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Summary. Let X be a positive random variable and assume that both
1

TERRS R

a=E"' and p = EX are finite. Define c? = l-(ap) l. This
quantity serves as a measure of variability for X which is reflected

in the behavior of completely monotone functions of X. For g

YTy

completely monotone with g(0) < «:

QD

0 < Eg(X)~g(EX) < c2g(0)

EaA

Var g(X) < ¢%g%(0)
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1l. Introduction. Given a random variable X and a function g,
crude approximations to the mean and variance of g(X) are obtainable

by Taylor series arguments. The variance of X, 02, is a key quantity

AR LA

under this approach, both in approximating the bias (Eg(X)-g(EX)) and

ﬁg the variance (Var(g(X))). For X positive and g rapidly decreasing,
:j the bias and variance of g(X) should be relatively insensitive to the
é tail behavior of X, and 02 should therefore not play an important

ff role. In practice, when 02 is very large the approximations for

§f rapidly decreasing functions are often very poor.

We take the point of view that 02 is not measuring that aspect of

variability which is relevant to the behavior of rapidly decreasing

WP

functions of X. For this purpose an often more informative measure

of variability is:

-1
1.1) e? = 1-(mxexly” .

2 W LANI IS S0d

For X positive and g completely monotone we derive:

N 1.2) 0 < [Eg(X)-g(EX)1/§(0) < c?

?} (1.3) Var(g(X)/g(0)] < 2 .

% Thus 1if E!.l is close to (zx)'l (as measured by cz) then for

X

‘% g§ completely monotone, g(X)/g(0) 1is close to a one point distribution
at g(EX)/g(0).
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The quantity c2 has an additional interpretation. For a positive
random variable X with distribution F, consider a stationary renewal

process on the whole real line, with interarrival time distribution F.

SRR,

Define T to be the length of the interval which covers {0}, and

V= T-l. Then:

o

T

-1 -1
(1.4) o.é - EXEX 2"1 = nﬁx c2

_ (EX)
$
1 (1.5) o2/t - c? .
§
% Moreover, defining h(x) = (EX)xg(xl), it follows that g(EX) = h(EV)
§ and:
4 (1.6) Eg(X) = En(V) .
x
;
?

Use of (1.6) and a Taylor series argument yields:
¥
:
» 2
3 (1.7) 0 < Eg(X)-g(E) < & EX Lsup(x’g"(x)) .
% Expressions (1.2) and (1.7) are competing inequalities. For X fixed
? with zx'l < ®, (1.2) will be better for some choices of g, and (1.7)

for others.
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2. Definitions and preliminary results. A function g on [0,®) is
defined to be completely monotone if it possesses derivitives of all
orders and (-l)ng(n) (A) >0 for all A > 0. In the above g(o) =g,

Some examples are (x+a)"® with a >0, k>0, e X with a >0, and

-X
‘_k(l-o ) with A > 0, Lemma (2.1) below is due to Bernstein. An

interesting discussion and proof of Bernstein's theorem is given in Feller

[2] p. 439.

Lemma 2.1. A function g om [0,%) is completely monotone with

g8(0) = m < » if and only if it i{s of the form

(2.2) g(x) = r c-hdn(x)
0

vhere H is a positive measure on [0,%) with H([0,®)) = m.

Consider a probability distribution F on [0,»). Its Laplace

transform:

2.3) L) = r e *%4F(x)
0

is the survival function of a mixture of exponential distributions, i.e.
if zlx-x is exponential with parameter x, then Pr(Z >a|x-x) - e
and Pr(Z > a) = £(a). With this observation, Lemma 2.2 below follows

from Brown [1], theorem 4.1 part (xii).

A SRR S Py Wy Wy By P et

\\ \- \v..n \- 1\~‘\M\f_" « e,




 op

T
AR -

ey
I"A .

s

2%

52,

apF SR K
Ol nn

383 P WS

sy

i 2 P B

y

% WE

- d eV, Wy Vg WA W, W W Ta™ w e S e &
o R A £ Ty WA A TR A Ny R A RN R YRS IS A R M AR A e . e A T T T P

Lemma 2.2. Let I be the Laplace transform of a probability distribution

on [0,%) with a = f';.'t.(a)da <o and y = -4'(0) < ®, Then:

(2.4) 0<d(a)-e™ < 1-@aw™! for all a >0.

3. Derivation of inequalities. Consider a positive random variable X

with a = zx’l assumed finite, as well as U = EX. Define c2 = 1-(au)-1.

Note that 0 < cz <1 with equality if and only if X is a constant.

Theorem 3.1. Let g be a completely monotone function on [0,®) with

$(0) < = Then:

(3.2) 0 < Eg(X)-g(W) < c?g(0)

(3.3) var(g(X)) < cg%(0) .
Proof. By Lemma 2.2,

(3.6) 0<L(@)-e™ <c? forall a>0.

Since g 1s completely monotone, by Lemma 2.1 there exists a measure

'H on [0,®) with H[0,») = g(0) and:

(3.5) g(x) -J.‘“"dn(a) .
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Now:
(3.6) Eg(X) = ” e “*dH(a)dF(x) = Jt(a)da(a) r
(3.7) g(n) -Je‘““dn(a) .

Since g 1is convex, Eg(X) > g(u). Thus from (3.4) and (3.6):

(3.8) 0 < Bg(X)-g(u) = r (L (@)-e"™)dB(@) < czg(o) .
0

Since g 1is completely monotone so is 32 (Feller [2], p. 441).

Applying (3.8) to 32 we obtain:

(3.9) 0 < eg?(@-g2(w) < c%g%(0) .

From (3.8) and (3.9), Var(s(X)) = EgZ(X)-(Eg(X))2 5(32(u)+c232(0))-sz(u) -
czgz(O). This concludes the proof.
Given X > 0 with distribution F, consider a stationary renewal
process on the whole real line with interarrival time distribution F.
Define T to be the length of the interval containing O . It follows
from Feller [2] p. 371 that:

(3.10) d!.r(x) sxdF(x)/y .
-1 -1 -2 -1 -1
From (3.10) we see that ET ~ =y and ET * = ay vhere a = EX .
Defining V = 11 it follows that 0‘2, - (ap-1)p"2 = czau-l, vhile
7
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aé/xa:v2 = c2. Also from (3.10) we see that Eg(X) = E(uVg(V 1)) = Eh(V)

where h(x) = uxg(x 1). Note that H(EV) = h(u™l) = g(EX). Finally
since:

2
(3.11) B(V) = h(EV) + (V-EV)h'(EV) + 1"—"2‘1)— W (V')

*
with V between EV and V, it follows that:

°2

2 -1
(3.12) Eg(XD) < B(EV) + 7 sup(h"(x)) = g(w) + &2~ sup(n"(x)) .

But h"(x) = ux-3g"(x.1), and thus sup h'"(x) = sup(x3g"(x)). Thus
from (3.12)

2
(3.13) 0 < Eg(D)-g(w) < 5 a sup(x’g"(x)) .
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