April 1983

Integrated Component Fluidic Servovalves and Position Control Systems

by D. N. Wormley and K-M. Lee

Prepared by
Massachusetts Institute of Technology
Department of Mechanical Engineering
Cambridge, MA 02139

Under contract
DAAK21-79-C-0158

U.S. Army Electronics Research and Development Command
Harry Diamond Laboratories
Adelphi, MD 20783

Approved for public release; distribution unlimited.
Title: Integrated Component Fluidic Servovalves and Position Control Systems

Authors: D. N. Wormley, K-M Lee
(HDL Contact: James Joyce)

Performing Organization: Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA 02139

Contractor Report

Period Covered: 1979-1982

security Classification: UNCLASSIFIED

Report Date: April 1983

Pages: 84

Abstract:

The operating characteristics of fluidic laminar proportional amplifiers (LPA's) operating on hydraulic oil have been determined as a function of pressure and temperature. The useful operating range of these elements has been defined for application in multistage gain blocks and summing amplifiers.

An operational servovalve constructed from LPA's has been developed and coupled with a fluidic position feedback transducer, summing amplifier and ram to construct a closed loop posi-
portion control system. Static and dynamic experimental evaluation of the servosystem has shown that its performance is comparable to that of a servo employing electrohydraulic components.

This development effort has demonstrated the capability to develop high performance, closed loop servo components from standard, integrated component fluidic elements.
CONTENTS

1. **INTRODUCTION** ... 7

2. **FLUIDIC INTEGRATED COMPONENTS** 11
 2.1 Laminar Proportional Amplifier 11
 2.2 Fluidic Channel Resistance 19

3. **FLUIDIC GAIN BLOCK AND SERVOVALVE** 21
 3.1 Gain Block Configuration and Characteristics 21
 3.2 Fluidic Servovalve Configuration and Characteristics 27
 3.3 Temperature Effects and Compensation 33
 3.4 Dynamic Response ... 39

4. **FLUIDIC POSITION SERVO** .. 47
 4.1 Fluidic Summer .. 47
 4.2 Mechanical-Fluidic Displacement Transducer 47
 4.3 Fluidic Servovalve .. 51
 4.4 Closed-Loop Fluidic Position Servo 52
 4.5 Implementation .. 53

5. **SUMMARY AND CONCLUSIONS** 57

NOMENCLATURE .. 73

DISTRIBUTION .. 77
<table>
<thead>
<tr>
<th>FIGURES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Closed loop position servo and servovalve output characteristics</td>
<td>8</td>
</tr>
<tr>
<td>2. Kinematic viscosity as a function of temperature</td>
<td>10</td>
</tr>
<tr>
<td>3. Primary fluidic C format integrated components</td>
<td>12</td>
</tr>
<tr>
<td>4. Silhouette for $b_8 = 0.5$mm LPA in C format</td>
<td>13</td>
</tr>
<tr>
<td>5. Comparison of theory and data of blocked load gain</td>
<td>15</td>
</tr>
<tr>
<td>6. Experimental data illustrating the operating range of LPA</td>
<td>18</td>
</tr>
<tr>
<td>7. Comparison of analytical and experimental nozzle resistance</td>
<td>22</td>
</tr>
<tr>
<td>8. Gain block schematics</td>
<td>24</td>
</tr>
<tr>
<td>9. Gain block construction schematics</td>
<td>28</td>
</tr>
<tr>
<td>10. Experimental gain block output characteristics</td>
<td>29</td>
</tr>
<tr>
<td>11. Comparison of computer-aid design prediction and experimental</td>
<td>30</td>
</tr>
<tr>
<td>gain block output characteristics</td>
<td></td>
</tr>
<tr>
<td>12. Servovalve schematic</td>
<td>32</td>
</tr>
<tr>
<td>13. Effect of valve parameter α (on valve characteristics)</td>
<td>34</td>
</tr>
<tr>
<td>14. Servovalve construction schematics</td>
<td>35</td>
</tr>
<tr>
<td>15. Experimental data of servovalve output characteristics</td>
<td>36</td>
</tr>
<tr>
<td>16. Comparison of experimental and analytical servovalve output</td>
<td>37</td>
</tr>
<tr>
<td>characteristics</td>
<td></td>
</tr>
<tr>
<td>17. Gain block compensated and uncompensated blocked-load pressure</td>
<td>40</td>
</tr>
<tr>
<td>gain</td>
<td></td>
</tr>
<tr>
<td>18. Fluidic servovalve compensated and uncompengated blocked-load</td>
<td>41</td>
</tr>
<tr>
<td>pressure gain</td>
<td></td>
</tr>
<tr>
<td>19. Gain block and servovalve blocked-load pressure gain frequency</td>
<td>43</td>
</tr>
<tr>
<td>response</td>
<td></td>
</tr>
<tr>
<td>20. Gain block and servovalve no-load flow gain frequency response</td>
<td>44</td>
</tr>
<tr>
<td>21. Comparison of blocked-load frequency response between integrated</td>
<td>45</td>
</tr>
<tr>
<td>component servovalve and breadboard configuration servovalve</td>
<td></td>
</tr>
<tr>
<td>22. Comparison of no-load frequency response of integrated component</td>
<td>46</td>
</tr>
<tr>
<td>servovalve, breadboard configuration and electrohydraulic servovalve</td>
<td></td>
</tr>
<tr>
<td>23. Fluidic position servo block diagram</td>
<td>48</td>
</tr>
<tr>
<td>24. Mechanical-fluidic displacement transducer schematic</td>
<td>49</td>
</tr>
<tr>
<td>25. Root locus analysis of fluidic position servo</td>
<td>54</td>
</tr>
<tr>
<td>26. ξ and ω_n of fluidic position servo</td>
<td>55</td>
</tr>
<tr>
<td>27. Fluidic position servo construction schematic</td>
<td>56</td>
</tr>
<tr>
<td>28. Fluidic summer schematic and static characteristics</td>
<td>60</td>
</tr>
</tbody>
</table>
29. Fluidic summer blocked-load frequency response .. 61
30. Displacement transducer blocked load static characteristics 62
31. Displacement transducer blocked-load frequency response 63
32. Fluidic servovalve no-load static characteristics 64
33. Fluidic servovalve no-load frequency response .. 65
34. Comparison of step response between fluidic and commercial position servo ... 66
35. Comparison of experimental and analytical step response of fluidic position servo .. 67
A-1 Servo components descriptions .. 72

TABLES
1. Hydraulic Oil Univis J-43 specification .. 11
2. Characteristic dimensions of LPA's ... 16
3. Gain block configuration and incremental parameters 28
4. Fluidic position servo component configuration ... 58
5. Values of parameters of fluidic position servo .. 59
A-1 Gain block stacking order and descriptions ... 69
A-2 Servovalve stacking order and descriptions .. 71
1. INTRODUCTION

Hydraulic control systems are widely used in applications where high force levels, fast response and high power to weight ratios are required. Aerodynamic control surface actuators, machine tool actuators, mobile equipment control systems and marine control systems frequently employ closed loop hydraulic control systems. Important performance criteria for these systems include maximum force and velocity capabilities, accuracy, repeatability, reliability, maintainability and cost.

The primary power modulation elements in high performance hydraulic systems are servovalves. In position and velocity control systems servovalves are utilized extensively as indicated in figure 1. Also shown in the figure are typical pressure-flow output characteristics of commercial sliding spool servovalves. Servovalves with linear flow gains and high pressure gains are desired to achieve accuracy and overcome actuator and load stiction.

Electrohydraulic servovalves consisting typically of a torque motor, a first stage flapper nozzle or jet-pipe valve and a final stage sliding spool valve are the dominant type of valves employed in high performance hydraulic systems. In these valves the electromechanical interface and the sliding mechanical elements contribute to valve cost, sensitivity to contamination and sensitivity to failure due to radiation.

The high reliability, insensitivity to extreme environments and low cost associated with no moving part fluidic elements and the potential for weight and size reduction in comparison to conventional valves are attractive features for servovalves. In addition, the implementation of a closed loop control system employing only fluid and mechanical elements offers potential for reduction of sensitivity to radiation and increased reliability with the elimination of electro-mechanical interfaces. In systems where these attributes are important and where the quiescent power drain associated with open-center fluid valves can be accommodated, fluidic servovalves and pure fluid-mechanical control systems have high application potential.

The application potential of pure fluid servovalves and control systems

1. R. Deadwyler, Two Stage Servovalve Development Using a First-Stage Fluidic Amplifier, Harry Diamond Laboratories, HDL-TM-80-21 (July 1980).
Figure 1. Closed loop position servo and servovalve output characteristics.
motivated a study\(^2\) in which a pure fluid servovalve was constructed using laminar proportional amplifiers (LPA's) in a breadboard configuration. In the present study, development of pure fluid servovalves and servosystems has continued. Servovalves constructed from standard C format laminates\(^3\) and interconnecting elements have been developed to reduce packaging volume and weight, provide a basis for standardization and to improve valve dynamic response. The static and dynamic characteristics of the C format LPA elements individually and integrated into the servovalve have been measured including performance sensitivity to temperature. Finally the servovalve has been employed in a closed loop position control system which includes an actuator and fluidic position transducer for evaluation.

Two aspects of the influence of temperature are particularly addressed in this study, namely, the static characteristic performance and the laminar operating range of the LPA as a function of supply conditions.

In all tests described in this report, hydraulic oil Univis J-43 has been used. The properties and specifications of the fluid are summarized in table 1 and the kinematic viscosity as a function of temperature is shown in figure 2 in the range from 20°F to 140°F. Univis J-43 changes in viscosity over this typical temperature range. An exponential curve fit of the form:

\[
\nu = \nu_0 e^{-\lambda(T-T_0)}
\]

where

\[
\begin{align*}
\nu &= \text{kinematic viscosity at temperature } T, \\
\nu_0 &= \text{kinematic viscosity at reference temperature, } T_0, \\
\lambda &= \text{viscosity - temperature coefficient,}
\end{align*}
\]

may be used to approximate the kinematic viscosity of the hydraulic oil Univis J-43 as a function of temperature with

\[
\lambda = 0.02862 \text{ 1/°C [0.0159 1/°F]}
\]

and

\[
\nu_0 = 21.78 \text{ cSt. evaluated at 25°C [77°F]}
\]

The exponential curve of equation (1) is a good approximation to the fluid viscosity as shown in figure 2.

kinematic viscosity ν, centistoke (cSt)

- Actual
- $\nu = \nu_0 e^{-\lambda (T - T_0)}$

where $T_0 = 25^\circ C \ [77^\circ F]$
$\nu_0 = 21.78 \text{ cSt.}$
$\lambda = 0.02862 \ 1/\circ C$
$[0.0159 \ 1/\circ F]$

Figure 2. Kinematic viscosity as a function of temperature.
TABLE 1 HYDRAULIC OIL UNIVIS J-43 SPECIFICATION

Specific gravity: 0.8607

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Kinematic Viscosity (cSt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>5.2</td>
</tr>
<tr>
<td>54</td>
<td>10.3</td>
</tr>
<tr>
<td>40</td>
<td>14.9</td>
</tr>
<tr>
<td>-18</td>
<td>102.7</td>
</tr>
<tr>
<td>-40</td>
<td>495.5</td>
</tr>
<tr>
<td>-54</td>
<td>2332.</td>
</tr>
</tbody>
</table>

2. FLUIDIC INTEGRATED COMPONENTS

Fluidic C format integrated components are basic elements in the servo-valve. The primary elements are the LPA and the channel resistance which are shown in figure 3. The secondary elements are vents, exhausts, spacers, transfers, base plate, input and valve manifolds. The primary elements are standardized in design and manufacturing and are thus well documented and have repeatable characteristics.

2.1 Laminar Proportional Amplifier

Laminar proportional amplifiers have been designed to operate in the laminar flow regime. The detailed geometry of a typical HDL integrated component laminar proportional amplifier with a summary of LPA characteristic dimensions are illustrated in figure 4.

The LPA performance is influenced by the temperature of the operating fluid through its influence on the fluid viscosity.

The analytical design procedures which predict the performance of the laminar proportional amplifier based on the characteristic dimensions and the supply conditions have been discussed by Drzewiecki et al.4 The

Figure 3. Primary fluidic C format integrated components.
Figure 4. Silhouette for $b_s = 0.5$ mm LPA in C Format
LPA's with aspect ratios less than one are commonly used in the design of multistage gain blocks. However, limited experimental data are available for LPA's of aspect ratio less than one. The work described in this section provides data and correlations for gain block and servovalve design using LPA's in this range of aspect ratios.

The supply condition of an LPA may be characterized by the modiﬁed Reynolds number

\[N'_R = \frac{N_R}{(1 + \frac{1}{\sigma})(1 + X_{th})} \]

where

\[N_R = \frac{b_s}{\sqrt{2P_s \rho \sigma}} \]

\(\rho \) = fluid density
\(P_s \) = supply pressure, gage
\(\sigma \) = nozzle aspect ratio, \(h/b_s \)

Experimental data have been collected from three different C format LPA configurations (HDL 63020, HDL 72010 and HDL 61505) with aspect ratios of \(\sigma = 0.667, 0.55 \) and \(0.333 \) and supply nozzle throat widths of 0.75 mm, 0.5 mm and 0.375 mm respectively. The characteristic dimensions are shown in Table 2. The LPA's have been tested under blocked-load conditions over a temperature range of 5.5°C (42°F) to 48°C (118°F) and a pressure range of 35 kPa (5 psi) to 11,032 kPa (1600 psi). In all tests, the control bias pressures were adjusted to 5 percent of the supply pressure.

The analytical and experimentally measured blocked-load pressure gain are plotted against the modiﬁed Reynolds number in figure 5. The analytical model is based on the modiﬁed two-dimensional, incompressible, laminar jet deflection theory discussed by Drzewiecki et al. The experimental gains were determined from the slope of the blocked-load characteristics at the null position.

Figure 5. Comparison of theory and data of blocked load gain
TABLE 2 CHARACTERISTIC DIMENSIONS OF LPA's

<table>
<thead>
<tr>
<th>HDL design</th>
<th>63020</th>
<th>72010</th>
<th>61505</th>
</tr>
</thead>
<tbody>
<tr>
<td>b (mm)</td>
<td>0.75</td>
<td>0.5</td>
<td>0.375</td>
</tr>
<tr>
<td>Bg</td>
<td>0.667</td>
<td>0.55</td>
<td>0.333</td>
</tr>
<tr>
<td>Bc</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Bc</td>
<td>3.08</td>
<td>4.0</td>
<td>4.733</td>
</tr>
<tr>
<td>xc</td>
<td>8.875</td>
<td>13.312</td>
<td>21</td>
</tr>
<tr>
<td>Bo</td>
<td>1.2</td>
<td>1.25</td>
<td>1.33</td>
</tr>
<tr>
<td>Bo</td>
<td>2.667</td>
<td>2.875</td>
<td>3.6</td>
</tr>
<tr>
<td>Xo</td>
<td>14.875</td>
<td>16.56</td>
<td>22.08</td>
</tr>
<tr>
<td>Bt</td>
<td>1.25</td>
<td>1.125</td>
<td>1.167</td>
</tr>
<tr>
<td>Bsp</td>
<td>0.55</td>
<td>0.5</td>
<td>0.533</td>
</tr>
<tr>
<td>Xth</td>
<td>1.257</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>Xsp</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>

The experimental data closely follow the analytical prediction up to $N_R' = 120$ beyond which transition-to-turbulence occurs and the theory based on laminar flow fails. In the turbulent flow regime, the flow noise increases, offset increases and the gain decreases. Therefore, the transition-to-turbulence establishes an upper design limit of operation for the LPA. In the laminar flow regime, the blocked-load pressure gain increases as the Reynolds number increases.

A guideline to determine the point of transition from laminar to turbulence for fluidic devices (when $X_{sp} = 8$ to 10) has been discussed by Drzewiecki et al. \(^5\)

\[
\frac{C_d N_R}{\left(1 + \frac{1}{\sigma}\right)^2} = 200
\]

where $C_d = $ volumetric discharge coefficient, $f(N_R')$ or the expression may be written as

For \(x_{sp} = 8 \) and \(x_{th} = 1.25 \), the point of transition from laminar to turbulence occurs at \(N'_R = 120 \).

The lower operating limit of the amplifier may be predicted from the information on the control edge clearance. The amplifier ceases to function if the jet cannot deflect. The distance from the control edge to the jet edge, based on the assumption that the jet spreads linearly, is given by Manion et al.\(^6\)

\[
B_v = \frac{1}{2} \left[B_t - 1 - \frac{B_c}{0.0278 C_d^2 N_R/C_\theta} \right]
\]

where
- \(B_v \) = distance between control edge and jet edge
- \(C_\theta \) = momentum flux coefficient.

With \(C_\theta = 1.32 C_d^2 \) and \(B_v = 0 \), the expression may be written as

\[
\frac{C_d N'_R}{d R} = \frac{47.5 B_c}{(B_t - 1) \left(\frac{1 + \frac{1}{\theta}}{1 + X_{th}} \right)^2}
\]

The average value of \(C_d N'_R \) for the three amplifier configurations is approximately equal to 10 and the point at which the LPA fails to function occurs at \(N'_R = 22 \).

The experimental data obtained for the blocked-load pressure gain of the three different LPA configurations are plotted in figure 6. The effect of the modified Reynolds number on the blocked-load pressure gain may be summarized by noting the four regions defined in the following paragraphs.

In region (1), \(0 \leq N'_R < 40 \), the blocked-load pressure gain is less than 50 percent of its maximum value. In all three different con-

Figure 6. Experimental data illustrating the operating range of LPA.
figurations tested, the LPA gain is zero for $N_R < 20$.

In region (2), $40 < N_R < 100$, the typical LPA operating range is bounded by two limits, a lower limit below which the LPA gain is too low for use and an upper limit beyond which transition-to-turbulence occurs.

In region (3), $100 < N_R < 120$, just before the analytical predicted point of transition-to-turbulence, the experimental data are scattered. This uncertainty suggests that the point of transition-to-turbulence is in this region.

In region (4), $N_R > 120$, the blocked-load pressure gain decreases and noise increases since the LPA's are operated beyond the transition-to-turbulence.

2.2 Fluidic Channel Resistance

The channel resistor is one of the important elements in fluidic circuits. In general, the channel resistance may be represented as a laminar, fully-developed duct resistance. The channel resistance consists of a linear portion due to the fully developed viscous dissipative flow in the channel plus a nonlinear portion due to the entrance region pressure drop. A general expression for a channel resistance given by Drzewiecki7 is

$$R = \frac{12 \mu x}{(bh)^2} \left[\sigma_c \left(1 + \frac{1}{\sigma_c^2} \right) + C \right] + \frac{0.475 \rho Q}{(bh)^2}$$

where

- for $1 \leq \sigma_c \leq 2$, $0.35 \leq C \leq 0.5$;
- for $\sigma_c > 2$, $C = 0.5$,

x = channel length in the direction of flow,
b = average channel length,
b = minimum channel width,
Q = volumetric flow through duct,
σ_c = channel aspect ratio, $\frac{h}{b}$

\[\mu = \text{absolute fluid viscosity}, \]
\[C = \text{empirical constant}. \]

For the case where the channel length is much longer than the entrance length, the nonlinear term may be neglected. An analytical study on the hydrodynamic entrance length for incompressible flow in rectangular ducts has been performed by Han.\(^8\) The experiments to verify the analysis of Han for aspect ratios of 5 and 2 have been performed by Sparrow et al.\(^9\). The results of these studies to determine the entrance length may be summarized as

\[
L_e = \begin{cases}
0.055 \left(\frac{\sigma_c}{1 + \sigma_c} \right)^2 N_{Re}^c & \text{for } \sigma_c = 5, \\
0.127 \left(\frac{\sigma_c}{1 + \sigma_c} \right)^2 N_{Re}^c & \text{for } \sigma_c = 2,
\end{cases}
\]

where

- \(L_e \) = normalized entrance length, \(L_e/b \)
- \(N_{Re}^c \) = channel Reynolds number, referred to \(b \).

For flow between parallel-plates, Schlichting\(^10\) has derived an expression for the entrance length as

\[
\frac{L_e}{c_{Re}^2} = 0.04 \quad \text{for } b \gg h.
\]

If the assumption of fully developed flow is justified and the entrance length can be neglected, the flow can be described by Poiseuille flow between parallel plates and the expression for the resistance may be stated as

\[
R_c = \frac{12 \mu x}{b h^3} \quad \text{for } b \gg h. \quad (7)
\]

The standard nozzle, 5221A-20 shown in figure 3, has been used as a channel resistor in the design of the gain block. Since the channel length is much longer than the entrance length of the flow for a wide range of Reynolds numbers, the quasi-fully-developed assumption is justified, and equation (6) may be applied. Normalizing equation (6) to the linear portion, the expression for resistance is

\[\bar{R} = 1 + \frac{0.475}{12} \left(\frac{b}{b} \right)^2 \left(\frac{\sigma}{\sigma} + \frac{1}{\sigma} + 2 \right) \frac{1 + X_{th}}{X} \frac{c}{\bar{R}} \]

where

\[\bar{R} = \frac{12 \mu x}{(b h)^2} \left(\frac{h}{b} + \frac{b}{h} + c \right) \]

The nozzle resistance as a function of modified Reynolds numbers has been determined experimentally. The range of temperatures and the pressure drops across the nozzle are from 6°C to 48°C and from 5516 kPa to 10170 kPa respectively. The experimentally determined nozzle resistance is compared with analytically predicted values using equation (8) as a function of modified Reynolds numbers in figure 7. The experimental data falls within 10 percent of the predictions in the range of \(N^R \) tested.

3. FLUIDIC GAIN BLOCK AND SERVOVALVE

The fluidic servovalve consists of a multi-stage LPA gain block and a set of laminar flow resistors. The gain block is a basic power amplifier while the resistors are used to provide feedback and summing functions.

3.1 Gain Block Configuration and Characteristics

The analytical design of the fluidic gain block to predict the essential characteristics as a function of individual stage operating Reynolds number, control bias pressure and the detailed geometry of the LPA has been discussed by Manion et al. \(^4,11\)

Figure 7. Comparison of analytical and experimental nozzle resistance.
The general design criteria of a gain block are as follows:

1. Maximize the laminar operating range by matching the modified Reynolds numbers, of each stage:
 \[N'_{R1} = N'_{R2} = N'_{R3}. \]

2. Achieve 90° phase shift bandwidth requirement:
 \[f_{90°} = \frac{(\pi/2)^{4x_{sp}}}{2\pi \sum_{i=1}^{2} \frac{2P}{\pi_{si}}}. \]

3. Maximize the blocked-load pressure gain:
 \[K_p = \frac{K_1 \cdot K_2 \cdot K_3}{(1 + \frac{R_{01}}{R_{12}})(1 + \frac{R_{02}}{R_{13}})} \]
 where \(K_1, K_2 \) and \(K_3 \) are blocked-load pressure gain of 1st, 2nd and 3rd stages LPA respectively. \(R_{01} \) and \(R_{02} \) are output resistance of the 1st and 2nd stages and \(R_{12} \) and \(R_{13} \) are input resistance of the 2nd and 3rd stages.

4. Maximize the input-to-output resistance ratio:
 \[\frac{R_{11}}{R_{03}}. \]

5. Minimize the quiescent flow draw:
 \[Q_s = \sum_{i=1}^{3} Q_{si} \]
 where \(Q_{si} \) (\(i = 1, 2, 3 \)) are supply flows of the 1st, 2nd and 3rd stages. An iterative design procedure is generally required to achieve a design which meets (if possible) the above design criteria.

The gain block shown in figure 8 has been designed using the guidelines cited above.

The supply pressure of the three stage gain block is connected directly to the final stage of the gain block. The first and second
Figure 8. Gain block schematics.
stages are supplied by reducing the main pressure through the pressure reducers which are a number of nozzles in parallel.

The first and second stage supply pressures depend on the final stage supply condition with respect to the fluid properties. The supply pressure of \(i^{th}\) stage, \(P_{si}\) may be expressed as

\[
\frac{P_{si}}{P_s} = \frac{1}{1 + \frac{m_i}{n_i} \frac{R_{ni}}{R_{si}}}
\]

(9)

where

\[m_i = \text{no. of LPA's in parallel of } i^{th} \text{ stage},\]
\[n_i = \text{no. of resistor nozzles in parallel of } i^{th} \text{ stage},\]
\[R_{si} = \text{LPA supply resistance of } i^{th} \text{ stage},\]
\[R_{ni} = \text{nozzle resistance of } i^{th} \text{ stage.}\]

As the nozzle resistance, \(R_{ni}\), and the supply resistance, \(R_{si}\), are connected in series, the flow through \(R_{ni}\) and \(R_{si}\) are related by the continuity equation as

\[
\frac{Q_{ni}}{Q_{si}} = \frac{m_i}{n_i}
\]

(10)

With equation (10), the ratio of the nozzle resistance, \(R_{ni}\), to the supply resistance, \(R_{si}\), may be expressed as

\[
\frac{R_{ni}}{R_{si}} = \frac{24 X_{ni}}{B_{ni}} \left[\frac{\sigma_i}{2} \right] \cdot \left[\frac{H_{ni}}{H_{ni}} + \frac{B_{ni}}{B_{ni}} + C \right] \cdot \frac{C_{di}}{N_{Ri}}
\]

\[+ 0.95 \left[\frac{\sigma_i}{B_{ni} H_{ni}} \right]^2 \frac{m_i}{n_i} C_{di}^2 \]

(11)

where

\[\sigma_i = \text{LPA aspect ratio},\]
\[X_{ni} = \text{normalized nozzle length, } x_{ni}/b_{si},\]
\[B_{ni} = \text{normalized nozzle average channel length, } b_{ni}/b_{si},\]
\[B_{ni} = \text{normalized nozzle throat width, } b_{ni}/b_{si},\]
\[H_{ni} = \text{normalized nozzle height, } h_{ni}/b_{si} \]
\[1 \leq \frac{H_{ni}}{E_{ni}} \leq 2, \quad 0.35 \leq C \leq 0.5; \quad \frac{H_{ni}}{E_{ni}} > 2, \quad C = 0.5. \]

Subscript \(i \) refers to the \(i \)th stage.

The Reynolds number of the first and second stage LPA may be related to that of the final stage as

\[N_{Ri} = \frac{b_{si}}{b_{sf}} \sqrt[3]{\frac{P_{si}}{P_{sf}}} N_{Rf} \tag{12} \]

where

- \(b_{si} \) = LPA supply nozzle throat width, \(i \)th stage,
- \(b_{sf} \) = LPA supply nozzle throat width, final stage,
- \(N_{Ri} \) = Reynolds number of \(i \)th stage,
- \(N_{Rf} \) = Reynolds number of final stage.

As the first and second stage supply pressures are an implicit function of the final stage Reynolds number, \(N_{Rf} \), the first and second stage operating Reynolds numbers depend only on the final stage Reynolds number. In the following discussions, the gain block operating Reynolds number is referred to the operating Reynolds number of the final stage, \(N_{Rf} \). The first and second stage Reynolds numbers can be related to the final stage by solving equations (9) through (12) simultaneously.

In the report by Wormley et al.\(^2\) a hyperbolic tangent curve has been used to describe the nonlinear saturation characteristics of the gain block. The output pressure/flow characteristics of the gain block may be expressed as

\[\frac{Q_L}{Q_{LS}} = \text{tanh} \left(\frac{P_{cd}}{P_{c_ds}} - \frac{P_{od}}{P_{ods}} \right) \tag{13} \]

where

- \(Q_L \) = output load flow,
- \(P_{od} \) = amplifier output pressure differential,
- \(P_{cd} \) = amplifier input pressure differential.

\[Q_{Ls} = \text{saturation output load flow}, \]
\[P_{ods} = \text{saturation amplifier output pressure differential}, \]

and where the saturation control pressure differential is defined as

\[P_{cds} = \frac{P_{ods}}{K_f} = \frac{Q_{Ls}}{K_q}. \]

(14)

with the incremental amplifier static pressure gain \(K_p \) and flow gain, \(K_q \) defined as

\[K_p = \left. \frac{\partial P_{od}}{\partial P_{cd}} \right|_{Q_L = 0} \]

(15)

\[K_q = \left. \frac{\partial Q_L}{\partial P_{cd}} \right|_{P_{od} = 0} \]

(16)

A three-stage fluidic gain block with a single supply pressure based on the standard packaging technique was constructed and tested. The construction schematic of the gain block is shown in figure 9. The stacking order is listed in appendix A. The characteristic dimensions of the amplifier laminates and the three stage amplifier parameters, measured with Univis J-43 at a temperature of 27°C, are summarized in table 3. The experimental output characteristics are displayed in figure 10. The comparison between the predicted and the experimentally measured characteristics displayed in figure 11 shows that the analytical model with hyperbolic tanh curve closely matches the experimental data.

3.2 Fluidic Servovalve Configuration and Characteristics

The conceptualization, analysis and design of a fluidic servovalve constructed from the gainblock and fluidic resistance elements in a breadboard configuration are described by Wormley et al.\(^2\). The flow feedback resistance in the case in which the net flow feedback is equal to zero can be eliminated. In order to minimize the loss of output flow due to feed-

Figure 9. Gain block construction schematics.

TABLE 3

GAIN BLOCK CONFIGURATION AND INCREMENTAL PARAMETERS

LAMINATE DESCRIPTION

<table>
<thead>
<tr>
<th>Stage</th>
<th>Design</th>
<th>(b_s) (mm)</th>
<th>(a=h/b_s)</th>
<th>Number of Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HDL 63020</td>
<td>0.75</td>
<td>0.667</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>HDL 72010</td>
<td>0.5</td>
<td>0.55</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>HDL 61505</td>
<td>0.375</td>
<td>0.333</td>
<td>6</td>
</tr>
</tbody>
</table>

EXPERIMENTAL DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_s)</td>
<td>6895</td>
<td>kPa</td>
</tr>
<tr>
<td>(P_{ods})</td>
<td>2551</td>
<td>kPa</td>
</tr>
<tr>
<td>(Q_{Ls})</td>
<td>8\times10^{-6}</td>
<td>(m^3/sec)</td>
</tr>
<tr>
<td>(P_{cds})</td>
<td>6.72</td>
<td>kPa</td>
</tr>
<tr>
<td>(K_p)</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>(K_q)</td>
<td>8.6\times10^{-7}</td>
<td>(m^3/sec/kPa)</td>
</tr>
<tr>
<td>(R_a)</td>
<td>5.80\times10^{-10}</td>
<td>(N\cdot s/m^5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

28
Figure 10. Experimental gain block output characteristics.

Operating Conditions

- \(T = 27^\circ C \) (80°F)
- \(\frac{P_s}{P_0} = 6895 \text{ kPa (1000 psi)} \)
- \(Q_s = 5.72 \times 10^{-3} \text{ m}^3/\text{sec (3.49 cis)} \)
- \(\frac{P_{CO}}{P_s} = 5 \times 10^{-3} \)

Data

--- Extrapolated

\(Q_{in} \times 10^3 \text{ m}^3/\text{sec} \)

\(P_{in} \times 10^3 \text{ kPa} \)

--- Operating Conditions

--- Extrapolated
Figure 11. Comparison of computer-aid design prediction and experimental gain block output characteristics.
and the complexity of the valve construction, the case of zero flow feedback is chosen for the performance evaluation. In this particular case, the resulting nonlinear normalized governing equation of the valve becomes

\[
\frac{Q_L}{Q_{Ls}} + \frac{P_{od}}{P_{ods}} = \tanh \left[\frac{\alpha}{P_{idm}} + \gamma \frac{P_{od}}{P_{ods}} \right]
\]

(17)

where

\[
\alpha = \left(\frac{1}{R_i} \right) \frac{P_{idm}}{P_{cds}} \quad \text{for } R_{fp} \gg R_i
\]

(18)

\[
\gamma = \frac{R_i}{R_{fp}} \left(\frac{1}{1 + \frac{R_i}{R_a}} \right) K_p
\]

(19)

\[R_i\] = input resistance,
\[R_{fp}\] = pressure feedback resistance,
\[R_a\] = amplifier input deflection resistance.

The schematic drawing of the servovalve is shown in figure 12.

The fluidic servovalve steady state blocked-load pressure gain and no-load flow gain can be obtained from the linearized valve model as

\[
G_{qs} = \frac{\partial Q_L}{\partial P_{id}} \bigg|_{P_{od}=0} = \frac{K_q}{1 + \frac{R_i}{R_a}}
\]

(20)

\[
G_{ps} = \frac{\partial P_L}{\partial P_{id}} \bigg|_{Q_L=0} = \frac{K_p}{(1-\gamma) \left(1 + \frac{R_i}{R_a}\right)}
\]

(21)
Figure 12. Servovalve schematic.
The steady state performance of the servovalve is characterized by the parameters α and γ. The valve parameter α indicates the flow gain linearity with respect to the maximum input pressure differential whereas the parameter γ provides information regarding the limit of servovalve stability.

As shown in equation (21), the servovalve pressure gain is sensitive to the valve parameter γ. The fluidic servovalve has a maximum pressure gain at γ equal to one and has a negative pressure gain for γ greater than one. The valve is unstable when the valve pressure gain curve has negative slope.

The effect of a variation in α is illustrated in figure 13. With $\gamma = 1$ to achieve maximum pressure gain, the servovalve flow gain becomes more non-linear as α is increased.

An integrated component fluidic servovalve has been constructed and tested. The gain block discussed in the preceding section has been used in the servovalve design. Two HDL 5196 capillaries are connected in series to form an input resistor R_i. The pressure feedback resistor R_{fp} consists of four parallel HDL 5026 capillaries in series, with a HDL 5027 capillary. The experimentally measured resistances at the temperature of 27°C (80.6°F) are:

$$R_i = 4.42 \times 10^{10} \text{ N-s/m}^5 \quad (105 \text{ psi/cis}) \text{ and}$$

$$R_{fp} = 7.52 \times 10^{12} \text{ N-s/m}^5 \quad (17850 \text{ psi/cis}).$$

The servovalve construction schematic is shown in figure 14. The stacking order is summarized in appendix A.

The experimental data obtained at a temperature of 27°C and a supply pressure of 6895 kPa (1000 psi) showing the output characteristics are displayed in figure 15 and compared with the analytical prediction in figure 16. Apart from the offset, the analytical prediction fits the experimental characteristics well.

3.3 Temperature Effects and Compensation

For incompressible flow, the working fluid temperature affects the Reynolds number, $N_R = \frac{(b/\nu)\sqrt{2P_s/\rho}}{s}$, through an influence on the fluid
Figure 13. Effect of valve parameter α on Valve Characteristics.
--- Forward Signal

--- Feedback Signal

Figure 14. Servovalve construction schematics.
Figure 15. Experimental data of servovalve output characteristics.
viscosity. The effect of the change of operating Reynolds number on the blocked-load pressure gain of the LPA has been discussed in section 2.1.

The stability of the fluidic servovalve is primarily determined by the valve parameter γ which is a measure of the degree of positive pressure feedback. The value of γ can be increased by decreasing the pressure feedback resistance, or increasing the gain block pressure gain, K_p, or the value of input resistance to the point where γ is greater than one and the valve fails neutrally. The additional flow of the positive pressure feedback due to the increase in temperature tends to decrease the valve stability. On the other hand, if the positive feedback flow is reduced as a result of a decrease in temperature, the valve behaves as an amplifier with reduced feedback. To compensate for the temperature effects, the valve parameter γ must be kept at a desired constant value in the temperature range concerned. Since the ratio of two linear resistances is independent of fluid viscosity and the factor $1/(1 + R_i/R_a)$ is not significantly affected by temperature variations, the valve parameter γ is primarily dependent on the blocked-load pressure gain of the gain block, K_p.

The valve parameter α is proportional to the ratio of maximum input pressure differential, P_{idm}, to the saturation control pressure differential P_{cds}. The saturation control pressure differential, P_{cds}, decreases as the temperature increases. The maximum input pressure differential must be limited in order to keep the flow gain in a reasonable linear range. However, the linearity of the servovalve flow gain is maintained at the expense of the maximum input pressure differential, P_{idm}.

Since the gain block characteristic performance is primarily a function of final stage Reynolds number, this provides a means of temperature compensation by maintaining a constant operating Reynolds number, N_{Rf}. From the definition of the Reynolds number and the kinematic viscosity-temperature relation as written in equation (1), we have

$$\frac{N_{Rf}(T)}{N_{Rf}(T_o)} = \frac{\nu}{\nu_o} \sqrt{\frac{P_s(T)}{P_s(T_o)}} = e^{\lambda(T-T_o)} \sqrt{\frac{P_s(T)}{P_s(T_o)}}. \quad (22)$$
If \(N_f(T) = N_f(T_0) = \text{constant}, \) then

\[
\frac{P_s(T)}{P_s(T_0)} = e^{-2\lambda(T-T_0)}.
\] (23)

Hence, the supply pressure must be varied directly proportional to the square of the fluid viscosity in order to maintain a constant Reynolds number. To decrease the high pressure required at the low temperature operating condition, the supply pressure is scheduled as a linear function of temperature, i.e.

\[
\frac{P_s(T) - P_s(T_0)}{T - T_0} = \lambda_0.
\] (24)

The choice of \(\lambda_0 \) depends on the temperature range considered and the maximum of safe supply pressure imposed by the hydraulic plant at the lowest temperature of interest. As an example, consider the following,

Reference temperature, \(T_0 = 25^\circ C \) (77°F),

Reference pressure, \(P_s(T_0) = 6895 \text{ kPa} \) (1000 psi),

Temperature range, \(10^\circ C < T < 50^\circ C, \) \(50^\circ F < T < 122^\circ F, \)

Maximum supply pressure, \(P_s|_{\max} = 11,032 \text{ kPa} \) (1600 psi),

It follows \(\lambda_0 = 275.8 \text{ kPa/}^\circ C \) [22.2 psi/°F].

The experimental data for linearly compensated and uncompensated gain block and servovalve blocked-load pressure gain as a function of temperature are shown in figures 17 and 18. The temperature compensation based on the supply pressure scheduling significantly reduces the temperature sensitivity of both the gain block and servovalve pressure gain and successfully extends the operating range of the servovalve beyond the design temperature.

3.4 Dynamic Response

The fluidic servovalve dynamic model for small derivatives may be expressed as

\[
Q_L(s) = G_q(s)P_{id}(s) - G_p(s)P_{od}(s)
\] (25)
Figure 17. Gain block compensated and uncompensated blocked-load pressure gain.
Figure 18. Fluidic servovalve compensated and uncompensated blocked-load pressure gain.
where

\[
G_q(s) = \left[\frac{1}{Z_i(s) + Z_a(s)} \right] K_q(s),
\]

(26)

\[
G_{qp}(s) = G_p(s)[1 - \gamma(s)] K_{qp}(s).
\]

(27)

\[
G_p(s) = \frac{K_p(s)}{[1 - \gamma(s)] [1 + \frac{Z_i(s)}{Z_a(s)}]},
\]

(28)

\[
\gamma(s) = \frac{Z_i(s)}{Z_{fp}(s)} \cdot \frac{K_p(s)}{[1 + \frac{Z_i(s)}{Z_a(s)}]},
\]

(29)

The input \(Z_i(s)\) and feedback \(Z_{fp}(s)\) impedances consist of a resistance and inertance. The input deflection impedance of the gain block is \(Z_a(s)\).

The input \(Z_i(s)\) and feedback \(Z_{fp}(s)\) impedances consist of a resistance and inertance. The input deflection impedance of the gain block is \(Z_a(s)\).

Two dynamic tests, flow frequency and pressure frequency response tests, have been conducted point by point on both the gain block and servo-valve at a temperature of 27°C. The experimentally measured pressure and flow gain as a function of frequency are plotted in figures 19 and 20. The test data show that the flow gain of the valve reaches 90° phase shift at 80 Hz, the pressure gain reaches 90° phase shift at approximately 100 Hz and the experimentally measured pure delay time for both the pressure and flow gain is 1.1 ms.

The comparisons of the frequency response between the breadboard configuration and the integrated component fluidic servovalve are shown in figures 21 and 22. The elimination of the feedback line capacitance which is present in the breadboard configuration as described by Lee12, leads to improved response in the integrated component fluidic servovalve. The data show that the pressure gain reaches 90° phase shift at 7 Hz for the bread-

42
Figure 19. Gain block and servovalve blocked-load pressure gain.
Figure 20. Gain block and servovalve no-load flow gain frequency response.
Figure 2.1. Comparison of blocked-load frequency response between integrated component servovalve and breadboard configuration servovalve.
Figure 22. Comparison of no-load frequency response of integrated component servovalve, breadboard configuration and electrohydraulic servovalve.
board configuration and at 100 Hz for the integrated component configuration.
figure 22 indicates that the flow gain reaches 90° phase shift at 60 Hz for the breadboard configuration and at 80 Hz for the integrated component configuration and electrohydraulic servovalve approximately. The comparison shows that a significant decrease in phase shift has been achieved and the dynamic performance of the fluidic servovalve is comparable to the electrohydraulic servovalve with standard packaging.

4. FLUIDIC POSITION SERVO

A closed-loop fluidic position servo has been constructed as shown in figure 23. An integrated component fluidic servovalve, similar to that discussed in the preceding section, has been used as a power modulation element. A fluidic summing amplifier is also used to perform signal processing. In addition, a fluidic feedback transducer has been developed so that the mechanical displacement sensing is feedback in the form of a fluidic signal. The elements in the control system are described in the following paragraphs.

4.1 Fluidic Summer

The fluidic summer is shown in figure 23. For low frequency applications, the transfer function of the fluidic summer may be expressed as

\[K_s(s) = K_{ss} e^{-T_s s} \]

(30)

where

\[K_{ss} = \frac{G_{p,LPA}}{2 + \frac{R_l}{R_{as}}} \]

(31)

\[G_{p,LPA} = \text{LPA blocked-load pressure gain}, \]

\[R_l = \text{Summer input resistance}, \]

\[R_{as} = \text{LPA deflection resistance}, \]

\[\tau_s = \text{LPA pure time delay}. \]

4.2 Mechanical-Fluidic Displacement Transducer

The mechanical-fluidic displacement transducer is essentially a position feedback sensor in which the mechanical translational displacement is transformed into a fluidic signal. The electrical equivalent and the construction schematic are shown in figure 24. The displacement trans-
Figure 23. Fluidic position servo block diagram.
Figure 24. Mechanical-fluidic displacement transducer schematics.
Figure 24. Mechanical-fluidic displacement transducer schematic.
ducer may be considered as a fluidic resistance bridge. It consists of two pairs of fixed resistors and a pair of variable resistors.

The transducer sensitivity at blocked-load may be derived from circuit analysis

\[
K_{t}(s) = \frac{P_{dt}(s)}{x(s)} = \frac{P_{st}}{x_{m}} \left[\frac{1}{R_f + sL_f} + \frac{2}{R_v + sL_v} \right] \tag{32}
\]

where

- \(P_{dt} \) = output pressure differential of transducer,
- \(P_{st} \) = supply pressure of transducer,
- \(x \) = translational displacement,
- \(x_{m} \) = half stoke,
- \(R_f, R_v \) = fixed and variable resistance, respectively,
- \(L_f, L_v \) = fixed and variable inertance, respectively.

The resistance and inertance of the channel resistance are

\[
R_c = \frac{12\mu b x}{bh^3} \quad \text{for } b \gg h,
\]

\[
L_c = \frac{b x}{bh}, \tag{33}
\]

and the time constant of the channel resistance, \(\tau_c \), may be expressed as

\[
\tau_c = \frac{L_c}{R_c} = \frac{h^2}{12\nu} . \tag{34}
\]

If equal channel heights are chosen for both fixed and variable resistances, the transfer function of the mechanical-fluidic displacement transducer may be simplified from equations (32) and (34) as

\[
K_{t}(s) = \left(\frac{1}{1 + 2 \frac{R_f}{R_v}} \right) \frac{P_{st}}{x_{m}} \tag{35}
\]

and the dynamics of the transducer may be neglected.

4.3 Fluidic Servovalve

The characteristic performance of the fluidic servovalve has been discussed in section 3.2. In the application of the fluidic servovalve in
the position servo system, the output flow/pressure characteristics must be designed to meet the particular ram and load requirements. The actuator and load described as part of the position servo by Lee has been used in this study so that a step response between the fluidic position servo and a conventional electrohydraulic position servo may be compared directly.

From the characteristics of the fluidic servovalve and the parameters of the actuator and load, the dimensionless group

\[
\frac{G_{q_p}d}{A_r^2} \ll 1
\]

and the time constant,

\[
\frac{m}{d} < 1 \text{ second}
\]

may be calculated

where

\[
G_{q_p}(s) = \frac{G_q(s)}{G_p(s)}
\]

d = damping coefficient

\[
A_r = \text{area of ram},
\]

\[
m = \text{mass of load}.
\]

As a result of the high pressure gain and small load mass and friction, the load dynamics for this particular system can be neglected and the dynamic flow gain of the servovalve is the dominant valve performance parameter. The experimentally determined flow gain from section 3.4 is

\[
G_q(s) = \frac{Q_L(s)}{P_{id}(s)} = \frac{G_{qs}e^{-\tau_v s}}{(1 + \tau_q s)}
\]

(36)

where

\[
G_{qs} = \text{steady state servovalve flow gain},
\]

\[
\tau_v = \text{pure time delay of the servovalve},
\]

\[
\tau_q = \text{first order time constant}.
\]

4.4 **Closed-Loop Fluidic Position Servo**

With the dynamic characteristic performance of the fluidic summer, fluidic feedback transducer and fluidic servovalve predicted in sections...
4.1, 4.2 and 4.3 respectively, the fluidic position servo can be represented by the block diagram shown in figure 25. The open loop transfer function of position servo may be expressed as

\[
GH(s) = \frac{K_e^{-\tau_s}}{s(1+\tau_q s)}
\]

(37)

where

\[
K = \frac{K_t \cdot K_{ss} \cdot G_{qs}}{A_r},
\]

\[
\tau = \tau_v + \tau_s.
\]

The dynamic performance of the closed-loop position servo may be expressed in terms of two dimensionless parameters, namely, the normalized gain K_T, and the normalized characteristic time constant τ/τ_q and may be analyzed by Root Locus analysis. Normalized gain for zero damping, which indicates the limit of closed-loop stability, and normalized gain for critical damping, which corresponds to a step response with no overshoot, are of particular interest. K_T corresponding to $\xi = 0$ and $\xi = 1$ are plotted as a function of τ/τ_q in figure 25. For simplicity and as a first-order guide in selecting the combination of K_T and τ/τ_q, the damping ratio ξ and normalized natural frequency, $\omega_n \tau$ are plotted against the normalized K_T with τ/τ_q as a parameter in figure 26.

4.5 Implementation

A fluidic position servo has been constructed and tested. The construction is shown in figure 27. A flapper-nozzle valve with an electrical torque motor has been used as a fluidic signal generator.

The gain block, used in the servo is a modified form of the gain block described in section 3 in which the steady state flow gain has been increased and the transport time delay has been reduced with no change in blocked-load pressure gain at the design temperature of 25°C. The increase of the no-load flow gain provides improved servo frequency response and has been achieved by increasing the number of sections in parallel in the final stage and by operating the servovalve at a higher supply pressure whereas the decrease of the pure time delay is achieved by using LPA's with smaller nozzle throat width ($x_{sp}/b_s = 8$) for first and second stages. The
Figure 23. Root locus analysis of fluidic position servo.
Figure 26. ξ and $\omega_n \tau$ of fluidic position servo.
Figure 27. Fluidic position servo construction schematics.
increase in first and second stage gain, resulting from the higher aspect ratio, is designed to offset the additional pressure drop. Hence, K_p has not been varied significantly. The same input and feedback resistors as described in section 3.2 have been used to construct the servovalve.

The fluidic servo components are summarized in table 4. The components have been tested individually for both static and dynamic performance. The data are presented in figures 28 through 33 for the fluidic summer, displacement transducer and servovalve respectively. As shown in table 5, in which the essential servo component parameters are summarized, the servovalve flow gain has been increased by a factor of 2.2 and the pure time delay has been successfully reduced from 1.1 ms to 0.65 ms in comparison to the value of section 3. The displacement transducer exhibits a linear characteristic throughout the entire stroke tested in a blocked load condition and significantly solves the mechanical-to-fluidic interface problems encountered in the previous investigations.13

The fluidic position servo response has been calculated based on responses to step inputs. The experimental data, in figure 34 show that the fluidic position servo design with 5 percent overshoot exhibits performance comparable to the commercial electrohydraulic position servo and a significant improvement over the hydraulic position servo described by Lee and Wormley.13

Figure 35 compares the experimental and analytical step responses for the fluidic position servo. The preliminary analytical pure time delay based on the sum of LPA transport time lags in both the fluid in summer and servovalve is observed to be smaller than the measured time delay of the servo. Since the dynamic responses of the components have been measured individually, the additional time delay may be attributed to the interconnections between the components of the fluidic position servo.

5. SUMMARY AND CONCLUSIONS

The characteristic performance of HDL fluidic integrated components essential for servovalve design have been evaluated as a function of supply

TABLE 4 FLUIDIC POSITION SERVO COMPONENT CONFIGURATION

<table>
<thead>
<tr>
<th>FLUIDIC SUMMER</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPA design 81505</td>
</tr>
<tr>
<td>(N_R' = 90, \quad G_{p,LPA} \frac{R_s}{R_{as}})</td>
</tr>
<tr>
<td>Input resistance, (R_1)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MECHANICAL-FLUIDIC DISPLACEMENT TRANSDUCER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable resistance, (R_v)</td>
</tr>
<tr>
<td>Fixed resistance, (R_f)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLUIDIC SERVOVALVE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage</th>
<th>LPA</th>
<th>(\sigma)</th>
<th>No. of sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x1505</td>
<td>1.000</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>x61505</td>
<td>0.667</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>x61505</td>
<td>0.333</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure Reducer</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Stage</th>
<th>Nozzle</th>
<th>No. of sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5221A-20</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>5221A-20</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>direct supply</td>
<td>-</td>
</tr>
</tbody>
</table>

*Supply pressure, \(P_s = 10.343 \text{ kPa (1500 psi)} \)
TABLE 5 VALUES OF PARAMETERS OF FLUIDIC POSITION SERVO

<table>
<thead>
<tr>
<th>ACTUATOR</th>
<th></th>
<th>LOAD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Area, A</td>
<td>432 mm²</td>
<td></td>
<td>0.67 in²</td>
</tr>
<tr>
<td>Volume (single side), V</td>
<td>8.19x10⁻³ mm³</td>
<td></td>
<td>0.5 in³</td>
</tr>
<tr>
<td>Oil Bulk Modulus, β</td>
<td>1.38x10⁶ kPa</td>
<td></td>
<td>2x10⁵ psi</td>
</tr>
</tbody>
</table>

FLUIDIC SUMMER			
Steady state gain, K	5		
Pure time delay, T	0.35 ms		

| MECHANICAL-FLUIDIC DISPLACEMENT TRANSDUCER | | | |
| Transducer sensitivity, Kₜ | 11 kPa/mm | | 40.5 psi/in |

FLUIDIC SERVOVALVE			
Steady state flow gain, G	1.207x10⁻⁹ m⁵/N-s		0.5 cis/psi
Pure time delay, τ	0.65 ms		
1st order time constant, τ	5.3 ms		
Supply condition

\[P_{ss} = 448.2 \text{ kPa} \ (65 \text{ psi}) \]

\[Q_{ss} = 4.64 \times 10^{-6} \text{ m}^3/\text{sec} \ (0.29 \text{ cis}) \]

\[T = 29.4^\circ \text{C} \ (85^\circ \text{F}) \]

\[\frac{P_{sd}}{P_{ss}} = +0.0287 \]

\[\frac{P_{2d}}{P_{ss}} = 0 \]

\[\frac{P_{2d}}{P_{ss}} = -0.0287 \]

\[\frac{P_{1d}}{P_{ss}} \times 10^2 \]

Figure 28. Fluidic summer schematic and static characteristics.
Figure 29. Fluidic summer blocked-load frequency response.
Temperature 29°C [84°F]
Supply pressure 345 kPa
Leakage flow $1.632 \times 10^{-5} \text{ m}^3/\text{sec}$
$x_m = 12.7 \text{ mm}$
$[\frac{1}{2} \text{ inch}]$

Sensitivity = 10.86 kPa/mm
$[40 \text{ psi/inch}]$

Figure 30. Displacement transducer blocked-load static characteristics.
$P_s = 10342 \text{ kPa}$

[1500 psi]

$Q_s = 8 \times 10^{-5} \text{ m}^3/\text{sec}$

[5 cis]

$T = 29.4^\circ \text{C}$

[85^\circ \text{F}]

$G_{qs} = 1.207 \times 10^{-9} \frac{m^5}{N-\text{S}}$

[0.5 cis/psi]

Figure 32. Fluidic servovalve no-load static characteristics.
Figure 33. Fluidic servovalve no-load frequency response.

Normalized flow gain, dB

Phase in degrees
Figure 34. Comparison of step response between fluidic and commercial position servo.

Normalized displacements, x/x_m

- Fluidic position servo
 $x_o = 0.62$ mm

- Electrohydraulic position servo, (Lee and Wormley)
 $x_o = 0.326$ mm

- Commercial fluidic-input servo (Lee and Wormley)
 $x_m = 0.304$ mm
Figure 35. Comparison of experimental and analytical step response of fluidic position servo.

Normalized displacement, \(x/x_m \)

- Experimental
- Analytical (LPA time delay only)

\[x_m = 0.62 \text{ mm} \]
pressure and temperature which are characterized in terms of the modified Reynolds number. The point of transition-to-turbulence of three standard LPA configurations namely, HDL 63020, HDL 72010 and HDL 61505 occurs between modified Reynolds numbers of 100 and 120. The useful operating range of LPA's has been determined through the experimental program to be $40 < N'_R < 100$.

The relationship between the supply conditions of the individual stages and that of the final stage of the gain block has been derived and verified experimentally. Compensated fluidic gain blocks and servovalves are sensitive to temperature variation at constant supply pressure. The temperature compensation technique, based on the supply pressure scheduling to maintain an approximately constant final stage modified Reynolds number, significantly suppresses the temperature sensitivity of the blocked-load pressure gain of the gain block and servovalve.

The fluidic gain block, summing amplifier and feedback transducer have been used with an actuator and load mass to construct a closed loop position control systems. Static and dynamic tests of the servosystem have shown its performance comparable to an electrohydraulic servoloop. This development effort has demonstrated the capability to develop high performance position servo components from standard integrated component fluidic elements and to interconnect the components into a closed loop servo with performance comparable to high performance electrohydraulic commercial components.

In the current fluidic servo, the maximum load pressure differential and flow gain of the servovalve are primarily limited by the LPA characteristics. Future effort is merited to optimize the LPA design to achieve high pressure recovery, to reduce the ratio of quiescent to maximum load flow and to further minimize the overall power-to-weight ratio.
APPENDIX A. — GAIN BLOCK AND SERVOVALVE CONSTRUCTION DETAILS

In this appendix the gain block stacking order is summarized as given in tables A-1 and A-2 with the components shown in figure A-1.

Table A-1 GAIN BLOCK STACKING ORDER DESCRIPTIONS

<table>
<thead>
<tr>
<th>Stacking Order</th>
<th>HDL Part No.</th>
<th>HDL Orientation</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Baseplate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5018</td>
<td>C</td>
<td>(*)</td>
<td>First Stage Pressure Reducer</td>
</tr>
<tr>
<td>2</td>
<td>5047</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5221A-20</td>
<td>H</td>
<td>6 pairs</td>
<td>Third Stage Amplifier and Vent Assembly</td>
</tr>
<tr>
<td>4</td>
<td>5040</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5221A-20</td>
<td>H</td>
<td>3 pairs</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5018</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5200</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5200</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5021</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5216</td>
<td>F</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5339A</td>
<td>F</td>
<td>6 sections</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>61505</td>
<td>F</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5339A</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5216</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5040</td>
<td>E</td>
<td>7 pairs</td>
<td>Second State Pressure Reducer</td>
</tr>
<tr>
<td>16</td>
<td>5221A-20</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5018</td>
<td>F</td>
<td>2 pairs</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>5221A-20</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>5021</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5046</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>5021</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5216</td>
<td>C</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>5216</td>
<td>H</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>5046</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5018</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5046</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>5046</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>5239</td>
<td>H</td>
<td>3 sections</td>
<td>Second State Amplifier and Vent Assembly</td>
</tr>
<tr>
<td>29</td>
<td>5137</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>72010</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>5137</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>5237</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>5216</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>5021</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>5200</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>5200</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>5047</td>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 unless otherwise stated
TABLE A-1 (Cont.)

GAIN BLOCK STACKING ORDER AND DESCRIPTIONS

<table>
<thead>
<tr>
<th>Stacking Order</th>
<th>HDL Part No.</th>
<th>HDL Orientation</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>5239</td>
<td>D</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>5018</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>5216</td>
<td>F</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>5237</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>5236</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>63020</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>5236</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>5237</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>5216</td>
<td>A</td>
<td></td>
<td>First Stage</td>
</tr>
<tr>
<td>47</td>
<td>5237</td>
<td>A</td>
<td></td>
<td>Amplifier and</td>
</tr>
<tr>
<td>48</td>
<td>5236</td>
<td>A</td>
<td></td>
<td>Vent</td>
</tr>
<tr>
<td>49</td>
<td>63020</td>
<td>F</td>
<td></td>
<td>Assembly</td>
</tr>
<tr>
<td>50</td>
<td>5236</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>5237</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>5216</td>
<td>F</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>5046</td>
<td>E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Input manifold
TABLE A-2
SERVOVALVE STACKING ORDER AND DESCRIPTIONS

<table>
<thead>
<tr>
<th>Stacking Order</th>
<th>Part No.</th>
<th>Orientation</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply/output manifold baseplate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>SP5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>SP3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>HDL 5043</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>HDL 5026</td>
<td></td>
<td>4 pairs</td>
<td>feedback manifold</td>
</tr>
<tr>
<td>5.</td>
<td>HDL 5040</td>
<td></td>
<td></td>
<td>feedback resistors</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>3 stage amplifier</td>
<td>Refer to amplifier stacking order (1-56)</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>SP2</td>
<td></td>
<td></td>
<td>summing manifold</td>
</tr>
<tr>
<td>8.</td>
<td>HDL 5040</td>
<td></td>
<td></td>
<td>feedback resistors</td>
</tr>
<tr>
<td>9.</td>
<td>HDL 5027</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>HDL 5112</td>
<td></td>
<td>2</td>
<td>input resistance</td>
</tr>
<tr>
<td>11.</td>
<td>HDL 5196</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>HDL 5040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>SP4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>HDL 5040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>HDL 5196</td>
<td></td>
<td></td>
<td>input resistor</td>
</tr>
<tr>
<td>16.</td>
<td>HDL 5040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>HDL 5112</td>
<td></td>
<td>2</td>
<td>input manifold</td>
</tr>
</tbody>
</table>

71
Figure A-1. Servovalve components descriptions.
NOMENCLATURE

A
ram area

B_r
LPA control port minimum width

B_c
LPA average control port channel width

B_{ni}
normalized nozzle throat width, \(\frac{b_n}{b_{si}} \) of \(i \)th stage

B_o
LPA outlet port minimum width

B_s
LPA average outlet port channel width

B_sp
LPA splitter width

B_{t}
LPA downstream control edges space

B_v
LPA jet-control edge space

B_{ni}
normalized nozzle average channel width, \(\frac{b_n}{b_{si}} \)

C_c
empirical constant in channel resistance model

C_d
discharge coefficient

C_{di}
discharge coefficient of \(i \)th stage LPA

C_{pq}
momentum flux coefficient

C_p
servovalve blocked-load pressure gain

C_{p,LPA}
LPA blocked-load pressure gain

C_{pq}
servovalve no-load flow gain

C_{qs}
servovalve no-load flow gain at steady state

C_{qp}
servovalve output admittance

H_{ni}
normalized nozzle height, \(\frac{h_n}{b_{si}} \)

K_f
fluidic servo open-loop steady state gain

K_{i}
\(i \)th stage LPA blocked-load pressure gain, \(i=1,2,3 \)

K_{pq}
gain block blocked-load pressure gain

K_{qs}
gain block no-load flow gain

K_{s}
fluidic summer gain

K_{ss}
fluidic summer steady state gain

K_{t}
displacement transducer sensitivity

L_e
normalized entry length, \(le/b \)

L_c
channel fluid inertance

L_{fe}
transducer fixed channel fluid inertance

L_{v}
transducer variable channel fluid inertance

N_r
Reynolds number

N_{rc}
channel Reynolds number

N_{rf}
gain block final stage Reynolds number

73
N_{Ri} gain block i^{th} stage Reynolds number
N'_R LPA modified Reynolds number
N'_{Rf} gain block final stage modified Reynolds number
N_{Ri}' gain block i^{th} stage modified Reynolds number
P_{cd} control pressure differential
P_{cds} saturation control pressure differential
P_{co} bias control pressure
P_{dt} output pressure differential of transducer
P_{id} input pressure differential
P_{idm} maximum input pressure differential
defined in figure 1
P_L output pressure differential
P_{ods} saturation output pressure differential
P_s main supply pressure
defined in figure 28
P_{sd} supply pressure of i^{th} stage, $i = 1,2,3$
P_{si} supply pressure of summer
P_{ss} supply pressure of transducer
P_{st} input 1 of summer
P_{1d} input 2 of summer
P_{2d} volumetric flow rate
Q load flow
Q_{Ls} saturation load flow
Q_{n1} flow through i^{th} stage nozzle
Q_s supply flow
Q_{si} supply flow of i^{th} stage LPA
R channel resistance
\bar{R} normalized resistance defined in equation (8)
R_a gain block input deflection resistance
R_{as} LPA input resistance for summer
R_f fixed resistance in transducer
R_{fp} servovalve feedback resistance
R_1 servovalve input resistance
R_{i1} 1^{st} stage input resistance
R_{i2} 2^{nd} stage input resistance
R_{i3} 3^{rd} stage input resistance
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{ni}</td>
<td>nozzle resistance of i^{th} stage</td>
</tr>
<tr>
<td>R_{01}</td>
<td>1^{st} state output resistance</td>
</tr>
<tr>
<td>R_{02}</td>
<td>2^{nd} stage output resistance</td>
</tr>
<tr>
<td>R_{03}</td>
<td>3^{rd} stage output resistance</td>
</tr>
<tr>
<td>R_{si}</td>
<td>supply resistance of i^{th} stage</td>
</tr>
<tr>
<td>R_{v}</td>
<td>variable resistance in transducer</td>
</tr>
<tr>
<td>R_{1}</td>
<td>summer input resistance</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>T_{0}</td>
<td>reference temperature</td>
</tr>
<tr>
<td>X</td>
<td>channel length</td>
</tr>
<tr>
<td>X_{c}</td>
<td>LPA control port channel length</td>
</tr>
<tr>
<td>X_{ni}</td>
<td>normalized nozzle channel length of i^{th} stage</td>
</tr>
<tr>
<td>X_{o}</td>
<td>LPA outlet port channel length</td>
</tr>
<tr>
<td>X_{sp}</td>
<td>LPA supply nozzle-splitter distance</td>
</tr>
<tr>
<td>X_{th}</td>
<td>LPA supply nozzle throat length</td>
</tr>
<tr>
<td>Z_{a}</td>
<td>gain block input complex impedance</td>
</tr>
<tr>
<td>Z_{l}</td>
<td>servovalve input complex impedance</td>
</tr>
<tr>
<td>Z_{fp}</td>
<td>servovalve feedback complex impedance</td>
</tr>
</tbody>
</table>

Lower Case Letter

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>channel width</td>
</tr>
<tr>
<td>b_{av}</td>
<td>average channel width</td>
</tr>
<tr>
<td>b_{s}</td>
<td>LPA supply nozzle throat width</td>
</tr>
<tr>
<td>b_{sf}</td>
<td>final state LPA supply nozzle throat width</td>
</tr>
<tr>
<td>b_{si}</td>
<td>i^{th} stage LPA supply nozzle throat width</td>
</tr>
<tr>
<td>d</td>
<td>damping coefficient</td>
</tr>
<tr>
<td>f</td>
<td>frequency</td>
</tr>
<tr>
<td>h</td>
<td>channel height</td>
</tr>
<tr>
<td>l_{e}</td>
<td>entry length</td>
</tr>
<tr>
<td>m</td>
<td>mass</td>
</tr>
<tr>
<td>m_{i}</td>
<td>number of LPA in parallel in i^{th} stage</td>
</tr>
<tr>
<td>n_{i}</td>
<td>number of nozzles in parallel in i^{th} stage</td>
</tr>
<tr>
<td>S</td>
<td>Laplace transform operator</td>
</tr>
<tr>
<td>x</td>
<td>valve input in section 1</td>
</tr>
<tr>
<td>x_{l}</td>
<td>channel length in section 2</td>
</tr>
<tr>
<td>x_{d}</td>
<td>displacement in section 4</td>
</tr>
<tr>
<td>x_{ma}</td>
<td>half stroke, maximum travel</td>
</tr>
</tbody>
</table>
\(x_{sp} \) dimensional LPA supply nozzle-splitter distance

Greek Letter

\(\alpha \) servo valve parameter, defined in equation (18)

\(\beta \) bulk modulus, table 5

\(\gamma \) servo valve parameter, defined in equation (19)

\(\lambda \) viscosity-temperature coefficient

\(\lambda_0 \) defined in equation (24)

\(\mu \) absolute viscosity of oil

\(\nu \) kinematic viscosity of oil

\(\nu_0 \) kinematic viscosity at reference temperature

\(\xi \) damping ratio

\(\rho \) density

\(\sigma \) aspect ratio

\(\sigma_c \) channel aspect ratio, \(h/b \)

\(\sigma_i \) aspect ratio of \(i^{th} \) stage

\(\tau \) total time delay of fluidic servo

\(\tau_c \) defined in equation (34)

\(\tau_q \) 1st order time constant of \(G(q) \)

\(\tau_s \) time delay of summer

\(\tau_V \) time delay of servo valve

\(\omega_n \) natural frequency

Subscripts

\(\text{tr.} \) transition

\(90^\circ \) 90° phase shift

76
DISTRIBUTION (Cont'd)

COMMANDER
US ARMY MOBILITY EQUIPMENT R&D CENTER
ATTN TECHNICAL LIBRARY (VAULT)
ATTN DRDME-EM, R. N. WARE
FT BELVOIR, VA 22060

COMMANDER
US ARMY ARABCOM
ATTN SARPA-TS-S #59
ATTN DRDAR-LCN-C, A. E. SCHMIDLIN
ATTN DRDAR-LCN-E, J. CONNORS
ATTN DRDAR-SCF-IC, V. BAUMBARTH
ATTN PFM-DPM (TAGLARINO)
DOVER, NJ 07801

COMMANDER
WATERVLIET ARSENAL
ATTN SARPN-RDT-L
ATTN DRDAR-LCB-RA, R. RACICOT
WATERVLIET ARSENAL, NY 12189

COMMANDER
US ARMY TANK AUTOMOTIVE COMMAND
ARMOR & COMP DIV, DRDTA-RKT
LOG 215
ATTN M. WHITMORE
WARREN, MI 48090

COMMANDER
ATTN STEM-AD-L, TECHNICAL LIBRARY
WHITE SANDS MISSILE RANGE, NM 88002

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
USA ERDCOM
ATTN DELAS-AS (HOLT)
ATTN DELAS-AS-T (R. RUBIO)
WHITE SANDS MISSILE RANGE, NM 88002

OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
ATTN STANLEY W. DOROFF, CODE 438
ATTN D. S. SIEGEL, CODE 211
ARLINGTON, VA 22217

DEPARTMENT OF THE NAVY
R&D PLANS DIVISION
ROOM 50760, PENTAGON
ATTN BEAU R. PETRIE, JR.
OP-987P4
WASHINGTON, DC 20350

COMMANDANT
US NAVAL POSTGRADUATE SCHOOL
DEPARTMENT OF MECHANICAL ENGINEERING
ATTN CODE 69 Nn(NUNN)
MONTEREY, CA 93940

COMMANDER
NAVAL AIR DEVELOPMENT CENTER
ATTN R. MCGIBONEY, 60134

COMMANDER
NAVAL AIR DEVELOPMENT CENTER (Cont'd)
ATTN CODE 8134, LOIS GUSE
ATTN D. KEYSER, 60134
WARMINSTER, PA 18974

COMMANDING OFFICER
NAVAL AIR ENGINEERING CENTER
ATTN ESID, CODE 9314, HAROLD OTT
LAKEHURST, NY 08733

NAVAL AIR SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
ATTN CODE AIR-5162C, J. BURNS
ATTN CODE AIR-5143J, D. HOUCK
WASHINGTON, DC 20361

COMMANDER
PACIFIC MISSILE TEST CENTER
ATTN CODE 3123, ABE J. GARRETT
ATTN CODE 1243, A. ANDERSON
POINT MUGU, CA 93042

COMMANDER
NAVAL SHIP ENGINEERING CENTER
PHILADELPHIA DIVISION
ATTN CODE 6772
PHILADELPHIA, PA 19112

COMMANDER
NAVAL SURFACE WEAPONS CENTER
ATTN CODE 413, CLAYTON MCKINTRA
WHITE OAK, MD 20910

COMMANDER
NAVAL ORDNANCE STATION
ATTN CODE 5123C, K. ENGLANDER
INDIANHEAD, MD 20640

NAVAL SHIP RES & DEV CENTER
CODE 1619, K. READER
BETHESDA, MD 20084

NAVAL RESEARCH LABORATORY
ATTN S. SEARLES, 117 BG A68
WASHINGTON, DC 20375

NAVAL SEA SYSTEMS COMMAND
SEA05R31
ATTN J. H. HARRISON
WASHINGTON, DC 20362

COMMANDER
NAVAL WEAPONS CENTER
ATTN CODE 533, LIBRARY DIVISION
ATTN CODE 3636, C. BURMEISTER
CHINA LAKE, CA 93555

78
DISTRIBUTION (Cont'd)

<table>
<thead>
<tr>
<th>NASA SCIENTIFIC & TECH INFO FACILITY</th>
<th>FRANKLIN INSTITUTE OF THE STATE OF PENNSYLVANIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO BOX 8657</td>
<td>ATTN KA-CHUNG TSEU, ELEC ENGR DIV</td>
</tr>
<tr>
<td>ATTN ACQUISITIONS BRANCH</td>
<td>ATTN C. A. BELSTERLING</td>
</tr>
<tr>
<td>BALTIMORE/WASHINGTON INTERNATIONAL</td>
<td>20TH STREET & PARKWAY</td>
</tr>
<tr>
<td>AIRPORT, MD 21240</td>
<td>PHILADELPHIA, PA 19103</td>
</tr>
<tr>
<td>UNIVERSITY OF ALABAMA</td>
<td></td>
</tr>
<tr>
<td>CIVIL & MINERAL ENGINEERING DEPT</td>
<td></td>
</tr>
<tr>
<td>PO BOX 1468</td>
<td></td>
</tr>
<tr>
<td>ATTN HAROLD R. HENRY</td>
<td></td>
</tr>
<tr>
<td>UNIVERSITY, AL 35486</td>
<td></td>
</tr>
<tr>
<td>UNIVERSITY OF ARKANSAS</td>
<td></td>
</tr>
<tr>
<td>TECHNOLOGY CAMPUS</td>
<td></td>
</tr>
<tr>
<td>PO BOX 3017</td>
<td></td>
</tr>
<tr>
<td>ATTN PAUL C. MCLEOD</td>
<td></td>
</tr>
<tr>
<td>LITTLE ROCK, AR 72203</td>
<td></td>
</tr>
<tr>
<td>UNIVERSITY OF ARKANSAS</td>
<td></td>
</tr>
<tr>
<td>MECHANICAL ENGINEERING</td>
<td></td>
</tr>
<tr>
<td>ATTN JACK H. COLE, ASSOC. PROF.</td>
<td></td>
</tr>
<tr>
<td>FAYETTEVILLE, AR 72701</td>
<td></td>
</tr>
<tr>
<td>CARNEGIE-MELLON UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td>SCHENLEY PARK</td>
<td></td>
</tr>
<tr>
<td>ATTN PROF. W. T. ROULEAU, MECH ENGR DEPT</td>
<td></td>
</tr>
<tr>
<td>PITTSBURGH, PA 15213</td>
<td></td>
</tr>
<tr>
<td>CASE WESTERN RESERVE UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td>ATTN PROF. P. A. ORNER</td>
<td></td>
</tr>
<tr>
<td>ATTN PROF. B. HORTON</td>
<td></td>
</tr>
<tr>
<td>UNIVERSITY CIRCLE</td>
<td></td>
</tr>
<tr>
<td>CLEVELAND, OH 44106</td>
<td></td>
</tr>
<tr>
<td>THE CITY COLLEGE OF THE CITY</td>
<td></td>
</tr>
<tr>
<td>UNIVERSITY OF NY</td>
<td></td>
</tr>
<tr>
<td>DEPT OF MECH ENGR</td>
<td></td>
</tr>
<tr>
<td>ATTN PROF. L. JIJI</td>
<td></td>
</tr>
<tr>
<td>ATTN PROF. G. LOWEN</td>
<td></td>
</tr>
<tr>
<td>139TH ST. AT CONVENT AVE</td>
<td></td>
</tr>
<tr>
<td>NEW YORK, NY 10031</td>
<td></td>
</tr>
<tr>
<td>CLEVELAND STATE UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td>PENN COLLEGE OF ENGINEERING</td>
<td></td>
</tr>
<tr>
<td>ATTN PROF. R. COMPARIN</td>
<td></td>
</tr>
<tr>
<td>CLEVELAND, OH 44115</td>
<td></td>
</tr>
<tr>
<td>DUKE UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td>COLLEGE OF ENGINEERING</td>
<td></td>
</tr>
<tr>
<td>ATTN C. M. HARMAN</td>
<td></td>
</tr>
<tr>
<td>DURHAM, NC 27706</td>
<td></td>
</tr>
<tr>
<td>ENGINEERING SOCIETIES LIBRARY</td>
<td></td>
</tr>
<tr>
<td>ATTN HOWARD GORDON</td>
<td></td>
</tr>
<tr>
<td>ATTN ACQUISITIONS DEPARTMENT</td>
<td></td>
</tr>
<tr>
<td>345 EAST 47TH STREET, NEW YORK, NY 10017</td>
<td></td>
</tr>
<tr>
<td>HUGHES HELICOPTERS</td>
<td></td>
</tr>
<tr>
<td>DIVISION OF SUMMA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>CENTINELA & TEALE STREETS</td>
<td></td>
</tr>
<tr>
<td>ATTN LIBRARY 2/T2124</td>
<td></td>
</tr>
<tr>
<td>CULVER CITY, CA 90230</td>
<td></td>
</tr>
<tr>
<td>IIT RESEARCH INSTITUTE</td>
<td></td>
</tr>
<tr>
<td>ATTN K. E. MCKEE</td>
<td></td>
</tr>
<tr>
<td>10 WEST 35TH STREET</td>
<td></td>
</tr>
<tr>
<td>CHICAGO, IL 60616</td>
<td></td>
</tr>
<tr>
<td>JET PROPULSION LABORATORY</td>
<td></td>
</tr>
<tr>
<td>ATTN JOHN V. WALSH, MS 125-138</td>
<td></td>
</tr>
<tr>
<td>4800 OAK GROVE DRIVE</td>
<td></td>
</tr>
<tr>
<td>PASADENA, CA 91103</td>
<td></td>
</tr>
<tr>
<td>JOHNS HOPKINS UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td>APPLIED PHYSICS LABORATORIES</td>
<td></td>
</tr>
<tr>
<td>ATTN MAYNARD HILL</td>
<td></td>
</tr>
<tr>
<td>ATTN THOMAS RANKIN</td>
<td></td>
</tr>
<tr>
<td>ATTN JOSEPH WALL</td>
<td></td>
</tr>
<tr>
<td>LAUREL, MD 20810</td>
<td></td>
</tr>
<tr>
<td>LEHIGH UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td>DEPARTMENT OF MECHANICAL ENGINEERING</td>
<td></td>
</tr>
<tr>
<td>ATTN PROF. FORBES T. BROWN</td>
<td></td>
</tr>
<tr>
<td>BETHLEHEM, PA 18015</td>
<td></td>
</tr>
<tr>
<td>LINDA HALL LIBRARY</td>
<td></td>
</tr>
<tr>
<td>ATTN DOCUMENTS DIVISION</td>
<td></td>
</tr>
<tr>
<td>5109 CHERRY STREET</td>
<td></td>
</tr>
<tr>
<td>KANSAS CITY, MO 64110</td>
<td></td>
</tr>
<tr>
<td>LOS ALAMOS SCIENTIFIC LAB</td>
<td></td>
</tr>
<tr>
<td>ATTN FRANK FINCH, MS 178</td>
<td></td>
</tr>
<tr>
<td>LOS ALAMOS, NM 87545</td>
<td></td>
</tr>
<tr>
<td>MASSACHUSETTS INSTITUTE OF TECHNOLOGY</td>
<td></td>
</tr>
<tr>
<td>ATTN ENGINEERING TECHNICAL REPORTS</td>
<td></td>
</tr>
<tr>
<td>RM 10-408</td>
<td></td>
</tr>
<tr>
<td>ATTN DAVID WORLEY, MECH ENGR DEPT</td>
<td></td>
</tr>
<tr>
<td>RM 3-146</td>
<td></td>
</tr>
<tr>
<td>77 MASSACHUSETTS AVENUE</td>
<td></td>
</tr>
<tr>
<td>CAMBRIDGE, MA 02139</td>
<td></td>
</tr>
<tr>
<td>MICHIGAN TECHNOLOGICAL UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td>LIBRARY, DOCUMENTS DIVISION</td>
<td></td>
</tr>
<tr>
<td>ATTN J. HAWTHORNE</td>
<td></td>
</tr>
<tr>
<td>HOUGHTON, MI 49931</td>
<td></td>
</tr>
</tbody>
</table>
DISTRIBUTION (Cont'd)

UNIVERSITY OF MISSISSIPPI
ATTN JOHN A. FOX
201 CARRIER HALL, DEPT OF MECH ENGR
UNIVERSITY, MS 38677

MISSISSIPPI STATE UNIVERSITY
DRAGME NE
ATTN C. J. BELL, MECH ENG DEPT
STATE COLLEGE, MS 39762

MISSISSIPPI STATE UNIVERSITY
DEPT OF AEROSPACE ENGINEERING
ATTN DAVID MURPHREE
MISSISSIPPI STATE, MS 39762

UNIVERSITY OF NEBRASKA LIBRARIES
ACQUISITIONS DEPT, SERIALS SECTIONS
ATTN ALAN GOULD
LINCOLN, NE 68508

UNIVERSITY OF NEW HAMPSHIRE
MECH ENGR DEPT, KINGSBURY HALL
ATTN PROF. CHARLES TAFT
DURHAM, NH 03824

UNIVERSITY OF N. CAROLINA
INSTITUTE OF MARINE BIOMEDICAL RESEARCH
ATTN MICHAEL E. SHEEHAN
WILMINGTON, NC 28401

NEW JERSEY INSTITUTE OF TECHNOLOGY
DEPARTMENT OF MECHANICAL ENGINEERING
ATTN R. Y. CHEN
323 HIGH STREET
NEWARK, NJ 07102

OHIO STATE UNIVERSITY LIBRARIES
SERIAL DIVISION, MAIN LIBRARY
1858 NEIL AVENUE
COLUMBUS, OH 43210

OKLAHOMA STATE UNIVERSITY
SCHOOL OF MECH & AEROSPACE ENGR
ATTN PROF. KARL H. REID
STILLWATER, OK 74074

MIAMI UNIVERSITY
DEPT OF ENG TECH
SCHOOL OF APPLIED SCIENCE
ATTN PROF. S. B. FRIEDMAN
OXFORD, OH 45056

PENNSYLVANIA STATE UNIVERSITY
ATTN J. L. SHEARER
215 MECHANICAL ENGINEERING BUILDING
UNIVERSITY PARK, PA 16802

PENNSYLVANIA STATE UNIVERSITY
ENGINEERING LIBRARY
ATTN M. BENNETT, ENGINEERING LIBRARIAN
201 HAMMOND BLDG
UNIVERSITY PARK, PA 16802

PORTLAND STATE UNIVERSITY
DEPT OF ENGINEERING & APPLIED SCIENCE
PO BOX 751
ATTN PROF. P. I. CHEN
PORTLAND, OR 97207

PURDUE UNIVERSITY
SCHOOL OF MECHANICAL ENGINEERING
ATTN PROF. VICTOR W. GOLDSCHMIDT
ATTN PROF. ALAN T. MCDONALD
LAFAYETTE, IN 47907

ROCK VALLEY COLLEGE
ATTN KEN HARTON
3301 N. MULFORD ROAD
ROCKFORD, IL 61101

RUTGERS UNIVERSITY
LIBRARY OF SCIENCE & MEDICINE
ATTN GOVERNMENT DOCUMENTS DEPT
SANDRA R. LIVINGSTON
NEW BRUNSWICK, NJ 08903

SYRACUSE UNIVERSITY
DEPT OF MECH & AEROSPACE ENGINEERING
ATTN PROF. D. S. DOSAMJNH
139 E. A. LINK HALL
SYRACUSE, NY 13210

UNIVERSITY OF TENNESSEE
DEPT OF MECHANICAL ENGINEERING
ATTN PROF. G. V. SMITH
KNOXVILLE, TN 37916

UNIVERSITY OF TENNESSEE SPACE INST
ENERGY CONVERSION DIVISION
ATTN MARY ANN SCOTT
TULLAHOMA, TN 37383

UNIVERSITY OF TEXAS AT AUSTIN
DEPT OF MECHANICAL ENGINEERING
ATTN A. J. HEALEY
AUSTIN, TX 78712

THE UNIVERSITY OF TEXAS AT ARLINGTON
MECHANICAL ENGINEERING DEPARTMENT
ATTN ROBERT L. WOODS
ARLINGTON, TX 76019

TULANE UNIVERSITY
DEPT OF MECHANICAL ENGINEERING
ATTN H. F. HUBECKE
NEW ORLEANS, LA 70118

81
DISTRIBUTION (Cont'd)

UNION COLLEGE
MECHANICAL ENGINEERING
ATTN ASSOC. PROF. W. C. AUBREY
MECH ENGR DEPT, STEINMETZ HALL
SCHENECTADY, NY 12308

UNIVERSITY OF VIRGINIA
DEPT OF MECH & AEROSPACE ENGR
ATTN DAVID LEWIS
CHARLOTTESVILLE, VA 22090

VIRGINIA POLYTECHNIC INSTITUTE
MECHANICAL ENGINEERING DEPARTMENT
ATTN PROF. H. MOSES
BLACKSBURG, VA 24061

WASHINGTON UNIVERSITY
SCHOOL OF ENGINEERING
PO BOX 1185
ATTN W. M. SWANSON
ST LOUIS, MO 63130

WEST VIRGINIA UNIVERSITY
MECHANICAL ENGINEERING DEPARTMENT
ATTN RICHARD A. BAJURA
MORGANTOWN, WV 26505

WICHITA STATE UNIVERSITY
ATTN DEPT AERO ENGR, E. J. ROGERS
WICHITA, KS 67208

UNIVERSITY OF WISCONSIN
MECHANICAL ENGINEERING DEPARTMENT
ATTN FEDERAL REPORTS CENTER
ATTN LORNAH M. BEACHER, DIR
DESIGN ENGINEERING LABORATORIES
1513 UNIVERSITY AVENUE
MADISON, WI 53706

WORCESTER POLYTECHNIC INSTITUTE
ATTN GEORGE C. GORDON LIBRARY (TR)
ATTN TECHNICAL REPORTS
WORCESTER, MA 01609

AVCO SYSTEMS DIVISION
ATTN W. K. CLARK
201 LOWELL STREET
WILMINGTON, MA 01887

BARNES ENGINEERING CO
ATTN FRED SWEIBAUN
30 COMMERCE ROAD
STAMFORD, CT 06904

BELL HELICOPTER COMPANY
PO BOX 482
ATTN R. D. YEAR
FT WORTH, TX 76101

BENDIX CORPORATION
ELECTRODYNAMICS DIVISION
ATTN D. COOPER
11600 SHERMAN WAY
N. HOLLYWOOD, CA 90405

BENDIX CORPORATION
RESEARCH LABORATORIES DIV
BENDIX CENTER
ATTN C. J. AHERN
ATTN LAM TAPLIN
SOUTHFIELD, MI 48075

BORING COMPANY, THE
PO BOX 3707
ATTN HENRIK STRAUB
SEATTLE, WA 98124

BOWLES FLUIDICS CORPORATION
ATTN VIC EPRES/ENG
9347 FRASER AVENUE
SILVER SPRING, MD 20910

R. E. BOWLES
2105 SONDRA COURT
SILVER SPRING, MD 20904

CHAMBERLAIN MANUFACTURING CORP
EAST 4TH & ESTHER STS
PO BOX 2545
WATERLOO, IA 50705

CONTINENTAL CAN COMPANY
TECH CENTER
ATTN P. A. BAUER
1350 W. 76TH STREET
CHICAGO, IL 60620

CONTROL SYSTEMS INNOVATION
ATTN N. P. MACIA
517 EAST ORION STREET
TEMPE, AZ 85283

CORDIS CORPORATION
PO BOX 426
ATTN STEPHEN F. VADAS, K-2
MIAMI, FL 33137

CORNING GLASS WORKS
FLUIDIC PRODUCTS
ATTN R. H. BELLMAN
HOUGHTON PARK, B-2
CORNING, NY 14830

CHRYSLER CORPORATION
PO BOX 118
CIMS-418-33-22
ATTN L. GAU
DETROIT, MI 48231
DISTRIBUTION (Cont'd)

JOHN DEERE PRODUCT ENGINEERING CENTER
ATTN V. S. KUMAR
WATERLOO, IA 50704

ELECTRIC POWER RESEARCH INSTITUTE
PO BOX 10412
ATTN MS. M. ANGWIN,
P. N. GEOTHERMAL ENERGY
3412 JUiller AVE
PALO ALTO, CA 94303

FLUIDICS QUARTERLY
PO BOX 2989
ATTN D. H. TARUMOTO
STANFORD, CA 94305

FOXBORO COMPANY
CORPORATE
RESEARCH DIV
ATTN JAMES VIGNOS
ATTN J. DECARLO
ATTN JOHN CHANG
ATTN TOM KEGEL
38 NEHEMS AVE
FOXBORO, MA 02035

GARRETT PNEUMATIC SYSTEMS DIVISION
PO BOX 5217
ATTN GARY FREDERICK
ATTN TREVOR SUTTON
ATTN TOM TIPPETTS
ATTN C. APBOTT
111 SOUTH 34TH STREET
PHOENIX, AZ 85010

GENERAL ELECTRIC COMPANY
SPACE/RES DIVISIONS
PO BOX 8555
ATTN MEK LITERARIES, LARRY CHASEN
PHILADELPHIA, PA 19101

GENERAL ELECTRIC COMPANY
KNOLLS NUCLEAR POWER LABORATORY
ATTN D. KROMMENDIEK
SCHENECTADY, N.Y. 12301

GENERAL MOTORS CORPORATION
DELCO ELECTRONICS DIV
MANFRED C. WRIGHT
NEW COMMERCIAL PRODUCTS
PO BOX 1104
ATTN R. E. SPARKS
KOKOMO, IN 46901

GRUMMAN AEROSPACE CORPORATION
TECHNICAL INFORMATION CENTER
ATTN C. W. TURNER, DOCUMENTS
LIBRARIAN
ATTN TED SORENSEN, MS B1535

GRUMMAN AEROSPACE CORPORATION (Cont'd)
ATTN JACK LEONARD, MS B1535
SOUTH OYSTER BAY ROAD
BETHPAGE, L.I., NY 11714

HAMILTON STANDARD
DIVISION OF UNITED AIRCRAFT CORPORATION
ATTN PHILIP BARNES
WINDSOR LOCKS, CT 06096

HONEYWELL, INC
ATTN J. HEDDEN
ATTN W. POSINGIES
1625 ZARTMAN AVE
MINNEAPOLIS, MN 55413

HONEYWELL, INC
ATTN RICHARD STEWART, MS 200
1100 VIRGINIA DRIVE
FT WASHINGTON, PA 19034

JOHNSON CONTROLS, INC
ATTN WARREN A. LIDERMAN
ATTN GEORGE JANU
507 E. MICHIGAN
MILWAUKEE, WI 53201

LEEDS & NORTHRUP CO
ATTN ERNEST VAN VALKENBURG
DICKERSON ROAD
NORTH WALES, PA 19454

MOORE PRODUCTS COMPANY
ATTN R. ADAMS
SPRING HOUSE, PA 19477

MARTIN MARIETTA CORPORATION
AEROSPACE DIVISION
ATTN R. K. BROADSON, MP 326
PO BOX 5837
ORLANDO, FL 32805

MCDONNELL AIRCRAFT COMPANY
GUIDANCE & CONTROL MECHANICS DIVISION
ATTN LOYAL GUENTHER
ST LOUIS, MO 63166

MCDONNELL DOUGLAS ASTRONAUTICS CO
PROPULSION DEPARTMENT
ATTN V. E. HALOLULAKOS (J-3-226)
ATTN J. D. SCHWEIKLE (A3-226)
530. BOLSA AVENUE
HUNTINGTON BEACH, CA 92647

NATIONAL FLUID POWER ASSOC.
ATTN JOHN R. LUEKE
DIR O. T. TECH SERVICES
3333 NORTH MAYFAIR ROAD
MILWAUKEE, WI 53222

83
<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>City, State, Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEOS, INC</td>
<td>3711 AIR PARK RD</td>
<td>LINCOLN, NE 68524</td>
</tr>
<tr>
<td>SCIENCE & TECHNOLOGY ASSOCIATES, INC</td>
<td>ATTN DR. T. DRZEWIECKI</td>
<td>ARLINGTON, VA 22209</td>
</tr>
<tr>
<td>NORTHROP CORP, ELECTRONICS DIV</td>
<td>ATTN DESMOND NELSON, SENIOR ENGINEER ORGN C3133, W/C 2301 W. 120TH ST HAWTHORNE, CA 90250</td>
<td>SIKORSKY AIRCRAFT</td>
</tr>
<tr>
<td>PATSCENTER INTERNATIONAL</td>
<td>ATTN MR. JOHN CLINE 707 ALEXANDER ROAD PRINCETON, NJ 08540</td>
<td>STEIN ENGINEERING SERVICES, INC</td>
</tr>
<tr>
<td>PLESSEY AEROSPACE LTD</td>
<td>ATTN A. ROSENBERG 1700 OLD MEADOW ROAD MCLEAN, VA 22102</td>
<td>TRANS-TECH, INC</td>
</tr>
<tr>
<td>PROCON, INC</td>
<td>ATTN HERB MARCH OUP PLAZA DES PLAINES, IL 60016</td>
<td>TRITEC, INC</td>
</tr>
<tr>
<td>ROCKWELL INTERNATIONAL CORPORATION COLUMBUS AIRCRAFT DIVISION, PO BOX 1259 ATTN MARVIN SCHWEIGER</td>
<td>UNITED TECHNOLOGIES RESEARCH CENTER ATTN R. E. OLSON, MGR FLUID DYNAMICS LABORATORY 400 MAIN STREET E. HARTFORD, CT 06108</td>
<td>VOUGHT CORP</td>
</tr>
<tr>
<td>SANDIA LABORATORIES</td>
<td>ATTN WILLIAM R. LEUENBERGER, DIV 2323 ATTN JERRY HOOQ ATTN NED KELTNER ATTN ANTHONY VENERUSO, DIV 4742 ALBUQUERQUE, NM 87185</td>
<td>US ARMY ELECTRONICS RESEARCH & DEVELOPMENT COMMAND ATTN TECHNICAL DIRECTOR, DREDL-CT ATTN PUBLIC AFFAIRS OFFICE, DREDL-IN</td>
</tr>
<tr>
<td>SCIENCE APPLICATIONS, INC.</td>
<td>ATTN J. ISEMAN 8400 WESTPARK DR MCLEAN, VA 22102</td>
<td></td>
</tr>
</tbody>
</table>