with
a focal length of 20 cm,

To simulate the effects of random phase aberration, the
first twenty terms of the series expansion of the aberration
function (equation 3.11) were considered. For the sake of
simplicity, only the x component of equation 3.11 is in-
cluded. The ¥y component, in this model, is assumed cons-
tant. The coefficients in each term of the series are ran-
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dom numbers. In the study of random phase aberration and

its effects on the irradiance distribution of nondiffraction-
limited beams, five different sets of random coefficients
were multiplicatively scaled to reflect new strengths of
phase distortion. The variance for each set is proportio-
nal to the sum of the squares of the coefficients. The form
of the variance is derived below:

If the aberration function is expressed as:
X
¢(x) = 27T/>\ Acos21 'l% (4.2)

where, A 1is the amplitude or distortion of the aberration

function, then the variance of this function is:

Llx - Llix
‘/az(x) dx Jﬁb(x) dx 5
2 =kix -%1x
2_ 2 _ _ )
Ag*= dx)? - oo — — (4.3)
Jr dx Jr dx
‘ -%1x -%1x
or
Ap?= 2Tt/N )2 5 a2 (4.4)

Let the square of the coefficient be represented as C2 ’

and let C2 = (2 M/ k.)z , then equation 4.4 reduces to:

A@? = 5 2 (4.5)
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For two or more terms of the aberration function, the var-

iance takes the form,

2 _ 142 L2 L2
Ag® = 5CT + HC5 + ... kCE (4.6a)
or
2 Al 2
= L
Ap* =51 L cf ] (4.6b)
i=1
If the varlance of the first set of coefficients is re-
presented by ;C or 1/Zsum(ci) then the subsequent sets

are % Z(ﬁc )2 or 4sum(kcP) , %sum(c,/3)° , Lsum(c,/6)°
and %sum(C /8) . %sum(ci)2 is the most aberrated case,
while 1sum(Ci/8)2 the least. Appendix C lists the random-
ly generated values of coefficients. Figures 14 to 18 show
individual irradiance distribution plots for the five diffe-
rent sets of coefficients studied, while figure 19 show a
comparative irradiance plot of a diffraction-limited beam and
three cases of aberrated beams. It is evident, from these
plots and equation 4.1, that as the variance of the phase
aberration increases, the on-axis irradiance decreases, while
increasing the amplitude of the 'secondary' beam or ‘'halo‘.
An increase in the variance of the function idicates an in-
crease in the coefficients of the individual terms in the
series expansion representing aberration.

The lateral extent of the 'secondary' beam is a funct-

ion of the individual terms in the series expansion of the
aberration function. To study this relationship, several
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simulations were done, whereby only specific terms of the
series expansion were considered. By doing this, it is
assumed that the specific term considered is the ma jor con-
tributing term in the expansion. All the other terms are
zero or very small in amplitude and thus, negligible. In
all cases, the variance of the phase aberration function was
kept constant. In one set of simulation, the fundamental

mode, the second, third, and fifth harmonics or terms of the

series were individually considered. A phase distortion
amounting to 0.095 A.was assumed for each one. The results
of these simulations are shown in figures 20 to 23. Notice
that the extent of the aberrated beam increases with increa-
sing harmonics of the aberration function.

By representing the 'secondary' beam or 'halo' with a
Gaussian distribution function, the extent of the nondiffrac-
tion-limited beam can be conveniently determined by measur-
ing the variance, 0'2 , of the distribution.

Most of the current methods of beam characterization do
not attempt to describe the attenuating factor and the late-
ral extent of the aberrated beam. In most cases, only one

parameter is measured. For example, the 'power in the bucket'

method measures the 'number of times diffraction-limited'
value. There is no basis of quantitative development for
this measure to which it might be shown that the measure
alone completely describes the beam quality. The Strehl
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criterion also lends itself to a singular measure for beam
quality. Alithough, it is important to determine the on-axis
irradiance of an aberrated beam, it is also important to
know how the scattered energy is distributed beyond the cen-
tral axis. A better measure of beam quality, therefore, is
one which determines both the attenuating factor imposed on
the ideal beam, and the lateral extent of the aberrated beam.
It is proposed, that in characterizing beam quality of some
Air Force lasers, the attenuating factor F and the extent,
represented by the variance C72 are measured. The follow-
ing section will now discus a method of numerically measur-

ing these important beam quality paramccers.

Least Sguares Method of Curve Fitting

‘ To determine the parametérs F and CTZ . the aber-
rated irradiance I(x) was numerically fitted to the mathe-
matical expression of equation 4.1. Corresponding to each
of the observed values of x , there are two values of ir-
radiance, namely, the observed value of irradiance I(x) and

the irradiance of equation 4.1

2 2
I'(x) = I_(x)F VU;F-LZ o™X /2G (4.1)
2o

The difference between I(x) and I'(x) 1is called the

deviation.

(1=F) e-x2/2 g?

> (4.7)
2TTCO

d = I(x) -Io(x)F -
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Each deviation measures the amount by which the predicted
value of irradiance falls short of the observed value I(x).

The set of all deviations,

[d,= T0x))-T () p-pdoEL -xf/zo-zl
= X - X - e ’ oo 0 e oo ’
-1 1 o'l 27TCT2
2 2
_ 1-F —xn/ZO'
[dn = I(xn)—Io(xn)F— A CTZ e ] (4.8)

gives a picture of the closeness of fit of the mathematical
expression, equation 4.1, to the observed data. The mathema-
tical expression is a perfect fit only if all deviations are
zero. By squaring each term in the set, positive and nega-

tive values of d are weighted equally. Thus,

N N 2 2
2 1-F)  ~Xy/20°
I(F,G)=) ol = Z[I(xn)-xomn)p—-‘/ﬁ—% e ]
n=1 n=1 2o

(4.9)

The sum of the sgquares of the deviation depends upon the
choice of F and O .

The method of least squares fit takes as the solution,

2% --xz/ZCT2 -

IO(X)F + (1-F)/(2TT0“)? e of best fit that one
for which the sum of the squares of the deviation is a mini-
mum. Thus, values for F and @ are determined for which
the surface H=J(F,0) in F,J,H -space has a low point.

To find this minimum, the following partial differential
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equations are solved simultaneously:

':n anF,O') = 0 and anF,G') - (4.11)
o Or Or
L"_:. or,
.. 2 2
: -x-/20
a[I(x )-I (x_)F- 1-F e O ]2=O (4.12a)
aF n o'’ n 27TCV2
and'

2 2
(1-F) Xn/ZG 2

o)
—[I(x ) - I, (x )F- 1°=0 (4.12b)
F Voma? ©

The solution was derived rather extensively, and the steps
taken will not be shown here. Two expressions were derived
from the solution of equations 4.12aand 4.12kh The expres-

sions are given below:

2/2 0% 2 2
I x Ix - +
i} 757-02 2 G2

2T (x ) =x /2CT2 xz/CT2
2:[IZ(X )= 0'‘n +e B ]

VZTI'G'Z 271-0-2

I

-

(4.13)

and,

X --Xz/ZG'2 2 -xz/C;"2
G(F.Q)= Z[(I (X )F-I(x_) ) x n T, 11_-F_)§e n ]
= %" nN2m g 2MC

X [(xrzl/G'z) - 1] = o0 (4.14)

L 2 gw e oa i g v

To determine F and @ , a numerical method of approxima-
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ting the root of G(F,0 ) via the incremental search method
was used. Figure 24 depicts the flow diagram of this numeri-
cal process.

The numerical codes works in this manner. An initial
value for O is assigned and equation 4.3 is calculated
for F . F is then substituted into equation 4.4 and G(F,
Uinitial) 4is calculated. A next value of O is consi-
dered repeating the process outlined above until a value for
G(F, OUnext) is determined. The two values for G are mul-
tiplied and this product is analyzed. If the product is
zero, the root has been found. If it is negative, then a
solution very close to the root has been reached. Small in-
crements are added to (O , repeating the process until a
predetermined level of accuracy is achieved, If the product
is positive, U is incremented until a negative product or
a zero product is attained. Appendix B lists the numerical

code of least squares curve fitting used to determine F and

g.

Data_Analysis

In the preceding sections of this chapter, it was shown
that the lateral extent of the 'secondary' beam varied as a

function of the harmonics of the aberration function. As

higher terms in the series expansion were considered, the
lateral extent of the nondiffraction-limited beam increased

accordingly. Now a numerical code is available to determine

the relationship between F, U , and the aberration function.

Lal
H
2'e

i
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Several simulation runs were done to investigate this rela-
tionship. First, the relative strengths of the phase dis-
tortion were varied while considering only the fundamental
mode of the aberration. F and O were derived by the
numerical least squares curve fitting method discussed above.
Next, the second, third, and fourth harmonics were indivi-
dually considered. Results of these analyses are shown in
table I. Figures 25 to 29 show the 'quality' of some of the
fits. As predicted, the lateral extent or the variance of
the 'secondary' beam increased as a function of the harmonic
term considered. |

From the data, an important observation is made regard-

ing the relationship between F and CTZ . They are inde-

pendent of each other and must be treated separately. From
table I, the variance is shown to be relatively constant
over a wide range of phase distortions for the specific term
considered. F approximates the va{ye of the on-axis irrad-
iance as the amount of aberration becomes smaller. The amp-
litude of the secondary beam or 'halo' becomes small, but
the lateral extent remains the same. Thus the measured
variance reflects, in general, the lateral extent owing to
the more dominant term in the series expansion.

Next, curve fitting of irradiance profiles generated
by simulating random phase aberrations containing the first
twenty terms of the series expansion was done. Various
strengths of phase distortion were considered. Figures 30
to 34 show the quality of these fits, yielding values for
F and 0%, which are listed in table II.
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Table I

et Sulie st e asie S

Measured values of F and O'Zfor Individual Terms

Mode Aberration function O'z-extent F I(x=0)
Zﬂ'/)\ Acos(n2T x)

Fundamental 0.15 cos 2Trx 1.45 0.98 | 0.99

0.40 cos 2TTx 1.47 0.88 0.93

0.50 cos 2Tx 1.48 0.83 | 0.89

0.60 cos 2Tx 1.49 0.76 | 0.85

0.75 cos 2TTx 1.51 0.64 0.78

0.95 cos 2TTx 1.55 0.46 | 0.66

2nd Harmonic | 0.40 cos 4TTx 6.81 0.90 | 0.92

0.60 cos 4 TTx 6.91 0.78 | 0.83

0.95 cos 4Tlx 7.23 0.51 | 0.62

3rd Harmonic | 0.40 cos 67Tx 18.02 0.91 0.92

0.60 cos 6TMx 18,31 0.80 | 0.83

0.95 cos 6TTx 19.19 0.56 | 0.62

4th Harmonic | 0.40 cos 8TTx 35,57 0.91 0.92

0.60 cos 87Tx 36.04 0.81 0.83

0.95 cos 87 x 37.44 0.576}] 0.62
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Table 1II

Measured F and CTzfor twenty random numbers of aberration

Variance of
Aberration G2_extent F I(x=0)
‘/zsum(ci)2 34.28 0.26 0.33
‘/zsum(%ci)2 13.79 0.70 0.74
%sum(Ci/3)2 66.03 0.63 0.68
ssum(C,/4)? 66.09 0.69 0.74
4sum(C,/6)° 66.68 0.82 0.85
%sum(ci/ﬂ2 65.56 0.86 0.88
ssun(C,/8)7 65.48 0.89 0.91
hsum(C,/2.5)% 63.38 0.64 —_—-
F
S 63
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V. Conclusions and Recommendations

Two important characteristics of laser beams in the
presence of random phase aberrations were discussed in
Chapter IV. The amount of attenuation and the lateral
extent of the nondiffraction-limited beam describe the
amplitude and form of the aberration and provide a better
measure of laser beam quality.

Phase I of this study identified several currently
used methods to characterize the quality of laser beams.

In general, these methods and the figures of merit asso-

ciated with them are insufficent. As already mentioned,

a single parameter is often used when assigning a quality

measure for a laser system. However, this singular para-
(o meter is insufficient since it does not describe the

lateral extent of the phase aberrated beams. For example,

in the ‘'power in the bucket' method, the 'times diffraction-

limited' number is the quality numbef, and this is measured

at an arbitrary point in the P-R curve. Similarly, only

the normalized on-axis irradiance is determined from the

Strehl criterion.

The far-field irradiance distribution and the total

power curve (P-R curve) contains far greater information

-

than what a singular measure would indicate. A single
point in these curves simply cannot give a quantitative

description of the overall quality of a laser beam. In

gy vy
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the developing sections of this report, it was found that
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two quantities, namely the attenuating factor F and the
measure of lateral extent, C72 provided a better measure
of gquality for aberrated beams. Therefore, as a result

of this thesis analysis, it is recommended that when char-
acterizing the quality of laser beams, these two quantities
are measured,

In describing beam quality using the 'times diffraction-
limited' number, a number equal to 1, indicated a laser beam
which is diffraction limited. Using the Strehl ratio, a ratio
of 0.8 or better reflects a laser beam which is effectively
unaberrated. Using the newly derived FOMs, an F equal to
1, defines an ideal or diffraction-limited beam. Examining
equation 4.1, it is noted that at this limit, the second

f" term representing the amplitude and spread of the 'halo' dis-
| appears. When the laser beam is phase aberrated, F becomes
less than unity, and the 'secondary' beam appears. The spread

of the 'secondary' beam, as discussed in Chapter IV, is a

- function of the form of the aberration and not its variance.
= Thus, for one form of aberration, the lateral extent of the
Ea beam remains the same for varying amounts of distortion. As
- the beam becomes more aberrated, the amplitude of the 'secon-
dary' beam increases since more energy is scattered into this
E. beam, while the spread remains constant. In attempting to

F approximate the form of the diffraction-limited beam, it is

Lk i 4

RIS

important, therefore, to minimize both the amount of attenu-

ation and the spread or lateral extent of the 'secondary' beam.
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The total power plots of figures 35 to 39 were the
result of integrating the irradiance of the diffraction-
limited beam, the aberrated beam and the 'fitted' beamn.
(The power plots of the normal and 'fitted' aberrated
beams were included to show, once again, the closeness of
the numerical fit discussed in the last chapter.) The
total power plots are no more than the P-R curves, dis-
cussed in Chapter II, and derived from the 'power in the
bucket' method. Figures 35 to 36 show the power plot of
an aberrated beam whose spread, CTZ was measured at
approximately 65mm., While figures 37 to 39 are for aber-
rated beams with a spread of about 1.5 mm. Each plot
represents different amounts of attenuation. An important
observation is made from these power plots which supports
an earlier hypothesis. Aberrated beams with high F values
and small 'secondary' beam spread closely approximates the
diffraction-limited case moreso than beams with low F
values and wider dispersions. Thus, as a result, the ulti-
mate design gcal for laser systems is an attenuation factor
of unity. Since, for practical systems this is not achieved
readily, then a realistic design objective must be a laser
system whose beam is characterized with an F very close
to 1 and a 'secondary' beam with a small lateral extent.

F and 0?2 are derived from the overall far-field
irradiance profile. As already mentioned above, the total

power plots of P-R curves are the result of integrating
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this irradiance distribution. Therefore, the attenuating
factor and the extent of the aberrated beam can be derived
from differentiating the total power P-R curve. No special
method or apparatus is required, since these two quantities
can be measured from the P-R curve generated by the 'power
in the bucket' method. The next section describes a pro-

posed procedure to do this measurement.

Proposed Procedures

The process of experimentally determining F and
CTZ is divided into five different steps. These are set-up,
beam alignment, P-R curve generation, derivation of the
irradiance profile from the P-R curve, and finally, measure-

ment of the attenuating factor and lateral extent.

Apparatus Set-up. The experimental set-up of figure

3 will be used. A lens system of focal length, £, will
be inserted between the laser and an adjustable aperture
with a power detector immediately behind it. To achieve
far-field conditions at the input of the power detector, it
is vital that the variable aperture is placed exactly at the

focus of the lens.

Beam Alignment. The position of the center of the

beam, at the plane of the variable aperture, is required in
order to optimize power measurement. Exact beam center must

be known since the central point of the variable aperture is
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- g aligned with this beam center. A method of determining
ﬁ? o laser beam center was outlined in Chapter II. Briefly,
this required the use of an opaque ribbon of finite width
ﬂ; 2a. By scanning this ribbon across the beam, the minimum

output power is realized when the ribbon reaches the center

of the beam. For a more detailed discussion of this tech-

nique see Ref. 23. The center of the adjustable aperture

is then aligned with this beam center.

P-R Curve Generation. In the conventional ‘'power in

the bucket' method, the variable aperture is opened to its
maximum diameter, to measure the total output power of the
laser. Power measurements are then taken for various
aperture diameter. This value is normalized with respect
ft; to the laser's total output power and plotted with the
normalized power plot of the diffraction-limited case.
However, the degree of phase aberration, present in
the laser system, is not known at the outset and, hence,
the total power measured the conventional way may be in-
accurate. The amount of energy falling on the surface of
the detector is limited by the maximum size of the variable

aperture, and also, the entrance window of the detector

itself. If the extent of the aberrated beam is beyond

‘ ] b
el L Yl

the physical limit of the variable aperturefletector system,
the energy contained in the outskirts is then lost. Thus,

the measured power does not reflect the true total powver

k. /UL S AL L AN o
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of the laser. A convenient solution to the problem is

a numerical fit of the measured absolute power values

(for different aperture diameter) with some mathematical
expression., From this expression, the total power of the
laser can be mathematically approximated simply by setting
the independent variable of the expression equal to in-
finity. The measured values of absolute power as a func-
tion of aperture diameter can now be normalized with respect

to the calculated total laser power.

Irradiance Distribution., The nondiffraction-limited

P-R curve 1is the result of integrating the irradiance dis-
tribution of a test laser. Thus, by taking the derivative
of the total power, irradiance can be determined. Since

the form of the irradiance distribution for the diffraction-
limited case is known from theory, only the nondiffraction-
limited power must be differentiated to obtain the aberrated

irradiance distribution.,

Determine F and CTZ. With both the diffraction-

limited and aberrated irradiance known, the attenuation
factor F and the nondiffraction-limited beam's lateral
extent CTZ can now be found by the least squares method
of curve fitting discussed earlier in Chapter IV. The pro-

gram listing of this method is listed in Appendix B.
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Appendix A
Numerical Model of Non-Diffraction Limited Beam
S Q0= PROGRAM DIFGEHCINPUT,0UTFUT, TAFEG=INFUT, TAFEA=SQUTAUT, TAFED)
- 110= DOUBLE PRECISION DSEED
- 1= [InENSION PX(105,105),PXa¢1905,105)
130= [IMENSION PLOG(105,105) ,FPLOGATI05,105),A41C109),A71(105)
149= DIMENSIUN DFFL10Y)
150= DINENSION RNDH(SO)
150= COMPLEX ARG,EA,EB,.cA1,ERBT
i70= COMFLEX CZ
180= COMPLEX FX,SUM,FXA,SUMNA,FXI,FXNAX,FXAI,FXARAX
190= COMPLEX ABERR,AREA1,AREA,AREATA,AREAA,VOL,VOLA
i 200= COMFLEX V,VA,CX,CXA,CPX,CPXA,FXF,5PX,FHA,PHI,AT,ANP0.UP.C
- 210= COHPLEX EFCS,EAFCS
- 220= COMPLEX ANUH,ANUAS
P 239=C
";; 240=C THIS PROGRAM DETERMINES THE I[RAADIANCE DISTARIBUTION UF
250=C DIFFRACTION-LIRLITED & ABERRATED SYSTEMS. BOTH THE FRESNEL
2o0=C REGION AND THE FRAUNHOFER DIFFRACTION FATTERN CadN HE DE-
iy 270=¢ TERMINED THROUGH THE SOLUTIOGN OF THE FRESNEL-HUYGEM I1si-
280=C TEGRAL. THE SOLUTION IS [IONE NUMERICALLY USING THE [RAPE-
e 290=C Z0ID RULE OF IWNTEGRATION. THE POINTS GEMERATED [N THE
300=C PRINTOUTS AN FPLOTS REFRESENT THE NORMALIZED IHTENSLTY
31¢=C FISTRIBUTION.
320=C IN THIS THESIS, IT IS ASSUMED THART THE SYSTEM IS FiLuSesd
330=C BY A PERFECT THIN LENS WITH FOCAL LENLIH F.
34¢=C
- 350=C AEREEFEREEERRREFREFRRFRSRRE SRR B RN FR bR R R F RS R RE LR
Jau=C
370= WRITE(8,300)
: 3502500  FORMAT(# *, 20X, #nNUMERICAL SOLUTION TO  FRESwSC (4TECRALE)
S 3y0= WRITE(5,501)
- 400=501  FORHAT(# #,15K,%1405 FRUGRAN CALCULAIES [Fm FRESNEL 4w
- 419= WL iE16,502)
. 22025020 FORMAT(R #,i5X, % FAR~FIELD ia cNSITY DISTRIBUTIUN FoRr A4
450= wiliiclé,303)
- 5402593 FORMAT(# #, 15X, «0IFFRACTION-LINITED AND ABERRAZU SY5TEa+)
= 450= WRIiE16,505)
- 4602505  FUORMAT(H k15K, %+++++MASTER'S THESLS “ROUECTH+4+¢4%)
- 479Q= WRITE(S,5109)
ii 480=5103 FORMAT(+ *,20X,*+++++SYSTEN IS5 FOCUSED+++++%)
490=C
o 500=C RERERRARRRERREREBRRIERRRERRRREE SRR LSRR b SRR
o 510=L
- 520=C INFUT PARAMETERS
S 530=C
ii 540=C ek ks INITIALIZATION OF INTEGRATION vidh (ASLaSekeribag
— 55U=CCCCCCLUCCCUC INTEGRATION IMCREMENTS CCCCuLLCUCCCLLTCLCE

340=C

FUisiaCREnENRT Or INTEGRATION
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v S 574=C NBCD=IdicGEr SOUIVALENT UF BLD
o e 580= BCD=20.0
ke 590= NBCD=20
Lu_ 600=CCCCCCCCCCCCC 0BS PLANE INCREMENT CCCCCCerceCceccccece
b 610=C XX1=INCREMENT
b 620=C NiH=INTEGER EQUIVALENT OF C
[ 630=C NNN=NN+T
P 640= XX1250.0
. 650= HN=59
- §40= NNN=NN+1
[ 670= WRITE(6,570)
B 680=570  FORNAT(# #,20X,*INPUT THE WAVELENGTH IN O.XXXXXXXX MH #)
S a90= READ(5,400)BLAMDA
. 700=400 FORMAT(IF10.8)
,-'- 710= WRITE(4,1750)
3 720=1750 FORMAT(* *,20X,*BEAN WAIST IN aAn #)
o 730= READ(S,401 )Wt
o 7402401  FORMAT(IF10.4)
fe 7502730  uitiTele,371)
b 7802577 FOKMAT(# #%,20X,#INFUT Z-JiSTANCE FROM SOUSCE. I8 ASTEsEs.
i! b E READ{G.401) 21
o EEDE WRITE(,3171)
. 79055121 FORMAT(* #,20X,4[NPUT FOUAL LENGTH, RETERSH)
N 800= READ(S,401)F
o 810= F2F1%1900.0
b 32¢= 1=71%1000.90
' (O 830= WAITE(4,572)
- - S4G=572  FURMAT(# #,20X,#APERTURE TYPE: U=RECT, =L INCH)
o 850= KEAD(S,402) [TYFE
b 3402402  FORAAT(I2)
N 370=C
b . B IVEIN FE P EE X R EEF RIS EEL TN T FR RS EEFETHE S YRR I
5Y4=L
M!! 200=C WHEN THE APERTURE 5 RECTANGULAR, THE FOLLUWING IS
;- 2i9=C ENTERED:
- 920=C ARECT-WIDTH OF APERTURE IN THE X-DIRECTION
% 930=C YRECT~WIDTH OF APERTURE i THE Y-DirRECTION
- 940=C
f..‘ 950=C THE GEOMETRIC CENTER UOF THE APERTURE IS ALONG THE Z-
P 960=C AXIS, WITH X AND Y EQUAL T0 ZERO. TRUS, T-t EXIENT OF
- 976=¢ THE AFERTURE I5 -ARECT/Z TU =ARSDI/3 FULA X,
R ?30=C
;:f 970=C 32T Yy Y E R R E LR R Y P R R R R s R R IR 1L;
o 1900=C
2] e WHEN THE AFERTURE IS CIRCULAR, THE FOLLOWING
o 1020=C ENTERED:
Rﬁ 1030=C R-RADIUS OF THE APERTURE. THE PUINT WHERE THIS
b 1040=C IS CALCULATED IS AT X,Y = Q.
o 1050=C
b 156020 FRKEREAECRRRRER R R F R R R R R KR R R R Rk Kk R E
] 1670=¢
e
b 7 -,
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| SecS G R T S ARG
. ST e s

1950=t
1099=C
1199=
1110=2700
1120=C
1130=
1140=58¢0
1130=
1led=38:
1170=
R
1190=532
TAdys
1214=C
1220=
HEEL
1240=C
1d5us
L=
[ERNE

e =70
AR LR LY
1300=
13190=
132y=
1330=
1340=
1359=701
13860=C
1370=0C
1380=C
1390=C
14090=C
1410=
1420=400
1430=
1440=501
1450=
IECPE
197921101
14489=
14790=
1500=402
1510=
1520=
1530=1112
1540=
1530=C
1500=C
1570=C
1580=

Ue TERALINE GEURETRY OF [HE AFLRIURE

IFCITYPE-1)2700,700,700
CONTINUE

IF ITYFE=0, THEN RECTANGULAR
WRITE{6,350)

FURMAT s #,20K, #THE AFERTURE I3 ReiT, [ArUT A0 Did,:

WRifci(s,5817
FORAAT(# #, 30, vENTER WIDTH IN X Ad 1 #)

RZAD{3,401)XRELCT
WRiTZve,.a52)
FORMAT ok # 304, ¥ERTSH 10T I 7 aAn £
READieS, 497 73207
GETER™Isc XUMRIN AND TUMIN OF AfgHfuRE
9

TAMIN==-YRECT/ 2.9

TETERMINE X0raX AND 10MAZ 3F &rEATURE
XUAas=4RELCT/ 2.9

TOHAX=YRELT/2.0

Guil Fut

WRITE(S,370)

FORMAT # #, 20X, #AFERTURE RAJIUD, MM +)
READ(T, 401 )R

XONIN=-R

10N IH=-R

X0MAX=R

TOMAK=R

CUNTINUE

A

DETCRMINE THE EXTENT OF THE OBSERVATION PLAWNE
AT Z. THE GEOMETRILAL CENTeR OF THIS PLANE iS
LOCATED AT X1,Y1 = 0,

WRITE(4,400)

FORMAT (% *, 20X, #ENTER THE H1d 0OF 0323, FLARE.*®)
WRITE(S,501)

FORMAT(H #,30X, i [ER (HE X AINLIAUA IN Mt ¢ #)
REAliS, 40141814

WAITEi6,1110)

FORMAT(* * 30X, #ENTER TAE X mAadlaun VaLuc I8 M. #)
READIS, 4013 K1 HAR

WRITE(6,602)

FORMAT(# #,JOK,%ENTER THE Y AINIMUK IN oM .43
READ(S,401)v1MIN

WRITE(H,1112)

FORMNAT (% #,30X,#cNTER THE Y AAXLMUA YaLul Id an )
READ(S,401) f1MAX

PRINTOUT DATA INFUTS AND CALLULAILIGNG
WRITZ(6,503)
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Tep————

19Y0=603
1899=
HE SRR T
ialyu=
14302607
1644¢=
i550=004
136u=
t D =

PRSP
188ySoy s

1/40=
750=6190
17460=
1770=611
1780=
i790=
1390=a12
1810=
1820=
1830=2750

1939=C
1940=C
19250=C
1980=C
1970=C
1980=C
IRADED
Zdui=L

SUIDEN

WETED

p—— B - X Bl — — " Pl gl £

FURRAICF &, 10l v ol FlULudwaad ARD aFui ranAdc zazd)
AaniiZibs,ovdiuni inin
.;:i-\'_ T, fi‘qit‘iigFj.;.-T‘ ..“f-r:E;-..

FORAAGUE ®, UK. *AFS
!

FORART (¢ b 304, BANAXH T3, 0, + 7 0ds,r 3. )

AR ITE{&, AV ATRIN,G Y TA 1N

FORMAT (& %, 20X %088, PLANE=#, 388 0 - 72,2, f [iis .51,
WRITELS 00 ATHAX, (1AL

wrRlTcis,59 )

FURART i &, 30Xttt rrrrdorerrtetittirteitsttodtseti)
waiiizio,0ud)

Foamalo b £, 30X, FAFSAUL AT [ONS Td FRESNEL i farAied
AR=LI.3.74159) /BLANRDA

AFREXOMNAX e 2+ T0RAK+#2

IFR=AKFAFR/2

WwRITECS, 6101 2FR

FORMAT(* &, 20X #FAR-FLELDtZ o0, Flg.1, %80 *)
WRITE(5,611)2/1000.0

FORMAT(# *,20X,%YOUR RANGE=+,r10.1.+0ETERS *)
WRITE(&,807)

WRITE(S,012)

FORMAT(* +, 20X, #NEW VALUE OF i O-Wl.i-iz:-
READ(S,402) IncWl

IFCINEWI-1323700.794,739

COuTinue

RSSUME TAAT &S#07 aiiz AT AF

-4

QUALS BEAM WAIST

-0
L
a2
.

=2
m
m

W=kl
NUACRICAL INTEGRATION OF THE FURCTION F(X.1)
WHERE F{X,Y) IS EtAPRESStD AS

EXP(=J#PI(XX1+YY1)/BLANDARZ)

THE INTEGRATION FROCESS WiLL BE A5 FOLLOWS:
1. SET Y1 CONSTANT AT S08E IniTialL vALUE
2LUARY X1
3.5ET YO AT 3SOME INITIAL VALUE
4.[NTEGRATE QVER X0

Fimvidhnn
En3 REQUIRESG Fin o E87a7.Gn

RSV I UL SRR T

AT AN s

({oiRi- (Dl11"i:'i"‘:'-|4h.

A T I RTINS O
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rTeT Ty Yy L1
L aran are 20 e UL o aenk aamec e ) - P

EEE T B R S TR LR N
Tiv 1ATST NN
LAFLA0.0,0.00

1= VATEAPLROQ0.0,0.9)
AG=SXONIN

(O=YOIN+STERPYD

{ D0 120 Ivd=i,/Boy

30= IFdiiYPe JEQ. 1) GOTO ba4
! bOT0 667

3 2:00=664 X0AIN=-SORT(R*#2-70%%2)
= 2219= X0MAX=-X0nIN

& 2220= 10=X0M4IN

2230= STEFXU=2+4X04AX/BCD

1 b et e
<
1]

~Ct
n

- 2240= XRECT=24R

f‘ 2250=467  CONTINUE

& 2240= X0=XD+STEPX0

T 2270= SUM=CMPLX(0.0,0.0)
2280= SUMAZCAPLX(0.0,9.9)
2290= 00 130 IX0=2,4BCD
2300=C
2510=C IHTEGRATE UVER XG USING THE T3a4FE/010 wUAERICAL
2320=( INTEGRATION RULE.
2330=¢
2340z CALL FISLUCLOAT A0, TU. 4, 2.1 TFE)
2359= SALL KTZOARG,UOAT, X0, 70,1, 11 Ak, 2. BLARGA.F)
2340= FA=ARE

) 2370= SUM=SUR+F X

£330= CALL ABERRAC(ABERR,DSEED, ARECT, X0, 70, M, 2)
2390= FXA=FX*ABERR

24Gy= SURA=SUHA+F XA
T410=130 X0=X0+STEFX0

2439=C NOW DETERAINE THE AREA UNDER THE CURVE Id X Af
244¢=C SUfe VALUE OF 1.

[~ 2440=( DETERMINE F(X) INITIAL Ano F(X) N+1

¢ 2480+ CALL XYZ(ARG,UBXY ,XONIN, 10, X1,Y1,AK, 2. Buitca.s )
&~ 2490= FXI=ARG

2500= CALL RTZ{ARG . uUAT JXTRARL T, AT 1T AR D shfmlin. 7
S i5i9= S ARAEARYS
- L539= CALL ABERRAC(ADERR DAl AKIT T 40mia. 10,4, 2.
. li3u= FUAL=F X IFADLRR
y‘ REELE DALl ARERARLUABENR  ISESD AR T ot e Do
. $530= FAAAALIFARAL rAFERT
b BT DETN
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UETERMINE AREA OF F(X)} AT NEXT 70

X0=X0n 1N
YO=10+STEFYO

THE DOUBLE INTEGRAL AT 50k WWaidg OF 47 Al

INTEGRATED QVER ED. Trc VAL
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J
GF IRRADIANCE AT X7 Afd 17 will WUw e 4o 7%

WHERE IAARADIANCCZ=U0N0s
CA=CaNIH V)
CRA=CONGE A
CRi=Cdey
DT AASLAREYA
ALl (aLAanDaAxl) el
FXCIT,IAT)SREALCCRR)/ALE
FXACIYY, LX) =REAL(CPXA)/ALL

= 0. Ly

“ LR

AEXT ValdE GF Xi

K1=X1+37EF X0

Vuiiude

AOW DETERMINE THE FEAR VALUE OF IRRAGIANCE G

AXIS. THIS VaLiue WILL BE usel TU #ORfALICE
IReAdlanCE DISTRIBUTIUN.

X1=20.9
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L 318u= AUsAUALH
e 3130= SPA=CAPLX(0.0,0.0)
" 314¢= A0=x(+37EPAY
. 3i50= 00 150 iFA=2,NELH
o 3149= CALL FIZoliLOXY, X0, Y0,u,F IiVFE)
N 370s CALL XTZUARG,UDXY,X0,16,0.0,0.0,AK,F,BLania, )
o 313¢= FXF=ARG
e 3194= SPX=SPX+FXP
i 32005150 XG=XU+STErX0
- 1210= CALL AYZ(ARG,UOKY,XOMIN,Y0,0.0,0.0,.AK,F.BLANDA,F]
i 3220= FHA=ARG
o 3230= CALL XYZ(ARG,UOXY,X0MAX.Y0,0.9,0.90,AK,F,BLARDA,F)
o 3249= FMI=ARG
- 3250= AT=PMA+2ESPX+PHI
3260= A=STEPXO0#A1/2
3270= UPD=STEPYD#A
3280= UP=UP+VPO
3290=140  YO=YO+STEPYD
3300= C=CONJG (VP)
331¢= C2=Csvp
3320= PEAK=REAL{CZ)/ALZ
3336=C
3346=C NORMALIZE IRRADIANCE DISTRIBUTION WITH RESPECT T0
3350=C FEAK INTENSITY OF WIFFRACTION-LIMITED CASE, EVAL-
3340=C UATED AT X120 AND Y1=0.
3379=C
3380= JY=1
3390= D0 170 JX=1,NNN
3400= PLOGCJY,JdX)=PX{JY,JX) /PEAK
34190= PLOGACJIY, X)=PXA(JY,JX)/PEAK
3420=170  CONTINUE
3430=C
3440=C REPLACE X1 AND Y1 INTO ARRAYS AX1 AND AY1
3450=C
3460= AXT(1)=XTMIN
3470 AV1(1)=0.0
3480= DO 181 K=2,NNN
3490= AX1(K)=AXT1(K=1)+58TEPX1
3500=181  CONTINUE
3510=C
3520=C PRINT EVERY NTH DATA POINT IN ARRAY
3530=C
3549= I=t
3550= URITE(4,531)0AY1¢1)
35602531  FORMAT(#0#,20X,%1 [5:%,7F7.2)
3570= 03 491 #=1, NN
3560= DFF (Y =PLUB L, M) -FLOBATT )
39%8=071 WRITE(6,3iRXI (i) PLOG{I, M), FLOGACL 02, o7
3690=5 rumtm'ux‘n 2,37 14,4
isigs WRITE(5,933)
36202933 FURAATL: #, 20X, #FAUGRAR DumdLETEY)
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3730=
399¢=
4000=
4010sC
4020=C
1030=C
4040=C
4050=
4060=
4070=
40802
40902
4100=
4110=
4120=
4130=

........
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SUBROUTINE, TO EVALUATE F(X) UF INTEGRAL

SUBACUTINE AVZCARG,UDAY K, 10,X1,11,AR, 2, BLARDA,F)
COMPLEX ARG

CUAPLEX EA,EB

COAPLEX EA1,EBT

CONPLEX EFCS,EAFCS

EXP{J AR/24Z(X#%2+Y#:%2)

ADDA=XJ*+2
ADDB=Y0*42
ADD=ADDA+ADDB
PRODA=AK=*ADD
FPROD=PRODA/ (24Z)
EAT=LNPLX(0.0,PROD)
EA=CEXP(EAT)

LENS PHASE TRANSFORNATION FUNCTION

PRFCS=PRODA/ (24F)
EFCS5=CHPLX(0.0,~PRFCS)
EAFCS=CEXP(EFCS)

EXP(=J+2PL/BLANDA*Z(XOX1+Y0Y 1)

ADD1=(X04X1)+( Y087 1)
PRAD=-243.14159%ADD1
PRODI=PRAD/ ( BLAMDA#Z)
EHi=CHPLX(0.0,PROD1)
E3=CEXP(EBT)
ARG=UOXY#EA+EB#EAFCS
RETURN

END

LR R EZ RE L2 LR RS EA RS R RS RS L EEE SRS RS LR LRI EE L 20

SUBROUTINE TO GENERATE ABERRATION

SUBROUTINE ABERRAC(ABERR,DSEED,XRECT,X0,Y0,4,2)
DBOUBLE PRECISION DSEED

BINENSION RNDN(50)

COAPLEX ABERR, ANUM,ANUN3

DSEED=123457.D0

NR=20

ABSUN=0.,

D0 3313 KAN=1,20
ANUNA=CFLUAT (KN J#2,%3.,141554X0)/ XAEST
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Zi i 4140= ARUATSUUS (ARLRA
=, - 41350= CALL GGUBT(DSZED,#R,RNU#)
! 4i40= ARUAZ=RNDARAN) /5. % Andin
! $179= AB3UA=ABSUd + ANln2
m 4750=3313 CONTINUE
ﬁ 4190= ANURI=CAPLX (0.0, AB5UN;
o 3290s= ANUNZCEXP iANUAT)
- a2i0= ABERR=ANLA
' 42239= RETURN
. §230= Edi
N $240=C
e F23¢=¢ R R e R R R R E P R R S R R
o 3280 SUSROUTINE TO GENCRATE FiELD
o 32708
= 274
i d:90= SUBRUUTINE FielndulXY,X0,Y0,u,L,i7TFE)
ot §29¢0= iF(LITYPELER.1)B0TO 800
- 4300= RECT=1.0
. $3igs CALL FINC(CINC,XD,Y0,4)
oy 4320= UOXY=RECT#CINC
P 4330= 6070 837
i 4340=B00  CiRC=i.0
4350= CALL FINC(CING,X0,Y0,u)
4360= BOXY=CIRC+CINC
4370=837 CONTINUE
4380= RETURN
4390= - END
4400=C
4410=C ERRRERERRBRRRBEIEBRARREE R RN KRR FERRF R ERFERFERRR R EE
4420=C SUBROUTINE FOR A GAUSSIAN INCIDENT FIELD
4430=C
4440= SUBROUTINE FINC(CINC,X0,Y8,u)
44590= TOP=X0#*2+Y0+*2
4440= TOP1=TOP/ (W*%2)
447Q= CINC=EXP(-TOr1)
4489Q= RETURN
1490= END
4500=*£0R
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b A e A A A i EEERIEARAR AL R AL
»:‘::}‘
[N
LR
A
N e
Mo
N
.
NS APERTURE=~XMIN -.SZYMIN -.53
o XMAX . 5BYMAX .58
N 08S. PLANE-XMIN: -6.Z8YMIN:  ~6.99
e XMAX 6 . GFYMAX 6.99
by PEPPPPP PSP PPt PP 4P+ b4+t P e e b et
- APPROXIMATIONS TO FRESNEL INTEGRAL
FAR-FIELD:Z>> 248.2MM
N YOUR RANGE= +2METERS
‘-7\ (LIS L2 AT SRS 2SR A2 TSRS S RS X T X T T 3
i NEW VALUE OF 2Z: G-NO,1-YES
e Y IS: #.97
b -6.98 231556 381798 -.088239
2 -5.76 .093232 AF1119 892113
- -5.52 883279 901285 F91794
‘ -5.28 071119 . +AF2626 ~.991587
3 -5.94 .209815 B87245 -.997198
T -4.88 3828490 815718 -.#13715
. -4.56 935568 824656 -.519988
X -4.32 .096568 .B28166 -.821597
X -4.98 883397 923789 -.820384
Y -3.84 098197 915782 -.#15675
0y -3.68 LF2399 .B11172 -.098773
. -3.36 289954 .911823 -.991869
- . =3.12 914852 .J12416 902436
BN -2.64 991549 995237 -. 903697
- -2.48 IB2715 815961 -.813246
Se -2.16 821816 . .044378 -.§23361
™ -1.92 <B42245 872284 -. 939935
o L -1.68 948975 B79534 -.§29559
q:5 -1.44 813482 .932649 -.B19167
i -1.29 392919 899338 .882521
-.96 482543 847834 334739
-.72 .297832 .223448 .873585
-.48 .686388 494648 111749
N -.24 .886628 .746648 .139988
353 59 1.0890089 .849569 . 158431
X .24 .886628 +746648 .139989
.48 686388 .494648 111748
. .72 .297832 .223448 .873585
! .96 . 382543 _ 047884 934739
X 1.28 .892919 89398 .982521
4 1.44 813482 832649 -.919167
N 1.68 849975 79534 -.§29559
~? 1.92 842245 872288 -.838835
- 2.16 821916 .544378 -.823361
> 2.49 982718 15961 -.813246
- 2.64 I01548 .985237 -.893697
e 2.88 918396 .898369 882827
b . 3.12 914852 B12416 882436 ‘
A 3.36 F9954 .J11823 -.001869 |
R 3.68 852399 J11172 -.998773 |
o 3.84 89187 815782 -.915675
- 4.98 993397 523788 -.928384
. 4.32 .A86568 528166 -.821597 i
[ 4.86 995568 .J24656 -.419988
g 4.8 002088 8157156 -.4137:5
% 5.04 IBFE1S 88728% -.807198
- 5.28 81119 882626 - 891587
i) §.82 983979 881288 81794
fo v
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i‘ R Appendix B
i Least Squares Method of Curve Fitting
=
> 100= PROGRAN CRVFITCINPUT,OUTPUT, TAPEI=INFUT, (APES=QUTPUT, TAFES, TAPES)
i 110= DIMENSIGN A(S5),B(55),C(55),X(55),Y4(55,
A 120=C PROGRAN FOR LEAST SUUARES FIT FOR SigmA AND F
xn 130=C INITIALIZE VARIABLES
T 1490= CaiLi PLGTS
< 159= Ao POFF
o Tab= N=51
o i7¢= HNN=31
139= EPS=0.001
v 199= PI=3.14159
zl 200= §ibhA=1,
Py 21 9= STEPSIG=1.
s 220=C READ iN PLOG, PLOGA, AND A. WHERE:
o 230=C X - VALUES CORRESPONDING TU OBSERVATION FLARE
. 2490=C PLOG -IDEAL CASE IRRADIANCE A
e 250=C PLOGA -ABERRATED CASE B
o 260= B0 10 I=1,N
- 270= READ(8,*)X(1),A(D),B(1),C(1)
v 280=10  CONTINUE
3 . 290=C .
qtj 300=C CALCULATE FIRST VALUE OF FUNCTION G(SIGHA)
e, 310=sC
o 320= CALL GOSIG(G,A,B,X,SIGHA,N,F)
) 330= GFIRST=6
. 340=12  SIGMA=SIGMA + STEPSIG
K 350=C
360=C CALCULATE G(SIGMA? AT SIGHA + STEPSIGHA
370=C
g; 3g0= CALL GOSIG(G,A,B,X,SIGHA,N.F)
oy 370= GPRIME=6
e, 400= IF(GPRINE#GFIRST)20,30,40
» 410=40  GFIRST=GPRIME
- 420= 6OTO 12
™ 430=20 IF(EPS .GE. STEPSIG) 6OTO 30
iy 440= SIGMA=SIGNA ~ STEPSIG
2 450= STEPSIG=STEPSIG/10.
7 450= 6070 12

470=30 CONTINUE

e 480= WRITE(6,101)S16KA+¥2,F

N 4902101  FORMAT(20X, *VARIANCE IS:#,F12.5,10X,4F IS:#,F12.5)

- 500=C

% 510=C PRINT OUT FITTED VALUES TO COMPARE WITH ANALYTICAL RESULTS

% 520= D0 17 M=1,N

> 530= YIUM)=F#ACH) + (1o =F)#EXP (=0, S#CAC1) /SIGHA) £42) /SUR 11 2+ [ x§IGARM D)
“ 540=17  CONTINUE

LY 530=C FLGT OF DATA FOIATS IN THE n# PLOVTER

A
o
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Zy - $70= CALL Fun

o 580 CALL FLOT(Z,,2.,-3)

| 599= CALL SUALE(K 70 NN, 1)

n 60G= CALL STALZ(H, 3., NN 1)

A 8i0= CALL SUALE(Td 4. 886, 1)

2 61i= IFUSONNNSZ) JBT. 6.23) BOTO 999
o §id= BGTY 978

;

313=99% BinnnN+2)=0.25
814=9%3  LONTINUE

so0= YJONNN+T )=B (NNNTT )
5 ERT TICNNN+2 =8 (nNNTE)
= §40= CRLL AXIS{0., 0., 17mi=RAIS (AR, =11,7..0. X(T2) X055}
Eﬁ 630= CALL ALiS(0.,0.,1OHIRRADIANCE,10,4,,%0.,B(52).8(33)
- o= LALL NEWPEN(Y)
' a70= CatL LINE(X,B.NNN,1,3,4)
=~ 860= CALL SYMBOL(6.,71.2,0.1,11H+-ABERRATED,0.,11)
I 6902 CALL NEUPEN(2)
o 700= CALL LINE(X,.YJ,0NN,1,3.3)
ﬁ{ 210= CALL SYMBOL(4.,1.0,0.1,8H+~-FITTED,0,,8)
- 720= CALL NEUPEN(4)
730= CALL SYWBOL(1.5,4.5,0.2,17HLEAST SQUARES FiT,0.,17)
p 740= CALL PLOT(-0.5,-0.5,-3)
- 750= CALL PLOT(0.,5.5,2)
-3 760= CALL PLOT(8.,5.5,2)
o _ 770= CALL PLOT(8.,0.,2)
" (!D 780= CALL PLOT(0.,0.,2)
790= CALL SYMBOL(S.y4.,0.01,11AAECTANGULAR,Q.,11) .
809= CALL SYABOL(3.,3.8,0.11,13HLANBOA=6.328 UMK,0.,15)
810= CALL SYMBOL(S5.,3.6,0.11,13HDIN X= 1,0 #M,0.,13)
820= CALL PLOT(4.9,4.3,-3)
B3¢= CALL PLOT(0.,-1.0,2)
840= CALL PLOT(2.,~1.,2)
830= CALL PLOT(2.,0.,2)
B840= CALL PLOT(0.,0.,2)
870= CALL PLOTE(N)
880= STOP
890= END
900=C BEEBEBBEBRRERERERKF RS R AR BEBEREREKE KR RERERRE R bR R RR RN R TR KR
910=C * *
920=C * SUBROUTINE TO DETERNINE G(SIbLMA)
930=C * *
940=C BEREFREBRERRRFFXERFFREERERFEFFRL R R R bR f i s Rp e d e gy
Fo0= SUBROUTINE GuSIa(8.,A,8,X,5i6Ma.0.71
980= GIMENSION ri35),Bi53),K155:
970= 620,
780= Fi=3.14139
95¢=. CALL FO3I5IF,A03,X,516M6.N)
TCG0s= N S
R RE GAS(=B(J) *ATJI P 14 (1 (=R JFEAF (=030 (3000 31aAA £22)
1020= GAAZDA/{SOR Ll er L rin [GNA*XD)
o
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10a0=
104¢=
1030=
1040=
1070=2
1080=
1090=
1190=C
1110=C
1120=C
1130=C
1140=C
1130=
1140=
1170=
1180=
1199=
1200=
1210=
1220=
1230=
1240=
1250=
1240=
1270=
1286=1
1296G=
1300=
13ids=

1311=#edr

Gazito=rinadondF (=L X{Ji/5iDMAVE* )/ (2, $P a5 liassd i
G5UM=GRA + GB

GO=G5Un*((X(J)/SIGNA)*%2~1.)

=6 + GG

CONTINUE

RETURN

END

EEERRES BRI RFEERESIERABERERERRRRB SIS BRRS SRR B R REREERARS

* *
SUBROUTINE 70 DETERMINE F{SIGiHA) ¥

* %

I I

SUBROUTINE FOSIG(F,A,8,X,5i0MA,N)

DIRENSION A(33),B(33),.X(53)

FN=0,

Fb=0.

PI=3.14139

FAT=1,/50RT(2+%PI+SI0MA+%2)

bG t I=1,N

FAZACT ) *B(T)={(ACTI+BCI ) I EXF(=0. 3% (X{ L) /SIGMA) #42) ) *F Al
FNUM=FA+(EXP(-(X{1)/SIGNA)**2) )/ (2*FPI+SiGMA++2)
FN=FN + FNUM

FOA=AC(I)##2-(2%A( 1) +EXF (-0, 38 (A1) /SI6MA R4 ) s #F A
N=F UA+\:AP«~&A\1:;bquH'i& PISA2RF a3 IoNRE D

By 2 "1 Oy "h ™
2 " C) [ <}

94

2 ) ¥ RPN NS P L} . 2, lalm em e AT A ala e e




)

- P B SR AR
ol - Coiltet
oy ATe e ey
A’y S TR L AP )

AN

O T
A

¢ e .
PR RN T Y

03
"
L} -

“ae's

2202,

iy T,

LA

BVt
P bt &

LR ""u-

........

Appendix C

c(1)
c(2)
C(3)
c(4)
c(5)
c(6)
c(7)
c(s)
c(9)

c(10)

c(11)
c(12)
c(13)
c(14)
c(15)

c(16)
c17)
c(18)
c(19)
c(20)

Values of Randomly Generated Coefficients

0.248
0.880
0.914
0.035
0.387
0.976
0.611
0.112
0.105
0.553
0.213
0.843
0.314
0.453
0.603
0.955
0.578
0.159
0.030
0.514
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Current methods of characterizing the quality of laser beams were found
to be generally insufficient. Since lasers are gafning more use 1n many ap-
plicattons, an improved set of quality criterfa must now be developed. This
thesis report investfgated charactertstics of random phase aberrations and
1ts effects on the far-field irradiance distribution of lasers. A numerical
model was develop: . tn sir .te nondiffraction-l1imited beams. Several simu-
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lations were done to study the irradiance profiles for varying degrees
of aberrations. It was found that phase aberrated beams can be ex-
pressed as the sum of two beams: one is the diffraction-1imited beam

] + attenvated by a factor F which 1s a functfon of the phase distortion, .
. and the second, a much wider beam whose amplftude and lateral extent

is a function of the varfance and the form of the phase aberration.

By assuming the shape of this ‘secondary' beam to be Gaussian, 1ts
extent can be measured by calculating the vartance of the Gaussian
distribution. A numerical code was devised to determine the two para-

meters by a least squares fitting method, in addition, a list of pro-
cedures is included to measure these parameters, experimentally. The
report proposes using the attenuation factor and the lateral extent
?f thebbeam as figures of merit when characterizing the quality of
aser beams.
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