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Preface

-

Methods employed when testing hypotheses concerning

populations must consider the possibility of correlation
existing among the variables that characterize the entity
being tested. Multivariate Analysis provides a method to
effectively deal with this correlation problem.

This report uses Multivariate Theory to derive the
sampling distributions of the likelihood ratio criteria
for two correlated variables and k populations. In this
endeavor I offer my deepest gratitude to my advisor,
Dr. B. N. Nagarsenker, not only for his guidance throughout
this project, but for teaching me the Multivariate Theory
upon which the entire thesis is based.

I would also like to thank my reader, Lt Col Richard
Kulp, whose advice and editing aided me greatly; Mr. Jerry
Petrak and the Engineering and Design Data Group, AFWAL/MLSE,
for supplying the experimental data and assisting in its
analysis; and my typist, Phyllis Reynolds, for her superb
job.

Finally, I want to express a special thanks to
my wife, Lois, for her dedication and support; and our
children, Robert, Daniel, and Cristina, who were a con-
stant blessing throughout the entire AFIT program. 1

— Arthur J. Sherwood
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AFIT/GAM/MA/83M-1

Abstract

Let a random sample of size Ng be drawn from a

p-variate normal population Np(Hg, gg) g=(1,2,...,k).
In this thesis we consider the problem of testing the fol-

lowing hypotheses:

[i] Hy: El = EZ = ... = Ek,
R -
[}i] Hl: El = Ez = ... = Ek' The means can be any value
1 2 k

[iii] sz ¥ o=y M given El = Ez = L. = Ek

against the general alternatives.

Likelihood ratio criteria and their sampling dis-
tributions are derived for p = 2 and equal sample sizes.
From these distributions, tables of percentage points for
the three likelihood ratio criteria are computed.

A useful approximation is also obtained. The theo-

retical results are then applied to actual data.

vii
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ON THE DISTRIBUTION OF THE LIKELIHOOD RATIO

CRITERIA ASSOCIATED WITH K SAMPLES OF

TWO CORRELATED RANDOM VARIABLEC

I. Introduction

Statistical techniques enable experimenters to
analyze the variation and covariation that exists between
the measured characteristic of observed events. Analysts
seek to assign causes to this variation, test and compare
alternative hypothesis and express the results in terms of
a measure of probability. Some of these hypotheses are:
(1) Is the sample from a specified population? (2) Are the
k samples from a common but unspecified population? (3) Is
the population completely specified or only partly? (4) Do
several populations with different means have the same
standard deviations? (5) Are the variables being tested
correlated?

One approach, the Analysis of Variance, developed
by R. A. Fisher, is based on the assumption that the unex-
plained variation (residuals)‘ is normally independently
distributed and the populations have the same standard
deviation. The assumption that the standard deviations are

the same is not always true and, therefore, the results




obtained could be misleading to the user of the information.
Multivariate ar: lysis theory is well suited in this case,
specifically where two or more correlated variables are

involved.

Background

In early developments of hypothesis testing, the
fundamental hypothesis, H: Are the two samples Xl and X2,
from the same unknown normal population k, was treated by
Professor V. Romanovsky in his paper entitled "On Criteria
that Two Given Samples Belong to the Same Normal Population"
(Ref 14). Romanovsky approached the problem assuming the
hypothesis H to be true and derived the distribution func-
tion for his test criteria. He provided four alternative
criteria for testing his hypothesis H. These criteria are

as follows:
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o = 2 (1.4)
1

Neyman and Pearson (Ref 11:201) point out that the
criterion a, i, and t are not sensitive to differences in
population standard deviations. For example, the pairs of
samples may have N and s, almost equal, whereas a second

2

pair, s and s, could vary greatly, yet the value of t may

2
be the same in both cases. The criteria 6, does dis-
tinguish between the population standard deviations, but is
not sensitive to the difference between their means.
Because of the restriction on these criterion, further
research is necessary to derive a test statistic. The
test statistic should have the following properties: (1) be
able to distinguish between population standard deviaticns
and between their means, and (2) the test statistic should
be selected in such a manner that it will minimize the
danger of accepting a false hypothesis,

Neyman and Pearson use the likelihood ratio test to
derive a test statistic for one variable and two popula-
tions that satisfies the above requirements.

The Likelihood Ratio Criterion
of Neyman and Pearson

R. A. Fisher in the early 1920s proposed a general
method of estimation called the method of maximum likeli-

hood from which the likelihood ratio criteria for testing




hypotheses was developed. The method produced sufficient
estimates for the parameters whenever they existed and the
estimates are asymptotically, (n -+ «), minimum variance
unbiased estimators.

Now we will discuss the likelihood ratio criterion

of Neyman and Pearson.
Let the stochastically independent random variables

xl and X2 be chosen from some normal populations kl and k2 1

where the means and variances are any alues. Then our

parameter space Q = (ul, u2, Zl' 22), where (-= < ul < w),

2

(-0 < =~ < @), (0 < T, <®®), (0 < I, < =), We wish to test

1 2
the hypothesis HO: ul = u2, L, = I, against all alterna-

1 2
tives. Under H0 let w be such that (- « < ul = uz < )

and (0 < Zl = 22

hood function for @ and w respectively and L(R) and L(w)

< @), Let L(Q2) and L(w) define the likeli-

be their maxima. Then Neyman and Pearson obtained the
likelihood ratio criteria for testing HO in the form

(Ref 11:103):
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where n, is the sample size for Xl'
is the sample size for X2,
is the standard deviation for Xl'

is the standard deviation for xz,and




Sy is the standard deviation obtained by combining
the n, and n, variables of the samples Xl and
X,

2

Our criteria XH lies between 0 and 1. If our hypo-
0

is true we would expect the ratio of L(w) to L({)

thesis H

0
to approach unity. The closer to unity the more confidence

we have that H, is true. However, if AH approaches zero

0

we become more certain that the hypothesis HO is false.

The nature of the hypothesis HO allows us to

separate it into two hypotheses: (1) Hl: The samples come
from unknown populations with the same variance, but with
means having any value whatever; and (2) H2: The means are
the same, assuring equal variances and normal populations.
If we use p and t from equations (1.2) and (1.3)
and the equation
2 (nlsf + nzsg) n,n, _

S, = + (X, - Xx.)
) (nl + n2)2 1 2

then AH can be represented as a function of Romanovsky's

criteria t and 6 from equations (1.3) and (1.4).

(nl + n2) 22 —(nl + n2)
- 2 2 2
A= (nl + "2) 8 (n1 + n26)
1+ — 2 (1.5)
nl + n2 2
5
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From equation (1.5) Neyman and Pearson (Ref 11:104)

derived the likelihood function criteria for testing Hl

and Hz. Thus, the likelihood of Hl is
(nl + n2) 22 } (n; +n,)
A 2 2 2
H, = (n, + n.,) 8° (n, +n,8)
1 12 12 (1.6)
The likelihood of H2 is
) _(nl + nz)
) t 2
H., = |1 + — (1.7)
2 n, + n2 2
Combining A and A the results are
Hy Hy
A=A A (1.8)
H; Hy

From equation (1.5) it can be seen that AH obtains

its maximum value of unity when both 6 = 1 and t = 0, or

= g and X, = X... A\, will decrease towards zero when

51 2 1 2° H

a) 6 + 0 or s, becomes small compared with Sq

b) 6 + = or becomes small compared with Sye

51
c) |t] + « ox |xl - §2| increases compared with

2




Thus, even if El = §2 or XH = 1 we cannot accept
2

H, if s, differs considerably from Sy If s, = s (A, =1)

0 l 2! Hy
then the populations are not the same if (§l - 52) were
large compared to V, which is the estimate based on the

sample variance of the standard error of the differences

of means.

Thus, the criterion A = A__ A is more crucial than
H Hl H2

either Aﬂl or AHz taken separately. Therefore, our conclu-
sion is that A is a reasonable criterion to use for mea-
suring the danger of accepting a false hypothesis.

To control the error of rejecting a true hypothesis,
it is necessary to determine the sampling distribution of
H* The distributions are derived for X
approximation for A

A . and AH and an

Hy 2

H in Neyman and Pearson's paper "On the

Problem of Two Samples" (Ref 11:106-109).

The extension of Romanovsky's work to k samples of
a single variable was undertaken by Neyman and Pearson's
article "On the Problem of k Samples” (Ref 12). The likeli-

hood function for A A, , and XH were derived by general-

Hy" "Hy
izing the two sample deviation. However, methods for

calculating the distribution of XH and XH were not avail-
1
able at the time of the article. 1In this case, approximate

solutions of the problem were reached by use of the moment

coefficients of the )\ _ 's expressions.

H




Objective

A further generalization of the problem of k
samples of two variables is treated by Pearson and Wilks
(Ref 13). Specifically, the problem treated is the case of
two correlated variables X and y which have a bivariate
normal distribution. The three hypotheses considered are:

1. The hypothesis H, that the k populations are

0
identical.

2. The hypothesis Hl that the samples have come
from populations with the same set of variances and corre-
lations, but having means with any differing values what-
ever.

3. The hypothesis H2 that the samples are from
populations in which the means are equal, when it is
assumed that the variances and covariances are equal.

Testing these hypotheses are of great interest to
industry; however, the distribution of the test statistics
concerning these three hypotheses are not known, and so the
problem of finding percentage points of these criteria has
thus become difficult. The aim of this thesis is to:

1. Derive the sampling distribution of the test
statistic for each of the three hypotheses.

2. Prepare tables of percentage points for
a = .01, .05 and for N = 3 to 100, k = 2(1)6.

3. Derive an asymptotic expansion of the distribu-

tions which are valid for moderately large values of N.

8
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4. Illustrate the results obtained in this thesis

by applying it to actual data.

Chapters II, III, and 1V provide preliminary infor-
mation necessary for the derivafion of the sampling dis-
tributions of the three‘hypotheses. In Chapter V the
actual derivation of the sampling distribution is under-
taken for each hypothesis from which tables of significant
levels are obtained. Chapter VI gives an approximation
method valid for moderate values of N. Chapter VII uses
actual data submitted by the Engineering Division of the
Air Force Materiels Laboratory, Wright-~Patterson AFB, Ohio,
to demonstrate the practical application of the theoretical

results.




II. Statistical Preliminaries

Multivariate Normal
Distribution

Let the vector X have p-components, i.e., X =
(xl,xz,...,xp), then x has a p-variate non-singular normal

distribution if its p.d.f. is

=

and I are the parameters of the distribution;
Y} is a column vector of elements vy (i=1,2,...,p) and
L= (cij] is a positive definite symmétric matrix of order
p. The p.d.f. (2.1) will be denoted by Np(§ |u,Z) and the
notation x - NP(EIErE) will be used to indicate that the
variates x have a p-variate non-singular normal distribu-
tion with parameters pu and Z. When I is a diagonal matrix,
then f(x) is the product of the p.d.f.s' of p univariate
normal variates, showing that the x's are independently dis-
tributed in that case.

When p = 2, £(x) has the following bivariate normal
p.-4d.f.

tr y =1, _ '
£(x) = ____l_MQ exp {- =5 x-w' 2 " (x-wl.
(2m) [£]

10
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Let X be a random sample of size N from a distribu-
tion with p.d4d.f. Np(g}g,g). The vector x can be repre-~

sented as the p by N matrix

[y ﬂ

xllle xlN

X21X22 oo X2N
5 =

x X * o @ x

L_pl7p2 pN|

The columns of X are independently and identically
distributed as N/ (x|p,Z). Thus the p.d.f. of x is the
product of the p.d.f.’'s of the N columns of x.

£ix) = exp (- %f 2-1(5-'£) (x = p'}

1

BN

2
(2m) |z}

N2

(2.2)

where tr is the trace of a matrix.

The exponential term of this p.d.f. is obtained by
using the following property concerning the trace of the
product of matrices.

Let P, Q, and R be matrices such that the product
PQR exist. Then

tr(PQR) = tr(RPQ) = tr(QRP) = tr(QRP)

Specifically, since (x - p)°', g'l, (x -~ y) are

matrices whose product exists,

11
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L}

trix - W' Ih(x - W) = tr(x - 1) (x - p)rt

el lx - W (x - W (2.3)

]

Maximum Likelihood Estimates
(MLE) of Y and

Let x be a random sample of N observations, where

X . Np(glg,g), N > p. The likelihood function of x is

— 1 21
L = oN N exp { >
2 2 o

1

[ I

(x, - ' L

l"(l

(x, - u}

To find the MLE of y and I it is necessary to
maximize the likelihood function L. 8Since the likelihood
function L and its logarithm are maximized for the same

value we will consider log L.

log L = SpN log(2m) + %N logz ™t
N
-1 — gy 5ol _
> a£1(§“ w' I (§a u) (2.5)

The following properties will enable us to rewrite

equation (2.5) in a form which is easily maximized.

Definition 1: Let the sample mean be defined

12




N —

P =
= IX X

N a=lla =1

x=5g ¥ x = : = . (2.6)

a=1 : E

1 ?x %

REE L B

Definition 2: The matrix of sums of squares and

cross products of deviations about the mean is defined as

A where

é:
o

x

1 Q,

a

™~

Lemma 2.1: Let Xyr Xy

vectors and let x be defined by definition 1. Then for any

- Xy be N p-component

vector b

N
L (x, - b)(x,-b)"
a=1 =Q Qo o

"
R
3

- x)(x, - %"

+ N(x - b)(x - b)' (2.8)

proof: (Ref 1:46)
Lemma 2.2: Let f(C} = N log {C| - tr CD where C =
(cij) and D =(dij) are both positive semi-definite. Then

the maximum of f(C) is taken at

c=npt

proof: (Ref 1:47)

13
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Now, by using the property tr(a) = a where a is a

scaler and applying equation (2.3), we can rewrite equation

(2.5) in the following form:

' -1 N
(§a - Rt LT, - ) = tr i I T(x

N
z
=] o

o

By using lemma 2.1 and setting b = p (2.8) becomes

= tr 2_15 + trN(x - p)' g‘l<g - u)

Thus

(x, - w' g-l(Ea - ) = tr ;’1

e~

a=1

~1

+trN(x, - 'L (X - (2.10)

Now substituting the RHS of (2.10) in equation (2.5)

gives us a form that is easy to maximize.

log L = %pN log(27) + %log g-l - %tr g-l A
- (E - ITNE - W (2.11)

The first term of (2.11) is a constant and is there-
fore already at its maximum value. The last term is at
its maximum value of zero when y = x. Since the remaining
terms are not functions of u, the MLE of u denoted é is x.
To find the MLE for g_l notice that the second and

third term of (2.1l) are functions of g—l alone and

14




therefore can be maximized by applying lemma 2.2, putting

g_l for € and A for D. Thus, the maximum of log L occurs

when

To summarize, the MLE for M and I are

(2.12)

1%
Jev >
i

z| 1>

.E__.

The Wishart Distribution

Let X = (51, X oot EN) be a random sample of

2!
size N from Np (x]0,2). The Wishart matrix A is defined
as the p x p symmetric matrix of sums of squares and sums
of products of the sample observations.

Let
N

A= I lx, - B - B

Then it is known that A has the following p.d.f. (known as
the Wishart Distribution with n = N - 1 degrees of freedom).
(Ref 1:54)

& - E_i_l)

£(3) = K(z, n)]al? 2 exp (:—%-tr 3t g-) (2.13)

where A > 0 (i.e., A is positive definite) and

g(g4-‘ 1)

ny _ (n +1 - i)

I}:‘2) “ o 3 )
15
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np : n
21, [3)inl?

K(,n) =

The distribution of A is W (A|I,n) where n represents
the degrees of freedom. note: When p = 1, the Wishart dis-

tribution is a Chi-Square with n degrees of freedom.

Theorems Concerning the
Wishart Distribution

The following theorems are necessary in order to

derive the results in later chapters.

Theorem 2.1: If A,,A.,...,A_ are matrices, each
—=1'=2 —q

independently distributed as W(églg,ng) then

I
]

N ™M
|

[To]

is distributed W(A|Z, & n,)
i=1l

proof: (Ref 1:162)

Theorem 2.2: Let A and T both be p by p positive

matrices, then

a _ (p+1)
IAZ 2 =1 -1
exp s A

A>0

16




where

-
2
K(_'I_"CV.) (']y:,‘
2. o
2 Fp‘ﬂ
and
p(p - 1)
r(S) o q If”,(a+1—i)J
pl2 i=1 2

This result follows directly from the Wishart
p.d.f. since multiplying both sides by K(T,o) gives the
Wishart p.d.f. Thus, if we denote the function i.nder the

integral as f(A) we have

K (T, o) .[ £(a) da =1
a>0

Theorem 2.3: Let A ~ W (élg,n) then

K(Eln)

h, _
E([al™ = K(z,n+2h)

where K(Z,n) is defined as in theorem 2.2.

Proof:
E(aP) = flz_xlhftg)dA = j|£\_|hK(1:n)
A>0 A”0
(a i p_+__1)
|a] 12 2 Jexp (- %tr E_lé)dp‘
j h + 2_2.;_1_ )
= x(zon) J Ia] exp |- gtr 277 an
2>0
17
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1 _p+1
%2(n + h) 3 }

= K(X,n) A>Olé exp —~%tr§flé daa
_ .. -1 . _ K(E_In)
= K(Z,n)K “(.,n + 2h) = K(z, n + 2h)
Q.E.D.

Theorcm ¢.4: Let X1 1Xoreee s Xy (N > p + 1) be
independently distributed as Np(xig,g). Then the distribu-

tion of

- g)(§u - X))

is W(A{I,n) where n = N - 1.

Proof: (Ref 1:59)

Maximum Likelihood Ratio Test

To test a composite hypothesis against an c<lterna-

tive hypothesis, the likelihood ratic test is used. Let

x be independently distributed as ¥_.xiH,Z) ahd the param-
eter space 2 = (Y,I). Let w be a subset of { restricted
under any null hypothesis, j.e. « = (4,1). From the method

of MLE eguation (2.4), if x - Np(ilg,g) the likelihood

function for u and % ¢ Q is

L(Q) =

18




e T A A = ol S A — 2

suppose w C @ where ﬁ,i € w, then the likelihood

function for w 1is

z

1 -, a-l ~
~ expi-3 )L T(x, -u)}
~ 2 o
(21) “ ||

(§a -

z
=1

AN

(2.15)

Denote the maximum of L(Q) in @ by L(Q) and denote
the maximum L(w) in w by L(o). Then the likelihood ratio

criteria is

max,, L) L (0)

>
it
1]

(2.16)

max, L(z) L(Q)

The statistic A will be our criteria for hypotheses
testing. As explained earlier the value of ) is between
0 and 1, and a small ratio of A leads to rejecting our
hypothesis where a ratio near unity gives strong support
for rot rejecting.

The subject of the next chapter is to determine

the criterion )» for the three separate hypotheses.

19
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I1I. Derivation of the Criteria

Let §g(g =1,2,...,k) be each independent and
identically distributed as N_(x lu9,2 ). 1In this chapter
p—9~- 9
we shall derive the likelihood ratio criteria for the fol-

lowing hypotheses:

[i] Hy: wl o= % = L =S
Ly =Ly, ==K
(3.1)
(1ii) Hl: El = Az, R ﬁk
cas 1 2 k .
[1ii] Hy: yo =u", = ... =y given 21 =L, = ... Ek
h

Let xJ be a random sample of size Ng from the gt
population, then using definition (2.6), the mean gg of the

gth population is denoted by

l%&
™MZ

%3
Q

1
Ny el

Let the combined mean x of all the sample populations be

denoted by
x N X9 k N_x9
el g = 9=
X Y g=1
g TN
g=1 9
20
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where

Let ég denote the matrix of sums of squares and

products for the gth population, as defined in (2.7); i.e.,

N
g g
= g - g - ! =
A 0L-_:Zl(x 59)(x x7) g 1,2,...,k (3.2)

Likelihood Estimates of
ug and L
- -g

The k populations are independent; therefore, the
likelihood function of all the sample observations is the
product of the separate likelihood functions; so general-

izing the results in Chapter II to k populations the MLE

for Hg and Lg become

9 = %9

QZ MB’

L
--g

The likelihood function for our parameter space &

12 kK o - i
—(Htﬁlcnvr}_{rélr Ezl ce ey Ek)l where (- <M < ),
and (0 < Z; <), i =1,2,...,k is
k
1 1 -1
L(Q) = exp (- ZtrI*a
N N 2
k VE_Q 7? g=1 9 79
no(2m) 2 |z
g=1
k
) = . -1 , !
B R M SR T R
g=1
21
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Taking the logarithm of L(Q) gives

k N k N _
log L(a) = & (-Bliog(2m + 1 -2 log|z 4
g=1 g=1 -9
k
1 -1
-5 L tr X A
2g=l =g =g
- L };N (x9 -9 7 EI - W9
2 gzl g'® B tg X B
k -1
Setting I N_ = N and bringing the exponent of I in front
g=1 g =g
of the summation gives
N 1 ¥
log L(Q) = -%r-log(Zn) -5 LN |21
g=1
k
-% :tr 3l A
g=1 -g9 9
L ];IN x9 - 9 Tt EI - W9

The last term on the RHS has its maximum value when
Hg = x9 and thus substituting this, brings the term to zero.
Also, substituting the MLE of zg in equation (3.3) gives

the maximum value of L(Q). Thus

22




g=1 9 N
k
1 =1
-5 L tr(N A A
2 g=1 Nghg Vg
_lk
The last term becomeS‘?? ) Ng tr I. Since tr I = p and
g=1
k
L N = N we have
g=1 9
N L
n PNk a3
log L(Q) = log(2m) 2 + I log|§3|
g=1 g

+ log {exp(-%g)}

N
_BZN_ k A -2
= log(2m) log| I ]53]2

g=l g

+ log {exp(-%g)}

N
- -9
Bl x a7 N
= log [(21\') n Ile exp(-Pz—)]
- g=l g
_pN . _N
A —g
L(Q) = (2m) 2 l’—_‘gl 2 exp(-EY) (3.4)
g=1 Ng

Derivation of Criteria for H0

To test the hypothesis

1 2 k
Hoz Poo=pt o= .. =y

-z__l = 52 = s o o

i
i™
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substitute parameters u9 = ¥ and gg = L into the likeli-

hood function. Thus, equation (3.3) becomes

k k
= - BN -1 1 -1
log Liw,) > log(2m) -3 ENglong_l 3 Etr Y A,
g=1 g=1
1 k -1 -g
-5 ¢ tr g N (x? - -
= - g - - = -
g=1
k k
Now, substituting I N_=Nand I A_= A gives
g=l g g=l—g -
N N 1 -1
log L(wo) = -%—log(Zn) -3 log Iz] -str L A
1 ~1 k =g
-=tr g N (29 - wix - (3.5)
2 = lg=19 = =

Combining the last two terms and applying lemma 2.1

with b = u, equation (3.5), can be written as

= - BN -N -1 -1
log Liuwg) 5 log(2m) -3 log |Z] -5tr £
k (3.6)
A+ N (x3-b)(x9 - b
g=1 9
The term in the bracket becomes
k -— — — —
A+ IN (T -0GET-XHNE-wE-W (.7
g=1

Thus, the log L(u,) is maximized with § = X.
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k
For convenience we will denote I Ng(§g -x)(x% - )" as B.
g=l 7 = T B

To find the estimate for I it is necessary to maxi-

mize equation (3.5) with respect to g'l.

£ = -Bliog (2nr) + 3 1ogz™ -2erz7ha + B)
(3.8)
Applying lemma 2.2 on the last two terms with C = g’l and

A + B = D the maximum of f(g__l) is at Q=Ng-1 or 7l =

ru§¢§f1. Thus, the estimate for [ is

A+B
N

jos
i

A

Now, substituting L for I in eguation (3.8) gives

Sy = - PN _N A+ B
L) > log (2m) 2logl N l
1 A+ B\ T
-~2-tr = = (A + B)
N
BN -g
2 ;A + B
= (2m) = = - PN
| N ‘ exp 5 ) (3.9)

Therefore, the criteria AO' for testing hypothesis HO is

the likelihood ratio

‘N
-9 pN
L(w,) k |z_\g|21\12
Ao = — = I 5 BN (3.10)
L(Q) g=1 5k —2
|A+B]“T N
g=1
25
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Derivation of Criteria for H

1
To test the hypothesis

H,: El =L,= ... = Ek the means any value
our parameter space Wy belongs to &, where (0 < El = 52 =
«+. =L, < *®). Thus we substitute L for Eg in equation
(3.3) to get
log L(w,) = - N jog(2m) -1 )ZcN log|t] -1 )gtr 7L g
1 2 2421 9 = T2 T e
1 X g -1 g
-Ftr DN (X9 - %) 2t (xF - 1)
9=l (3.11)

The last term is maximized when Es = gg. By sub-

k k
stituting Z N =N and A= I A_and bringing the trace in
=1 9 =19
g=1 g=1
front of the summation we have

= -Ezlilog(ZTr) —Nz-log |z | -1 _2_—1 A

log L(w 5

l)

Now using lemma 2.2, we have §-1 =1ﬂ§-lor I = é-
N

Using % for ¢ the maximized function becomes

log L(w.) -P—I\Ilog(Zﬂ) —gloglé_l-ltr
1 2 2 N

2

jo

é)'l
N

- PN -N A, _1
5 log(2m) -3 log |TT' 5 tr NI
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Using tr I = p and rewritting gives

- BN -N
log L) = log(2n) 2 + logl%‘ 2exp(-%N)

Therefore, using exponentiation gives

-BN _
~ 2A
L(w,) = (2m) Eﬁ

ol

exp(-%‘ﬂ) (3.12)

The likelihood ratio criteria Al for testing the

hypothesis Hy is given by

N
- 5

L(3,) k 1A " N

A = —— = 1 4 N (3.13)

L) g=1 N, g

2 2
1A% 1 Ny
g=1
Derivation of Criteria for H2
To test hypothesis

1 2 k . -

Hz: ¥ =y = ... y given that Ly =Ly -
= gk note that the log of the likelihood function equation
(3.3) with the condition Iy =Ly, = o0 =15y imposed is the
same as log L(ml), equation (3.12). Further, when the
restriction Bl = £2 = ... Hk is imposed the log L(wz) is

the same as log L(wo) given in equation (3.9). Thus, the

criteria Az, can be represented as the ratio of these two
equations:

N
2

L(Go) lal (3.14)

AZ =

L(uA,\l)

" S St . ST S GINET
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Particular Cases

In this thesis we will be concerned witii equal

sample sizes and p = 2. Thus, when Nl = N2 = ... Nk = n

and N = kn the three criteria take the form:

n
ko[ a1
Ag = k n o (3.15)
g=1 ['= =
n
wn X A 2
A =k I Jﬁ-ﬁi (3.16)
g=l | '=
kn
2
| 13l
*2 =|Ta B (3.17)

In this chapter we derived the likelihood ratio
criteria to test each of the three hypotheses. Next, we
must determine a critical region for testing H, i=20,1,2.
our critical region is the set defined by (0 < X < ¢) and
our decision rule is to reject H, if X < ¢. The function
A defines a random variable A(fl, Xor ooy éN) and the

significance level of the test is given Dby
a = Pr[A < ¢; Hi]

We determine these probabilities by finding the

sampling distribution of our likelihood ratio criteria

AO' Al' and Az.

28




In the next chapter we will obtain the moments of
the criteria from which the sampling distributions will be

derived in Chapter V.
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Iv. Derivation of the Moments

To obtain the sampling distributions of the cri-

teria AO’ A, and X we need to obtain their hth moments

1 2/

which are derived below.

h

The ht Monment of A

0

The hth moment of AO is

h, _ h
E(XO) = KOE(LO)

N
kNh 1
g 2 k|2 2
where K, = ———— and L, = 1 (4.1)
0 N h 0 -1 N
k _C‘ZL o |A+B|§
I N ==
g=1 9
By theorem 2.4, A . W(A_|I,n ). The matrix B
-9 g9 - g -

is the sum of squares and sum of products between means

for k samples, thus B . W(B|Z,k-1). Theorem 3.3.2 (Ref

1:53) establishes the independence of the sample mcans and
k

covariance matrices and since B = £ Ng(ig -xEI -

g=1

it follows that A and B are independent.

Since L, is a function of ég and B we have by
definition
30
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9.
h kpg f ok
E(L,) = it I W(A_|S,n )JW(B|L,k-1)dA 4B
0 g=1 Nho oy TeE g T e 9
>
A >0,B>0 A+B) 2
= 1 K(gm) | a+B| mla,l
9=1 A_>0,B>0 g=l =
exp(~%tr 1 'A)W(B|Z,k-1)dn _aB
2 - =g =l=r g
k  X(z,n) f I
= = A o "N h+n
T R(Z,N_h+n_) | A+B LI
g d 9 a >0,B>0 e
W(B|L,k-1)dA_ dB (4.2)
The integral on the right hand side of (4.2) is
_bN
equal to E(|A+B]| 2) since A = Ay + A, + ... + A and B
are independent. Therefore,
Nh
k K(E'n ) -5
h, _ R - S, 2
E(Ly) = I RO R B E(|A+B]) (4.3)
g=l " '=""g" g
k
Recall that A . W{A|x, £ (N h + n_ )} and B . W(B|Z,k~-1),
g9
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k
so by theorem 2.1 (A+B) . W{(A+B)|Z, # (N _h + n_) + k-1}.
-~ T T =1 9 g
g
k
Nown =N - 1and £ N = N. Thereforc,
g g =1 9
g
k
I (Nh+n )+k-1=Nh+N-k+k-1=Nh+N-1,
g=1 9 g
Hence, (A+B) ~ W{(A+B) I,Nh+N-1} . Thus, using theorem

2.3, substituting (A+B) for A and - §§ for h we have

Nh

- &2 K(I,Nh+ N~ 1) K(Z,Na+N-1)
E(|a+B] ) = ———
K(Z,Nh+N-1+2(=0, Kl ®=1)
(4.4)
From equations (4.3) and (4.4) we have
h k K(Z,n ) K(%,Nh+N-1)
E(Ay) = K5 I g . (4.5)
g=1 K(_Z_,Ngh+ng) K(z,N-1)

Using the definition Fp(%) and K(Z,n) from equa-

tion (2.13) we have

For the particular casc of p = 2, N1 = N2, = se.y T Nk = n,

N = nk and n_ = Ng - 1 =n -1 equation (4.6) becomes




(nk)knh " l(nh‘f-n l) P hjép— 2)
EQg) = o 1 a2
n g=1 F('j*-) | 5 )
nk -1 ..,nk -2
T ( 5 ) T ( 5 )
nkh+kn-1 nkh+kn -2
T > )T 5 )
_koh (pgtE 4y pnlhal) gk
n-1 n-2..k.,nkth+1) _ 1
F(nk-l) I,(nk---2)
2 2 (4.7)

I,{nk(}21+ 1) _ l}

Now applying Gauss's multiplication formula (Ref 9:11)

m(mz-——Jé-) m-1 i
I'(mz) = ——=5 1 T(z+2) (4.7a)
m-1 . m
5 i=0

(2m)

with m = 2 we can rewrite equation (4.7) in the following

simpler form.

knh T'(kn-2) [I{n(h+1) -2} 1F @.8)
(f(n-2)1% Tr{knth+1) - 2}

hy |
E(xg) =k

33




The hth Moment of Al
The hth moment of Al is
h, _ h
E(Al) = K1 E(Ll) (4.9)
g
BN 2
N 2 k |A_]
where K, = ————and L, = I —J3—
1 pN 1 -1 N
k =2 9= 2
1N 2 |2
g=1 9

Since L, is a function of A and A_ -~ W(A _|Z,n_) we have
1 g -9 ~g9'='"g

by definition

N h
k 9 _Nh "
E(L,) = (n|a_| “) [a] T W(A_|E,n )dA, .. .dA
=] ) g=1
A>09
-——g
Nh N h+n +1
g=l A >0 g:l
—-g
exp(-—%tr _z_"l_z_x()dAl_”dAk
k Y(L’n ) _-.2__ x
- E K(Z, N h-+n ) _/~IA| ? W(ég‘i’Ngh*'ng)
g=1 g=1
dAl...dAk (4.10)

The integral on the right hand side of (4.10) is

- Nh
equal to E(|a] 2 ), since A=A +Ay+ ... +AL
Thorafor.,
34
T TS e e gue Pl */a x -~ . -




) (4.11)

And so by theorem 2.3, substituting —I%lfor h and recalling

A . W(A|Nh+N-k) we have

1

-5 K( Z,Nh+ N - k) K(Z,Nh+N-k)
E(|A] )= = (4.12)
Thus
n k K(£, n_) K(Z,Nh + N - k)
E(A]) = K 1 9 (4.13)

g 1 K(E_,Ngh*‘ng) K(_}_:_rN"'k)

Using the definition of Fp(%) and K(Z,n) from equation (2.13)

we have
n +N h . .
P k (-3 g, 1- 1) F(HLLEi;l:;i)
EQY) =K 10 S 2
i=1 g=1 g ) P N-k+1l-i+nn
2 ( 2 )
pNh
N 2
where K, = —————
1l N h
k PNg"
I N 2
g=19

For the particular case of p = 2, Nl = N2 =

Nk = n, N = nk and ng = Ng -1 =n-1, we have
35
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okin=-1), ¢k(n-1) _ 1
L knh M= 2)

EGY) =
(252 r5E) K

[P{n(l2+h) - %} I,{n(12+h) - l}]k
nk (1+h) 1 nk (1+h) _ k+1
M=—5— -3} r{ 3 5}

(4.15)

The hth Moment of A
h

2

The nt moment of Xz is obtained by the same method

used to derive XO' Thus

N
2
By _ b _ [ 1al
E(X,) = E(Lz) where L, = ATB (4.16)
k
Since A= I A and each A -~ W(A_|Z,n_) we have by
g=1 g - g
k k k
theorem 2.1 A ~ W(A|Z, £ n ). Now I n_= I (N_-1)
g:l g g:]_ g g:l g9
=N~k so A~ W@RA|Z,N-k). From the discussion of the

derivation of X, we know that B ~ W(B|Z, k-1) and A and B

h

0
are independent. Since L, is a function of A and B the nt

moment of Xz is by definition

Nh - Nb (N_—_}_( - E__)
f al 2 |a+8| % k(z,N-x)[a] 2

A>0,B>0

hy, _
E(L,) =

. exp(-%tr 1a) £(3) dnaB
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_Nh
K(z,N-k) f |a+B|  °|A|
A>0,B>0

Nh+N-k, _pt+l

exp (- —;— tr g_-lé) f(B)dA dB

K(Z,N - k) -
= | A+B| W(AlZ,Nh+N-k) £ (B)dA dB

K(E,Nh+N’k) A>0,B>0 (4.17)

Recall that (A+B) -~ W{ (A+B)|L,Nh+N-1}. Therefore, we

have
h K(Z,N-Xk) --Nz—h
B(L) = - E(]a+p|
K(I,Nh +N-k)

) (4.18)

Now, applying theorem 2.3, substituting A+B for A and

_Ezﬁ for h we have

- b K(Z,Nh+N-1) K(Z,nh+N-1)

2, _ -
) = X Nh,,
(§,Nh+N—1+2(—7)) K(Z,N-1)

E(|A+B]|

(4.19)

Combining (4.18) and (4.19) we have

h K(¥,N~k) K(I,Nn+N-1)
E(Az) = . (4.20)
K(Z,Nh + N - k) K(Z, N-1)

Using the definition of I‘p(%) and K(Z,n) for equation (2.13)

we have
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el ——
b p 1“(———-—N-k+:~——l_l+h) 1‘(—“—%)
E(A,) = 1T — — (4.21)
2 i=p p Nkt k+l Sty r(N—2~l+h)
For the particular case of p = 2, Nl = N2 = ... = Nk =n
N = nk, and ng = Ng - 1=n-1, we have
R
EOY) = K- Dy KG -1 1
r{ profsdl o
F{kn(1+h) _ } F{kn(l+}n _ k;]j
(4.22)
kn(l+h) _ kn(l+h) _
F{*——j§-—‘ 2} T{ 5 1}

Now, applying Gauss's multiplication formula (4.7a) with

m = 2 we have

_ I'(kn-2) r{kn(l+h) - k -1}
I (kn=k-1)T {kn(1 + h) = 2}

E(D) (4.23)

In this chapter we obtained the hth moment of our
test criteria Ay i=0,1,2, making extensive use of the
Wishart distribution and its properties. The moments were
obtained for the general case of p-variables and sample
sizes not necessarily equal. We then restricted the moments
to p = 2 variables and cqual sample sizes. Thus, we have

the moments of our criteria from which we will obtain their

sampling distributions in the next chapter.
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V. Distribution of the Criteria

In the literature S. S. Wilks (Ref 17:60) and others
have proven that the distribution of -2 log A, where X is
the likelihood ratio criteria, approaches the Chi-Square
distribution with r degrees of freedom (r is the number of
linear independent restrictions imposed on the null hypo-
thesis), as the sample size n approaches infinity. 1In
this chapter we proceed to obtain the sampling distribution
of -2 log Ai’ i =0,1,2, by inverting their characteristic

functions.

The Distribution of A
h

0

The ht? moment of A, from equation (4.29) is

k
E(Ag) _ xknh _T(nk - 2)k (P{n(h+1) - 2}] (5.1)
[T(n-2)1" T'{nk(h+1) -2}
Let wg = - 2 log >\0 and let ¢>w (t) be the characteris-
0
tic function of Wa e Then
itmO it (-2 log XO)
¢, (t) = Efe ) = Ele )
0
logko—ZIt
= E(e )
= E(h, 23 (5.2)
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Since (5.1) holds for any complex number h, we

have substituting -2it for h in equation (5.1)

kn(-2it) . ..k
¢ (t) = Kk (F{n(l-2it)}- 2}]
wg T{nk (L= 321it) = 2] (5.3)
where K = _Eﬂﬁiljﬁi
[T(n-2))

and therefore

log ¢w0(t)

log K -(2knit) log k + Kk log

(Pr{n(1-2it) - 2}] - log(l'{nk(1l - 2it)~-2}]
(5.4)

The expansion of log ¢w (t) will be based on the
0

following expansion (Ref 1:204):

log T(x+h) = % log(2m) + (x+h—%) log x - x

m B (h)

-z (et —EEL—y R ) (5.5)
=1 r{r+1)x

where R_(x) is the remainder such that ]Rm(x)lg_e/lxml,

® a constant and Br(h) is the Bernoulli polynomial of

degree r order 1 defined by
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Extensive tables of Bernoulli polynomials are available

in M. A. Fletcher et al. (Ref 4:62-117).
Applying the expansion in (5.5) to the gamma func-

tion in (5.4) we have

log ¢w0(t) log K - 2knit log k

+ k %109(27;) + [n(l-2it) -2- %]
log[n(l - 2it)] - n(l - 2it)

r
N

r=1 r(r+1)[n(l-2it)}¥

(-2)

%log(Zn) + [nk(l - 2it) -2 - %]

loglnk (1l - 2it)] - nk(l - 2it)

r
_ ? (-1) Br+1

r=1 r(r+1)[nk(l - 2it)]¥

(- 2)

Rim+1 (5.6)

Let T = n(l - 2it) so that KT = kn(l - 2it) = kn - 2knit.
Substituting these results in equation (5.6) we have, after

some algebra
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k-1

log ¢ (t) = loglk(2m) * x~(kn=5/2) g=v,
0
r
. ? (-1) Br+~1(—2)
r=1 r(r+1) (kT)°
r
C ? (-1) Br+-1(_2) . R
r=1 r(r+l)Tr m+ 1
where v = 5/2(k-1)
Equation (5.7) can be rewritten as
k-1
log ¢, (t) = loglk(2zm * x~n=3/2) 47V
0
{ m Ar}
exp I — + R' (x)
r=1 ¥ m+ 1
B (-2)
_ (=T r+1 _ _
where Ar r(r+1) [ KX X Br-kl( 2)}
Thus, from equation (5.7) we have
k-1
o (t) = Kk(2m) 2 xkn=5/2) 4ov
w
0
oo Q
P
{150 Ti] + Rmi-l(x)
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The coefficients Qi are recursively computed using the

following relation between Ai and Qi

1 .
Q. = Lk —F—, 0, =1 (5.11)
(Ref 6: Chapters 4, 5)

Recalling that T = n(l - 2it), we have from (5.9)

the characteristic function of W as

k-1 - =2{(v+r)
¢ (t) = k(2m) 2 x~(kn=5/2) p o h@1 - 2i6)] 2
w x
0 r=0
+ Rm4-l(X) (5.12)
_2(v+r)
(1 - 2it) 2 is the characteristic function of a Chi-

Square variable with 2(v+r) degrees of freedom. We have,

on inverting the characteristic function of w in (5.11),
the p.d.f. of Wy is
k-1
—5 m v+r 2
flug) = k(2m) 2 k" Kn=3/2) 5y o (L) X2 (v + r)
Za°r'n
r=0
+ RMi—l(X) (5.13)
where Qy = 1l and K = Eiﬂ£4;21~i ' vV = %(k ~1)
(FTr'(n-2)]
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Thus we have the following theorem:

Theorem 5.1: Under the null hypothesis in (3.11i),

the distribution of Wy = -2 log AO can be represented as

the following linear combinations of Chi-Square distribu-

tions:
k-1 -
Plogx) = k(2r) 2 073720y pmlver)
r=0
0 P(><2 > x) (5.14)
r 2(v+r) — :
where v = 5/2(k~1) and K = —(ME
[I'(n - 2}]
The Distribution of Kl
The hth mement of Al is given by eguation (4.21)
as
(r{2(1+n)- L ¥ r®+n) - 1h¥
h, _ knh 2 2 2
F{7?(1+hr-§} F{7?(1+h) —§-§}
pflns L jpens 1)
where Kl = -1 i RS P
[1r( 3 ) I'(=-5—)]
Let Wy = -2 log Al and ¢m (t) be the characteristic
l
function of Wy . Then
d4
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2it, _ Klkkn(-th)

6 (t) = E(A~
@y

. 1 n . k
r{2(1-2it) =21 r{2(-2it) -1}
2 2 2 (5.16)

kn (] s Ky (kD] oiqy -L1_K
F{T?(l—th) —5}1{ 2(1 2it) 3 2}

Taking the log ¢w (t), applying the gamma expansion formula

(5.5) and letting T = 2 (1 - 2it) we have

- 2itknlogk + (a) + (b) + (c) + (d)

log ¢w (t) = log Kl
1 (5.17)
where
(a) =§1m;un)+kuT—1)1ogT-TJ

m r 1

-l{Z(—” Bry1(-3) a
r=1 r * k'Rm+-l(T)

rir+1)T

(b) =§1m;un)+kuT—%)1ogT-T]

m r
“x T (-1) Br+l(_l) b )
o) T+ kR (kT)
r{(r+1)T '
—_— l N k
(c) = =3 log(2m) ~ [(KT -3 - 5109 kT - kT]
3 2 2
m b
+ 3y LB (=3) c
2 -+ Rm+l(kT)
r(r+1)(kT)
45
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(@) = -2 log(2r) - [(kT -%-1) log kT - k1]
m T _(k+1)
N L S R B B
r=1 o Tm+ 1

r{r+1)(xm)"
After some algebra, eguation (5.17) reduces to
log & (t) = log K, + (k -1) log(2s) + .k(1l-n)+3)
wy 1 2

(1 -Kk)

1ng+[3 5] log T

Ar
—_ 4 R'
1 Tr m+ 1

+
I m3

r

1 (k(l=-r)+ 3/21 _-v

= log [Kl(2.rr)k - T
m Ar
exp L = + R! \5.18)
r=1 Tr m+ 1
k (k +1)
_4\r |B (-3) (-5~
where A _ = r:ra?l){ r+'1r 2, xt+l = 2
) k k
-k B (~1) - k B (-1
r+1l r+1 2
and v = §i£é;ll .
- e -’"}m."" r”.fn x - §




Thus we have from (5.18)

k-1 k[k(l—rﬂ +3/2] -V

¢w (t) = Kl(2ﬂ) T

1

(5.19)

where the coefficients Qi can be recursively computed as
in (5.11).
Recalling that T = %(l-2it), we have from equa-

tion (5.19) the characteristic function of wl as

= k=1  (k-kn+3/2)
¢w (t) = Kl(2J) k

1
m . -2(v2+r)
riOQr[E(l--th)] + R

m+ 1 (5.20)

-2{v+r)

2

Since (1 - 2it) is the characteristic func-

tion of a Chi-Square density with 2(v + r) degrees of
freedom, we have on inverting the characteristic function

of wy in (5.12) the p.d.f. of w, as

v+r 2

w2
E o) X2(v + 1)

r__:orn

+ Rm+l

and thus we have the following theorem:
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Theorem 5.2: Under the null hypothesis in (3.11ii),

the distribution of wy = -2 log A

as the following linear combinations of Chi-Square dis-

1 can be represented

tributions:

Playax) - Kl(zn)k-l i (k= kn+3/2)

v+r

® 2 2
rio (H) er?(xz(v+_r)i_x) (5.21)
X I1{k(n2--l)}r{k(nz--l) _%}
where v = §(k-l) and Kl = e

HESh 2

The Distribution of )

The h™® nmoment of A, from equation (4.23) is

h, _ T (nk=2) I'{nk(l+h) -k - 1}
EQY) = k=K =17 {nk(I+ 0] =27 (5.22)
_ 1/N _
Let L2 = Az where N = nk. We then have from (5.22)

h.  Tink-2) I‘{nk(l+ﬁ%)-—k-l}
E(LZ)

I'(nk - k - 1)1‘{nk(l+;?k-) -2}

(5.23)

Note that the hth moment of a beta distribution is

F{%(ai—b)} F{%(a-+h)}

1 l,a
l"{?(a + b) +h]F(~2-)
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with parameters a/2 and b/2 (Ref 1:194).
Thus from (5.23) we see that L2 has a beta p.d.f.

with parameters N-k -1 and k~1. So we have the follow-

ing theorem:

Theorem 5.3: Under the null hypothesis in (3.1iii)

the distribution of L, is given by
P(L2 < X) = IX(N-k-l, k=-1) (5.24)
where Ix(.,.) is the incomplete beta function.

Numerical Computations

The c.d.f. of w; = -2 log Ai (i =0,1) given in
equations (5.14) and (5.21) are used to compute percentage
points of w; at the level of significance a = .01 and
o = .05 with sample size n from 3 to 100 and k = 2(1)6.
These are presented in Tables IV and V in the appendix.
Tables I, IT and III in the appendix give the percentage
points of LO' Ll' and L2 respectively. The following
considerations are taken in checking the accuracy of the
computations in the percentage points:

1. The integral over zero to infinity of the
c.d.f.'s in (5.14) and (5.21) rapidly approaches onc.
Table 5-1 for k = 6, Theorem 5.2, gives the typical
behavior of the series as the number of terms increases.
To achieve accuracy to five significant figures in all

cases considered required fiftecn terms; and
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2. The exact values are in close agreement with
the approximate valucs obtained, using the asymptotic
expansion in Chapter VI, c¢ven for comparatively small

values of n.

TABLE 5-1

EVALUATION OF c.d.f. OF THEOREM 5.2 for m TERMS

m n = 10 n = 20

1 .2160599 .4839011
2 .5146427 .8182633
3 .7491630 .9495748
4 .8868061 .9881090
5 .9539563 .9975087
6 .9827359 .9995229
7 .9939364 .9999149
8 .9979812 .9999857
9 9993571 .9999977
10 .9998028 .9999996
11 .9999414 .9999999
12 .9999831 1.0000000
13 .9999952 1.00000006
14 .9999987 1.0000000
15 .9999996 1.0000000
Summary

In this chapter we obtained the sampling distribu-

tions of our test criteria AO’ Al and Az. Note that the

distributions of both AO and Al are linear combinations of

Chi-Square distributions. The distribution of Xz resulted
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in a beta distribution with parameters k(n-1) -1 and

k-1. From the distributions, percentage points for differ-
ent sample sizes and k populations can be computed.

Providing tables for numerous populations and

various sample sizes would be inconvenient and time-
consuming; therefore, a good approximation for moderate i

sample sizes would be extremely beneficial. It is this

topic that we treat in the next chapter.
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V1. Asymptotic Approximation to

the Distribution

Although the tables of percentage points fill a
gap and meet some of the needs of statisticians, approxi-
mations to the distributions of the various criteria are
the only practical means for computing the observed signi-
ficance probabilities in the analysis.

In this chapter we develop an asymptotic expansion
to the distributions of AO and Kl with the second term of

the order m—2 so that the first term alone should provide

a powerful approximation to the percentage points of A  and

0
Al even for comparatively small values of n.
Asymptotic Expansion of the
Distribution of AO
Let MO = - 2p log AO where p is an arbitrary con-

stant to be chosen later. From equation (5.1), substituting

- 2pit for h, the characteristic function of M, is givcn by

0
by () = E(AO'Z"it) = Ky C(t) (6.1)
0
where
Kg = %ﬁ?ﬁ{iﬁ%ﬁ (6.1a)

i




and

-2pitkn [I'{pn(l-2it) + (n--pn--Z)}]k

C(t) =k (6.1b)

I'{pnk(1-2it) + (nk-pnk-2)7}
Let T = m(l-2it) where m = pn. Then we have

log C(t) = (Tk -pnk) log k + k log T{T+(n-pn-2)}

- logl'{kT + {(nk-pnk-2)} (6.2)

Using the asymptotic expansion formula (5.5) in (6.2),

we have the asymptotic expansion of C{t).

log C(t) = (-nk*—%) log k + (k-1) log(27) - vlogT

2
u Ar
+ £ —= + R! (6.3)
r=1 Tr u+l
_ 5
where v = f(k"l)
r
and Ar=—-‘—'l—)——r[B o1k -pnk-2) - k1
r(r+1)k r
Br+l(n-pn-2)] (6.3a)
2

Thus the asymptotic expansion of C(t) up to the order m

is given by

k-1 5
5>y -(xn-2)
ct) = (2m % x S
0, © _
[1+ + =2 + 0(n )] (6.4)
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where Ql = Al and Q2 = A2 +
Now from equation (6.la) we have
log KO = log Tl {mk + (nk - pnk - 2)}

-k log '(m+n-pn-2) (6.5)

Again using the asymptotic expansion (5.5) to (6.5) we

have after some simplification

log K0 = (lﬁiE)log(ZW) + vlog1n+(nk~—§)logk
Al
+ I;:l __I_z + Rll
=1 . u+ 1l (6.6)
where A' = -A and v = é(k-—l) and so
r r 2
Q' '
1-k (nk - 5/2) v 1 2 -3
Ky = (2n)(—§") k m [1+~———-f:;;4—0(m )]
‘ m (6.7)
L . (—Al)z
where Ql— --Al and Qz= (—A2) + >

We now choose p such that Al = 0. Then

o1 - 37(k+1)
p =1 30 n (6.8)

From (6.1), (6.4) and (6.7) the characteristic function of

M0 is given by

e - TR -

‘v T ’-—v w rw:‘- 'q,‘. X
) " [

¢

b lenand




Q

- -3
4 (8) = (1-2i0)7Y [1+ 5—2——5+ o))
0 m (1 - 2it)
% -2
[1+— + O(m )]
m” (1 - 2it)
-v Q2 Loy — V=2 LNV
= (1-2it) + =5 [(1-2it) ~-(1-2it) 7]
m
-3
+ O (m ) (6.9)
Therefore, inverting the characteristic function (6.9),
we have the following theorem:
Theorem 6.1: Under the hypothesis (3.1i) the
asymptotic expansion of Mg = - 2p log AO up to the order
m < is given by
0
_ 2 2
m
2 2 -3
[PX2 (ve2) 2%) ~PlXg, 2x)] + O(m ™)
(6.10)

where v = %(k-—l) ms=pn and p is as in (6.8).

Remark: Since the second term m (6.10) is of the order
m—2, the first term alone provides a powerful approximation
to the percentage points of AO as seen from Table 6-1 and

Table 6-2.
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TABLE 6-1

COMPARISON OI' APPROXIMATION AND EXACT DISTRIBUTION
a = ,01

§¥Qi 2 3 4 5 6
3 .04028* .06222 .08586 .10960 .13324
.03763 .05775 .07256 .08432 .09378
4 .16708 .18264 .20110 .21897 .23587
.17302 .19377 .21094 .22498 .23630
5 .29807 .30775 .32173 .33460 .34631
.30197 .31600 .33081 .34372 .35433
10 .62902 .62832 .63505 .64194 .64805
.62951 .62962 .63617 .64325 .64948
15 .75051 .74821 .75236 .75696 . 76115
.75063 .74868 . 75257 .75726 .76151
25 .84963 .84730 .84956 .85229 .85483
.84965 .84746 .84952 .85229 .85486
50 .92466 .92311 .92414 .92549 .92676
.92465 .92317 .92409 .92545 .92674
75 .94975 .94863 .94929 .95018 .95103
.94974 .94867 .94925 .95015 .95101
100 .96230 .96143 .96192 .96259 .96322
.96230 .96146 .96189 .96256 .96321

* " - _ . 1/kn

The upper number 1s the exact value L, = A .

0

"0

The lower number is the approximation value.
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TABLE 6-2

COMPARISON OF APPROXIMATION AND EXACT DISTRIBUTION

¢ = .05

Q\F 2 3 4 5 6
3 .08728%* .10343 .12627 .15082 .17639
.09006 .10526 11732 .12658 .13395
4 .26961 .26141 . 26769 .27759 .28911
.27594 .27374 .28050 .28746 .29365
5 .41201 .39565 .39639 .40047 .40560
.41527 .40273 .40511 .40963 .41425
10 .71171 .69325 .69007 .69044 .69185
.71201 .69402 .69111 .69161 .69310
15 .81011 .79553 .79251 .79234 .79306
.81016 .79572 .79279 .79265 . 79340
25 .88730 .87748 .87523 .87491 .87523
.88729 .87751 .87528 .87496 .87529
50 .94414 .93884 .93755 .93730 .93742
.94413 .93884 .93755 .93730 .93742
75 .96287 .95926 .95836 .95817 .95824
.96286 .95925 .95835 .95817 .95823
100 .97220 .96945 .96876 .96862 .96867
.97219 .96945 .96876 .96861 .96866

* ) . o _ 1/kn

The upper number 1s the cxact valuc L0 = AO .

The lower number is the approximation value.
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Asymptotic Expansion of the

Distribution of Xl

Let Ml =-2g log xl, where g is an arbitrary con-

stant to be chosen later. From equation (5.15) substituting

- 2 git for h the characteristic function of My is given by

by (€)= K G (0 (6.11)
1
P{k(nz_l)}r{k(nz—l) _%}
where K, = [F(E:l) r(n--2)]k (6.11a)
2 2
and C,(t) = x "2 gitkn [F{%(l'-Zqit)-%}]k
l P (1 - 2qit) =%
2 g1 5}
[P{%(l— 2qit)-l}]k
— (6.11Db)
I‘{%‘E(l—Zqit) - k;l}

Let T = %;(l-—Z it) and applying the asymptotic expansion
formula (5.5) to the log Cl(t) in (6.11lb) we have after
some algebra

logy C](t) = (k-1) log(2y) + (-kn+k+ %)lek“V log T

u Ar
+ v -—= + R' (6.12)
el 'I‘l u+l

where v = -32-(k-1)
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n-gn=- 2, (6.12a)

Thus the asymptotic expansion of Cl(t) up to the order

m is given by

- - 3 _ Q, 0 _
c,(t) = (ZTT)(k l)k( kn+k+ 3 V[]_+—l+—2—+o(m 3)]
1 T TZ
A 2 (6.13)
_ _ 1
where Ql = Al and Q2 = A2 + -5
Now from equation (6.1lla) where m = %? we have
F(km+kn—}2<—gkn”,(km+kn—k-l—qkn)
K, = 2, (6.14)
L opmeRoencd, o penzan=2,
2 2
Again applying the asymptotic expansion formula (5.5) to
log Kl in (6.14) we have
log K] = (lL-Xk) log (2v) + viogm+ (kn-k—»‘;’—) log k
u A}
+r>-,-l ~n;}—+Ru+l (6.15)
52
T wF P d' ';“;, - o \




where A' =-A
by r
And so the asymptotic expansion of Kl up to the order m_2
is given by
- (kn-k-2) 0y Q' 3
= oy - Y 2 1 .72 -
K, = (27) m k [1+ . m2 +0(m 7)]
2 (6.16)
(-a;)
[ | B, S
where Al Al and Q2 A2+ 5
Now choose g such that Al = 0. Then
_, _ 31k +13
=1 18 nk (6.17)

From (6.11), (6.13) and (6.16) the characteristic function

of M, is given by

1
-V Q2 -3
by (8) = (1-2it) 7V (14 ———2—— 4+ o(m )]
1 m (1l-21it)
Q' _
(14 ——2 st O(m )]
m (1l ~2it)
- e —y - -
= (1-2it)7V ; ((1-2it) V™ 2_ (1-2i6)7Y)
m
-3
+ 0(m >) (6.18)
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Therefore, inverting the characteristic function ¢Ml(t)

in (6.18) we have the following theorem:

Theorem 6.2: Undecr the hypothesis (3.11ii) the

asymptotic expansion of Ml =-2g log Al up to order m"2

is given by

,:O
oo

. - 2
P(Ml’ x) = P(X2V51X) + R

2 2
(PUXS (vt 2) 2%~ Pl 2x)]

+ o(m"3) (6.19)

Remark: The second term in (6.19) is of the order of m 2

and so the first term alone should provide a good approxi-
mation to the percentage points of xl, even for relatively

small sample sizes as shown in Tables 6-3 and 6-~4.
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TABLE 6-3
COMPARISON O APPROXIMATION AND EXACT DISTRIBUTION
o = .01
N 2 3 4 5 6
3 .06038 .09887 .12372 .15609 .18748
.04557 .06709 .08424 .09869 .11041
4 . 22992 .25183 .27559 .29787 .31870
.22829 .25274 .27509 .29221 .30661
5 .37893 .39586 .41467 .43083 .44484
.37882 .39752 .41731 .43273 .44585
10 .69895 .70546 .71541 .72409 .73131
.69934 .70567 .71585 . 72419 .73150
15 .80287 .80655 .81311 .81894 .82382
.80317 .80662 .81329 .81886 .82379
25 .88359 .88547 .88934 .89284 .89578
.88378 .88549 .88942 .89274 .89571
50 .94253 .94334 .94525 .94699 .94846 |
.94263 .94334 .94528 .94693 .94847 {
75 .96185 .96236 .96363 .96479 .96577 !
.96192 .96237 .96365 .96475 .96574
100 .97145 .97182 .97277 .97364 .97437
.97150 .97183 .97278 .97361 .97435
*The upper number is the exact value L, = X l/kn.

1 1

The lower number is the approximation value.




TABLE 6-4
COMPARISON OF APPROXIMATION AND EXACT DISTRIBUTION
a = .05
—x\k 2 3 4 5 6

3 .13239 .150%90 .17995 .21108 .24261
.11862 .13208 .14541 .15637 .16530

4 .36242 .35480 .36258 .37372 .38636
.36075 .35680 .36466 .37315 .38073

5 .51231 .49968 .50294 .50869 .51484
.51171 .50095 .50506 .51111 .51695

10 .78134 . 77006 .76992 77192 .77434
.78126 .77012 .77006 .77216 . 77462

15 .85964 .85128 .85083 .85199 .85350
.85960 .85127 .85084 .85204 .85356

25 .91828 .91292 .91249 91311 .91396
.91826 .91290 .91247 .91310 .91397

50 .96005 .95725 .95698 .95726 .95767
.96004 .95724 .95697 .95725 .95766

75 .97356 .97168 .87148 .97166 .97193
.97356 .97167 .97147 .97165 .97192

100 .98025 .97882 .97867 .97880 97900
.98024 .97881 .97866 .97880 .97900

*The upper number is the exact value L, = X l/kn.

1 1

The lower number is the approximation value.
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VII. Practical Illustration

The Engineering and Design Group, AFWAL/MLSE,
Wright-Patterson AFB, Ohio, provided the data used in the
following analysis.

The ultimate tensile strength of a metal alloy is
characterized by two correlated variables, x and y, longi-

tudinal hardness and transversal hardness, respectively.

Test procedures:

1. Three companies received a sample block of metal
alloy IN-9021, hand forged.

2. Each company used a common set of test condi- r
tions and conducted identical tests in accordance with
ASTM testing standards. q

3. Three measurements of longitudinal hardness and
three measurements of transversal hardness were obtained by
each company.

The collected data is as shown in Table 7-1, by
company, where L represents longitudinal hardness ksi
and T represents transversal hardness ksi.

We shall first test HO' the hypothesis that there
is no significant differciice between the populations.

A summary of the necessary calculations is shown in Table

7-2, where the number of populations, k = 3, and the number

of ohservations, n = 3,




TABLE 7-1

TENSILE STRENGTH: VARIABLES L AND T

General Dynamics Lockhced 5:: ééckwcl{;;::i
L T L T ] L T
87.3 85.9 89.0 87.4 87.6 86.0
84.4 86.0 89.6 87.3 86.3 84.7
89.8 84.8 89.6 87.3 83.9 84.7

TABLE 7-2

SUMMARY OF CALCULATIONS

13,1 a1 a1 fal—  Ia+Bl
2.88115 .00120 3.24480 43.1704 282.74248
From equation (3.15) with La = kol/kn we have

koo -
[ 1 |A |} [ HIQJI
px =k 9=t 2 =3-9=L "~ 0836
0 T T
a+8|° a+8|?
From Table I in the appendix with « = ,05, n = 3, k = 3,
Lo = .10343.
" . . - . y . - *
Decision Rule: Reject Hy if LO < Ld,n,k'
Since LB < .10343, we reject Ho at the a = .05 significance

level and conclude the populations as regard to tensile

strength are not identical.

F1] ’ \": Lo i‘




We now proceed to test H the hypothesis that

ll
there is no significant difference in the populations as

regards variance and covariance in the variables x and y.

From equation {(3.16) with Li = All/kn we have
1 3 1
ko la ) Ta®
L* = k I 3 922 9 - 2087
2 2
|2 | Al

From Table II in the appendix with o« = .05, n = 3, k = 3;

Ll = ,1509.

By the Decision Rule, since Li > .1509 we do not

reject Hl, that the variances and covariance are the same

at a = .05 significance level.

We may further test H the hypothesis that the

2'
means are the same among the populations given that the

variances and covariances are equal.

From equation (3.17) with LE = Azl/kn we have
1
2
laf ] |
L§ = ~—-——w = ,3907
|A+B] |
From Table III in the appendix with o = .05, n= 3, k = 3,
L, = .4182.

2

The Decision Rule leads us to reject H2 and conclude

that the means among the populations are not cqual. This

is consistent with our previous conclusion concerning Hy-

Lu

- s a——————
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In summary, the conclusions are, the sample ingots

of metal alloys received by the companies have equal vari-
ances and covariances concerning the two attributcs,
longitudinal and transversal hardness, but the mecans differ

at the 5 percent significance level.
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VIII. Conclusion

In this thesis we obtained the exact distribution
for our test criteria AO' Al and kz. To do this we assumcd
that our samples were drawn from populations distributed

as Np(gbf{;g) and then restricted the development of the

sampling distributions to the case of equal sample sizes

and two variables. From the exact distributions we were
able to obtain tables of percentage points whic.. enables
one to test the hypotheses considered in this thesis.

The asymptotic approximations to the distribution

of A, and )\, extended our testing ability to sample sizes

0 1

and populations not covered by tables. Tables of com-
parisons in Chapter VI showed that the asymptotic expansion
yields powerful approximations to the percentage points of
the test statistics.

The importance of multivariate analysis is illus-
trated by the many entities that require scveral traits to
describe their characteristics. Testing all the attributes
simultaneously is necessary because multiple correlations
may exist among the variables. For example, the quality
of a relay might be accurately characterized by thrce

variables; capacitance, inductance and resistance, a metal

alloy may require the variables; shecar strength and

Go




compression strength in addition to tensile strength to

adequately describe its quality.

The application of this theory to practical prob-
lems is unlimited including areas such as agriculture,
anthropology, economics, physics, industry, medicine and
sociology, to name a few.

In light of this, areas of further study include
extending multivariate methods to more than two variables
and unequal sample sizes in obtaining the sampling dis-
tributions. Also, in order to study the power of the
tests it would be worthwhile to deveclop methods to obtain

the non-null distributions of the criteria.
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40
45
50
55
60
65
70
75
s0
a5
20
95
100

Table 1. Yercentave Points
o o= .01
2 3 4
04028 06222 L08586
16708 18264 20110
.29807 30775 .32173
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47927 L8240 .49253
.5405% . 54194 .55065
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Table T. Percentape Points of !.0

voo= .05
N 2 3 4 5 b
3 LOB7240 L10342 L12027 .15N082 L176739
4 26961 L2A141 L26769 .27759 28011
5 L41201 .30565 .3963¢0 LA0Q47T7 LA0HA0
6 L51144 LA0221 LLapasg L49330 L40662
7 .58314 LO6314 .56001 .56244 L5669
8 636929 LH1706 .61420 L6152¢8 LH61730
9 67854 .65931 .h5H2H LO5688 LEB855
10 J71171 L69325 .69007 L69044 L69185
11 .73873 72109 .71788 L71800 L71926
12 L76115 L74433 L74113 L4118 LT14222
13 .78004 L76401 L6036 76081 .76173
14 L79617 .78089 .77780 77767 786¢
15 L3101} .7¢58573 NVALEULS L2027 RVACE R
16 LB82227 L0834 LEOSLD L0510 LROH
17 .83297 LR1964 .R1679 LB81654 L.51713
18 JRA2A5 .R82968 .82691 .82665 .8271°¢
19 L85002 LR38GT .02508 L83570 L83620
20 .85853 BL6T6 84415 LRA3E5 L4451
21 L86540 .85408R .85155 LR85124 85146
22 .87163 LAR6D73 .B5827 ,85776 L8585
23 .87732 .56680 LB6441 LBH410 RN SRR
24 L88252 JRT7237 L87005 LE60073 LRTONT
25 LERT3D LBTThE 87523 L7600 LETH2Z
30 LI90635 LBA70% LR0598% LEO5 67 L89501
35 .919°0 .a1257 .91082 .91052 L91072
40 ,93002 ,92352 .92195 .92163 L92183
45 .93787 93204 .93062 .93036 .930489
50 L94414 .938684 .93755 .93730 L93742
55 L0492/ La4461 L9423272 .94299 LOL30D
60 A L4 LOn705 LOLT774 LOLT R
65 L5712 LORD 0 L51¢5 LA9175 L5
70 L6020 LAS634 .9553¢ L,Qa5510 OO0
75 LORDERT LO509040 LOERRT G LG5817 Jane oo
g0 .Aa6520 LAG1ET L0GN0G LABUTR R
£5h LO6726 OLL06 L96s225 LOR300 LIRS I
90 .06909 LI96605 L 06529 LOHKS514 LUBLIY
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22
23
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40
45
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65
70
75
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90
9%
100

STy 1.

Tahle 11, Percentage Points of 11

a4 = .01
2 3 4
L006038 ,.0a887 .12372
,22%92 .25183 .27559
.37893 .39586 JA1467
L8511 JAIRBE .51476
.56186 .57274 . 58686
.61930 .62829 L64072
66369 67127 .68234
.69895 .7054¢6 J71541
,72758 .73326 .74230
.75129 .75631 L76457
LT7122 77571 .76332
.78822 .79226 .79931
Leorey LROGES L1311
L1564 .81900 .82515
.82685 .82996 .83573
.83679 .8396% .84510
,84565 .84832 .85347
.85630 85610 .86098
.86077 LB6311 .86775
86727 .863848 .87390
.87320 .87528 .87951
LPTR62 .%8059 L88463
.88359 .88547 L88634
.90340 .90489 .90810
L91745 .91868 .92143
.92793 .92898 .93138
.93605 .93697 .93909
.94253 .094334 .04525
L4781 LOLBS5A L95027
L95201 L05287 LO5445
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L95910 LA5065 L6101
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Lerean e300
L330A1 L853519
84087 84519
L24996 85404
L5807 .86193
26535 .86902
87102 .87542
.8778¢8 .88122
88331 58650
.£8827 L29134
.89284 .29578
.91101 .91346
.92302 L92602

.93355 .93540
94690 L94846

LA5T8S .95316
05500 L5713
La50370 LO60NG
LAH60 75 L6330
LO64ETH LO6NT77
LOR700 .96792
L6806 L0Nha32
L07060 L07151
.27224 £97302
.97364 «97437




Table IT. Percentagse Points of Ll
w = .05

N 2 3 4 5 6

3 .13239 .15090 17205 .2110R L 24261

4 36242 .35480 .36258 .37372 .38636

5 «51231 49968 .50294 .5N869 .51484

6 .60749 .59386 «59555 .59976 60428

7 .67222 .65882 .65960 .66301 66672

8 .71885 L70609 L70644 .70919 .71235

9 .75397 74195 . 74200 LTL432 . 74706
10 .78134 .77006 76992 .77192 .77434
11 .80326 L70267 .79241 79417 .79633
12 .82120 .81125 .81091 L81247 LB81442
13 .83615 .82679 JB2639 .82779 .82957
14 84880 .83096 .83593 LRH08N LBL244
15 85964 05128 L85083 ,05199 L,85350
16 .86903 L0111 LE0064 .866171 .84A312
17 ,B87725 .86971 86925 87023 .87155
18 88450 LR7732 .B7685 87777 .87900
19 .89093 .88409 .88362 LERLALS .88564
20 .89670 .89015 .BRO68 .89049 .89158
21 .90188 .89561 .80515 .88590 .89694
22 .90657 .90055 .90010 .900¢81 .90180
23 .91083 .90505 .90460 .90528 .90622
24 .21472 902160 .90872 .90936 .91026
25 .91828 .91292 L91240 .91311 L1396
30 .93241 .9278¢8 ,92749 .92798 ,92868
35 .94238 L93R45 .93810 .93851 .93911
40 94978 .94632 94600 L94635 .94687
45 .95550 .95241 .95211 .95242 .95288
50 .96005 .95725 L 05608 .95726 .95767
55 .96375 06120 .96095 L6120 L6157
60 LOM683 LO6440 CORATS LA ALR LO64LR2
65 LOR042 LO0RT726 LORTOA L8724 LAGT AR
70 LO7164 L6963 L0694 2 .96961 L90000
75 L973546 L7160 L7148 L7166 LG7103
80 LUT7524 L7347 L071328% L97345 L7370
g5 .27671 L7504 Q7437 LG75N02 La7526
g9 .97802 L07644 L.07628 L97642 L7065
95 .97919 87770 L07754 L97768 .977869
100 98025 .97882 .97867 .07880 L97900

76
‘,-. .{" o At ks o *'."#r.' - . "‘_




~NOVmEs W

10
11
12
13
14
15
1¢
17
18
19
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.39811 L45597 L 49383
.51795 L56046 «59008
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.65791 .68398 . 70407
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.73564 .75375 L76870
76270 .77830 79161
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.80309 .81519 .82601
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«C4195 .94461 .04754
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LOAKHDY, L969306 L7000
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.377¢81
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L40311
L,54021
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.84087
.85295
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LRENDD
.88721
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Tahle 11T, Percentage Points of L2
Qa = ,05

N 2 3 4 5 6

3 360240 . A1820 L45036 L7267 LA8925

4 < 54928 .57086 .58990 .60436 .61559

5 L65184 .65132 .67381 65409 ,60237

6 .71687 72060 .72945 .73726 .74375

7 76160 76234 L6806 77518 78048

8 79418 .79327 L 79844 80357 LB80802

9 .81R896 LB1711 .82127 .825G1 LE2944
10 .83843 83603 +83946 84321 84657
11 85413 .85140 .85429 «85759 .86057
12 86705 26415 86662 .86955 .87223
13 .87789 .87488 .87703 .87966 .88210
14 LJBRB707 L82405 .38594 .OR8R32 .89055
15 L£9498 LFOT1a4 L00364 L0582 LEVTES
16 .90186 L83887 .90037 .9022137 LOGL2R
17 .90789 L0494 .20629 .90815 .00993
18 .91322 .91033 .91156 .91329 .21495
19 .91797 .91514 .91626 .91788 .91944
20 .92223 91946 .92049 .92201 .92348
21 .92606 .92336 .92431 .92574 .92713
22 .92954 .92690 .92778 .92913 .93045
23 .93270 .93013 .93095 .93223 .93348
24 .93560 .93309 .93385 .93506 .03626
25 .93825 .93580 .93652 .93767 LA3LEED
30 .94880 94663 .94717 .94810 .934903
35 95627 «95434 .95476 .95554 .05633
40 .96184 .26010 .96044 .96111 .96180
45 96615 .96457 .06486 «96545 96605
50 .96959 .96814 .96839 .96801 .96945
55 .97239 .97105 L97127 97174 L07223
60 LQ7472 LAT7347 ,9730¢8 L97410 L97454
65 97669 L07553 L07571 La7610 L97650
70 L07837 97729 L97745 L97781 L9781 8
75 .97983 L07881 L7895 LO7020 979604
£0 L8110 LO9aN14 LO8027 .08Nn59 LORGAY
25 LO8272 L9P131 LOP1 44 LAR173 L0P204
90 98322 L98236 LI98247 L98275 LA8304
25 98411 .98329 .98340 . 98366 .08393
100 .98401 .98413 .08423 .98447 L98473
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Table 1IV. Percentage Points of NO

a = ,01

N 2 3 4 5 6

3 38.5415 49.9855 58.9218 66.3285 2.5622
4 28.62890 40,8063 51.3262 60.7529 69.3152
5 24,2086 35.3538 45,3622 54.7405 63.6253
6 21.9539 32,4086 41.8432 50.7736 59.3656
7 20.5941 30.6123 39.6598 48.2359 56.5136
8 19.6844 29.4045 38,1857 46.5107 54.5504
9 19.0330 28.5365 37.1244 45.2662 53.1295
10 18.5435 27.8823 36.3236 44,3264 52,0552
11 18.1620 27.3715 35.697¢8 43.5915 51.2148
12 17.8565 26.9615 35.1952 43.0011 50,5394
13 17.6062 26.6251 34,7825 42.5162 49.9845
14 17.3974 26.3441 34,4377 42.1108 49.5207
15 17.2205 26.1059 34.1452 41,7669 49,1270
16 16.05689 25.9014 33.8940 41.4715 48,7885
17 16.9373 25.7239 33.6758 41,2149 48,4950
18 16.8221 25.5683 33,4846 40.9900 48.2375
19 16.7205 25.43089 33.3157 40.7912 48,0099
20 16.6301 25.3086 33.1653 40.6143 47.8073
21 16.5491 25.1991 33.0306 40.4558 47,6257
22 16.4762 25.1005 32.9092 40.3129 47.4621
23 16.4103 25.0111 32,7993 40.1835 47.3139
24 16.3503 24.9299 32,6993 40.0658 47.1791
25 16,2955 24.8555 32,6079 39.9582 47.0558
30 16.0802 24,5635 32.2481 39.5346 46.5705
35 15.9299 26.3594 31.9967 39,2385 46.2312
40 15.8192 24,2088 31.8111 39.0199 45.9806
45 15.7341 24.0930 31.6685 38.8518 45.7880
50 15.6667 24.0013 31.5554 38.7185 45.6353
55 15.6120 23.9268 31.4636 38.6103 45,5112
60 15.566% 23,8652 31.3875 38.5207 45,4080
65 15.5287 23.8133 31,3235 3804452 £5.3220
70 15.4962 23,7620 31.268% 3g.3e08 45,2471
75 15,4682 23.7307 31.2217 32.3252 AN 1844

85 15.4220 23.6691 11,1443 38,2341 £5.0790
90 15.4131 23.6420 31.1122 39,1962 45,0265
95 15.3861 23.6188 31,0836 38.1624 44,9978
100 15.3708 23.5980 31,0578 38.1321 44,9630

80 15.4437 22.6974 31.1805 382767 45,1288 H
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Table IV,
Q .05
2 3 4
29,2635 40,8391 49,6644
20,9726 32.2001 42,1739
17.1743 27.8168 37.0143
16.0926 25,5186 34,1449
15,1011 24,1174 32.3789
14,4371 23,1736 31.1861
13.9611 22.4943 30,3261
13.6032 21,9818 29.6764
13.3242 21.5812 29,1682
13.1007 21.2596 28.7598
12,9174 20.9955 28,4243
12,7646 20,7748 28.1438
12.6351 20,5877 27.6058
12.5240 20,4269 27.7012
12,4277 20,2874 27.5236
12.3433 20.1651 27.3678
12,2688 20,0570 27.2302
12.2025 19.9608 27.1077
12,1432 19,8747 26.9979
12.0888 19,7970 26.808¢9
12,0415 19.7267 26.8093
11,9975 19,6628 26,7278
11,9574 19.6043 26 .6532
11.7995 19,3743 26.3598
11.6894 19,2136 26,1547
11.60R81 19.0049 26,0132
11,5458 19,0038 25.8867
11.4963 18,9315 25.7944
11,4502 1r,8728 25.7194
11,4230 18,8242 256.6573
11,3951 1R,7833 25,6050
11.3713 18,7454 25.5604%
11.3507 12,7182 25.521¢8
11,3328 168.60620 25,4882
11.3170 18.6688 25.4584
11.3030 18,6483 25,4324
11.2905 18.6300 25.4090
11.2793 18,6136 25,3880
g0
- = "", ?Wi'wf\ -

f

Percentage Points of ho

5

56.7496
51.2641
45.7554%
42,3913
40.2835
38.8544
37.8228
37.0430
36,4327
35,9419
35.5387
35,2015
34,0157
14,6693
34,5556
34,2682
34,1025
33.9551
33,8230
33.7038
33.5960
33.497¢2
33,4080
33.0546
32,8075
32.6245
32.4846
32,3734
32.283¢
32,2081
32,1451
32.0913
32.0448
A2,0043
31,9696
31.2370
31.0088
31.8834

K¢

62,
59.
54,
50,
47.
46,
45,
44,
43,
42,
42,
42,
41.
41,
41,
40,
40,
40,
50,
40,
40,
40,
3.
39,
39,
39.
38,
38,
1],
3.,
38,
38,
38,
s,
34,
38,
38,
3g.

6

4613
5659
1430
3931
a673
3109
1132
2071
4978
9272
4583
0661

733°
4470
1984

9004
7876
6160
4622
3236
1080
na37?
Q74682
5678
2800
0675
an40
7743
6£9]

S1n19
HEAURS
3017
3445
Inna
2661

2332
2037




Table V. Percentage Points of 41

a = L1

N 2 3 4 5 6

3 33.6859 43,1664 50.1539 55.7192 60,2661
4 23.5203 33.0961 41.2425 48,4437 54,8877
5 19.4082 27.8010 35.2112 42.1026 LR,6029
6 17.3612 25.0573 31.8742 38.2630 44,3740
7 16,1418 23,4079 20,8463 35.8849 41,6729
8 15.3331 22.3085 28,4903 34,2881 39,8467
9 14.7576 21.5233 27.5201 33.1441 38.5358
10 14.3272 20,9345 26.7916 32.2842 37.5498
11 13.9931 20.4765 26,2244 31.6145 36,7814
12 13.7264 20.1101 25.7703 31.0779 36.1656
13 13.5084 19.8104 25,3985 30,6385 35.6612
14
15
16
17
18
19
20

13.3270 19.5606 25,0885 10,2719 35.2403
13.1737 19.3492 24,8201 20,9615 AL,R03P
13.0423 19.1680 24,6010 20,6953 34,5779
12.9286 19,0110 24,4059 29,4644 34,3127
12.8292 18.8736 24,2351 29,2622 34,0804
12.7415 18.7524 24,0844 29,0838 33.8754
12.6635 18.6446 23,9503 28.9251 33.6930
21 12.5939 18.5482 23.8304 28.7831 33.5298
22 12.5312 18,4614 23,7224 28.6552 33.3828
23 12,4745 18.3829 23.6247 28.5395 33.2498
24 12,4230 18.3115 23.5359 28,4342 33.128¢
25 12.3759 18,2463 23.4547 28,3381 33,0183
30 12.1913 17.9902 23.1358 27.9603 32.5838
35 12.0628 17.8117 22.9134 27.6967 32.2807
40 11.9681 17.6R02 22,7495 27.5023 32.0571
45 11.8955 17.5792 22.6236 27.3531 31.8855
50 11.8381 17.4993 22.5240 27.2359 31.7495
55 11.7915 17.4345 22,4431 27.1130] 31.6392

60 11.7529 17.380R° 22,3762 27,0507 11.5478
65 11.7205 17.3357 22.3100 26,0920 31,4710
70 11.6928 17.297) 22.2718 26.9354 31.4054
75 11,6600 17.2639 22,2304 26,8807 31,3488
80 11.6482 17.2340 22,1942 26,8430 31,2095

85 11.6209 17.2095 22,1624 26,8061 31.2560
a0 11.6137 17.1869 22.1342 26.772¢ 31.2175
95 11.5992 17.1667 22.1090 26,7428 31.1832
100 11.5862 17.1486 22,0864 26.7160 31.1523
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Table V., Percentape Points of l.’l

Qa = L,05
N 2 3 4 5 6

3 24,2640 34,0409  41.161R8  46.6659 50,0873
4 16.2394  24,8AR8 32,4639 39,3607 45,6477
5 13.3765  20.8134 27,4916 33,7962 39,8344
6 11.9622 18,7598 24,8772  30.6733 36,2670
7 11.1208  17.5269  23.2976  28.7676 34,0524
8 10.5631 16,7049  22.2415 27,4903 32,5622
9 10,1663 16,1178  21.4856  26.5751 31,4932

10 9.8696 15.6773 20.9179 25.8871 30.6890
11 9.6394 15.3347 20,4758 25,3510 30,0621
12 9.4555 15,0600 20.1217 24,9214 29,5597
13 9,3053 14,8363 19.831¢ 24,5605 29,1480
14 9.1803 14,6494 19.5900 264.2760 28,8044
15 9.0746 14,4012 19,3853 24,0274 2005134
16 8§.9841 14.3550 19,2098 23,0141 28,2037
17 8.9058 14,2381 19.0576 23.629] 28,0471
18 8.8373 14.1353 18.9243 23,4672 27 .8575
19 8.7768 14,0445 18,8067 23.3242 27,6900
20 8.7232 13.9638 18.7021 23,1971 27.5411
21 8.6752 13.8917 18.6085 23.0R32 27.407¢
22 8.6320 13.8267 18.5243 22,9808 27.2877
23 8.5929 13,7679 12.4480 22.8880 27.1790
24 £.5574 13.7145 18.3787 22,2037 27.0802
25 8.5250 13.6657 18.3154 22,7261 26,9899
30 8.3978 13.4739 12,0665 22,423% 26,6350
35 6.3003 13.3403 17,8929 22.2125 26,3874
40 8.2441 13.2418 17.7649 22,0567 26.2047
45 8.1940 13.1662 17.6667 21,9371 26,0645
50 8.1545 13.1064 17,5889 21,8424 25.9534
55 £.1224 13.0578 17.5257 21,7655 25,8632
60 8.0958 12.017¢6 17,4735 21,7018 25,7885
65 £.0735 12,9838 17,4285 21,6403 25,707
70 B.O544 12,9550 17.3920 21,0926 25,0721
75 §.0380 12,9301 17.35%4 21,5031 25,6257
80 £.0237 12.9004 17,3314 21,5087 25,5805
85 £.0111 12,8993 17.30¢66 21,4985 25,5900
an 7.9999 12,8724 17.2%46 21,4717 25,5180
95 7.9899 12.€573 17.2644 21,4477 25,4905
100 7.9810 12.8438 17.2473 21,4262 25.40653
o
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