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Preface

Methods employed when testing hypotheses concerning

populations must consider the possibility of correlation

existing among the variables that characterize the entity

being tested. Multivariate Analysis provides a method to

effectively deal with this correlation problem.

This report uses Multivariate Theory to derive the

sampling distributions of the likelihood ratio criteria

for two correlated variables and k populations. In this

endeavor I offer my deepest gratitude to my advisor,

Dr. B. N. Nagarsenker, not only for his guidance throughout

this project, but for teaching me the Multivariate Theory

upon which the entire thesis is based.

I would also like to thank my reader, Lt Col Richard

Kulp, whose advice and editing aided me greatly; Mr. Jerry

Petrak and the Engineering and Design Data Group, AFWAL/MLSE,

for supplying the experimental data and assisting in its

analysis; and my typist, Phyllis Reynolds, for her superb

job.

Finally, I want to express a special thanks to

my wife, Lois, for her dedication and support; and our

children, Robert, Daniel, and Cristina, who were a con-

stant blessing throughout the entire AFIT program.

-Arthur J. Sherwood
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Nomenclature

1. A : Matrix of sums of squares and sums of products

2. A' : Transpose of A

3. A- 1 : Inverse of A

4. IAI : Determinate of A

5. c.d.f. : Cumulative distribution function

6. E z Expectation Operator

7. exp z Exponent

8. log : Logarithm to the base e

9. MLE : Maximum Likelihood Estimate

10. p.d.f. : Probability density function

11. A > 0 : A is positive definite

12. tr : trace

13. 1g : mean of the gth population

14. xg  : sample mean of the gth population

15. Q : Parameter space of the null hypothesis

16. w : Parameter space of alternate hypothesis
th

17. E : Variance-covariance matrix of the g population-g
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Abstract

Let a random sample of size N be drawn from a

p-variate normal population Np( g , E ) g = (l,2,...,k).

In this thesis we consider the problem of testing the fol-

lowing hypotheses:

[i] H0 : 1= 12 Pk

-l -2 e -k

[ii) H = = Z 2 Zk ' The means can be any value

[iii] H2 : _I = _ =2 Pk given E 1 =Z = k

against the general alternatives.

Likelihood ratio criteria and their sampling dis-

tributions are derived for p = 2 and equal sample sizes.

From these distributions, tables of percentage points for

the three likelihood ratio criteria are computed.

A useful approximation is also obtained. The theo-

retical results are then applied to actual data.

vii
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ON THE DISTRIBUTION OF THE LIKELIHOOD RATIO

CRITERIA ASSOCIATED WITH K SAMPLES OF

TWO CORRELATED RANDOM VAR IABLEC

I. Introduction

Statistical techniques enable experimenters to

analyze the variation and covariation that exists between

the measured characteristic of observed events.' Analysts

seek to assign causes to this variation, test and compare

alternative hypothesis and express the results in terms of

a measure of probability. Some of these hypotheses are:

(1) Is the sample from a specified population? (2) Are the

k samples from a common but unspecified population? (3) Is

the population completely specified or only partly? (4) Do

several populations with different means have the same

standard deviations? (5) Are the variables being tested

correlated?

One approach, the Analysis of Variance, developed

by R. A. Fisher, is based on the assumption that the unex-

plained variation (residuals)-is normally independently

distributed and the populations have the same standard

deviation. The assumption that the standard deviations are

the same is not always true and, therefore, the results

17
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obtained could be misleading to the user of the information.

Multivariate a' lysis theory is well suited in this case,

specifically where two or more correlated variables are

involved.

Background

In early developments of hypothesis testing, the

fundamental hypothesis, H: Are the two samples X1 and X2,

from the same unknown normal population k, was treated by

Professor V. Romanovsky in his paper entitled "On Criteria

that Two Given Samples Belong to the Same Normal Population"

(Ref 14). Romanovsky approached the problem assuming the

hypothesis H to be true and derived the distribution func-

tion for his test criteria. He provided four alternative

criteria for testing his hypothesis H. These criteria are

as follows:

2
a (xl1 - x2 2

2 2

n I n 2
-x

= 2(1.2)
s2 2

= Xl "2 n1n2 (n1 + n2 - 2) (1.3)
V n s2 + n2 s2 (n + n2(1

2

, - *' "s~ ~ c ... ..... .. .-



2
S2 (1.4)

S 
1

Neyman and Pearson (Ref 11:201) point out that the

criterion a, pa, and t are not sensitive to differences in

population standard deviations. For example, the pairs of

samples may have s 1 and s 2 almost equal, whereas a second

pair, s 1 and s 2 could vary greatly, yet the value of t may

be the same in both cases. The criteria 0, does dis-

tinguish between the population standard deviations, but is

not sensitive to the difference between their means.

Because of the restriction on these criterion, further

research is necessary to derive a test statistic. The

test statistic should have the following properties: (1) be

able to distinguish between population standard deviations

and between their means, and (2) the test statistic should

be selected in such a manner that it will minimize the

danger of accepting a false hypothesis.

Neyman and Pearson use the likelihood ratio test to

derive a test statistic for one variable and two popula-

tions that satisfies the above requirements.

The Likelihood Ratio Criterion

of Neyman and Pearson

R. A. Fisher in the early 1920s proposed a general

method of estimation called the method of maximum likeli-

hood from which the likelihood ratio criteria for testing

3



hypotheses was developed. The method produced sufficient

estimates for the parameters whenever they existed and the

estimates are asymptotically, (n - c), minimum variance

unbiased estimators.

Now we will discuss the likelihood ratio criterion

of Neyman and Pearson.

Let the stochastically independent random variables

X and X2 be chosen from some normal populations k and k2

where the means and variances are any values. Then our
paaee pc l1 , l2 1 2 ~

parameter space , = (p 1 , P 2, where (-- < < CO),

(-- < P2 < -), (0 < El < -), (0 < E2 < -). We wish to test
1 2

the hypothesis H0 : 1 = P 2 7E1 = E2 against all alterna-
1 2

tives. Under H0 let w be such that (- - < p = P < M)

and (0 < Z1 = E2 < -). Let L(Q) and L(w) define the likeli-

hood function for Q and w respectively and L(6) and L(w)

be their maxima. Then Neyman and Pearson obtained the

likelihood ratio criteria for testing H0 in the form

(Ref 11:103):

H L() = sl[ n2

where n1 is the sample size for XI ,

n2 is the sample size for X2,

sI is the standard deviation for XI ,

s2 is the standard deviation for X2, and

4
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is the standard deviation obtained by combining
the n1 and n2 variables of the samples X1 andX2 •

Our criteria X H lies between 0 and 1. If our hypo-

thesis H0 is true we would expect the ratio of L(w) to L(Q)

to approach unity. The closer to unity the more confidence

we have that H0 is true. However, if XH approaches zero

we become more certain that the hypothesis H0 is false.

The nature of the hypothesis H0 allows us to

separate it into two hypotheses: (I) H1 : The samples come

from unknown populations with the same variance, but with

means having any value whatever; and (2) H2 : The means are

the same, assuring equal variances and normal populations.

If we use p and t from equations (1.2) and (1.3)

and the equation

(nls2 + n2) nlnSO n1+ n 2 (x 2) 2
(nI + n) (n + x 2

1 2 1 2

then XH can be represented as a function of Romanovsky's

criteria t and 0 from equations (1.3) and (1.4).

(n 1 + n2) n2  (n1 + n2 )

(nI + n2 ) 2 02 (nI + n 2) 2

1 2 1 2

2 (n+n 2 )
(l+ n + n2 _ 2) 2 (1.5)



From equation (1.5) Neyman and Pearson (Ref 11:104)

derived the likelihood function criteria for testing H1

and H . Thus, the likelihood of H1 is

(n I + n 2 ) n 2  (n 1 + n 2

H1 = (n1 + n2 )  2 e2 (nI+n 2 ) 2~(1 .6)

The likelihood of H2 is

2 (n1 + n2 )

XH t n 2  2) 2 (1.7)2 =1 +nl+2_2

Combining X and X the results are
H 1 X2

)>= A(1.8)
SH 1 XH2

From equation (1.5) it can be seen that XH obtains

its maximum value of unity when both 0 = 1 and t = 0, or
s 1 s 2 and xl = x AH will decrease towards zero when

a) 61 0 or s2 becomes small compared with sV
b) 0 -0 or s becomes small compared with s2 .

c) Itl - - or Ix1 - x21 increases compared with

2 2
1n1 2 1 +

v n +n 2  2 +

6



Thus, even if x = x2 or X = 1 we cannot accept

H if s I differs considerably from s2 . If sI = s 2 , (A =1)
0 12 21(H 1

then the populations are not the same if (xI - x2 ) were

large compared to V, which is the estimate based on the

sample variance of the standard error of the differences

of means.

Thus, the criterion XH = XHI is more crucial than

either X or XH taken separately. Therefore, our conclu-

sion is that A H is a reasonable criterion to use for mea-

suring the danger of accepting a false hypothesis.

To control the error of rejecting a true hypothesis,

it is necessary to determine the sampling distribution of

XH" The distributions are derived for X H, and X and an

approximation for X H in Neyman and Pearson's paper "On the

Problem of Two Samples" (Ref 11:106-109).

The extension of Romanovsky's work to k samples of

a single variable was undertaken by Neyman and Pearson's

article "On the Problem of k Samples" (Ref 12). The likeli-

hood function for XH XH2' and X1 were derived by general-

izing the two sample deviation. However, methods for

calculating the distribution of XH and A were not avail-

able at the time of the article. In this case, approximate

solutions of the problem were reached by use of the moment

coefficients of the X H's expressions.

7
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Objective

A further generalization of the problem of k

samples of two variables is treated by Pearson and Wilks

(Ref 13). Specifically, the problem treated is the case of

two correlated variables x and y which have a bivariate

normal distribution. The three hypotheses considered are:

1. The hypothesis H that the k populations are

identical.

2. The hypothesis H1 that the samples have come

from populations with the same set of variances and corre-

lations, but having means with any differing values what-

ever.

3. The hypothesis H 2that the samples are from

populations in which the means are equal, when it is

assumed that the variances and covariances are equal.

Testing these hypotheses are of great interest to

industry; however, the distribution of the test statistics

concerning these three hypotheses are not known, and so the

problem of finding percentage points of these criteria has

thus become difficult. The aim of this thesis is to:

1. Derive the sampling distribution of the test

statistic for each of the three hypotheses.

2. Prepare tables of percentage points for

a= .01, .05 and for N = 3 to 100, k = 2(1)6.

3. Derive an asymptotic expansion of the distribu-

tions which are valid for moderately large values of N.

8
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4. Illustrate the results obtained in this thesis

by applying it to actual data.

Chapters II, 111, and IV provide preliminary infor-

mation necessary for the derivation of the sampling dis-

tributions of the three hypotheses. In Chapter V the

actual derivation of the sampling distribution is under-

taken for each hypothesis from which tables of significant

levels are obtained. Chapter VI gives an approximation

method valid for moderate values of N. Chapter VII uses

actual data submitted by the Engineering Division of the

Air Force Materiels Laboratory, Wright-Patterson AFB, Ohio,

to demonstrate the practical application of the theoretical

results.

9
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II. Statistical Preliminaries

Multivariate Normal
Distribution

Let the vector x have p-components, i.e., x =

(XlX2, ...,X p), then x has a p-variate non-singular normal

distribution if its p.d.f. is

f(x) = P exp (x I (x - )} (2.1)
R 22

(2TO2 r) I

p and 7 are the parameters of the distribution;

p is a column vector of elements Vi (i = 1,2 ,...,p) and

_ = [a ij] is a positive definite symmetric matrix of order

p. The p.d.f. (2.1) will be denoted by N (x lJ_,Z) and the

notation x - N (xii,Z) will be used to indicate that the

variates x have a p-variate non-singular normal distribu-

tion with parameters p and E. When E is a diagonal matrix,

then f(x) is the product of the p.d.f.s' of p univariate

normal variates, showing that the x's are independently dis-

tributed in that case.

When p = 2, f(x) has the following bivariate normal

p.d.f.

tr-

f(x) = 1 {- - (x- I)' Z_ (x-

..oexp

10



Let x be a random sample of size N from a distribu-

tion with p.d.f. N P(xlp,). The vector x can be repre-

sented as the p by N matrix

X11X12 -. XIN

X21 X 2.. X2N

Xp
X X Xp
L p l p 2 " " "

The columns of x are independently and identically

distributed as Np (xp,Z). Thus the p.d.f. of x is the

product of the p.d.f.'s of the N columns of x.

ftx) = I1x - _ x-P1 exp {- -l(x- i) (x - £'
2 2

(27) 2 IZ (2.2)

where tr is the trace of a matrix.

The exponential term of this p.d.f. is obtained by

using the following property concerning the trace of the

product of matrices.

Let P, Q, and R be matrices such that the product

PQR exist. Then

tr(PQR) = tr(RPQ) = tr(QRP) = tr(QRP)

Specifically, since (x- i)', _ (x- y) are

matrices whose product exists,

11t



tr(x -i)' (x -) : tr(x - P) (x - P)

tr _ (x - )(x - I_)' (2.3)

Maximum Likelihood Estimates

(MLE) of P_ and Z

Let x be a random sample of N observations, where

x N p(xKp,_), N > p. The likelihood function of x is

pNLN __-__(N

L = N exp{- E (x X2 2 --a

(2'n) 2 I I (2.4)

To find the MLE of p and E it is necessary to

maximize the likelihood function L. Since the likelihood

function L and its logarithm are maximized for the same

value we will consider log L.

log L 2 -pN log(27) + -N log_

1 N I-~ (.x_ - t) _ ( - IA.) (2.5)

The following properties will enable us to rewrite

equation (2.5) in a form which is easily maximized.

Definition 1: Let the sample mean be defined

as:

12
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N

NE x (2.6)

N aN ap
E x

L =1 p  L

Definition 2: The matrix of sums of squares and

cross products of deviations about the mean is defined as

A where

N
A= E (xa- x) (x, - x)' (2.7)

a=1

Lemma 2.1: Let x,, x 2 , ... xN be N p-component

vectors and let x be defined by definition 1. Then for any

vector b

N N
S(x- b)(x-b)' = E (x - x)(x - x)'

a=l a=i "

+ N(x - b)(x -b)' (2.8)

proof: (Ref 1:46)

Lemma 2.2: Let f(C) = N log JCj - tr CD where C =

(c i) and D =(d ij) are both positive semi-definite. Then

the maximum of f(C) is taken at

C = N D

proof: (Ref 1:47)

13

- 7- -1-



Now, by using the property tr(a) = a where a is a

scaler and applying equation (2.3), we can rewrite equation

(2.5) in the following form:

N N
E (x - ) (x - _) = tr E (x - )(x-1)'

ci=l a _c=l a

(2.9)

By using lemma 2.1 and setting b = (2.8) becomes

= tr E 1A + trN(x - I)' _- (x - _)

Thus

N -1
E (x - Z9' (x -) =tr I A

a=l

+ tr N(xa - 1)' _ (x - ) (2.10)

Now substituting the RHS of (2.10) in equation (2.5)

gives us a form that is easy to maximize.

1 1 -l1 l _-z
log L = pN log(27r) + hlog - Atr A

(x ( -(x (2.11)

The first term of (2.11) is a constant and is there-

fore already at its maximum value. The last term is at

its maximum value of zero when p = x. Since the remaining

terms are not functions of p, the MLE of p denoted p is x.

To find the MLE for E notice that the second and

third term of (2.11) are functions of E-I alone and

14



therefore can be maximized by applying lemma 2.2, putting
-1

C_ for C and A for D. Thus, the maximum of log L occurs

when

r-1 1 A-1
Z ~NA

To summarize, the MLE for V and Z are

A
(2.12)

The Wishart Distribution

Let x = xI xE2 , ..., xN ) be a random sample of

size N from N (x 10, ). The Wishart matrix A is definedp -

as the p x p symmetric matrix of sums of squares and sums

of products of the sample observations.

Let
NA = E (x a- x) (x *a- x)'
a=i

Then it is known that A has the following p.d.f. (known as

the Wishart Distribution with n = N - 1 degrees of freedom).

(Ref 1:54)

f(A) = K(E, n)lAI 2 - 2 exp ( tr E-1 A- (2.13)

where A > 0 (i.e., A is positive definite) and

rT) r = 4 1P ((n + 1 - i))p 2 2

15



K(En) np n

2 F 2)I I2

The distribution of A is W (AIL,n) where n represents

the degrees of freedom. note: When p = 1, the Wishart dis-

tribution is a Chi-Square with n degrees of freedom.

Theorems Concerning the

Wishart Distribution

The following theorems are necessary in order to

derive the results in later chapters.

Theorem 2.1: If A IA 2 , . . .,A are matrices, each

independently distributed as W(A I,n ) then

g
A E A.
- i=l -

g
is distributed W(AIE, E n i )

i=l

proof: (Ref 1:162)

Theorem 2.2: Let A and T both be p by p positive

matrices, then

_ (p +1)1

A N 2 exp tr T- 1 A dA K-1 T,00

A>0

16
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where

K (T,a) = T

2P2,Fo
2 p

and

PIP - 1) +l1

Si=2

This result follows directly from the Wishart

p.d.f. since multiplying both sides by K(T,a) gives the

Wishartp.d.f. Thus, if we denote the function 1nder the

integral as f(A) we have

K(T,a) f f(A) dA = 1
A>0

Theorem 2.3: Let A ~ W (AIE,n) then

E(IAIh) = K(,n)
K(_,n+2h)

where K(_,n) is defined as in theorem 2.2.

Proof:

E(Ah) = fA hf(A)dA= fAhK,n)

A>0 A>0

JAI(N 2 R L) p (.1tr Z 'A dA
2- 2ex - -tr

= K(_,n) IAI 2 2 exp tr F-IA dA

A>O2

17
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K(Z~n)K K::_,+ nh+ 2h)

Q.E.D.

Theorem z. 4 : Let xXX 2 1 ... ,XN (N > p + 1) be

independently distributed as N (xK',Z). Then the distribu-p -

tion of

N
A Z (x - x)(x - X)'

cc=,

is W(AP_,n) where n = N - 1.

Proof: (Ref 1:59)

Maximum Likelihood Ratio Test

To test a composite hypothesis against an L_'terna-

tive hypothesis, the likelihood ratic test is used. Let

x be independently distributed as nI a the param-

eter space 2 = (P,Z). Let w be a subset of £ restricted

under any null hypothesis, i.e. = (i,Z). From the method

of MLE equation (2.4), if x - N (xIL,Z) the likelihood

function for jj and Y c §. is

L N exp - E(x X 1) (l P)
p2=N - )  - (x - -

(27r) 2 (2.14)

18
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Suppose w C 0 where j0 E Li, then the likelihood

function for w is

1 exp{- 1 N E (x
L~w = N N e-p 2-a

(2 7r 2 2 (2.15)

Denote the maximum of L(Q) in Q by L(O) and denote

the maximum L(w) in w by L(w). Then the likelihood ratio

criteria is

max L(w) L
(2.16)

max L(Q) L()

The statistic X will be our criteria for hypotheses

testing. As explained earlier the value of X is between

0 and 1, and a small ratio of X leads to rejecting our

hypothesis where a ratio near unity gives strong support

for rot rejecting.

The subject of the next chapter is to determine

the criterion X for the three separate hypotheses.

19
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III. Derivation of the Criteria

Let x (g = 1,2,...,k) be each independent and-q

identically distributed as Np (x _g,Z ). In this chapter

we shall derive the likelihood ratio criteria for the fol-

lowing hypotheses:

[i] H0 : 1 2 k

- L2, 'k...=

(3.1)

[ii] HI: -i = -'2 . . . -k

1 1 2k =

H = 2, = _k given E- = -2' "

Let x g be a random sample of size N from the g th
-- g

population, then using definition (2.6), the mean xg of the
th

g population is denoted by

N
xg Z xg

Ng U=i O

Let the combined mean x of all the sample populations be

denoted by

k N k Nx
x E k N= E

g=1 kN g=l
g=l g

20
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where

k
N = E N

g=l g

Let A denote the matrix of sums of squares and-g

products for the gth population, as defined in (2.7); i.e.,

N
g

A = Z (x g - - xg ) ' g = 1,2,...,k (3.2)
-g a=I a -

Likelihood Estimates of

19 and E--g

The k populations are independent; therefore, the

likelihood function of all the sample observations is the

product of the separate likelihood functions; so general-

izing the results in Chapter II to k populations the MLE

for g and E become

A
^g=g =
-- - -g Ng

The likelihood function for our parameter space

( l P2 k'E-1 E k) where (- < <'
- ' - _'' ' -1' -2' -k' '- < o

and (0 < Zi < i), i = 1,2,...,k is

1 k
k exp - E tr Ei ApN N 2 9 -
k _ q g=l

II (271) 2 1_1 2
g=l

k
X N (XIj - !) , ( _g= l g  --- 9

21
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Taking the logarithm of L( 2) gives

k k N
log L(Q) E 2 (- log (27) + E -2 logIF-'

g=l 2 g=1 2

1 k -i
- E tr 2 A

g=l

~1 k
2 tr 2 N -g)E (-  - Pg9)

g=l g  --

k -1
Setting 2 N = N and bringing the exponent of E in front

g=l g -g

of the summation gives

log L(Q) = pN log(2r) 1 k

2g=l A

k -
- - E tr E A

1 k gg -

tr g), -( (
g=l -

The last term on the RHS has its maximum value when

P = x and thus substituting this, brings the term to zero.

Also, substituting the MLE of 2 in equation (3.3) gives-g

the maximum value of L(Q). Thus

22
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k Alog L(Q) 2- l og(7T Z N_ log NI

k
E tr(N A )A

g=l g -g

k
The last term becomes N tr I. Since tr I1= pan

zg1 g

k
E N = N we have

g=l g

N
pN k A -a

log L(O) = log(2n) 2 + E logI 2Nq

g=l g

+ log {exp(-p)}

= log(2T) 2 log k gq1

g=l g

+ log {exp(- N)}

2

N

2 k A 2
= log [(2' 2 [INSI exp-N

g=lN g 
2

-N k - N
2 A - N

(i) = (27T) 2 1 g, 2 exp(-p) (3.4)g=l N2

Derivation of Criteria for H0

To test the hypothesis

H0 : l = 2 = .. =

- 2 ' k

23



substitute parameters Ug = p and E = E into the likeli-

hood function. Thus, equation (3.3) becomes

log L(wi) = -P-glog(2 2) -gE NglogEZI-1 tr E-_A

2ig=9  -

1k -
E tr E N (x - )(x-g  )

g=1

k k
Now, substituting Ng = N and Z A = A gives

gfil g -g=1

log L(w 0 1  - 2log(27r) Nlog 1tr -lA

_tr Ng(Xg - )(x- (3.5)

29=1

Combining the last two terms and applying lemma 2.1

with b = P, equation (3.5), can be written as

log L(w0) =N - 2 log(2T -Niog I2LI -itr E-1

+ E N (xg - b)(x - b

g=j 

j(

The term in the bracket becomes

k
A + E N (x - X)(g - -X' + N(-X - )(x RP (3.7)

g=l g

Thus, the log L(w0) is maximized with = x.
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k

For convenience we will denote E N (xg - x)( - g - x) as B.
g = l g . . . .

To find the estimate for Z it is necessary to maxi-

mize equation (3.5) with respect to E..

f(E-1 =-0N log(21) + N logL- 1 1 -  tr 1 (A + B)-2 2 _ 2 r_ A+B
(3.8)

Applying lemma 2.2 on the last two terms with C = Z_ and

A + B =D the maximum of f(E- I ) isatC=ND- I or E-

N(A+B)- . Thus, the estimate for E is

A A+B
N

Now, substituting E for Z in equation (3.8) gives

L (w0  - log (27T) log +

A1 tr + (A + B)

NN_pN N

=(27T) 2 A+B 12 ep p 39
N (2

Therefore, the criteria X0, for testing hypothesis H0 is

the likelihood ratio

*N_N pN
2 2L(o ) k IJA NX 0 T 14(3.10)

L(Q) g=l Nk (.0
jA+BJ 2g N 2

g=l g
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Derivation of Criteria for HI

To test the hypothesis

H L- =  the means any value

our parameter space w1 belongs to 2, where (0 < E 1 =

- < ) Thus we substitute Z for E in equation=k -g
(3.3) to get

l k k
log L(w I log(2T) E N logI~I Z X tr - A

1g2l g 2 g=l

1k
-- tr z N ( - )g)' Z -  (x g  )

gl - (3.11)

The last term is maximized when Pg = x g  By sub-

k k
stituting E N N and A = Z A and bringing the trace in

g=1 g g=l

front of the summation we have

log L(W I ) = pN log(2Tr) -Nlog I 1 Z tr Z- A1 2 2 o ZI-t

Now using lemma 2.2, we have -1 =NA-1 or A
N

A
Using - for E the maximized function becomes

N

log L(wI) = _Nlog(2T) N _A logi A
2 2 2

=2 og(2r)-log A tr NI
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Using tr I = p and rewritting gives

_pN N

log L(w) = log(2T) + 2 exp(-N)N' 2

Therefore, using exponentiation gives

_pN _
NN(o) =(2)2_ 2ep_ (3.12)

The likelihood ratio criteria A1 for testing the

hypothesis H1 is given by
N

L( 3 k i12 N2
1 = 1-= pN (3.13)

L () g=l N k qk 2
JI l N

g=l g

Derivation of Criteria for H2

To test hypothesis

H P = _1 = ... k given that E -

= Zk note that the log of the likelihood function equation

(3.3) with the condition E = = Z= 2-k imposed is the

same as log L(wI), equation (3.12). Further, when the

restriction p 1 = =... k is imposed the log L( 2 ) is

the same as log L(w0 ) given in equation (3.9). Thus, the

criteria X2, can be represented as the ratio of these two

equations:
N N

X2 = 0-- = A 12 N ) A (3.14)

27
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Particular Cases

In this thesis we will be concerned withi equal

sample sizes and p = 2. Thus, when N1 = N 2  Nk = n

and N = kn the three criteria take the form:

n

+ 2A kkn k A]
= kA +B (3.15)0g=1lT

n

kn k
1= k 11 (3.16)

1 g=l

kn

X2  A 2 (3.17)

In this chapter we derived the likelihood ratio

criteria to test each of the three hypotheses. Next, we

must determine a critical region for testing Hi i = 0,1,2.

Our critical region is the set defined by (0 < X < 4) and

our decision rule is to reject H. if X < 4. The function
1

X defines a random variable A(xl, x 2 , ... , x ) and the

significance level of the test is given by

= Pr[X < 4; H i]

We determine these probabilities by finding the

sampling distribution of our likelihood ratio criteria

X0' 1I ,  and X2.
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In the next chapter we will obtain the moments of

the criteria from which the sampling distributions will be

derived in Chapter V.
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IV. Derivation of the Moments

To obtain the sampling distributions of the cri-

teria X0, X1 and A2, we need to obtain their h t h moments

which are derived below.

The hth Moment of X

The hth moment of A0 is

E(X h) = KoE(L
h)

N
kNh 0-N

H N 2

g=l g

By theorem 2.4, A ~ W(A I,n ). The matrix B

is the sum of squares and sum of products between means

for k samples, thus B - W(BI_,k-I). Theorem 3.3.2 (Ref

1:53) establishes the independence of the sample means and

k
covariance matrices and since B = Z N (x g - x)(xg - X)

- g=l 
g

it follows that A and B are independent.

Since L0 is a function of A and B we have by

definition
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N h
q

E (L qW(A J ,n )W(BK",k-l)dA dB( 0) J Nh 1 -

-Lb N qh+n q~ 4
k I k22
11 K(E,n ) + 2 HI 2 2

g=l A >O,B>Q 9=1l

k K(E,n ) N
A+Bi1 2 (A ~ h

g~l K(XNg g A >O,B>O g- q -

W(Bj. ,k-l)dA 9dB (4.2)

The integral on the right hand sidc of (4.2) is

hN

equal to E(IA+BI ) since A A + A ++A and B
1 -2 +

are independent. Therefore,

h k K(?,n ) N(3
E(L~~~~~ h I - q A----(43( 0) = KL ,N 9h+n ) L~iA+J

k
Recall that A W{AIL, E (N h + n )}and B3 W(BfZ,k-1),

g-Jl g g
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k
so by theorem 2.1 (A+B) W{ (A+B)jIZ, Z (N h + n ) + k-1l

g=l g g

k
Now n = N - 1 and E N N. Therefore,

g g g=l 9

k
E (N h+n )+k- 1 = Nh+N -k+k- 1 = Nh+N- 1.

g=j g g

Hence, (A+B) W{(A-tB) I Z ,Nh + N - 1} Thus, using theorem
-Nh

2.3, substituting (A+B) for A and - for h we have

Nh2 K (,Nh + N - 1) K (,Nn + N -1)

E(IA+BI 2
Nh K(Z, N -1)K(Z,Nh+N- 1 + 2(- 2 )) L:2 (4.4)

From equations (4.3) and (4.4) we have

hk K(E,nq) K(Z,Nh +N N-1i)

E(X 0  K 0  11 (4.5)
g=1 K(E,N h+ n ) K(Z,N-1)

Using the definition Fp(n ) and K(Z,n) from equa-

tion (2.13) we have

kNh N h+n N-i
h N 2 p k I' 2q 2

fl fl q_:
k -. 9 2~1gl S N -
f N 2 2

g=1 g (4.6)

For the particular case of p = 2, N 1 = N2 , ... , Nk = n,

N = nk and n = N - 1 = n -1 equation (4.6) becomesg g
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Fnh+ n-1 (nh + n - 2
h _ (nk) knh k I 2 2)

E (x0) - knh grl n-n2n g=lL F' ( . 1,(n _2

2 2

F nk-1 , 
4k-72

2 1(2
nkh+kn- + nkh +k-2

2 2

k ,,n 11 (h+l1) 1 ~n (h+l1) - k

2 2 2

n-2 (h n+h 1)

2

Now applying Gauss's multiplication formula (Ref 9:11)

1

m(mz- ) m-i
I(mz) = m 1 r (z+ (4.7a)m1i=0

with m 2 we can rewrite equation (4.7) in the following

simpler form.

h _ knh P(kn- 2) [Ff{n(h+ i) - 21 ]k
E(X0  k k - (4.8)

[r(n- 2)] F{kn(h+i) - 2)
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T th
The h Moment of A

The h moment of is
1

E(A h ) = 1• E(L h ) (4.9)

N

N 2  k iA l 2
where K and L H N

pN g= N
k 2 A12

g=l g

Since L1 is a function of A and A - W(A 9 ,n ) we have-g -g

by definition

N hfk ---- _hhk
E(Lh ( j IA 2 1 Al 2 1 W(A JE,n )dA dA

A(1  >0 glg=1 -- g 1 k

-g

N h+nkN h kg _ P1:)
r K(7,n 2 k -. 1 2

g=1 g A >0 g=1
-g

exp(- tr E .A4 dA.dA

k K(Ln )~Nh k
g1 K JAI 2 1 W(A 1',N h+n

g=l Kl,NAh + n g=l -g g g
-q

dA 1 . . dAk (4.10)

The integral on the right hand side of (4.10) is
Nh2

equal to E(IAI 2), since A= A + A + + A
-1 -2 -
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h k K(F.,n )Nh

Nh

EK(Lh ) E(JA I  2 )(4.11)
E(L )= (IKi N h + n-

g=l -- g

And so by theorem 2.3, substituting -! hfor h and recalling

A - W(AINh+N- k) we have

-Nh K( Z,Nh+ N- k) K(Z,Nh + N- k)

E(IAI 2)= h (4.12)
K(Z_,Nh+N-k + 2 K(,N-k)

Thus

K 1  - 9 (4.13h1 K(E'Ngh+ ng K +(,N- k) 1

Using the definition of Fp( ) and K(Z,n) from equation (2.13)

we have
n +N h N-k+1Ii

E(X h  K K 1  1 2 2 2
1=l g= n q+- 1 N-k+ Ii + Nh

2 2

pNh

where K = N 2

n N 2
g=1 g

For the particular case of p = 2, N 1 = N 2

Nk N -nkandn 1 = n 1- , we have
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k (n - i) i}rl n ) 1}
E(Xh kknh 2 2

I n-i1 n -2 k
[ 2

r in (l+h2 h) 1 {n(l+h) l}]k

r{nk(l+h) 1 2 Fnk(l+h) (4.15)

The hth Moment of X2

The ht h moment of X is obtained by the same method2

used to derive X 0  Thus

N

E(Xh) E(Lh where L= (4.16)
2 E( 2)2 -

k
Since A = E A and each A - W(A _,ng) we have by

g=1-g g _
k k k

theorem 2.1 A W(Aj , Z n ). Now Z n = Z (Ng-1)

-- N s W Ag = l 
g  g = l 

g  g - 1 l

= N - k so A ~ W(A2I,N-k). From the discussion of the

derivation of X0 we know that B - W(BI _, k -1) and A and B

are independent. Since L 2 is a function of A and B the h
th

moment of X2 is by definition

Nh Nh N- k p_+il

E(Lh) 2(2-K(,,N-k) 2

A>O,B>0

1exp(-itrE-IA) f(B) dAdB
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Nh Nh +N-k - P+l)
K(Z,N-k) J I+B 1 21A 2 2

A> 0, B> 0

1 -

exp(--tr Z IA) f(B)dAdB
2 - - _

K(E,N -k) f-Nh
f IA+BI 2 W(AI F ,Nh+N-k) f (B) dAdB

K(-_,Nh+N-k) A>0,B>0 
(4.17)

Recall that (A+B) W{(A+B) F,,Nh+ N-1}. Therefore, we

have
Nh

K(E,N -k) 2

E(L h ) h -k E(IA+BI ) (4.18)
K (_,Nh + N - k)

Now, applying theorem 2.3, substituting A+B for A and

NNh

2N f or h we have

Nh K(_,Nh+N- 1) K(E,nh+N- 1)

E(IA+BI 2) = 
h =

K(Z,Nh+N - 1+ 2(--)) K(_,N- 1)
2 (4.19)

Combining (4.18) and (4.19) we have

K(X,N -k) K(Z,Nh+N- 1)
E(X2) = .- .- -- (4.20)

2 K(Y,Nh + N - k) K(T, N-l)

Using the definition of F (2) and K(_,n) for equation (2.13)

we have
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P (N-k+l- i N-

hE2 + h) I(-1---2) (4.21)2( )- N-k+ 1 -i) N-i 4.12 i=1 r r +( +h)

For the particular case of p = 2, N1 N 2 = = Nk = n

N = nk, and ng = N - 1= n - i, we haveg g

r(kn-l1 kn- 2
E(h = 2 2

2 k(n2- l) k(n2- 1) -1

2 2 2-

kn(l+h) k kn(l+h) k+ 1
2 -2 2 (4.22)

kn(l + h) 1 F~kn(1 + h)
Ti 2 - 2 -}

Now, applying Gauss's multiplication formula (4.7a) with

m = 2 we have

E(Xh = (kn -2) r{kn(l + h) - k - i} (4.23)
2) =(kn-k-l){kn(l+h) - 21

In this chapter we obtained the hth moment of our

test criteria Xi. i = 0,1,2, making extensive use of the

Wishart distribution and its properties. The moments were

obtained for the general case of p-variables and sample

sizes not necessarily equal. We then restricted the moments

to p = 2 variables and equal sample sizes. Thus, we have

the moments of our criteria from which we will obtain their

sampling distributions in the next chapter.
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V. Distribution of the Criteria

In the literature S. S. Wilks (Ref 17:60) and others

have proven that the distribution of -2 log X, where X is

the likelihood ratio criteria, approaches the Chi-Square

distribution with r degrees of freedom (r is the number of

linear independent restrictions imposed on the null hypo-

thesis), as the sample size n approaches infinity. In

this chapter we proceed to obtain the sampling distribution

of -2 log Xi, i = 0,1,2, by inverting their characteristic

functions.

The Distribution of X0

The hth moment of X0 from equation (4.29) is

0(h kknh r(nk-2) [f{n(h+ 1) - 2}] k  (5.1)
[r (n- 2) ]k P(nk(h+ l) - 2}

Letw 0 = -2 log X0 and let 0(t) be the characteris-

tic function of coo. Then

itw) it(-2 log A 0 )

W (t) = E(e 0) = E(e

loA-2it

= E(e 0

= E(A0- 2 it) (5.2)
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Since (5.1) holds for any complex number h, we

have substituting -2it for h in equation (5.1)

0 (t) = K kkn( -2 it) F{n(l - 2it)}- 2}] k

I'{nk(l - 2it) - 2}5

where K = r(nk-2)

[F (n - 2)) k

and therefore

log W(t) = log K -(2knit) log k + k log

[r{n(l -2it) - 2)] - logtF{nk(l - 2it)-21]

(5.4)

The expansion of log 0(t) will be based on the

following expansion (Ref 1:204):

1_ 1

log F(x+h) -1 log(2Tr) + (x+h-1) log x-x
2

m B (h)
.~ (_,)r r +1 r+ R (x) (5.5)

r=l r(r+ 1)x

where Rm (x) is the remainder such that IRm(X)I< O/IxmI,

0 a constant and B (h) is the Bernoulli polynomial ofr

degree r order 1 defined by

eh T  C
-e E B (h)

e t-1  r=O r
r!
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Extensive tables of Bernoulli polynomials are available

in M. A. Fletcher et al. (Ref 4:62-117).

Applying the expansion in (5.5) to the gamma func-

tion in (5.4) we have

log (t) = log K - 2knit log k

+ k 1 log(27r) + [n(l- 2it) -2- 1

log[n(l - 2it)] - n(l-2it)

m (-1) r Br+ 1(- 2)
E - rrlr=1 r (r+ 1) [n (1 - 2 it)] rII

- log(21T) + [nk(1 - 2it) - 2-

log[nk(l -2it)] - nk(l -2it)

m (_I) r B r+1(- 2)F, - r + (2 + R' (5.6)

r=l r(r+ i)[nk(l- 2it)]r m+1

Let T = n(l-2it) so that kT = kn(l-2it) = kn-2knit.

Substituting these results in equation (5.6) we have, after

some algebra
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k-i

log W (t) = log[K(2m) 2 k-(kn 5/2) T-V]

m (-1) r Br+ (- 2)+ _7 r )r

r=l r(r+ 1) (kT)r

m (-1)r Br+ 2)
k z r + R' (5.7)

r=l r(r+ 1)Tr m+1

where v = 5/2(k- i)

Equation (5.7) can be rewritten as

k-i

log (t) = log[K(2r) 2 k-(kn -5/2) T-V

Sm A

exp {r + R' Ix) (5.8)r=l T r + 1

where A ( [Br+ - k B (-2) (5.9)r r (r +1) krr+l

Thus, from equation (5.7) we have

k-i
2 -(k -/)-

40(t) = K(2r) 2 k-(kn-5/2) T-V

-- + R Ix) (5.10)1i= 0 T l
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The coefficients Q. are recursively computed using the1

following relation between A i and Qi

i A kQ i - k

Qi = i Q =1 (5.11)
k=1

(Ref 6: Chapters 4, 5)

Recalling that T = n(l-2it), we have from (5.9)

the characteristic function of w0 as

k - 1 -2 (v + r)
2 - (kn - 5/ 2 ) m 2

0t) = K(2*f) k E Qr [n(l-2it)]
0 r=0

+ RM+ (X) (5.12)

2(v+ r)

(1 - 2it) 2 is the characteristic function of a Chi-

Square variable with 2(v+ r) degrees of freedom. We have,

on inverting the characteristic function of w0 in (5.11),

the p.d.f. of w0 is
k-1l

k 1 v+ r 2
f(w 0 ) K(21T) 2 k-(kn_ 5/2) Q - X2(v+ r)

r=O r n

+ RM+ 1 (X) (5.13)

where Q= 1 and K = F(nk- 2) , V =(k -1)
IF(n- 2)]k
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Thus we have the following theorem:

Theorem 5.1: Under the null hypothesis in (3.1i),

the distribution of w0 = -2 log X0 can be represented as

the following linear combinations of Chi-Square distribu-

tions:

k-i

P( 0 >x) = K(2-r) 2 k-(kn - 5/2) n-(v+ r)

r=O

Qr 2(v+r> x) (5.14)

:'( k - 2)
where v = 5/2(k -1) and K = .lnk- k

[ I'(n - 2)]

The Distribution of [un

The hth moment of is given by equation (4.21)

as
1 k rn }k

r n k(l+h)- - k}]
h knh k k n (5.15)

F{ -(l+h)-! ) F{ (l+h) 1 k

2 2 2
where K1 = -2 2

I(2

Let w = -2 log 1 and W (t) be the characteristic

function of wi Then

.1 -
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(t) E E(X -2it) K Kkkn (- 2 t)

[r{11il-2it) - ~} Nn{(l-2it) - 1 }I]
2 2n1 (5.16)

r{ - -2it) _k} ,{-n(1-2it)-

Taking the log (t), applying the gamma expansion formula
n

(5.5) and letting T = (1 - 2it) we have

log 4(t) = log K1  2itkn log k+ (a) + (b) + (c) + (d)
(5.17)

where

k(a) = P~og (27r) +k[(T-l) log T -T]

k E r + +kR a (T)
r~l (r + 1) T rm + 1

(b) l ~og (2T ) + k (T-_ ) log T -TI

M rB1(-1) (-1)
k L ---- r+ 1 + kR b (kT)r=l r(r+l)T r m'l+l1

(c) -log (21T) - [ (kT - - -).og kT -kT]2 22

M (-l) B b-§
+ E r +1 2~ +C (

r=l r(r +1) (kT )r ' m +i~

4 .



1 k(d) = -- log(27T) - [(kT 1 1) logkT-kT]

m rB (k +))+ E, (-i) Br + 1 (  d+ ~ (1 r~' 2- Rd (kT)

r=l r(r+1)(kT)r m + 1

After some algebra, equation (5.17) reduces to

log % (t) = log KI+ (k-i) log(2-;) + 'k(l-n) +2]
Wi2

log k + [3(1 -k)2 ]log T

m A
+ Z 3r + R'

r=l Tr m+l

= log [Kl( 2 r)k - 1 k[k(l - r) + 3/2] T-v

exp El I + R'+ k5.18)r=l T r

B k k (k+1)(_i) r  [3r + iB- Br + i

where A (- __ +_______r r(r + 1) kr kr

- k Br+ i(-) - k Br+l(-l)

3(k -1)and v 2

2'

-*- .- . - .



Thus we have from (5.18)

4l(t) = K ( 2 -)k- 1 k[k(I-n) + 3/2] T-V

[: ~]+ R (5.19)

where the coefficients Q.i can be recursively computed as

in (5.11).

Recalling that T = 1(1- 2it), we have from equa-

tion (5.19) the characteristic function of w as

cl(t) = Kl( 2 -r)k- 1 k(k - kn + 3 / 2 )

m -2(v+ r)
2rZ Qr[!(l- 2it)] + R (5.20)r= 0 r2M+ 1

-2 (v + r)

Since (1- 2it) 2 is the characteristic func-

tion of a Chi-Square density with 2(v+ r) degrees of

freedom, we have on inverting the characteristic function

of WI in (5.12) the p.d.f. of w 1 as

f(W , 1 2 T)k - 1 k(k - kn + 3/ 2)f(w I ) =KI(2,)k k~kn 3 2

m v+r
E Q 2(2+)

r=O r n X2(v+ r) + R

and thus we have the foll.owing theorem:
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Theorem 5.2: Under the null hypothesis in (3.1ii),

the distribution of wi = -2 log X1 can be represented

as the following linear combinations of Chi-Square dis-

tributions:

P(wx) = K(2 7T)k- 1 k(k-kn + 3/ 2 )

v+r

2 > x) (5.21)
r=O n r X2 (v+r) x

Ffk(n- l)k(n- 1) 1
wee3 2 2 2

where v = I(k-1) and K 1 =
2 1 n -2 k2 -2)

The Distribution of X2

The ht h moment of X2 from equation (4.23) is

E(Xh) F(nk-2) f{nk(l +h) -k- l}
2  F (nk-k- )F {nk(l+h) -2} (5.22)

Let L2  x 1I/N where N nk. We then have from (5.22)

r(nk- 2) Fnk(l+A ) -k-l}
E(L) nk

2 F (nk - k -1) link (I + h -) - 2}
nk

l(nk- 2) Iik(n-1)- l+h (5.23)
F (nk - k - I) F(nk 2 + h)

Note that the hth moment of a beta distribution is

1 1r{I(a +b)} r{l(a+h)}
1 1 a

r (.(a + b) + h) F (-)a
2 2
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with parameters a/2 and b/2 (Ref 1:194).

Thus from (5.23) we see that L2 has a beta p.d.f.

with parameters N-k-1 and k-i. So we have the follow-

ing theorem:

Theorem 5.3: Under the null hypothesis in (3.1iii)

the distribution of L2 is given by

P(L2 <x) Ix (N-k-1, k-i) (5.24)

where I x(. , .) is the incomplete beta function.

Numerical Computations

The c.d.f. of w. = -2 log X. (i = 0,1) given in

equations (5.14) and (5.21) are used to compute percentage

points of wi at the level of significance a = .01 and

a = .05 with sample size n from 3 to 100 and k = 2(1)6.

These are presented in Tables IV and V in the appendix.

Tables I, II and III in the appendix give the percentage

points of L0, Li, and L2 respectively. The following

considerations are taken in checking the accuracy of the

computations in the percentage points:

1. The integral over zero to infinity of the

c.d.f.'s in (5.14) and (5.21) rapidly approaches one.

Table 5-1 for k = 6, Theorem 5.2, gives the typical

behavior of the series as the number of terms increases.

To achieve accuracy to five significant figures in all

cases considered required fifteen terms; and
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2. The exact values are in close agreement with

the approximate valu:es obtained, using the asymptotic

expansion in Chapter VI, even for comparatively small

values of n.

TABLE 5-1

EVALUATION OF c.d.f. OF THEOREM 5.2 for m TERMS

m n 10 n = 20

1 .2160599 .4839011

2 .5146427 .8182633

3 .7491630 .9495748

4 .8868061 .9881090

5 .9539563 .9975087

6 .9827359 .9995229

7 .9939364 .9999149

8 .9979812 .9999857

9 .99935711 .9999977

10 .9998028 .9999996

11 .9999414 .9999999

12 .9999831 1.0000000

13 .9999952 1.0000000

14 .9999987 1.0000000

15 .9999996 1.0000000

Summary

In this chapter we obtained the sampling distribu-

tions of our test criteria A0 ,and A2 Note that the

distributions of both X 0 and X 1 are linear combinations of

Chi-Square distributions. The distribution of X 2 resulted

50
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in a beta distribution with parameters k(n -l) 1l and

k -i. From the distributions, percentage points for differ-

ent sample sizes and k populations can be computed.

Providing tables for numerous populations and

various sample sizes would be inconvenient and time-

consuming; therefore, a good approximation for moderate

sample sizes would be extremely beneficial. It is this

topic that we treat in the next chapter.
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VI. Asymptotic Approximation to

the Distribution

Although the tables of percentage points fill a

gap and meet some of the needs of statisticians, approxi-

mations to the distributions of the various criteria are

the only practical means for computing the observed signi-

ficance probabilities in the analysis.

In this chapter we develop an asymptotic expansion

to the distributions of -,0and 'k with the second term of

the order m- so that the first term alone should provide

a powerful approximation to the percentage points of X and

X 1even for comparatively small values of n.

Asymptotic Expansion of the
Distribution of X 0

Let M 0= - 2p log X where p is an arbitrary con-

stant to be chosen later. From equation (5.1), substituting

- 2 pit for h, the characteristic function of M 0 is given by

(t)M = W(0 -2pit) K 0C(t) (C6.1)

0

where

K 0 - r' (nk - 2) (6.1a)
[r(n -2)]



and

C(t) = k - 2Pitkn [1'{Pn(1-2it) + (n-pn-2)}] k  (6
TTpnkl-2it) + (nk-pnk-2 )J .lb)

Let T = m(l-2it) where m = pn. Then we have

log C(t) = (Tk-pnk) log k + k log P{T+(n-pn-2)}

- logr{kT + (nk-pnk-2)} (6.2)

Using the asymptotic expansion formula (5.5) in (6.2),

we have the asymptotic expansion of C(t).

5 (k-l) 1g2T olog C(t) = (-nk+) log k + 2 vlogT

u A
+ Z _r + R,

r=1 Tr u+l (6.3)

where v = 5(k- i)2
(ir

and A r = r(r+l)kr [Br+l(nk-pnk-
2 ) - kr + 1

Br + l(n- pn - 2)) (6.3a)

-2
Thus the asymptotic expansion of C(t) up to the order m

is given by

( ) -(kn-) -v
C(t) = (2-n) k T

+-? + 2 + O(m-3)] (6.4)
5TT
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2
A1

where Q1 = A1 and Q= A2 + _

Now from equation (6.1a) we have

log K 0 = log F {mk + (nk - pnk - 2)}

- k log r(m+n-pn-2) (6.5)

Again using the asymptotic expansion (5.5) to (6.5) we

have after some simplification

log K0  2 ) log (2-r) + vlog m+ (nk-5) logk

u A'
+ + R"

r=l r u + ] (6.6)

5

where Ar = -Ar and v = (k-1) and so

1 1k) k(nk -5/2) mV tl+2 -3

m m (6.7)

, - ( -A1)2

where Q1= -A1 and Q2 -A2 ) + 2

We now choose p such that A, = 0. Then

- 37(k+ 1) (6.8)p i-30 nk

From (6.1), (6.4) and (6.7) the characteristic function of

M0 is given by



Q2  -3

(t) = (1- 2it) -v 1 + Q22 + o(m ) ]

0 m (I - 2it)

-

i+ 1 2 + O(m
m2 (1 _ 2it)

= (1 - 2it)-v Q -2 [ (1 - 2it) v- 2 -_(1 - 2it) -V]

2m

-3
+ 0 (m ) (6.9)

Therefore, inverting the characteristic function (6.9),

we have the following theorem:

Theorem 6.1: Under the hypothesis (3.1i) the

asymptotic expansion of M0  -2plog X0 up to the order
-2

m is given by

2 Q2

P(M 0 >x) = P(X2v>X) + -2

m

2 2+ (- 3
[P(X2(v+2)> x) -P(X 2 > x)] + O(m

(6.10)
5

where v = 5(k-1) m=pn and p is as in (6.8).

Remark: Since the second term m (6.10) is of the order
-2

m , the first term alone provides a powerful approximation

to the percentage points of X0 as seen from Table 6-1 and

Table 6-2.



TABLE 6-1

COMPARISON OF APPROXIMATION AND EXACT DISTRIBUTION

0.= .01

nk 2 3 4 56

3 .04028* .06222 .08586 .10960 .13324
.03763 .05775 .07256 .08432 .09378

4 .16708 .18264 .20110 .21897 .23597
.17302 .19377 .21094 .22498 .23630

5 .29807 .30775 .32173 .33460 .34631
.30197 .31600 .33081 .34372 .35433

10 .62902 .62832 .63505 .64194 .64805
.62951 .62962 .63617 .64325 .64948

15 .75051 .74821 .75236 .75696 .76115
.75063 .74868 .75257 .75726 .76151

25 .84963 .84730 .84956 .85229 .85483
.84965 .84746 .84952 .85229 .85486

50 .92466 .92311 .92414 .92549 .92676
.92465 .92317 .92409 .92545 .92674

75 .94975 .94863 .94929 .95018 .95103
.94974 .94867 .94925 .95015 .95101

100 .96230 .96143 .96192 .96259 .96322
.96230 .96146 .96189 .96256 .96321

*The upper number is the exact value L I

The lower number is the approximation value.
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TABLE 6-2

COMPARISON OF APPROXIMATION AND EXACT DISTRIBUTION
Ct=.05

nk 2 3 4 5 6

3 .08728* .10343 .12627 .15082 .17639
.09006 .10526 .11732 .12658 .13395

4 .26961 .26141 .26769 .27759 .28911
.27594 .27374 .28050 .28746 .29365

5 .41201 .39565 .39639 .40047 .40560
.41527 .40273 .40511 .4096', .41425

10 .71171 .69325 .69007 .69044 .69185
.71201 .69402 .69111 .69161 .69310

15 .81011 .79553 .79251 .79234 .79306
.81016 .79572 .79279 .79265 .79340

25 .88730 .87748 .87523 .87491 .87523
.88729 .87751 .87528 .87496 .87529

50 .94414 .93884 .93755 .93730 .93742
.94413 .93884 .93755 .93730 .93742

75 .96287 .95926 .95836 .95817 .95824
.96286 .95925 .95835 .95817 .95823

100 .97220 .96945 .96876 .96862 .96867
.97219 .96945 .96876 .96861 .96866

*The upper numb~er is the exact value L 0 1\ 1-/kn

The lower number is the approximation value.
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Asymptotic Expansion of the
Distribution of \I

Let M1  - 2q log X1, where q is an arbitrary con-

stant to be chosen later. From equation (5.15) substituting

-2 qit for h the characteristic function of M1 is given by

Ml(t) K K1  Cl1 t) (6.11)

F (n 2 _: _ )} k (n2- 1) _ 1i

where K1 n 2 (6.lla)[r( ) 2 ) ]k
[F ~ ~n 2k

-2 qit kn [T{(1 -2 it) -1
1 1 k

and C1 (t) k

_k
P{n--(1 - 2 q it) _ k

[]P{2(i - 2 qit)- i]k
2 (6 .11b)

fn-k( - 2 qit) - k + i1
2 2

Let T - 2(1 - 2 it) and applying the asymptotic expansion2

formula (5.5) to the log C1 (t) in (6.11b) we have after

some algebra

3
log C] (t) = (k- ) log(2.!) + (-kn+]k+ 2)1cxk--v logT

u A
+ . __r + R(6 12)r=l T "  u+I

where v =-(k-1)

2 b



(-i) r kn -k- k-n
and A = 1 r [Br r(r + 1)kr r+ 1  2

(kn - k - Ikn - I
r+l n- r.

+ B + - n -2 nkr+i r + 1 (---2--

r+ 2 , ) (6.12a)

Thus the asymptotic expansion of C1 (t) up to the order

m is given by

(k ) ( k + +3 )Q 1 _ Q2 +0(-3)=( 2 )(k l)k(kn+k+2  )T V c +--+ 2 +O -3
Cl(t) = [1 + __-- H

2 (6.13)
A1

where Q1 = A and Q2 =A 2 + 1

Now from equation (6.11a) where m =T we have2

r(km+ kn - k -qkn)F (km+ kn -k -21 - qkn)

K =2 2 ( .41 n - qn - 1 n n-2 (6.14)[ (m + 2 "(m + --- 2 )

Again applying the asymptotic expansion formula (5.5) to

log K1 in (6.14) we have

3
log K1 = (1-k) log (21T) +vlogm+ (kn-k--2-) logk

u A'
+ ---K + R"r u+l r U+)r=1 m

5i)



where A' = -Ar r

-2

And so the asymptotic expansion of K1 up to the order m

is given by

3v (kn -k 3 - Q'I Q'
K = (2i) (k - I) m k l+1 + -- 2 +O(m-3)

1 m1+m 2
m

- 2 (6.16)

where A' = - A1  and Q2 - A 2 +  11 2

Now choose q such that A, = 0. Then

31k + 13q=1 18 nk (6.17)

From (6.11), (6.13) and (6.16) the characteristic function

of M1 is given by

M(t) = (1 - 2 it) v [ + 2 2 + O(m -3)]

m (1 - 2 it)

[ + 2 
+ (m -3)]

m (1 - 2 it)

Q2

= (1 -2 it)v + --2 f (1 - 2 it)v 2 -(1-2 it)v
m

-3
+ O(m ) (6.18)
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Therefore, inverting the characteristic function (t)

in (6.18) we have the following theorem:

Theorem 6.2: Under the hypothesis (3.lii) the

asymptotic expansion of M1 =- 2q log X1 up to order m-2

is given by

2 Q2

P(M 1 >x) P(X 2 v >x) + 2

m

2 2
2(v+ 2) >x) - (X2v>

-3
+ O(m ) (6.1)

Remark: The second term in (6.19) is of the order of m

and so the first term alone should provide a good approxi-

mation to the percentage points of 1 even for relatively

small sample sizes as shown in Tables 6-3 and 6-4.
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TABLE 6-3

COM4PARISON OF APPROXIMATION AND EXACT DISTRIBUTION
=.01

n k 2 3 456

3 .06038 .09887 .12372 .15609 .18748
.04557 .06709 .08424 .09869 .11041

4 .22992 .25183 .27559 .29787 .31870
.22829 .25274 .27509 .29221 .30661

5 .37893 .39586 .41467 .43083 .44484
.37882 .39752 .41731 .43273 .44585

10 .69895 .70546 .71541 .72409 .73131
.69934 .70567 .71585 .72419 .73150

15 .80287 .80655 .81311 .81894 .82382
.80317 .80662 .81329 .81886 .82379

25 .88359 .88547 .88934 .89284 .89578
.88378 .88549 .88942 .89274 .89571

50 .94253 .94334 .94525 .94699 .94846
.94263 .94334 .94528 .94693 .94847

75 .96185 .96236 .96363 .96479 .96577
.96192 .96237 .96365 .96475 .96574

100 .97145 .97182 .97277 .97364 .97437
.97150 .97183 .97278 .97361 .97435

*The- upper number is the exact value L 1 1/kn.

The lower number is the approximation value.
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TABLE 6-4

COMPARISON OF APPROXIMATION AND EXACT DISTRIBUTION

.05

nk 2 3 4 5 6

3 .13239 .15090 .17995 .21108 .24261
.11862 .13208 .14541 .15637 .16530

4 .36242 .35480 .36258 .37372 .38636
.36075 .35680 .36466 .37315 .38073

5 .51231 .49968 .50294 .50869 .51484
.51171 .50095 .50506 .51111 .51695

10 .78134 .77006 .76992 . 771-92 .77434
.78126 .77012 .77006 .77216 .77462

15 .85964 .85128 .85083 .85199 .85350
.85960 .85127 .85084 .85204 .85356

25 .91828 .91292 .91249 .91311 .91396
.91826 .91290 .91247 .91310 .91397

50 .96005 .95725 .95698 .95726 .95767
.96004 .95724 .95697 .95725 .95766

75 .97356 .97168 .97148 .97166 .97193
.97356 .97167 .97147 .97165 .97192

100 .98025 .97882 .97867 .97880 .97900
.98024 .97881 .97866 .97880 .97900

*The upper number is the exact value L I 1/kn.

The lower number is the approximation value.
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VII. Practical Illustration

The Engineering and Design Group, AFWAL/MLSE,

Wright-Patterson AFB, Ohio, provided the data used in the

following analysis.

The ultimate tensile strength of a metal alloy is

characterized by two correlated variables, x and y, longi-

tudinal hardness and transversal hardness, respectively.

Test procedures:

1. Three companies received a sample block of metal

alloy IN-9021, hand forged.

2. Each company used a common set of test condi-

tions and conducted identical tests in accordance with

ASTM testing standards.

3. Three measurements of longitudinal hardness and

three measurements of transversal hardness were obtained by

each company.

The collected data is as shown in Table 7-1, by

company, where L represents longitudinal hardness ksi

and T represents transversal hardness ksj.

We shall first test H0 , the hypothesis that there

is no significant differeice between the populations.

A summary of the necessary calculations is shown in Table

7-2, where the number of populations, k 3, and the number

of obiorv,'tions, n 3.
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TABLE 7-1

TENSILE STRENGTH: VARIABLES L AND T

General Dynamics Lockhned Rockwell

L T L T L T

87.3 85.9 89.0 87.4 87.6 86.0

84.4 86.0 89.6 87.3 86.3 84.7

89.8 84.8 89.6 87.3 83.9 84.7

TABLE 7-2

SUMMARY OF CALCULATIONS

-l -2 -3________ __

2.88115 .00120 3. 24480 43.1704 282.74248

From equation (3.15) with L* = X we have
0 0

k 2-£3-
k 1 0= T1N 1 6

L* = k = = .0836

0 1 .0831 I_+ BI 2 + BI

From Table I in the appendix with a =.05, n 3, k 3,

L 0 = .10343.

Decision Rule: Reject if if L* < L,
0 0 -- 'nk

Since L* < .10343, we reject 10 at the a = .05 significance
00

level and conclude the populations as regard to tensile

strength are not identical.
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We now proceed to test Hi, the hypothesis that

there is no significant difference in the populations as

regards variance and covariance in the variables x and y.

From equation (3.16) with L* = l/kn we have

1 3 1
kk 1 2 IIA

L*=k H = .2087
1 g=1 1

I htI2 IAI 2

From Table II in the appendix with a = .05, n = 3, k = 3;

L = .1509.

By the Decision Rule, since L* > .1509 we do not

reject HI, that the variances and covariance are the same

at a = .05 significance level.

We may further test H2f the hypothesis that the

means are the same among the populations given that the

variances and covariances are equal.
1I/kn

From equation (3.17) with L* = k we have
2 2

1

2* - = .39072 I A+B 
_

From Table III in the appendix with L = .05, n = 3, k = 3,

L = 4182.

The Decision Rule leads us to reject H2 and conclude

that the means among the populations are not equal. This

is consistent with our previous conclusion concerning H0.

Uu
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In summary, the conclusions are, the sample ingots

of metal alloys received by the companies have equal vari-

ances and covariances concerning the two attributcs,

longitudinal and transversal hardness, but the means differ

at the 5 percent significance level.
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VIII. Conclusion

In this thesis we obtained the exact distribution

for our test criteria 0 1 1 and \ 2. To do this we assumed

that our samples were drawn from populations distributed

as N p(xLu E 9) and then restricted the development of the

sampling distributions to the case of equal sample sizes

and two variables. From the exact distributions we were

able to obtain tables of percentage points whic.. enables

one to test the hypotheses considered in this thosis.

The asymptotic approximations to the distribution

of )L0 and X 1 extended our testing ability to sample sizes

and populations not covered by tables. Tables of com-

parisons in Chapter VI showed that the asymptotic expansion

yields powerful approximations to the percentage points of

the test statistics.

The importance of multivariate analysis is illus-

trated by the many entities that require several traits to

describe thieir characteristics. Testing all the attributes

simultaneously is necessary because multiple correlations

may exist among the variables. For example, the quality

of a relay might be accurately characterized by three

variables; capacitance, inductance and resistance, a metal

alloy may require the variables; shear strength and



compression strength in addition to tensile strength to

adequately describe its quality.

Teapplication of this theory to practical prob-

lems is unlimited including areas such as agriculture,

anthropology, economics, physics, industry, medicine and

sociology, to name a few.

In light of this, areas of further study include

extending multivariate methods to more than two variables

and unequal sample sizes in obtaining the sampling dis-

tributions. Also, in order to study the power of the

tests it would be worthwhile to develop methods to obtain

the non-null distributions of the criteria.
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Table I. Pcrcer .a,,v Points of 1.0

ct = .01

N 2 3 4 5 6

3 .04028 .06222 .0R586 .10960 .13324

4 .16708 .18264 .20110 .21897 .23597
5 .29807 .30775 .32173 .33460 .34631
6 .40062 .40647 .41823 .42903 .43844
7 .47927 .48246 .49253 .50204 .51029
8 .54056 .54194 .55065 .55912 .56653
9 .58937 .58952 .5)713 .60474 .61144

10 .62902 .62832 .63505 .64194 .64"05
1i .66181 .66053 .66654 .67281 .67P,42
12 .68935 .6 766 .609308 .6983 .7040)1

13 .71278 .71081 .71573 .72105 .72535
14 .73296 73080 .7353 .74023 .74471
15 .75051 7 .75436 R7 ?,91 .7,11 
16 .7659k .76353 .76736 .77167 .77>e.,I
17 .77)52 777 0 .78066 .7 '471 .7 8', 2
18 .79165 78019 .79252 .70635 .79986
19 .80251 o80005 .8031 . P67 9 .81012
20 .81231 .80985 .81279 .,1622 .P1930

21 .82118 .81874 .82151 .82477 .82779

22 .82925 .82683 .82946 83257 .83545
23 .83663 .83424 .P3673 .83970 .84246
24 .84340 .84163 .8434n .4625 .84F90

25 .84963 .P4730 .F ))6 . 5229 .85 F3
30 .87459 .87244 .P7427 . 7653 .P,78'66

35 .89245 .8)048 .8 20N .P03 ) .8 577

40 .90586 .90405 .90537 .9(7r)6 .90965
45 .91630 .91463 .91579 .91728 .91870

50 .92466 .92311 .92414 .92549 .92676

55 .93150 .0306 03 99q .03'" 1 37
60 .93720 . 5o, 739 % *3 't7

65 .94202 .94077 Q.41 4 . 14757 r(,.7

70 .91t616 .9443 S04 5(9 .1' 4 .9/7 f'

75 .'() 75 .9',,"63 9!4Q29 9'2

80 .952 P .95,183 952;5 9532 ',',' 0,
85 9 5 65 5405 n 05 23 .95 (I . .7?
90 .95812 .95716 .9577 1 9 5 'S
95 .96032 .95941 .95993 96063 06130

100 .96230 .96143 .96192 .96259 .96322

i-'



Tahle I. P1erceita.e Points of 0

.050

2 3 4 5 6

3 .0b72 .1033 .12(27 15c82 7 ';1

4 .26961 .26141 .26769 .27759 .28911

5 .4120l .30565 .3()639 *40047 .40560

6 .51144 .49221 .49098 .49336 .496 f2

7 .58314 .563114 .56091 .56244 .564 4

8 .63619 .61706 .61420 .61528 6173I

9 .67884 65931 .65626 .6 6 , 6 5!5

10 .71171 .60'325 .69007 .69044 .691P5

11 .73A73 .72109 .71788 .71806 .71926

12 .76115 .74433 .74113 .74118! .74222

13 .73004 .76401 .760,S6 .7608I .76173

14 .79617 .7 M80 9 .777 P .7776, .7 E 4

]5 5 ., .1 . '7 '53 17(>1 .771 _4

16 .82227 .I,0i033 .8,9)40 . 0519 8

17 .83297 .81964 81679 .81654 .81713

18 .84245 .8 2968 .82691 .82665 .82719

19 P, 5002 .83867 .83508 .F3570 .F3(2h

20 .85853 .84676 .84415 PI43P5 .8.4431

21 .86540 .8540R .85155 .85124 .,5U,6

22 .87163 .R6073 . 5827 .S57% .85"835

23 .87732 .86680 .R641.I .86410 .F446

24 .8P,52 . 7237 .27035 7 . ,73 .p7 C

25 .P 8 731h .877' .87523 .27401 F 75

30 .9 635 •897% 1 - *8598q .8 567 .89591

35 .919 90 .91257 .91082 .91052 .9107'-

40 .93002 .92352 .92195 .92168 .92183

45 .93787 .93204 .93062 .93036 .93049

50 .94414 .93S84 .93755 .93730 .93742

55 .q4926 .9441,1 .94 22 .94299 . ...

6" • 5-.52 . 9'0, (417 5 . 77

65 .°52 .951:5 .95175
70 .06%l~r .958 4 .95538 .°551n n5. i

75 .96287 .d5926 3 l3 Y]7

8 () .% 5 2 0 .0 6) .9 0: t 7, .2 ..

c5 . 96726 .n6,', 1 b9 325 .n62 9 .6(-,

90 .06909 .96605 19(52 ,9t5!4 .963 1

95 .97073 .)6734 06712 .96700 .0;702

100 .97220 .96945 .96876 .96862 .96867

1i



Table II. Percentage Points of 11

2: 3 4 6

3 .06)38 .no,97 .12372 .15609 .I,748

4 .22992 .25183 .27559 .297S7 .31870

5 .370,3 .39586 .41467 .43083 .444,4

6 .48511 .49P56 .51476 .52P50 .53994

7 .56186 .57274 .58686 .59891 .60810

8 .61930 .62029 .64072 .65142 .66029

9 .66369 .67127 .60234 .69193 .69990

10 .69895 .70546 .71541 .72409 .73131

11 .72758 .73326 .74230 .75021 .756P1

12 .75129 .75631 .70457 .77184 .77790

13 .77122 .77571 .7P,332 .79003 .79565

14 .78822 .79226 .79931 .Pn555 .F1078

5 . °028",7 .80655 .81311 . 23'2

16 .81564 .81900 .2515 .83 r) .819

17 .82685 .82996 .83573 .84037 .84519

18 .83679 .83966 .84510 .P4996 .85404

19 .84565 .84832 .85347 .85807 .86193

20 .85630 .P5610 .860 8 .86535 .86902

21 .86077 .86311 .86775 .87192 .87542

22 .86727 .86948 .87390 .87788 .88122

23 .87320 .87528 .87951 .FF331 .88650

24 .P7862 .98059 .88463 .P,8827 .91334

25 .88359 .88547 .8934 .89284 .89572

30 .90340 .90499 .90810 .91101 .91346

35 .91745 .9i868 .92143 .9 2 3 0 2  .92602

40 .92793 .92898 .93138 .93355 .93540

45 .93605 .93697 .93909 .94102 .94266

50 .94253 .94334 .94525 .94699 .94846

55 .14 7 P1 .0R54 .95027 .O5]85 Qo5 3 1 9

60 .9521 ,952,7 .05445 .*055 71 3

65 .0 5 '02 .0 52 ,95719 .q 60 '1(6

70 .95910 .95n65 .QHO .96?h I-N.6 3

7 5 961, .96236 .96> .9647 9 W)77

P0 ,09!;25 .96473 .q6,92 .9670 96792
85 .3637 .9666 2 .96793 .969, 9,9,2

90 .96,R25 .96867 .96973 .07060 97151

95 .96994 .97033 .97133 .97224 .97302

100 .97145 .97182 .97277 .97364 .97437
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Tahle II. Percentage Points of L,

u= .05

N 2 3 4 5 6

3 .13239 .15090 .170 5 .211 P .24261

4 .36242 .35480 .36258 .37372 .3P636

5 .51231 .49968 .50294 .50869 .51484

6 .60749 .59386 .59555 .59976 .60428

7 .67222 .65882 .65966 .66301 .66672

8 .71885 .70609 .70644 .70919 .71235

9 .75397 .74195 .74200 .74432 .74706

10 .78134 .77006 .76992 .77192 .77434

11 .80326 .79267 .79241 .79417 .79033

12 .82120 .81125 .81091 .81247 .81442

13 .83615 .82679 .82639 .82779 .82957

14 .84880 83(96 .83593 P40S( .84244

15 .85964 .85129 .850 3 . 5 1 9  .85350

16 .86903 .86111 .86064 .86171 .86312

17 .87725 .86971 .86925 .87023 .87155

18 .88450 .27732 .87685 .87777 .87900

19 .89093 .88409 .88362 .88448 .R9564

20 .89670 .89015 .88068 .89049 .89158

21 .90188 .89561 .89515 .89590 .89694

22 .90657 .90055 .90010 .90081 .90180

23 .91083 .90505 .90460 .90528 .90622

24 .91472 .90916 .90872 .90936 .91026

25 .91828 .91292 .91240 .91311 .91396

30 .93241 .92788 .92749 .92798 .92868

35 .94238 .93845 .93810 .93851 .93911

40 .94978 .94632 .94600 .9h635 .946S7

45 .95550 .95241 .95211 .95242 .95288

50 .96005 .95725 .9569" .95726 .95767

55 .96375 .9612() .96095 .96120 .(6157

60 . 6683 .90449 .96Y25 .) ,,14: .)6 4 2

65 .96042 .q6726 7 .9 7' .)7 24-

70 .97164 .96963 .96)42 .96961 .9 ) 0r)

75 .97357 '.°716" .97148 .97) ,6 .071 "3

80 .97524 .73!47 .97328 .9734) .97370

85 .97671 .n750 .97187 .979'"2 .97526

90 .97902 .97644 .97628 .97642 .97665

95 .97919 .97770 .97754 .97768 .97789

100 .98025 .97882 .97867 .97880 .97900

76
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Tahle 111. Percentage Points of L 2

Ct .01

2 3 4 5 6

3 .21544 .29431 .34369 .37781 .40311

4 .39811 .4S597 .493P3 .52038 .54021

5 .51795 .56()'6 .590o8 .61127 .62727

6 .59948 .63211 .65614 .67363 .6F695

7 .65793 .68398 .70407 .71891 .73029

8 .70170 .72316 .74037 .75323 .76315

9 .73564 .7537 .76870 .7S012 .78990

10 .76270 .77830 .79161 .80174 .80961

11 .78476 .79841 .81035 .81950 .82664

12 .80309 .81519 .82601 .83435 .84087

13 .P1855 .82040 .83929 .84694 .85295

14 .83176 .84159 ., 5068 .85776 .86333

15 .8P4319 .;P5215 . 6057 ,P6715 .P7?34

16 .85317 .06139 .86924 .S7538 .P .02.

17 .86195 .86955 .876!19 .S'266 .88721

18 .86975 .87680 .88369 .89913 .89342

19 .87671 .8R329 .P979 .P9492 .89998

20 .88297 .88913 .89527 .90013 .0399

21 .88862 .89442 .90024 .90486 .90853

22 .89376 .89922 .90476 .90916 .91266

23 .89844 .90361 .90889 .91309 .91643

24 .90273 .00763 .91267 .91669 .91989

25 .90666 .91132 .n1615 .92001 .92308

30 .92239 .9261 2 .93009 .93328 . 03583

35 .9335F .03669 .94006 .94278 .94496

40 .4 195 .94461 .94754 .94991 .95182

45 .94844 .95077 .95336 .95546 .95715

50 .95363 .95570 .95802 .95901 .96142

55 .957P7 .05973 .%6193 .96354 .( !,', !

r) .06140 It 30 .9690) .966 .

65 .643- .96 3 C .0. 77P .a8'(,4 .077f31

70 0 6606 9 .4 ,36 .07000 .) 3 . 72"

75 .9(1)6 07047 .r7; .97: .97! "

F, .097109 .9723? .97'.75 . 9 7 4 2  .97 6

85 .972P1 .97395 97 29 , 7630 .7728

90 .9 743 .075 0 .07660 .9777 • 7 7,",

95 .97567 .97669 .977 8 .97 88 .07967

100 .97689 .977P6 .97900 .97993 .98069

77
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Table III 'vrcentage Points of 1.2

= .n5

N 2 3 4 5 6

3 .36940 ..41820 .45036 .47267 .4P925

4 .54928 .57086 .58990 .60436 .61559

5 .651P4 .66]32 .67381 .6(409 .60237

6 .71687 .72060 .72945 .73726 .74375

7 .76160 .76234 .76 (6 .77518 .78048

8 .79418 .79327 .79944 .80357 .8r)F02

9 .81896 .81711 .82127 .92561 .F2944

10 .83843 .83603 .83946 .84321 .84657

11 .85413 .85140 .85429 .857511 .86057

12 .86705 .F6415 .86662 .86955 .87223

13 .87789 .874,8 .P,7703 .87966 .88210

14 .88707 .88405 .88594 .89832 .89055

15 . 9 98 F ()I(I6 .o0o3pk4 , 9 5p2

16 . 90186 .898p7 .90037 .90237 94 28

17 .90789 .90494 .90629 .90815 .9()9()3

18 .91322 .91033 .91156 .91329 .91495

19 .917q7 .91514 .91626 .91788 .91944

20 .92223 .91946 .92049 .92201 .92348

21 .92606 .92336 .92431 .92574 .92713

22 .92954 .92690 .92778 .92913 .93045

23 .93270 .93013 .93095 .93223 .93348

24 .93560 .*3300 .93385 .93506 .93626

25 .93825 .93580 .93652 .93767 .931,?

30 .94800 .94663 .94717 .94810 .94903

35 .95627 .95434 .95476 .95554 .95633

40 .96184 .96010 .96044 .96111 .96180

45 .96615 .96457 .96486 .96545 .96605

50 .96959 .96S14 .96839 .968,91 .96945

55 .9723o .97105 .97127 .97374 .97223

60 .97472 .9974F 97368 V 974!fl n 97454

65 .97669 .975%3 .97571 976o n97V,0n

70 .97837 .97729 97745 977F1 97V.I

75 .979,93 .97f,81 97895 9792) q 7164

00 .08110 .9,() 14 .98027 f', 5Q 9 U; 91

F 5 .q82 "2 .9PI 31 98144 QR9 173 (0P204

90 .98322 .98236 .98247 .98275 .91304

95 .98411 .98329 .98340 .98366 .08393

100 .98491 .98413 .9,8423 .98447 .98473
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Table IV. Percentage Points of 10

= .01

N 2 3 4 5 6

3 38.5415 49.9855 58.9218 66.3285 72.5622

4 28.6280 40.8063 51.3262 60.7529 69.3152
5 24.2086 35.3538 45.3622 54.7405 63.6253

6 21.9539 32.4086 41.8432 50.7736 59.3656

7 20.5941 30.6123 39.6598 48.2359 56.5136
8 19.6844 29.4045 38.1857 46.5107 54.5504

9 19.0330 28.5365 37.1244 45.2662 53.1295
10 18.5435 27.8823 36.3236 44.3264 52.0552
11 18.1620 27.3715 35.607P 43.5915 51.2148

12 17.8565 26.9615 35.1952 43.0011 50.5394

13 17.6062 26.6251 34.7825 42.5162 49.9945
14 17.3974 26.3441 34.4377 42.1108 49.5207
15 17.2205 26.1059 34.1452 41.7669 49.1270

16 16.0689 25.9014 33.8940 41.4715 48.7S8
17 16.9373 25.7239 33.6758 41.2149 48.4950
i 16.8221 25.5683 33.4846 40.9900 48.2375

19 16.7205 25.4309 33.3157 40.7912 48.0099
20 16.6301 25.3086 33.1653 40.6143 47.8073
21 16.5491 25.1991 33.0306 40.4559 47.6257

22 16.4762 25.1005 32.9092 40.3129 47.4621
23 16.4103 25.0111 32.7993 40.1835 47.3139

24 16.3503 24.9299 32.6993 40.0658 47.1791

25 16.2955 24.8556 32.6079 39.9582 47.0558
30 16.0.02 24.5635 32.2481 39.5346 46.5705
35 15.9299 24.3594 31.9067 39.2385 46.2312

40 15.8192 24.2083 31.8111 39.0199 45.9806
45 15.7341 24.0930 31.6695 38.8518 45.7880

50 15.6667 24.0013 31.5554 38.7185 45.6353

55 15.6120 23.926S 31.4636 38.6)03 45.5112
60 15.566 23.p652 3] .3S75 3S.52(07 15. 4(85
65 15.52 7 23.P133 31.3235 38.4452 4j5.32 n

70 15.4 62 23.7690 31.268 38.3F08 45.24 1
75 15.46F2 23.7317 31.2217 3P.3252 45.1P44
80 15.4437 23.6)74 31.1g0 38.2707 45.12'8

85 15.4220 23.66P1 31.1443 3F.2341 1,5 .)7q9
90 15.4131 23.6420 31.1122 30.1962 45.0265
95 15.3861 23.6183 31.0836 38.1624 44.q97 8

100 15.3708 23.5980 31.0578 38.1321 44.9630
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Table IV. Percentage Pofntn of w40

C .05

N2 3 4 5 6

3 29.2635 40.8391 49.6644 56.7496 62.4613

4 20.9726 32.2001 42.1739 51.2641 59.5659
5 17.1743 27.8168 37.0143 45.7554 54.1430

6 16.0926 25.5186 34.1449 42.3913 50.3931

7 15.1011 24.1174 32.3789 40.2835 47.9673
8 14.4371 23.1736 31.1861 38.8544 46.3109

9 13.9611 22.4943 30.3261 37.9228 45.1132
10 13.6032 21.9818 29.6764 37.0430 44.2071

11 13.3242 21.5812 29.i682 36.4327 43.4978

12 13.1007 21.2596 28.7598 35.9419 42.9272

13 12.9174 20.9955 28.4243 35.5387 42.14533
14 12.7646 20.7748 28.143F 35.2015 42.0661

15 12.6351 20.5R77 ?7.A00 F 34.9193 41.7332

16 12.5240 20.4269 27.7012 34.66 3 41.4470
17 12.4277 20.2874 27.5236 34.5556 41.1984
18 12.3433 20.1651 27.3678 34.2682 40.9804
19 12.26,9Q 20.0570 27.2302 34.1025 40.7876
20 12.2025 19.9608 27.1077 33.9551 40.616(0

21 12.1432 19.8747 26.9979 33.8230 40.4622
22 12.0898 19.7970 26.898 33.7038 40.3236
23 12.01,15 19.7267 26.8093 33.5960 40.1)80
24 11.9975 19.6628 26.7278 33.497F 4o.0 37
25 11.9574 19.6()43 ?6.6532 33.4080 39.97q2
30 11.7995 19.3743 26.3508 33.051,6 39.5678

35 11.6894 19.2136 26.154'7 32.8075 39.2800
40 11.6081 19.0949 26.0132 32.6245 39.0675
45 11.5458 19.0038 25.8967 32.4846 38.9040

50 11.4963 18.9315 25.7944 32.3734 38.7743
55 11.4562 I .872, 25.7194 32.28% I .6691
60 11 .423 18.P242 25.6573 32 . ?0 38. 19
65 11.3951 1] .7F33 2 .6 (,05n 32.1] 51 3. [
70 11.3713 18.74 4 25.5604 32.09l3 ,.!,458
75 11.35) 7 1 .7182 25. 52] 32./4 0 3 .!4 '1] 7
89 11 .3328 18.6920 15. 1 , 2 12J 0'43 3I 3'.4k
85 11.3170 18.66,8 25.4586 31 . 06 ', 6 38. I )2
90 11.3030 10.6483 25.4324 31.9370 38;.26,1

95 11.2905 1..6300 25.40)0 31.0088 38.2332
100 11.2793 18.6136 25.3880 31.8834 38.2037
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Table V. Percentage Points of 11

= .01

N 2 3 4 5 6

3 33.6859 43.1664 50.1539 55.7192 60.2661

4 23.5203 33.0961 41.2425 48.4437 54.8877

5 19.4082 27.8010 35.2112 42.1026 48.6029

6 17.3612 25.0573 31.8742 38.2630 44.3740

7 16.1418 23.4079 29.8463 35.8P49 41.6729

8 15.3331 22.3085 28.4903 34.2881 39.8467

9 14.7576 21.5233 27.5201 33.1441 38.5358

10 14.3272 20.9345 26.7916 32.2842 37.5498

11 13.9931 20.4765 26.2244 31.6145 36.7814

12 13.7264 20.1101 25.7703 31.0779 36.1656

13 13.5084 19.8104 25.3985 30.6385 35.6612
14 13.3270 19.5606 25.0885 30.2719 35.2403

15 13.1737 19.34n2 24. 261 2o.061 3'83

16 13.0423 1q.168(0 24.6010 20.6953 34.5779
17 12.9286 19.0110 24.4n59 29.4644 34.3127
18 12.8292 18.8736 24.2351 29.2622 34.0804

19 12.7415 18.7524 24.0844 29.0,838 33.P754
20 12.6635 18.6446 23.9503 28.9251 33.6930

21 12.5939 18.54P2 23.8304 28.7831 33.5298

22 12.5312 18.4614 23.7224 28.6552 33.3828
23 12.4745 18.3829 23.6247 28.5305 33.2498

24 12.4230 18.3115 23.5359 28.143 3 2 33.1288

25 12.3759 1F.2463 23.4547 28.3311 33.0183
30 12.1913 17.9902 23.1358 27.9603 32.5838

35 12.0628 17.8117 22.9134 27.6967 32.2807
40 11.9681 17.6802 22.7495 27.5023 32.0571
45 11.8955 17.5792 22.6236 27.3531 31.8P55

50 11.8381 17.4993 22.5240 27.2350 31.7495

55 11.7915 17.434 22.4431 27. l1V)l 31 .6392
60 11.752) 17. 3 ,1, 2 , .2 37r (.2 7.0 "7 5 1.5,78

65 11.7209 17.33,7 22.31(o 2 .1)2o 31 .471

70 11.6928 17.2q71 22.2718 26.935) 3] .i 54&
75 11.6600 17.2639 22.2304 26..',67 31.340"

pn 11.6482 17.2 34 2.142 ? .8 38 31 . ' 4

85 11.6219 17.2095 22.1624 26 . r(1 1 31.256)
QO 11.6137 17.1869 22.1342 26.7726 31.2175

95 11.5992 17.1667 22.1090 26./428 31.1832

100 11.5862 17.1486 22.0-464 26.7160 31.1523

81



Table V. Percentage Points; of U

A = .05

N 2 3 4 5

3 24.2640 34.0400 41.1618 46.6659 50.qF'73

4 16.2394 24.8688 32.4630 39.36P7 45.6477
5 13.3765 20.8134 27.4916 33.7Q62 3q.F344

6 11.9622 18.7598 24.8772 30.6733 36.2679
7 11.1203 17.5269 23.2976 28.7676 3!,0524
8 10.5631 16.7049 22.2415 27.4903 32.5622

9 10.1663 16. 1178 21.4 S56 26.5751 31.4032

10 9.8696 15.6773 20.9179 25.8 71 30.6!,90

11 9.6394 15.3347 20.4758 25.3510 30.0621

12 9.4555 15.0606 20.1217 24.9214 20.5597

13 9.3053 14.8363 19.8318 24.5605 29,1480
14 9.1803 14.6494 19.5900 24.2760 28.8"144

15 9.0746 14.4112 1(.3 53 24.027/ 1 ? . S1'4
16 8.9841 14.3556 19.2"93 23.P1/1 2F.2637
17 8.9053 14.2381 19.0576 23.6291 28.0471

18 8.8373 14.1353 18.9243 23.4672 27.P575

19 8.7768 14.0445 18.8067 23.3242 27.6900
20 8.7232 13.9638 18.7021 23.1071 27.5411

21 8.6752 13.8917 18.6085 23.0832 27.407P

22 8.6320 13.8267 18.5243 22.9808 27.2877
23 8.5929 13.7679 18.4480 22.8890 27.1790

24 8.5574 13.7145 18.3787 22.F037 27.0q02
25 8.5250 13.0657 18.3154 22.7267 26.9890

30 8.3q78 13.4739 i8.0665 22.423F 26.6350
35 8.3093 13.3403 17.8929 22.2125 26.3,74
40 8.2441 13.2418 17.7649 22.0567 26.2047

45 8.1940 13.1662 17.6667 21.9371 26.0645
50 8.1545 13.1064 17.5889 21.8424 25.9534

55 8.1224 13.0578 17 .927 21.7655' 25.P63?
60 I.0958 (7, 3 017h 17 4735 21 .7018 25.7.$,5
6 59 12. S38 17 /,2 5 "21.(,1 3 2 1.7 , 1'

70 8.0544 12.95 0 17 302 21(.2n126 2.,721
75 8.03F0 12. 301 7 359 k 21.%r31 25. 257
80 S.0237 1 "2.9 0,4 17 3314 21.527 2 .5 ',35
P 5 p,.0111 12.8.Q 3 17 30(6 21.4 (19 2 S5 f) I
Q() 7.)9 9 12.,1724 17 ?!46 21.4 1 7 25.518',(

95 7.9899 12.8573 17.2649 21.4477 25.4905
100 7.9810 12.8438 17.2473 21 .4262 25.4653
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