- AD-A127 226 vgN ANALYSIS OF FULL SCALE MEASUREMENTS ON M/V STEMART J

ORT DURING THE 1.. (U) STEYENS INST OF TECH HOBOKEN NJ
. DAYIDSON LAB J F DALZELL FEB 82 SIT-DL-81-5-2221
UNCLRSSIFIED USCG-D-25-82 DTCG23-81-C-2031 F/G 13/18

I
A
T
A B
I
T
O O
T
A
]
I

1/3 .




N 3t
DRCCRTE A

e taafedtlats

o

Il
I

22 it

FEEEEEER

EEEER

FEFE

1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

PR e P T R < oLt
ol e L g g PP PGS EP U D TR DN T YRt WV TR WA S e Wow Uae Wew W= WeTwes 3




L A
[N L W

BN S oA ML AR D an g

W,
- oo

B) - MDD P AV |

...................

Report No.

ADAIZ 722y

N

——

CG-D-25-82

AN ANALYSIS OF FULL SCALE

MEASUREMENTS ON M/V STEWART J. CORT

DURING THE 1979 AND 1980 TRIAL PROGRAMS

"

o/

Davidson Laboratory
Stevens Institute of Technology

Castle Point Station

Hoboken, NJ 07030

FINAL REPORT
February 1982

Document 1s available to the U. §. public through the
National Technical Information Service, . L
Springfield, Virginia 22161 SR

Y

W, APR 26 1983
A
PREPARED FOR

US.DEPARTMENT OF TRANSPORTATION

UNITED STATES COAST GUARD
OFFICE OF RESEARCH AND DEVELOPMENT
WASHINGTON ,D.C. 20590

g3 04 26 013

' . N . L N
S W S WY I S PGP




LTy o Dk it
PR B . . . - -

Lk :
":

b S SR S S S A0, o 0B A6 g g
1 VRN

(R e ) Al gl B b B A 0N 4

T T e W T - T v il Shadiiadl At A A A

NOTICE

This document is disseminated under the sponsorship of the Department
of Transportation in the interest of information exchange. The United
States Government assumes no liability for its contents or use thereof.

The contents of this report do not necessarilv reflect the official view
or policy of the Coast Guard; and they do not constitute a standard,
specification, or regulation.

This report, or portions thereof may not be used for advertising or
sales promotion purposes. Citation of trade names and manufacturers
does not constitute endorsement or approval of such products.




v e L,T T e - = = = & 5 7,

- T T TTE Y W .

Technical Report Documentotion Poge

The purpose of Part | of the work was to provide an independent review of wave

induced springing data obtained aboard the M/V STEWART J. CORT in the Fall of 1979,
and the subsequent analysis of this data. The emphasis in this work was to be upon
the question of sampling variability, upon some exploratory alternative analysis of
data, and upon the resulting implications for projected trials with the same ship in
the Fall of 1981. The important finding from this work was that a significant part of
the scatter of results derived from the 1979 data may be ascribed to sampling variabil-
ity. The fact that the statistical coherency between observed stress and wave eleva-
tion was found to be of the order of C,4 raises some important conceptual problems,
among which is the possibility of nonlinear response. Evidence was found that quad-
' ratic nonlinearities of some significance may exist in the springing response to waves.
' Recommendations for the projected 1981 trials were formulated.

3The purpose of Part |II of the present work was to continue the qualification of a
previously developed numerical simulation of combined, springing and wave induced
stresses., Previous qualification efforts had been inconclusive with respect to main
! deck bending stresses observed in the 1979 trials of the M/V STEWART J. CORT. Sub-
sequently discovered problems with the main deck bending measurement suggested that the
bottom bending stress information should be more suitable, and accordingly, the present
analysis has been made with bottom bending stress data from the 1979 and 1980 trials.
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PREFACE

This document is the last of a series of reports on a segment of
the overall program of research on the longitudinal strength standards
for Great Lakes vessels. 1t is a compilation of two separate reports
summarizing the last work performed during this segment, known as
Phase I11. Phase |li was carried to its present state in part by
efforts of the Coast Guard technical staff and in part by the combined

efforts of the following (in order of approximate chronological entry):

Bethlehem Steel Corporation

Naval Research Laboratory (NRL)

David W. Taylor Naval Ship Research and Development Center (DTNSRDC)
American Bureau of Shipping (ABS)

University of Michigan (UM)

Det norske Veritas (DnV)

Stevens Institute of Technology (SIT)

The broad objectives of the overall research program were to assess
the magnitude of the springing component of Great Lakes bulk carriers,
to develop a new formulation of the rules, to verify the assumptions
with full and model scale experiments and to revise, if necessary, the
rules for longitudinal strength. The three phases of the research,

which started in the early 1960's can be outlined as follows:

Phase | - began in 1963 with full scale stress measurements
of the RYERSON. Alarmingly large stresses were recorded on
the RYERSON in Lake Michigan during the same storm in which
the DANIEL J. MORRELL was lost in Lake Huron. This phase

was fully reported in 1971 at the SNAME Symposium (Bulletin

$-3) in Ottawa, Canada.

Phase Il - included extensive full scale trials on the new
1000-foot carrier M/V STEWART J. CORT and the CHARLES M.
- BEEGHLY. This phase was concluded September 9, 1975 at

i SNAME HS-1, HS=1-1, and HS-1-2 meeting in Cleveland, Ohio.
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It was concluded at this joint panel meeting that a third
phase, where there was a simultaneous measurement of the
encountered waves and the hull stress, was absolutely

necessary,

Phase 111 - was comprised of the adaption of two wave
measurement systems, three seasons of data collection on
the M/V CORT, and the subsequent analysis of this data.
This phase closed nominally in early 1982 and its major

conclusions are included in this report.

The specific objective of Phase t1] was to verify, through data
analysis, and if possible to improve upon, the present longitudinal
strength standards for Great Lakes vessels, These standards, developed
in 1977, are complicated by the observed ''springing'' vibratory stresses,
which are of significantly greater magnitude relative to wave induced
stresses than is the case in most ocean going ships. The technical
questions posed in the program were essentially: How well can the
magnitude of springing stresses be predicted analytically? How do
springing and wave induced stresses combine to form extreme stresses?

And, how might the results of the program be used to improve present

day strength standards?

In order to approach the first question in the context of full
scale observations it was necessary to obtain some objective measure
of the waves encountered by the ship. A wave height measurement
system had to be utilized, The first part of the program involved the
development, installation and verification of wave measuring devices
aboard the Bethlehem Steel Corporation vessel, M/V STEWART J. CORT,
which was to be the trials vessel. This portion of the work was
carried out by NRL and Coast Guard personnel in 1978 and is documented

in Reference 3*,

*
References on Page 11-101,




Sufficiently encouraged, a full scale instrumented trials program
was carried out aboard the M/V CORT in the Fall of 1979 by DTNSRDC with

the wave measuring equipment previously developed, and an on-board data

processing system. These full scale ship trials were the first in
history with the objective of directly obtaining springing response
amplitude operators (RAO's). With the co-operation of Coast Guard
Search and Rescue Units, techniques were developed for encountered wave
measurement verification. In this method, wave buoys were dropped and
picked up by helicopter in the vicinity of the moving ship. Unfortunately
during these trials no heavy wave conditions were encountered, with the
result that the wave meter verification data was not extensive enough,.
However, the notable result from the trials was the acquisition of the
first full scale springing response amplitude operators in which some
confidence could be felt., These trials are documented in Reference 1
along with direct comparison of observed and theoretical response
amplitude operators as predicted by ABS, UM, Webb, and DnV.

In the fall of 1980 a third trials program was carried out aboard
the M/V CORT by Coast Guard personnel. These trials involved fewer
measurements than the 1979 trials since their objective was to obtain
better data with which to verify the wave measurement systems. However,
since the main deck bending stress gauges were found to have malfunctioned
bottom bending stresses were also recorded. Reasonable success was
enjoyed with respect to validation of the wave measurement systems,
and some additional springing stress operator data was obtained. These

trials are documented in Reference 11,

Concurrently with the 1980 trials, work was underway at SIT on a
numerical approach to the question of how springing and wave induced
stresses combine to form extremes, Reference 2. In this work it was
necessary to further analyze some of the 1979 main deck bending stress
data. A peculiar systematic asymmetry in the main deck bending stress
data was noted, Systematic assymetry of stresses, is not present in
the previously obtained data, References 17 and 18, and is not allowed

for in the present state of analytical technology (Reference 19 for example).
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It is also not a possible result in the simulations of Reference 2.
The credibility of the simulation technique of Reference 2 was thus
questioned. In view of the finding of the 1980 trials with respect
to main deck bending gages, questions arose about some of the 1979

data.

Consequently, a third measurement program was scheduled for
the Fall of 1981, At the conclusion of the 1980 trials and Refer-
ence 2 there had been several questions posed about the 1979 results,
It was at this point in the overall program that the present analytical
work was started in two phases. The objective of the first phase
of the present work was to link the 1979 and the projected 1981 full
scale measurements with an independent review and analysis of the
1979 data, and to make recommendations, if necessary, for the 1981
trials. Since reconmendations, to be used in the 1981 trials, had
to be in hand by August 1981, the results of that phase were documented
in a technical report prior to the initiation of the second work phase.
It is this first technical report which is included (slightly edited)

in the present document as ''"Part ',

The objective of the second phase of the work was to continue
the validation studies of Reference 2 using bottom bending stress
data from the 1979 and 1980 trials, in order to extend if possible
the present ideas about the method of combination of wave induced
and springing stresses. The present program thus resulted in a second

technical report which is included herein (slightly edited) as 'Part 11",

RETROSPECTIVE COMMENTS ON THE
FULL SCALE TRIALS PROGRAM OBJECTIVES

The existing longitudinal strength standard of the American Bureau
of Shipping is contained in Reference 20. The assumptions on which this
standard is based are not stated. |t appears from the statement that
""consideration will be given to the combined dynamic as well as the
wave-induced and springing moments and vibration calculations...'" that
the assumptions used are a blend of proven practice and one or more of

the approaches of Reference 19,
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steel do not appear to involve major factors of ignorance, it must be
assumed that the rule dynamic longitudinal moments are intended to
represent values which have a very low probability of being exceeded
within a normal ship life, Thus, there should be an exceedingly low
probability that dynamic bending stresses observed in a brief trial
program, after augmentation by calculated still water stresses, will
approach the permissible., It is clear that direct comparison of
observed maximum dynamic stresses with the standard cannot be a
serious objective of the present type of trials unless the standard
itself is an order of magnitude wrong. Nevertheless, once the trials
had been made, simple comparisons can be made of the extremes of the
observations with previous data from the same ship, with data from
other ships, and with the standard. Clearly, nothing approaching the
extremes stresses experienced in 1973 (Referencesi7,18) was experienced
in either the 1979 or the 1980 trials.

Unless all or most existing large lake carriers were instrumented
with maximum reading (scratch) gauges for a very long period of time,
no direct ''verification'" of the extreme magnitudes of combined dynamic
stresses is possible., Extrapolation of standards (as contrasted to
interpolation) to longer, wider or deeper ships can only be attempted

indirectly by computations according to the best available methods.

Assuming, that the strength standard for very long ships has
evolved through the application of contemporary analytical methods
as outlined in Reference 19, the most important objective in
analyses of the present type of trial data is to verify, so far as
possible, these analytical methods. The first is the computation
of the basic springing response functions (RAO's) and the second is
the method whereby the statistics of the maxima of the combined
responses are extrapolated. These two aspects of the problem are
explicitly noted in the overall objectives cited in the preface, and

both have been addressed in the work completed thus far.

vi




GENERAL RECOMMENDATIONS FOR PHASE 1V

At the time of assembly of the present document, the 1981 trials
program had been carried out, but the data had not yet been reduced.
It is thought that somewhat more severe weather was experienced in these
trials than in 1979 and 1980. |If so, it would be of benefit to attempt
analysis similar to that of Part | herein with data in which wave

induced stresses are significant,

Part | raises some serious conceptual problems. T"hese include
low coherence between encountered wave and springing s -sses, and the
possibility of nonlinear response in more severe wave - “tions.

The low coherence problem implies a significant sampli. ,ariability

in the derived RAO results. Because of this the standard of comparison
between analytical predictions and observed response cannot be a close
one. Secondly, the indications of nonlinear response raises the spector
that the underlying assumptions of the present analytical state of

are may be partially in error. Both problems need further examination.

The indication from the analysis of Part || was that the
statistics of observed maxima of stresses conform with those expected
by virtue of the latest statistical assumptions. This indication
suffers from lack of analyzed cases in which wave induced stress was
significant. A concurrent statistical work by DnV (Reference 21)
suggests the potential for using alternative statistical models; their
results should then be compared to those obtained in this report,
Application of these in analysis of Great Lakes vessel stresses is

recommended.

General recommendations for future Phase IV of the Great Lakes
Ship Strength Research are:
+ Complete analytical review of the 1980 and 1981 trials
data.

+ Compare the implied nonlinear response from data analysis
with the theoretical results from the University of
Michigan model tests.

+ Incorporate the new statistical models and the simulation
methods for the combination of high and low frequency
stresses,

« Final verification of the strength standard.

vii
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INTRODUCTION

The problem of providing adequate provision in longitudinal strength
standards for the stresses produced by wave induced vibration is particularly
important for Great Lakes ships since the vibratory stress (springing) levels
experienced have been found to be of significantly greater magnitude relative
to wave induced stresses than the vibratory response of most ocean going
vessels. The present work is a contribution to an ongoing USCG research pro-

gram for Great Lakes ore carriers,

Under contract to the U.S. Coast Guard, David W. Taylor Naval Ship Re-
search and Development Center (DTNSRDC) performed full scale measurements on
board the M/V STEWART J. CORT during the fall of 1979. During the data analy-
sis phase, RAD's (response amplitude operators) were developed from the stress
and wave measurements which were then compared with theoretical RAO's computed
by American Bureau of Shipping (ABS), Webb Institute of Naval Architecture,
the University of Michinga (UM) and Det norske Veritas (DnV). The results of
this work are contained in Reference 17 A continuation of these full scale

measurements is projected for the fall of 1981,

The primary purpose of the present work is to link tne 1979 and the pro-
jected 1981 full scale wave and stress measurements with an independent review
of the 1979 data. The intent was to build upon the research performed to date
and to insure the interpretation of the 1979 data is as complete as possible.
In particular, the emphasis in the present work was to be upon the question of
the sampling variability of the estimates produced in Reference 1, and upon

exploratory alternate analyses of the data.

In documenting the present work i¢ has been found convenient to follow
the Summary/Appendix report organization. [n this style the main body of the
report consists of an overview and summary of findings. Following the brief
main body of the report are a series of Appendices which contain the detail

of the work.

*
References on Page 11-101.
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OVERVIEW

The details of the present work are contained in Appendices A through D.

In order to accomplish the objectives of the present work a small subset
of the data produced in Reference 1 was selected for analysis. Fundamentally
the concern was with the relationship of deck bending stress and the measured
wave elevations since these were the data primarily analyzed in Reference 1.
One by-product of the work described in Reference 2 was a set of problems in-
volving the basic data. The first problem was that the maxima and minima of
the deck bending stresses were statistically asymmetric,a situation which does
not agree with the concepts of the present state of springing theory, or with
the basic assumptions made in the interpretation of data. The second problem
was that the ratio between deck and the more symmetric bottom bending stresses
appeared to change with "ime during the experiments of Reference 1--by an amount
which was difficult to accept on physical grounds. Thus in the present work it
was thought prudent to analyze deck and bottom bending stresses in parallel in
hopes of throwing some 1ight upon these probiems. Appendix A contains the de-
tail of which particular runs were selected for analysis, which channels of
data were of importance, and an account of some pre-processing operations which
it was of advantage to carry out. Also included in Appendix A are plots of the
basic time domain data, the results of a qualitative analysis of these data,
and a review of the basic processing which is required to derive encountered

wave elevations from the radar altimeter and ship motions data actually measured.

Appendix B is an account of the application of a new (to springing data)
method of spectrum analysis to the present problem. The method is called
""Maximum Likelihood Method Spectrum Analysis'', and is data adaptive in the sense
that the spectral window is chosen in an optimum way according to the spectral
content of the data itself. The original applications of this approach were
toward the detection of very narrow frequency band components buried in noise.
It was thought worthwhile to make an exploratory application of these methods
to the present data in hopes of refining current ideas about the frequency
bandwidth of the springing component of stress, and (possibly) of finding a

better method of deriving springing response operators.

In order to obtain some sort of estimate of the sampling variability of

the RAO estimates of Reference 1 it was necessary to perform cross spectral

analyses of the data subset. Appendix C documents these analyses. Some estimates
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of the magnitude of possible bias errors were made, and, once the analyses were
in hand a measure of the p~ssible sampling variability of the results of Refer-
ence 1 was estimated.

Documentation of the final part of the present analysis is contained in

,_

Appendix D. The objective of the analysis of Appendix D was to attempt to dis-

T
N

cover if the observed springing response data contains any indication of non-

linear response of quadratic degree. The approach involved cross-bi-spectral

analyses of the wave and stress data according to methods originally developed
in the study of ship resistance induced by waves.

FINDINGS

Nothing particularly surprising appeared in the initial examination of
the time domain records. Deck bending stresses were consistently asymmetric,
bottom bending stresses were not, and the relative magnitudes were different
than the nominal location of the ship's neutral axis would imply. Unfortunately,
no evidence surfaced in the present analysis which would explain the deck bending
asymmetry.

As a method to improve estimates of springing stress spectra the Maximum
Likelihood Method of analysis does not appear promising--either technically or
economically. The analyses carried out suggest two things of importance. First,
half power bandwidths of springing stress spectral peaks may be as low as 0.04
times the springing frequency (0.08 rad/sec or 0.012 Hz for the CORT). Secondly,
some evidence exists of low level periodic components of springing stress of the
order of 1 kps!l amplitude, such as might be produced by engine or propeller. A
similar analysis of zero speed runs, and runs where the ship was in sheltered
water might throw some light on the source of this response.

_ The present work suggests that the effective statistical bandwidth of the
» analysis of Reference 1 was slightly wide relative to the narrowest band springing
response in the data set. However the analysis also suggested that the good level
of statistical stability in the estimates of Reference 1 probably out-weighs the
potential for bias errors inherent in the bandwidth chosen. The net conclusion
was that the choice of analysis parameters in Reference 1, given the fixed sample
length, is not likely to have seriously affected the variability of the results.

The present results suggest that a significant part of the variability
in the RAO estimates of Reference 1 is due to sampling error. The differences
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between the theoretical predictions and the experimental estimates for the
peak of the springing RAO for the particular cases shown in Reference 1 appear
generally to be less than the scatter which might be expected from run to run
under the same nominal ship conditions, It is thus difficult to judge which of
the two (theory or experiment) is least wrong on the basis of the evidence to
date. In this light many of the theoretical/experimental comparisons of Ref-

erence | may be considered in ''reasonable' agreement.

The results of the present parallel analyses of deck and bottom bending
stresses differed significantly only with respect to the absolute magnitude of
the RAO estimates. This is apparently a direct result only of the problem
with the scale factor previously mentioned. Otherwise, run to run scatter
appears much the same. The asymmetry in deck stresses apparently has had little

effect upon the results derived in Reference 1.

The main problem which the present analysis suggests is a coherency
between wave elevation and stress of about 0.4. For purposes of deriving re-
lationships between stress and encountered wave this is a very low magnitude.
Such low coherencies significantly widen the estimated sampling variability,

and raise some serious conceptual problems.

There are four more or less standard explanations for low computed co-

herency between input and output of a system.

1. Extraneous noise is present in the measurements.

A 2. Analysis bandwidths are chosen so that the fluctuations in the

real and imaginary part of the cross spectrum are poorly resolved.

;;: 3. The response is due to the measured input as well as other inputs
p— which are not measured.

L 4, The system relating input and response is not linear.

Pertaining to the first two explanations just cited, only the presence of

e some higher frequency than expected content in the wave elevations can be cited.

L Only by comparison of radar and buoy derived wave elevations can the adequacy
of the radar system and the meaning of the high frequency content be judged.

;‘; The presence of significant propeller excited vibration would be a con-

F:ﬁ tributing factor to low coherence. Such vibration is in effect due to an un-

Lo measured input.

o ' 4
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Implicit in the statement that coherencies are low is that perfect co-
herency is unity. In short crested seas* it has been shown that the theoretical
coherency for purely linear, noiseless, systems is less than unity. How much
less depends in all probability upon how much short cresting is present. This
is a possibility which may require an analytical investigation of the range of
coherency to be expected in a theoretical noiseless system having perfect instru-
mentation. Such a result might yield a better standard of comparison for the

observed coherencies and indicate what, if anything, is wrong.

The present investigation into the possibility of quadratic nonlinearities
in springing response has indicated that they exist. The magnitude of the non-
linearity, however, did not appear sufficient to explain all of the low coherency
problem. Because of the spectral distribution of wave elevation in the runs exa-
mined, large quadratic response might not have been expected at all. The fact
that the contribution is apparently of visible magnitude suggests that relatively
much more significant nonlinear response may be expected in the event that waves

become more severe than the worst experienced in the 1979 trials.

RECOMMENDATIONS FOR THE
PROJECTED 1981 TRIALS

The data used in the present analysis included some of the most severe
waves observed in the 1979 season. Nevertheless, the corrections to the radar
altimeter data necessary to derive wave elevation were quite minor. Some evi-
dence surfaced that the accelerometer records contained some quite high frequen-
cies. |If serious aliasing is present in this channel, a significant error might
be injected into derived wave elevations when and if data is ever obtained during
a really severe storm. Some re-examination is Indicated of the possibility of
filtering this, and possibly the radar, with low pass analog filters.

With reference to selection of digitizing rates and analysis parameters
for the projected trials, the present work suggests that a somewhat smaller
analysis bandwidth might be of advantage. The digitizing rate certainly can be
reduced to 5 samples/second, and probably to 3.33, without harm and with the

*"Short cresting' refers to irregularities in wave profile at right angles to the
dominant direction of propagation, and Is caused conceptually by the superposition
of many wave components coming from a broad sector of direction about the dominant
one,
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advantage of a drastically reduced volume of data. Serious consideration should
be given to doubling the sample length from the order of 25 minutes to 45 or SO
when it |s reasonable to suspect that ship will continue on course for this
length of time. |f double length records show evidence of serious non-station-
arity they can be considered in two parts. !f not, double sample length would
allow spectrum analyses with about the same statistical stability and half the
bandwidth used in Reference 1. |f there is the possibility that analyses of the
sort carried out in the present work might eventually be required, it wouid be
helpful to set sample times so that multiples of 4100 or 4200 points are acquired.
(For example, at a sampling interval of 0.2 seconds, 14, 28, 42, ... minutes.)

It might be useful to characterize, with the present data acquisition
system, the level of springing which occurs under calm wave conditions in both

load and balliast ship loadings.
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APPENDIX A

SELECTION AND PREPROCESSING OF
DATA FOR EXPLORATORY ANALYSES

Introduction

In order to accomplish the exploratory analysis objectives of the pres-
ent work, it was necessary to select a small number of data runs obtained in
the 1979 CORT trials, Reference 1*. Because there was a certain amount of
time pressure, it was advantageous to select the data from those runs which
were available as a by-product of the work in Reference 2*. The purpose of
this Appendix is to document the selection, certain pre-processing operations
which were carried out, provide a look at the time domain data for stresses
and the radar wave measuring system, and to indicate the basic method of der-

iving the encountered wave elevations.

Selection of Data Runs

In the work of Reference 2 data tape 4 and a portion of tape 7 produced
in Reference 1 were made available. Everything which could be read by the
Stevens Institute computer had to be extracted from these tapes in order to
get the two runs required for the previous work. The result was that Runs 68
through 77, and Runs 116 through 118 of Reference 1 were immediately available.
Since one of the present problems was to assess sampling variability, it was
of interest to have available 3 or 4 runs which were obtained one after the
other during a period when the nominal ship and wave conditions were constant.
It was also thought wise for the sake of continuity to select at least one of

the runs which were analyzed in Reference 2.

The log data for the flve runs eventually selected for the present work
is summarized in Table A-1. It will be noted that Runs 74 through 77 form a
sequence where the nominal ship and wave conditions were relatively constant
and which contains one of the speclal runs which was specially treated in both

*l. Swanek, R.A., and Kihl, D.P., "investigation of Springing Responses on
the Great Lakes Ore Carrier M/V STEWART J. CORT", Structures Depart-
ment, David W. Taylor Naval Ship Research and Development Center,
CG-D-17-81, December 1980, NTIS No. ADA100293

*

2. Dalzell, J.F., "Numerical Simulation of Combined, Springing and Wave In-
duced Stress Response', Davidson Laboratory Report SIT-DL-81-9-2141,
Coast Guard Report (G-M-6-81
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Reference | and 2. Run 76 was omitted from the sequence because the computer
clock used in timing the digitization was apparently running at twice the
nominal rate--sorting this out was not thought worth the extra effort for the
present work. Runs 116 and 117, in addition to being two of the runs specially
treated in Reference 1, involve apparently constant full load ship conditions
and were thought a reasonable choice to round out the set of five runs for
exploratory analysis. A close inspection of Table A-1 discloses that on the
16th of November it was apparently possible to record 25 minutes of data in
about 8 minutes. Because the value of the springing frequency computed from
the records is as expected, and because the changes in ship position noted are
about what might be expected for 25 or 30 minute time intervals, it is sus-

pected that the time of day clock was somehow in error,

The :-Data Channels of Interest

In order to produce results comparable to those of Reference 1, the
main deck midship bending stress data channel is of primary interest. in view
of the problems and uncertainties raised about this channel in Reference 2, it
was thought prudent to also consider the midship bottom bending stress channel.
in effect it was determined to process the deck and bottom bending stresses in
parallel, |Ideally, a data channel of encountered wave elevation as measured
by the Collins radar is also required. However, wave elevation is not measured
directly and there are six channels of data which may potentially influence the
wave elevation estimates.

The data channels of potential interest which were produced in the work
described in Reference ! are as follows:

Channe! No. ltem
1 Main Deck Combined Bending Stress
4 Bottom Bending Stress
7 Pitch
8 Roll
25 Collins Radar Range
26 Collins Vertical Acceleration
27 Collins Horizontal Acceleration
30 Collins Error Signal
A-3
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The general ideas in processing the data to produce estimates of the
encountered wave elevation include use of the roll and pitch data to determine
the Instantaneous angular orientation of the radar beam so that its vertical
component may be derived. In the present data set maximum roll and pitch
angles were of the order of $0.5 degrees. Thus the effort in carrying out the
compensation for roll and pitch was unjustified. Similarly, in the absence
of significant lateral plane motions the horizontal accelerometer (Channel 27)
is of no use. What remains in the derivation of wave elevation is to correct
radar range by the vertical motion of the antenna derived from the vertical
acceleration data. The purpose of the '"Collins Error Signal*, Channel 30, is
evidently to flag low levels of radar return or malfunction of the Collins
Radar. Unfortunately, there appears no documentation of what to expect of this

*
signal in either Reference 1 or 3 .

Pre-processing: Filtering and Decimation

The net effect of the preceding is that it was necessary to consider and
process five of the data channels previously mentioned (Numbers 1, 4, 25, 26
and 30). Many of the projected operations involved Fast Fourier Transform
operations. In each of the runs of interest the data had been sampled at
0.1 second time intervals for 25 minutes so that the resulting time series were
15000 points in length--too short for a 16K FFT analysis, and too long for a
single 8K analysis. It had been found in both References 1 and 2 that the
0.1 second interval is unnecessarily shart. For present purposes it was attrac-
tive to employ the filtering/decimation scheme developed in Reference 2 as a

first processing step.

Accordingly, the following operations were carried out on each of the

five data channels of interest for each of the five runs noted in Table A-1:

1. Filter each time series with a recursive 6-pole sine-butterworth
low pass digital filter. The characteristics of this filter

include:

*
b 3. Hammond, D.L., ''Great Lakes Wave Height Radar System', prepared by the
'@ Naval Research Laboratory, issued as Coast Guard Report CG-D-6-80,
b= January 1980,  NTIS ADA0836u7
:

!

i
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0.1% or less attenuation of signal and
and sensibly linear phase shift from
D.C. to 0.6 Hertz.

* Nominal! cutoff frequency 1.4 Hertz.

+ 98.5% or more attenuation of signal
between 3.33 and 5.0 Hertz.

2. Perform the 13th point decimation procedure described in Reference 2

on each time series.

The effect of these operations is first to eliminate signal content be-
tween 3.33 and 5.0 Hz so as to minimize the possibility of aliasing, and then
to create a shorter time series which has a time step of 0.15 seconds rather
than 0.1 seconds, and a folding frequency of 3.33 Hz rather than 5.0 Hz. The
first 2! points of the resulting series represent 20% minutes of the original
25 minutes of data; that is, a loss of 18% of the original data was accepted
in order to facilitate the projected analyses.

The practical result of this pre-processing step was five new data files.
Thzse pre-processed time series data were the starting point in all the sub-

sequent analyses.

The Basic Time Domain Data

When the issue is the discovery of the odd spike or other nonsense in
a time history, the human eye is far superior to and more efficient than the
computer. Accordingly, the first step in the present analysis was to plot the
time series data of interest and look at it. The resulting plots are included
here as Figures A-1 through A-5., Each figure is in two parts so that most of
the individual oscillations of the 204 minutes of data are visible. The five
data channels mentioned are plotted to the same time scale., Compressive stresses

are positive in these figures.

Time histories of the stress channels for Runs 77 and 116 had previously
been Jooked at in Reference 2. Given this preparation, there were no surprises
in the stress channels for Runs 74, 75 and 117. There is a positively biased
asymmetry In Runs 74 and 75 simlilar to that prevlously discovered In Run 77,
and a negatively Liased asymmetry in Run 117 similar to that previously observed
in Run 116, The previously noted apparent scale factor disparity between deck

and bottom bending stresses carries over in the new runs.
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The Collins Vertical Acceleration time histories clearly have some fairly
strong content at a much higher frequency than that of the springing. To see
what It might be, portions of the record were plotted to expanded time scales.
Figure A-6 is a typical result. The filtered accelerometer clearly contains
vibration at 2 or 3 times the springing frequency. It seems reasonable to
suppose that this frequency may correspond to vibration of the boom upon which
the radar antenna and accelerometer are supported. When plotting the results
in Figures A-1 through A-5 it was noticed that the maximum excursions of these
filtered accelerations were about half what the computer said the maxima of the
original data were, Obviously the present filtering operation eliminated some
high frequency noise. Reference 3 implies that the accelerometer natural fre-
quency is about 350 Hz, and mentions no analog filtering. |f the actual reso-
nant frequency deviates from 350 Hz by as little as +13%, transient vibration
of the accelerometer itself may alias to anywhere in the DC to 5 Hz range in
which it is assumed that all of the present signal content exists. In the

present context it just had to be assumed that no such aliasing effects exist.

Inspection of the Collins Range and Error discloses no obvious nonsense.
The error signal is flat and it is reasonable to assume that the radar was
working nominally during the runs examined. There is rather more high frequency
content in the range signal than the present analyst would have expected, but

nothing which appears physically impossible,

Derived Wave Elevations

The geometry for the present radar wave measuring system is simpler than
*
that described in Reference 4 because the vertical acceleration is measured at

the radar antenna.

Taking a fixed horizontal reference plane in the water, the vertical
position of the radar may be denoted by Za(t). positive upward, positive for
the antenna above the water. The radar beam is directed downward at a 25o
angle to the vertical and the sense conventions of Reference 1 are that positive

excursions of signal correspond to increasing range. Denoting the total range

*

L, Dalzell, J.F., '"Wavemeter Data Reduction Method and Initial Data for the
SL-7 Containership', Ship Structure Committee, SSC-278, September
1978, AD-A062391,
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from antenna to water surface as Ra(t). the vertical component becomes

Ra(t) cos 25°. This is because it is permissible in the present case to neg-
lect the time varying angular motion of the radar. Now define the instantan-
eous position of the water surface above the reference plane as g(t) (positive

upward). Then: .
g(t) =2z (t) - R (t) cos 25° (A-1)
in actuality the interest is not in wave elevations above some absolute

datum but in the variations about mean water level. Taking the time mean of

Equation (A-1):

n(t) = z(t) - R(t) cos 25° (A-2)
where:
n(t) = ¢{t) - gT(t) = Corrected wave elevation
Z(t) = Za(t) - ig(t) = Dynamic vertical motion of radar
antenna
R(t) = R_(t) - Ra(t)

The various mean values drop out because

i;(t) =7(t) + ﬁ;(t) cos 25°

by the definition of the problem.

Essentially, R(t) in Equation A-2 corresponds closely to the quantity
recorded and displayed as '‘radar range' in Figures A-1 through A-5. It might
be noted that the total range will have to be derived somehow should it ever
be required to make the corrections for roll and pitch. In practice, R(t)

is derived from the recorded data by correcting the signal to zero sample mean.

The quantity Z(t) is the dynamic fluctuation of the vertical position
of the antenna. What is available to derive this quantity is the vertical
acceleration. Since upward acceleration is considered positive in Reference 1
the quantity Z(t) is the doubly integrated acceleration signal corrected to

zero mean:
t

2(t) = JJ A, (t)dt - (time mean of the integral)
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The procedure developed in Reference 4 for deriving Z(t) in the time
domain are applicable in this case also. In two of the exploratory analyses
to be described the wave elevation needs to be defined in the time domain.
Accordingly, the procedures of Reference 4 were applied to the present data
when this was required. It is instructive to see in the time domain the mag-
nitude of the influence of the correction for antenna motion. Figures A-7 and
A-8 show the various derived quantities for selected portions of Runs 77 and
117. The portions selected were chosen so as to include relatively high mag-
nitudes of the Collins Vertical Acceleration signal. The first ("a') part of
each figure contains the acceleration signal and the derived double integration.
The second (''b'') part shows the bottom bending stress, the derived wave eleva-
tion and the radar range signal. For comparative purposes the sign of the
range was changed. Had the vertical component of range been plotted (R(t) cos 25°)
it would have been hard to tell the difference between wave elevation and radar
range., In general, the largest excursions of Z2(t) are out of phase with the

range signal, and the net effect of the antenna motion correction is quite small.

Closing Comments

Nothing particularly surprising appeared in the initial examination of
the time domain records. It is seen that for the runs of interest th¢ influence
of the vertical acceleration of the radar antenna upon the derived wave eleva-
tions is small. The ship was evidently not moving much, and under these cir-
cumstances the corrections for antenna motion are almost not worth making. This
will not be the case when and if data is ever taken in a really severe storm.
Against this eventually two things seem worth considering. The first is that
when radar range must be corrected for roll and pitch, the entire range is re-
quired. Data for computing this range does not appear in the data files. The
second is the possibility of aliasing very high frequency vibration of acceler-
ometers back into the principal alias of the digital record. To a lesser extent
this worry applies to other channels as well. There is only one way to insure
against allasing when the basic recording is all digital and that is to inter-
pose suitable low pass analog filters between the analog signal and the A/D

converter.
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APPENDIX B
; MAXIMUM LIKELIHOOD METHOD
u SPECTRUM ANALYSES
Introduction
2 One objective of the work of Reference 1 was to derive springing response
II amplitude operators (RAO's) from the stress and wave elevation data. In the
derivation utilized the RAD was estimated as the square root of the ratio of
stress 2nd wave elevation spectral densities. Thus one of the basic problems
i. of spectral analysis may be potentially important. The problem is that of pos-
N sible bias errors In the estimates for very narrow band processes. In general
;; the analysis bandwidth should be small relative to the bandwidth of the spectrum.
. At the same time the analysis bandwidth should be as wide as possible to in-
P’ crease statistical confidence in the results. Selection of analysis bandwidth
]

is essentially a trade-off problem in conventional analysis methods. 'Maximum
;f Likelihood Method' analyses are one of a class of methods largely developed in
the geophysical field starfing in the mid 1960's, Reference 5*. The method is
data adaptive in the sense that the spectral window is chosen in an optimum way
to suit the data. Some of the original applications of this approach were to
detect very narrow band frequency components buried in random noise. Accordingly,
it was thought worthwhile to apply these methods to the present data in hopes of

refining current ideas about the bandwidth of the springing component of stress,

C and (possibly) of finding a better method of deriving RAO's via the spectral
E? ratio technique.
F..
Ei The methods used in the present analyses are based entirely upon the ex-
= position in Reference 5. Initial programming and checkout was performed by
\ Mr. P, F. Wang as an academic project within the Ocean Engineering Department
: of Stevens Institute.
L Autocorrelation Functions
¢
- The first step in the maximum likelihood method is to estimate sampled
;l autocorrelation functions from the data. This was done for each of the time
)
. *
FT 5. Lacoss, T., '"Data Adaptive Spectral Analysis Methods',6 Geophysics, Vol. 36,
L No. 4, August 1971, pp. 661.
i:'.
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ki1
series using the customary estimator, Reference 6 , pp. 311. An immediate
problem was seen when the basic data defined at time steps of 0.15 seconds

was used. The 30 seconds of stress autocorrelation functions obtainable by

[

considering lagged products separated by up to 200 time steps obviously de-

—aTaT ¥
i °r
LT
&

o fined only a part of the function since the general tendency was for the

(A

function to decay very slowly with time. Because the stress records were free

enough of high frequency content that a reduction in folding frequency to

0.66 Hz (4.2 rad/sec) appeared safe, new time series were made by considering

every S5th point. The result was time series ''sampled' at 0.75 second intervals

T
)
., L0t

and 1637 ""points' long. Normalized autocorrelation functions were computed
using these time series, and the results for each channel are shown in Figures
B-1 through B-5. It should be noted that the 'wave elevation' time series was

derived as described in the last part of Appendix A. The computation was carried

out to 200 “lags'' or 150 seconds. Carrying out computations of this sort over
lags much in excess of 10% of the record length is not generally recommended.
Thus the results shown in Figures B-1 through B-5 are about as much of the

stress autocorrelation functions as it was thought prudent to estimate.

The fact that the functions for Runs 116 and 117 appear to settle into a
fairly steady oscillation at about the springing period flags a potentially
serious problem. When an autocorrelation function does this sort of thing it
implies that there is a periodic component in the data® The autocorrelation
of & cosine wave of frequency w and amplitude a is (%a? cos wt). Applying
this formula to the five cases shown in Figures B-1 through B-5, using rough
estimates of the amplitude of the autocorrelation function for large time lag
and the computed sample variances, results in the following estimates for the

amplitude of the possible periodic springing component.

Runs Ampl i tude
o 74 through 77 =0.5 kpsi
4 116 and 117 =1.3 kpsi

It should be remarked that "periodic' is defined relative to the available

length of record and that no truly periodic response can exist. The evidence
simply indicates that there may exist somehow an extremely narrow band vibration

excitation which cannot be characterized within the available record length.

*6. Bendat, J.S. and Piersol, A.G., '"Random Data: Analysis and Measurement

Procedures'', John Wiley € Sons, Inc., 1971.
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MLM Spectral Esimtates

In the maximum likelihood method (MLM) the spectral estimate is of the

form:
S(w) = ! (B-1)
m
g9, * ) 29 cos (nwat)
n=1
where: m = the number of lags of autocorrelation function used

g, = 3 series of coefficients derived from the autocorrelation

function.

Once the ''g" coefficients are estimated Equation (B-1) may be evaluated at
whatever values of w are required. Figures B-6 through B-10 indicate the MLM
spectral density estimates obtained for the 5 runs using 100, 150 and 200 lags
(half, 3/4 and all the autocorrelation functions shown in Figures B-1 through
B-5).

in general, the more lags used, the more apparent detail of the spectrum
is resolved. One of the attractions of MLM estimates according to Reference 5
is that highly resolved spectra may be estimated from very short samples of
autocorrelation function. Indeed, this was found to be so when the present
programs were checked out with simulated springing stress records as produced
by the methods of Reference 2. Real data, apparently, is another matter.

(Most of the assertions of Reference 5 are based on simulated data.)

In the figures, the apparent peak of the springing spectral density
marches upward as the number of lags is increased. This is what might be
expected from conventional methods if there is a periodic component in the data.
It appears that most of the detail is resolved very little differently by 150
and 200 1ag analyses. On this, largely intuitive, basis very little difference
in the answer might be expected were the number of lags increased moderately,

It was decided not to press the MLM analysis any further lest errors in estim-

ating the autocorrelation function for too many lags increase the confusion.

Relative to the second objective of this exercise (finding a better
method) the results just shown were quite disappointing. The main attraction
of MLM estimates is that the analyst is not supposed toworry too much about

resolution. The results show that judgement is still necessary.
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It appears that autocorrelation functions for as many as 200 lags would
be required to handie springing data. The main computation problem in a 200
lag MLM analysis is the inversion of a special 201 x 201 matrix. Through this
is done indirectly with only 6 x 201 memory locations, the net results of a
200 lag specification is more computing time and cost than the familiar FFT

based methods.

It may be noted from Figures B-6 through B-10 that the half power band-
width of the springing peak is not seriously altered by differences in the
number of lags used in the analysis, Measuring from the charts, the half power
bands of deck and bottom bending stresses are about the same, and the values
range from 0.08 to 0.15 rad/sec (0.012 to 0.023 Hz), or between 0.04 and 0.07
times the springing frequency. These values are consistent with results of
previous conventional spectral analyses of springing (reference 2), but the

lower figure is less than the minimum quoted in Reference 2.

Closing Comments

As a method to improve estimates of springing stress spectra the Maximum
Likelihood Method of analysis does not appear promising--either technically or
economically. The analyses carried out suggest two things of possible importance.
First, half power bandwidths of springing stress spectral peaks may be as low as
0.04 times the springing frequency (0.08 rad/sec or 0.012 Hz for the CORT).
Secondly, some evidence exists of low level 'periodic' components of springing
stress of the order of 1 kpsi amplitude, such as might conceivably be produced

by engine or. propeller,
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APPENDIX C

CROSS SPECTRAL ANALYSES

Introduction

Because one of the objectives of the present work was to analyze the
statistical variability of the response estimates of Reference 1, it was nec-
essary to do some trial cross-spectral analyses of the five run data set so as

to provide estimates of the coherency between the measured wave and the stresses.

Analytical Form of the Analysis

What is required of the analysis is to estimate gain (which is another
estimate of RAO), phase and coherency between wave elevation and stresses, in

addition to the spectral ratio estimate of RAO, To fix notation:

RAQ = {sss(m)/sm(w)}i (c-1)
GAIN = lsns(w)l/snn(w) (c-2)
PHASE = tan” {Q__(w)/C__{w)} (c-3)
COHERENCY = lsns(m)|2/{snn(w) S g (w)} (c-4)

S (w) = stress spectrum
S (w) = wave elevation spectrum

S (w) = wave-stress cross spectrum
Cns(w) + i Qns(w)
(cO0-spectrum) + i (quad-spectrum)

As noted in Appendix A, the wave elevation is not available directly. For pres-

ent purposes it was convenient to do the corrections to radar range in the

frequency domain. From Equation A-2, Appendix A, the wave elevations, n(t), is:
n(t) = Z(t) - R(t) cos 25° (C-5)

with Z(t) = motion of radar antenna

R(t) = fluctuation of radar range about the mean

C-1
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Let:

r(t) = R(t) cos 25°

The autocorrelation function of wave is then:
pnn(r) = <[2(t) - -(t)){z(t + 1) - r(t + 1))>

= ozz(T) + orr(r) - orz(r) - ozr(r)

Accordingly the spectrum of wave elevation becomes:

Son(w) =5 (w) +5  (u) - 2C, (w) (c-6)
where:
Srr(w) = spectrum of r(t)
Szz(w) = spectrum of Z(t)

€ (w) = co-spectrum of Z(t) and r(t)

Doing the double integration of acceleration in the frequency domain the wave

spectrum becomes:

S, @) =S )+ ox v s () +Fec, () (c-7)

where:
Saa(w) = spectrum of acceleration

Car(w) = co-spectrum of acceleration and r(t)

Equation C-7 provides a form in which the available data can be used directly.
Turning to the cross spectrum between wave and stress, the cross correl-

ation function becomes:

ons(r) = <[Z(t) - r(t)]s(t + 1)>

" Pzs T Prs

Then the wave-stress cross spectrum is:

Sns(w) = st(w) - Srs(w)
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and doing the double integration in the frequency domain:

s, 4 (0) = s, W) - 5, (W) (c-9)

where:

Sas(w) = cross spectrum of acceleration and stress

Srs(w) = cross spectrum of r(t) and stress.

Equation C-9 is also in a form where the available data can be used directly.

i- The estimating forms of Equation C-7 and C-9 were used in assembling

' programming to estimate stress and wave spectra, and cross spectra for both the
deck and bending stress channels. The method used was the relatively standard
Fast Fourier Transform approach noted in Reference 6. This includes for two

Hi given time histories:
’ N
:fi 1. Correct each time history to zero mean and remove linear trends.

2. Apply the Tukey 10% taper to each.

3. Perform the direct FFT, considering one tapered series the real

part and one the imaginary part of the required complex array.

L. Unscramble the resulting complex transform array, compute raw
FFT spectra and cross spectra, and compensate for the scale
factor due to tapering. In the present case this resulted in

estimates for frequencies defined by:

k(Aw) = 27k/8192/.15 = 0.00511k rad/sec

or:
ke k(af) = k/8192/.15 = 0.00081k4k Hz
Eif where k = 0, 1..... 4096.
Ei 5. Perform frequency smoothing by averaging the raw estimates in non-
e overlapping frequency bands of width L to obtain the final smoothing
- estimates at frequencies defined by:
E ki(Aw) rad/sec

L
rf The final effective statistical frequency bandwidth for this procedure is
E‘. roughly k&(Aw) for reasonably large &, and the degrees of freedom per spectral
F estimate is 2&.

1
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Bandwidth, Bias and Stability Considerations

Reference 6 gives estimates of bias errors for a second order system
response to noise which seems applicable to the springing response. The

results are given in terms of the normalized bias error:
e = |1 - E[6]/0]

(where E[4] stands for the expected value of the estimate of the spectral
density ¢) as a function of Be/Br where Be is the effective statistical band-
width of the analysis, and Br Is the half power bandwidth of the spectral
peak. Table C-1 gives some approximate numerical values read from the graphi-
cal presentation of Reference 6. Included in the table is a column of the
statistical bandwidth, Be under the assumption that the half power bandwidth

of the spectrum is the minimum found in Appendix B.

The values given in Table C-1 suggested that the present analysis should
be carried out. so that a statistical bandwidth of about 0.02 rad/sec would be
achieved. However with the sample length fixed, the relations given in the
last section result in a 9 degree of freedom analysis for this bandwidth, a
figure which is so low that the statistical variability of final estimates
would likely be orders of magnitude larger than the bias error. In the event
it was decided to do analyses at two frequency resolutions, aiming at the band-

widths which Table C-1 suggests might yield bias errors of 10 and 20%.

Table C-2 summarizes the parameters selected for the two analyses carried

out in the present work (labeled "A'" and ''B"'), and the analysis parameters im-
plied in Reference 1 for the prlor analysis of the data. It may be noted that
the degrees of freedom for analyses A and B are on the low side--it would be
preferable to design for 30 at least. Much better statistical stability is
implied for the analysis of Reference 1 (55 degrees of freedom). It should

be noted that the statistical bandwidth of the analysis method of Reference 1|

is roughly twice the resolution (Reference 7*) on the frequency scale. Thus

the improvement in statistical stability relative to the present analyses A and
B is partly because of an 18% longer sample and partly because larger potential

bias errors were accepted.

7. Nuttal, A.H., "Spectral Estimation by Means of Overlapped Fast Fourier
Transform Processing of Windowed Data'', Report 4169, Naval Underwater
Systems Center, October 1971,

c-4
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TABLE C-1
APPROXIMATE BJAS ERROR ESTIMATES

Be/Br Be(for B_ = 0.08 rps) €

1.5 0.12 rps = 0.018 Hz 52%

1.0 0.08 rps = 0.012 Hz 28%

: 0.75 0.06 rps = 0.009 Hz 18%
0.50 0.04 rps = 0.006 Hz 10%
0.25 0.02 rps = 0.003 Hz 3%
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TABLE C-2

- .y W wTONTwY L Y e e Ty e Y A T AT e

ANALYSIS PARAMETERS

v . DTNSROC,
e Analysis A B Reference 1
. Me thod FFT, FFT, Overlapped FFT,
F Frequency Frequency cosine window,
smoothing smoothing 50% overiap
Frequency
Resolution:
RPS 0.0460 0.0614 0.0614
‘ Hz 0.00732 0.00976 0.00976
E' Statistical
. Bandwidth, RPS 0.046+ 0.061+ =0.12
p
3
ﬁ Sample Duration, sec 1229 1229 1500
Degrees
ST Freedom/
o Spectral Estimate 18 24 55
Estimated bias, ¢
i for Spectrum Half
L Power Band of 0.08 RPS =10% =20% 30-50%
k:
L
3
.
[
f._
E -~
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-
r-‘
O
p—
=
[
i;‘;
3
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Sample Spectra and Cross Spectra

Figures C-1 through C-5 indicate the results of cross-spectral analysis
Qualitatively, the results
The

resuits for analysis B differed from those of analysis A in that fluctuations

A of wave elevation and deck bending for the 5 runs.

for bottom bending were nearly identical except for the stress scale.

in the spectra and the cross-spectrum were slightly less well defined because
of the wider analysis bandwidth. In both cases however the resolution of the
cross spectrum was judged adequate, if not outstanding, for the derivation of
gains, phases and coherency. As may be noted in Figures C-4 and C-5 for Runs
116 and 117, more resolution would have been particularly desirable in these
cases, but, as noted, that selected was accepted as a trade-off with statistical

stability.

Estimated Coherencies, Gains, Phases and RAO's

Analyses were carried out with both type A and B frequency resolutions
for all five runs., Spectra and cross-spectra were estimated for both deck
and bottom stresses in each case. Once these were available the estimates of
coherency, gain, phase and RAO could be carried out as defined by Equations
C-1 through C-4.

on the same day were grouped,.

In order to present the results graphically the runs obtained
Figures C-6 through C-9 are the results from
analysis A (delta frequency of 0.046 rad/sec). Figure C-6 involves deck bend-
ing for Runs 74 through 77, Figure C-7 involves bottom bending for the same
runs, and Figures C-8 and C-9 involve deck and bottom bending for Runs 116 and

117.

It will be noted that the frequency scale has been

figures. Previous experience has strongly suggested that

sort presented should be made at frequencies where either

expanded in these
no estimates of the

input (wave) or out-

values. Such a trun-

. put (stress) spectra are less than 5 or 10% of their peak

cation results in estimates only in the frequency range betweeni and 2.3 rad/sec.

The only results for deck and bottom bending stresses which appear
qualitatively different are those for phase. Deck and bending stresses should
be 180° out of phase and the results obtained reflect this quite clearly. The
changes in magnitude of deck and bending stresses gain and RAO reflect the
The relative scatter from run to

The

ﬁ. asymmetry of deck bending evidently does not materially influence the scatter

scaling uncertainty noted in Reference 2.

run of bottom bending stresses is the same as that of the deck stresses.

in RAO or gain.
c-7
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Figures C-10 through C~13 correspond exactly to Figures C-6 through C-9
except that the analysis frequency resolution was 0.061 rad/sec (analysis B).
The remarks made with respect to the lack of qualitative difference between

deck and bottom bending results for analysis A apply equally well to Analysis B,

The results just indicated suggested that there was little to be gained
by continuing to consider deck and bending stresses in parallel, so that the
next comparison involves only the deck stresses, Figures C-14 through C-18
involve a superposition of results from all the available analyses of each
Individual run, The first two analyses shown are the cross-spectral analyses
A and B, the present FFT analyses. From the MLM results of Appendix B an esti-
mate of RAQ can be made. The estimate formed from the 200 lag MLM spectral
analysis is shown. Finally, the peak value of RAO estimated in Reference 1 by

the overlapped FFT method is indicated for 4 of the 5 runs.

It is clear from these results that the estimates of gain and RAQ from
all the different analyses are very much in line. The bias estimates shown
in Table C-2 imply that at the springing peaks the RAO and gain estimates from
analysis B (0.061 = delta frequency) should be about 4% lower than the results
of analysis A; and similarly that the results of Reference 1 should be between
8 and 16% lower. Though there is a tendency for this to be true for analysis 8,
it is not so for the results of Reference 1. Quite possibly the bias errors of
the methods of Reference 1 have been overestimated in the present work. Alter-
nately, the result may be due to the better statistical stability of the

analyses of Reference 1.

Estimated Sampling Variability

For present purposes the most improtant of the estimates just discussed
is the coherency. The present interest is primarily in estimates of gain and
RAO in the vicinity of the springing frequency. Looking over the results in
Figures C-10 through C-18, the sample coherencies drop from about 0.8 in the
frequency range where wave excitation is present to between 0.2 and 0.5 at the
springing frequency. The coherency estimates have their own sampling variabil-
ity so that scatter Is expected. However it is thought that a reasonable round
number average for the results shown is about O.4. This, according to past

experience, is terribly low.

Since it has been indicated that bias errors in the estimates of gain

c-17
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are probably not too serious, the methods given in Reference 6 for the analysis
of random sampling errors appears applicable. A straight forward manipulation
of Equations 6.146 and 6.147 of Reference b results in the following expres-

sions for the 90% confidence bounds on the estimates of gain:

(Sample Gain) [t - A} < (True Gain) < (Sample Gain)[1 + A] (C-10)

where the parameter Aand the gains are considered functions of frequency and:

- |2 1-32 i
A=157=7 Fa2,n-2,.05 2 (€-11)

where:
¥2 = sample coherency, a function of frequency

n = degrees of freedom for each spectral estimate.

F2,n-2,.05 = the 5 percentage point of the '"'F! distribution with 2 and

n-2 degrees of freedom.

Roughly, Equation C-10 implies that in about 90% of similar estimates from
statisticaliv independent samples the computed sample gain should be within
+100A percent of the truth. Table C-3 contains results of an evaluation of

Equation C-11 for various choices of degrees of freedom and sample coherency.

An analogous treatment for the RAQO estimate, Equation C-1, is not avail-
able. However, previous experience and the close resemblense of the gain and
RAO scatter from run to run in Figures C-6 through C-13 suggests that the
order of magnitude of sampling variability of RAQO estimates is not wildly dif-
ferent than those for gain. Assuming this, and that sample coherencies near
the springing frequency in the entire data set of Reference 1 are about 0.4,
Table C-3 indicates that for the 55 degree of freedom analyses of Reference 1
the estimated RAO's should scatter +40 or 502 about the truth. Perusal of
Reference 1 discloses scatter of this order of the springing RAO estimates
about the mean estimate for nominally similar ship and wave heading conditions,
It appears that a significant part of the large variability of springing RAO

estimates in Reference 1 may be ascribed to sampling variability.
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TABLE C-3
VALUES OF A (IN PERCENT) COMPUTED
FOR 90% CONFIDENCE BOUNDS ON
ESTIMATES OF GAIN

Degrees of Freedom Samplie Coherency
(n) 0.4 0.6 0.8
18 81% 54% 33%
24 68% L5% 28%
30 60% Log 24%
Lo 50% 34% 21%
55 42% 28% 17%
80 343 23% 14%
100 31% 20% 12.5%
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Discussion

The numerical results in Table C-3 fairly clearly indicate the source
of the conclusion just arrived at. Once the degrees of freedom chosen for an
analysis are above about 30 the magnitude of sampling variability is strongly
controlled by coherency. In the present case coherencies of about 0.4 are

the problem.

There are four more or less standard explanations for low computed co-

herency between input and output of a system.
1. Extraneous noise is present in the measurements.

2. Analysis bandwidths are chosen so that the fluctuations in the

real and imaginary part of the cross spectrum are poorly resolved.

3. The response is due to the measured input as well as other inputs

which are not measured.
L, The system relating input and response is not linear.

It is suspected that cause 1 does not apply to the stress measurements
on the basic that the botiom bending appears free of unexpected frequency
components, ard the final estimates of coherency for deck bending differ very
little. The situation for the wave elevation is not so clear. The records
contain content at higher frequencies than might be expected. Cause 2 is not
suspected in the present case. Fluctuations in cross spectra at frequencies
where coherencies were relatively high are not significantly better defined

than those near the springing frequency.

There are two possibilitles which can be mentioned in conjunction with
cause 3. The first is the suggestion of a contribution of propeller induced
vibration (which should be largely uncorrelated with waves). The second is
that the trials involve a real ship in real waves. The response to short
crested seas may be likened to a system which responds to multiple inputs.

In this case waves coming from different directions correspond to the various
inputs. Indeed, Reference 8ﬁ shows that the theoretical coherency between wave

and response in short crested seas should be less than unity. (The theoretical

*
8. Pierson, W.J., Jr., "On the Phases of the Motions of Ships in Confused

Seas'', New York University, Report 9, NONR 285(17), November 1957.
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coherency for a linear single input system is unity.)

A brief investigation of cause 4 (nonlinearity) will be described in

Appendix D.

Closing Comments

The purpose of the present analysis was to help shed light upon the
large variability in estimates of springing RAO shown in Reference 1. The
present rough estimates suggest that a significant part of the variability

in the estimates of Reference 1 is due to random sampling error.

The present analysis, coupled with that of Appendix B suggests that the
effective statistical bandwidth of the analysis of Reference 1 was slightly
wide relative to the narrowest band springing response in the data set. However
the analysis also suggested that the good leve!l of statistical stability in the
estimates of Reference | probably out-weighs the potential for bias errors in-
herent in the bandwidth chosen. The net conclusion is that the choice of anal-
ysis parameters in Reference 1, given the fixed sample length, is not likely

to have seriously affected the variability of the result,

The results of the parallel analyses of deck and bottom bending stresses
differed significantly only with respect to the absolute magnitude of the gain
and RAO estimates. This is apparently a direct result only of the problem
with the scale factor which was discussed in Reference 2. Otherwise, run to
run scatter in gain, RAO, and cobherency estimates are much the same. The

asymmetry in deck stresses apparently has had little effect upon the results.

The main problem which the present analysis suggests is a coherency
between wave elevation and springing stress of about 0.4. For purposes of deriving
relationships between stress and encountered wave this is a very low magni tude.
Such low coherencies significantly widen the estimated sampling variability,
and raise some serious conceptual problems., Coherencies in the range of fre-
quency where the stress may be considered to be a quasi-static direct result
of the waves are close to 80%. This suggests that the estimates of wave in-
duced stress RAO's are of much better quality. The consistent trend downward
of the sample coherencies may reflect an increasing tendency toward short-

crestedness as the wave components get shorter and shorter.

C-30
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APPENDIX D

CROSS-BI-SPECTRAL ANALYSES

Introduction

Among the many reasons for the low coherencies noted in Appendix C, is
the spector of nonlinear response. Unless nonlinearities are very dramatic
there are limited means of deducing system response from random data. Given
an input and a response it is possible in theory at least to estimate values
of a '"'quadratic frequency response function' in which quadratic or ''second
order' relationships between input and response are imbedded. The technique
Is called cross~bi-spectral analysis, and the background as well as computa-
tional techniques are discussed in References 9* and 10*. It seemed reasonable,
even before the low coherencies arose, to apply the technique to some of the
present data to see if any indication of gquadratic nonlinearities could be

found.

Theory

In simplest terms, the theory assumes that weak nonlinearities of second
degree may be modeled as a perturbation about an underlying linear system so

that the relationship between output, Y(t) and input X(t) may be expressed as:

Y(t) = [g (1) X(t - 1) dr + ”g (t 1) X(t - t) X(t - v ) dt dr (D-1)
1 2 1 2 1 2 1 2

Under fairly non-restrictuve conditions the kernels in Equation D-1 may be
Fourier transformed. The transform of gl(T) in the first term is G (w) and
this is just the linear frequency response function. The transform of the
kernel of the second term is denoted:

6 (w ,w )
2 1 2

and this is the '"Quadratic Frequency Response Function''. This function is

h9. Dalzell, J.F., "Application of Cross-Bi-Spectral Analysis to Ship Resistance
in Waves'', SIT-DL-72-1606, Davidson Laboratory, May 1972, AD 749102.

*
10. Dalzell, J.F., "Application of the Functional Polynominal to the Ship Added

Resistance Problem', Eleventh Symposium on Naval Hydrodynamics,
London, 1976.
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defined in a "bi-frequency plane'. The complete function essentially contains
the amplitudes of the response at the sum and difference frequencies which may
be generated by any combination of two excitation frequencies, wl. and wz.
Figure D-1 indicates a portion of the_bi-frequency plane and some useful trans-
formations. First, the quadratic frequency response function is symmetric
about the line wl = wz. The real part of the function is also symmetric about
the line w2 = ~w , and the imaginary part is anti-symmetric about this line.
Thus only a quadrant of the plane needs to be considered, and this is reflected
in the sketch, Figure D-1. the frequency transformation shown in the figure

is;

14

Q = w + w (Sum frequency)

Q = woTw (Difference frequency)

it turns out that @ is numerically equal to the output frequency produced by
interactions betweeg two frequencies wl and w2 . In the present case the inter-
est is in the possibility of quadratic nonlinearities in springing response
which is at a frequency of about 2 rad/sec. By the above, such response might
be generated by any combination of frequencies adding to about 2. For

example:

wl =1, w =1 (Response is second harmonic)
2

w =11, v = .9
1 2

w = .5 w =1.5
1 2

Since springing is sharply tuned, what would be expected is that |Gz(wl,w2)]
would be appreciable near the line Qz e 2 = wl + uz in the upper octant of the
bi-frequency plane--if appreciable quadratic response exists. Further, if
this is so there is the possibility that springing could be induced by combin-

ations of wave components of much lower frequency than that of springing itself.

Another result from theory which pertinent is the expression for the

scalar spectrum of output of a linear plus quadratic system:

Sss(w) = lGl(w)I2 Snn(w)

+J Icz(m-c.a)tz Sm(lw-&l)sm(lgl)da (p-2)

D-2
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where:

Sss(w) = the response (stress) spectrum

Y, T
,Gi- NS
b S
» AN .

Snn(w) = the input (wave) spectrum

L Jon )
:

‘
el

The first term in Equation D-2 is the familiar linear one, and the second is

TP
Pttt

the quadratic contribution. Note in the second term that in order to make a

significant contribution to the integral the value of input spectral density

has to be appreciable at two frequencies. |f, as in the present case, Snn(w)
is small or nil below a frequency of =1 rad/sec, significant contributions to
the output spectrum can only arise if the quadratic frequency response function
is appreciable in the region where wl and w2 are both greater than 1, and this

is indicated in Figure D-1 by the wiggly lines.

Cross-Bi-Spectral Analysis Techniques

Both the numerical processes and the computer subroutines used in the
present analysis are fully documented in Reference 9. These are by no means
the most computationally efficient programs possible for the analysis. In the
present case they were used because they were immediately available and docu-
mented. The routines reguire "input' and "output' arrays corrected to zero
mean. The wave elevation arrays were generated as described in Appendix A.
With reference to Figure D-1 each execution of the routine yields cross-bi-
spectral densities and estimates of the quadratic response function along a

line of constant  or Ql. Multiple executions are necessary to build up a

2
map of the whole plane. Analysis parameters were chosen so as to resolve the

plane at 0.046 rad/sec intervals in either the Q1 or 0 direction.
2

@ Cross-Bi-Spectral Analyses

The analysis started by exploring the lines Ql = 0 and 92 = 0, Figure
D-1. These are the lines of symmetry. Values of the quadratic frequency re-
sponse function along these lines reflect second harmonic and shifts in the
mean of the response. There is no theory of sampling variability available
for this type of estimate, only the empirical work described in References 9
and 10. The first part of the rule of thumb developed there was that cross-bi-
spectral estimates of the quadratic frequency response function should not be
accepted at bi-frequencies W w where the product Sh4w1)§“$w2) is less than .
about 10% of the maximum values of the same product. In the case of the present

data the spectral product is always less than the stated criterian for bi-

D-4
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frequencies near the line 92 = 2, the region of primary importance in the
present case. In fact, in order to obtain results, the estimates had to be
accepted in the region where Snn(;l) Snn(uz) is of the order of 2% of peak.
Accordingly, the estimates of Gz(ws/Z. ws/Z),which reflect possible springling
response at frequency ms,as the second harmonic of a wave component of freq-
uency ws/z were quite variable. Absolute values of the function Gz(ms/Z, wS/Z)
for Runs 74 through 77 ranged from 2 to 6 kpsi/ft?, between 0.7 and 5 kpsi/ft?
for Runs 116 and 117, Elsewhere, where the estimates of G (w,w) should have
been reasonable, the magnitudes were much lower. The exploration of the bi-
frequency plane along 92 = 0 (Figure D-1) was to see if any significant shifts
in the mean stress might be expected. The values of Gz(w,-w) along this line
were quite small in relation to the peaks just cited. The exploration of the
plane continued along lines of @ = a constant = k(0.046) rad/sec. in order

to see if the quadratic responselfunction was appreciable near the line 92 = 2,
The net result of these investigations was an indication that the quadratic
frequency response function relating stress and encountered wave is probably
appreciable only in the vicinity of the line 92 = springing frequency (Figure
D-1). Unfortunately, all of the estimates which appeared significant were in
a portion of the bi-frequency plane where previous work and the given input
spectra indicated that large distortions due to sampling variability would be
present. Essentially, the magnitude of a response to sub-harmonic frequencies
cannot be estimated well unless there is some spectral content at the sub-
harmonic frequencies. In the case of the present data the analysis indicated
that if quadratic springing stress response was present, it would arise
largely as the second harmonic response to wave components of frequency equal
to half the springing frequency because the input wave spectrum becomes very

small for frequencies a little less than half the springing frequency.

Estimates of the Magnitude of Quadratic Springing Response

In the analysis just described the result was a qualitative indication
that there might, indeed, be some quadratic springing response, but the num-
erical values of the estimates of quadratic frequency response function were
considered of marginal accuracy where they could be accepted at all. The ob-
jective herein was more to explore the magnitude of the influence than pin
it down exactly, and in order to proceed it was assumed that the magnitude

of the estimates was correct.
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In so far as the low coherency results of the last appendix are concerned
the most important thing is to assess the relative magnitude of the springing
spectral density which might be contributed by the second term of Equation D-2.
It may be noted in this equation that when the integrand involves a spectral
density which is nil, it does not matter much what the value of the quadratic
frequency response function is. |In the present case spectral densities were

considered negligible for frequencies less than 0.9, and this (with the pre-

vious analysis) means that the integral of the second term of Equation D-2
would for practical purposes be non-negligible only in the region bounded by
wiggly lines in Figure D~1. This meant that only a relatively small portion
of the quadratic frequency response function needs to be known. Thus, in
order to produce some kind of estimate of the quadratic part of the stress
spectrum, the estimated vaiues of le(wl.wz)[ were used in place of the true
values implied by Equation D-2, and an integration over the domain wl > 0.9,

w > 0.9 was carried out numerically.
2

The results of this procedure are shown graphically in Figures D-2 through
D-6 for each of the five runs of interest. Both deck and bottom bending were
processed in each case. The estimated quadratic contribution (second term of
Equation D-2) is shown as a solid line. The corresponding FFT spectra computed
from the stress records {(analysis A, 8w = 0.046 rps) is shown for comparison.
A third estimate is shown by dashed lines. What this represents is the stress

spectrum which would be predicted if the gain estimates from the cross spectral
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analysis of Appendix C are correct.

It happens (Reference 9) that a cross spectral analysis of a linear plus
quadratic system (Equation D-1) ignores the quadratic term and thus cross spec-

tral estimates of ''gain'' should reflect the linear frequency response without

t

Ty

distortion. Thus if the hypothesis is made that the low coherencies noted in
o Appendix C arise solely because of quadratic nonlinearities, the observed

spectrum should be the sum of the quadratic contribution and'(gain squared)

S times the wave spectrum. Figures D-2 through D-6 indicate clearly that this

: is not so. Quadratic nonlinearities appear at most to be only a part of the

X low coherency problem,

-

{.  The quadratic spectral contributions shown in Figures D-2 through D-6

- amount to between 5 and 15% of peak springing spectral density. Relatively,

- the contributions are larger for the deck than the bottom stresses. This should
P
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not be too surprising since the asymmetry in deck stress has some of the fea-
- tures of a linear plus quadratic system, |If the deck stresses are asymmetric
!! because of some extraneous quadratic instrumentation distortion, it might be

expected that the quadratic contribution to deck bending stress spectra would

be from this source, and the contributions to bottom bending spectra would be

LA At AL e o

nil. However quadratic contributions are evident in the bottom bending as well.

As far as an exploration of possible quadratic stress response is con-
B cerned, the present data is not optimum because relatively little encountared
1 wave spectral density is found at half the springing frequency. Given the low
p level of excitation it might not have been surprising to find ro appreciable
quadratic contribution for these data. |f the present crude estimates are of
: the correct magnitude, the fact that the quadratic contribution to the stress
] spectra is visible in the present data is thought of potential significance.
*‘& Quadratic response goes as the square of the input. Relatively much stronger
E quadratic response might be expected in the event that thewaves become more

severe than those experienced in the 1979 trials.
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INTRODUCTION

The provision of adequate longitudinal strength standards for the
stresses produced by wave induced vibration is particularly important
for Great'Lakes ships since the vibratory stress (springing) levels
experienced have been found to be of significantly greater magnitude
relative to wave induced stresses than the vibratory response of most
ocean going vessels., The present work is a contribution to an ongoing

USCG research program for Great Lakes ore carriers.

Under contract to the U.S. Coast Guard, David W. Taylor Naval
Ship Research and Development Center {DTNSRDC) pérformed full scale
measurements on board the M/V STEWART J. CORY during the fall of 1979.
During the data analysis phase, RAO's (response amplitude operators)
were developed from the stress and wave measurements which were then
compared with theoretical RAO's computed by American Bureau of Shipping,
Webb Institute of Naval Architecture, the University of Michigan and

Det Norske Veritas. The results of the work are contained in Reference 1%

An abbreviated continuation of this trial program was carried
out by the Coast Guard in the fall of 1980, Referencell. The emphasis
in this program was upon validation of the wave measurement devices
rather than the gathering of stress data. Nevertheless, main deck and
bottom bending stress data was recorded. it appeared at the outset of
these trials that the deck bending bridge was malfunctioning, and this
finding suggested that the peculiar asymmetry later found in the 1979
main deck bending stress in Reference 2 was due to some sort of instru-
mentation failure. The bottom bending stresses recorded in the 1980

trials were, however, considered free of similar problems.

The purpose of the work performed under the present contract
was two-fold. An extension of the 1979 trials program was planned for
1981. The primary purpose of the first part of the present work was
to link the 1979 and the projected 1981 full scale wave and stress
measurements with an independent review of the 1979 data. The intent

8
!

*
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was to build upon the research performed to that time. The emphasis in
this part of the work was upon the question of sampling variability

of the estimates produced in Reference 1, and upon exploratory alternate
analyses of the data. Part | summarizes these efforts. Among the
reconmendations of Part | for the 1981 trials was one that it

might be useful to characterize the level of springing which occurs

in the absence of waves since some tenuous evidence of nearly periodic
springing response was found.

The present report describes the work performed in support of
the secondary objective of the present contract. Because of the asym-
metry found in the 1979 deck bending stresses in the simuiation study
of Reference 2, it had to be concluded that the credibility of that
simulation was not completely resolved. The problems with the main
deck bending bridge found in Reference 11 suggested that the qualification
of the simulation would have been more realistically carried out with
the bottom bending stress channel from the 1979 data. Thus the objective
of the second part of the present work was to continue the validation
of the simulation methods of Reference 2, using bottom stress data from
both the 1979 and 1980 trials, in order to extend if possible the
present ideas about the method of combination of wave induced and

springing stresses.

in documenting the present work it has been found convenient to
follow the Summary/Appendix report organization. In this style the
main body of the report consists of an overview and sumary of findings.
Following the brief main body of the report are a series of Appendices
which contain the detail of the work.
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OVERVIEW

The details of the present work are contained in Appendices A
through G,

The first step in the present work was to choose a total of 20
data runs, 10 each from the 1979 and the 1980 trials program, and ex-
tract, calibrate, and qualify the bottom bending stress records obser-
ved in each run. Appendices A and B document the choice of records,
the associated log bpok data, .and the necessary pre-processing of the

records as required for the present analysis.

One of the records selected for analysis from the 1980 trial
data was a run at zero ship speed. This run was‘of interest in the
context of the inference of Part | that a small part of the spring-
ing response was perhaps the result of propeller excited vibration.
Accordingly, the opportunity was taken to perform a brief autocorrelation
analysis on this run as a possible complement to the analysis of

Part |, and the results of this brief diversion are summarized in
Appendix C.

In order to carry out the comparisons with simulations which
were the objective of the present work it was necessary to carry out
three basic processing operations on the observed time histories.
These operations include: Spectral Analysis; Filtering operations to
derive time histories of springing and wave induced stresses from the
observed combined stresses; and a peak finding operation to define all
the maxima and minima in each resulting record. Documentation of

methods and the results of this phase are contained in Appendix D.

Methods for the simulation of time history data and the develop-
ment of raw statistics of maxima are documented in Reference 2, and
were the methods employed herein. Appendix E describes the organization
of the present simulation. Conceptually, the 20 pieces of observed
data which form the starting point of the present work are each a short
term sample from an infinite population. The present simulation was

'''''''
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designed to mimic this situation by producing one randomly drawn sim-
ulation for each of the twenty conceptual populations which are defined

by the observed stress spectra.

Virtually all of the objective inferential procedures which may
be brought to bear on the problem of comparing the statiétics of maxima
observed and simulated require that each sample of maxima be randomly
drawn. When all the maxima in a stress record are considered this
requirement is almost always violated. Thus it was necessary to examine
each of the sets of maxima and minima in the present data for evidence
of statistical independence. Little was found, and it was necessary to
work out an approach to analysis which would remove the problem or at
least blunt [ts more serious consequences. Appendix F documents the
approach (which is not new, Referencel12) as well as some indirect com-

parisons between observation and simulation which were a by-product.

The last part of the work is documented in Appendix G. In
essence what was done was to hypothesize that the observed stress
maxima and minima followed the theoretical probability density which
is derived from the basic assumption that the stresses are ergodic
Gaussian processes--and then apply several standard statistical test
procedures which are designed to provide relatively objective means
of accepting or rejecting the hypothesis. The simulated maxima and
minima must follow the theoretical probability density by the basic
assumptions of the simulation method. Throughout the analysis observed
and simulated data were treated in exactly the same manner, with the

result that numerous relatively direct statistical comparisons could

be made.
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FINDINGS

in the single unplanned diversion of the present work, the
autocorrelation analysis of a single zero ship speed record, the decay
time of the autocorrelation was found to be about as long as in the
at-speed condlitions treated in Part |. Less indication of a
peridocity was evident, but overall no radical qualitative difference.
The result does not rule out propeller excited vibration as a cause of
the long decay of the autocorrelation functlons of Part I, but
suggests that it is.less llkely than Implied in that reference.

The discovery of asymmetry in the 1979 ma}n deck bending stress

records in Reference 2 was the main reason for .questioning the simula-

tion in that reference, though no such problem seemed to exist in the
pre-1979 data. The present analysis Included only bottom bending
stress data from 1979 and 1980 trials because it appeared subsequently
that the main deck bending transducer was malfunctioning. However, a
statistically valid systematic asymmetry between maxima and minima in
any observation has a most serious effect on the credibility of the
methods of Reference 2. Throughout the present analysis the data has
been examined for evidence of asymmetry. At no stage in the analysis
were significant differences between the statistics of observed maxima
and minima found. This Is not to say that there were no differences,
but that what differences there were appeared to be generally less than
the uncertainty which is introduced by sampling variability. The same
conclusion is arrived at by comparing the magnitude of the differences
between simulated maxima and minima with those observed. In effect the
apparent level of statistical symmetry is the same for the observations
of bottom bending stress as It is for the simulated process which is

known to be symmetric.

In the analysis three approaches were made to checking that the
“'goodness of fit" of the sampled maxima and minima (both observed and
simulated) to the theoretical distribution of maxima of an ergodic
Gaussion process. The simulated maxima and minima should of course
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follow this distribution because the simulation methods follow the
ergodic Gaussian mode! to a high degree of accuracy. The first basic
finding was that the fit of the observed data to the theoretical dis-
tribution is statistically indistinguishable from the fit of simulated
data. The.second basic finding is that the hypothesis should generally
be accepted that the observed maxima and minima fit the theoretical

probability density. This last finding is identical to the findings

Eif in Reference 12where data from several smaller lakes vessels was

L considered.

A final statistical study was made.upon the extremes in each
sample (the largest maximum and the smallest minimum). Differences

between the simulated and observed extremes appear statistically in-
significant when compared to the probable magnitude of sample to

sample variability. It appeared also that the magnitude of the observed
sample extremes was what might reasonably be expected in samples of

the given size if the maxima follow the hypothesized theoretical density.

The net effect of the above findings is that the simulation
methods of Reference 2 appear to be credible with respect to the bottom
bending stress records analyzed herein. However, none of these records
represent particularly severe wave conditions, or high stresses relative

to the most severe conditlions which have been measured on the CORT.

Credibility of the simulation with respect to these latter conditions
has been addressed in Reference 2.

if« The state~-of-art statistical model which has been adopted for the
combined stress response is that it may be represented by an ergodic
Gaussian process. Consequently the theoretical probability structure

AN sl e
o .

of the maxima and minima of the stresses Is known. The work herein
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confirms that this statistical model for stress maxima is reasonable,

and thus tends to reinforce the state-of-art approach.
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APPENDIX A

SELECTION AND PREPROCESSING OF 1979 TRIAL DATA

introduction

The general objective was to select 10 of the more than 100 data

runs recorded in Reference 1 for the present analysis. In Reference 1%

eight particular runs were selected for special treatment (Runs 77, 81,
90, 99, 101, 116, 117, and 119) on the basis of either high springing
stresses or relatively high seas, and it was of interest to include

these in the 10 finally selected. In order to acquire the data for the
present work, four digital data tapes from the 1979 season were furnished
by the Coast Guard. o

Sglection of the Data Runs

Unfortunately the digital data tapes involved are written in a
highly machine dependent format and are at best a trial to translate
for use in the Stevens DEC~10 computer system. The four tapes of
Interest were numbers 4 through 7. As matters turned out Tapes 4 and
7 were physically the same duplicates previously furnished in support
of Reference 2% so that data Runs 68 through 77 and 116 through 118 were
available as well as all that could be recovered from these tapes since
Run 119 (one of the special runs) had never been duplicated. Tape 5
contains Runs 80 through 91 of the 1979 program. This tape as furnished

was evidently the original and was completely unreadable on the available

machinery. Tape 6, which was a duplicate, contains Runs 93 through 109 of

(R AR A A
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Swanek, R. A, and Kih!, D. P,., "Investigation of Springing Responses
on the Great Lakes Ore Carrfier M/V STEWART J. CORT," Structures
Department, David W. Taylor Naval Ship Research and Development
Center, CG-D-17-81, December 1980, NTIS AD A100 293.
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Wave Induced Stress Response,' Davidson Laboratory Report SIT-
DL-81-9-2141, Coast Guard Report CG-M-6-81, August 1981.
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the program and could be completely read. The net result of these very
practical matters was that of the eight special runs of Reference 1,
Runs 77, 99, 101, 116, and 117 were available, and these were the
obvious choices for 5 of the 10 runs. [n Part | a parallel anal-

ysis of deck and bending stress had been carried out for five runs
(including three of the above) and it was tﬁought worthwhile for the
sake of continuity to continue with these. This left the problem of
selecting three runs from Tape 6 in addition to Runs 99 and 101. The
log data of Reference 1 suggeéted that the runs immediately adjacent
to numbers 99 and 101 were of the most Interest on the basis of essen-
tially head and relatively high seas so that the final selection for
this tape became Runs 99 through 103. The log data for the ten runs
thus selected is summarized in Tables A-1a and A-1b. Also included

is the rms bottom bending stress derived from the spectral analyses

to be described.

Preprocessing of Data

As noted in Reference 2 and Part | many of the analyses to be carried
out involved Fast Fourier Transform processing. In the 1979 trials the
sampling interval was 0.1 seconds and the record was 15000 points in
length--too short for a 16K FFT analysis, and too long for a single 8K
analysis. It had been found in both References 1 and 2 that the 0.1
second interval is unnecessarily short. For present purposes the
filtering/decimation scheme developed in Reference 2 was employed as

a first processing step.

Accordingly, the followlng operations were carried out on the
bottom bending stress channel of the ten runs noted in Table A-1:

1. Filter each time serles with a recursive 6-pole sine-

butterworth low pass digital filter. The characteristics
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of this filter include:

*0.1% or less attenuation of signal and sensibly

linear phase shift from D.C. to 0.6 Hertz.
*Nominal cutoff frequency 1.4 Hertz.

*98.5% or more attenuation of signal between
3.33 and 5.0 Hertz.

2. Perform tbe 1 1/2th point decimation procedure described in

Reference 2 on each time series.

The effect of these operations is first td eliminate signal con-
tent between 3.33 and 5.0 Hertz so as to minimize the possibility of
aliasing, and then to create a shorter time series which has a time
step of 0.15 seconds rather than 0.1 seconds, and a folding frequency
of 3.33 Hertz rather than 5.0 Hertz. The first 2!3 points or the
resulting series represent 20 1/2 minutes of the original 25 minutes of

data; that is, a loss of 18% of the original data was accepted in order

to facilitate the projected analyses.

The practical result of this preprocessing was ten new bottom
bending stress data files. These preprocessed time series were the

starting point in all the subsequent analyses of the 1979 data.

Examination of Basic Time Domain Data

Yy r otk SO
RANANRIESR AR
TR ot .

An examination of the basic data for nonsense had been carried

Cia

out for the 5 runs of Table A-1a in Part |, Compressed plots for

Runs 99 and 10! are shown in Reference 1. A}l these data are reason-

LD
...c .

able in appearance, and it was thought adequate to examine the time

& domain data for Runs 100, 102, and 103 only in the vicinity of the
F? maximum stress since it Is the maximum apparent stress which is most
}- likely to be nonsense. The results will be presented later, but the
f  conclusion was that these runs were also of reasonable quality.
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APPENDIX B

SELECTION AND PREPROCESSING OF 1980 TRIAL DATA

Introduction

The results of the 1980 trials program, Reference 1T, involve
36 data runs recorded on five digital tapes. The original tapes were
furnished by the Coast Guard for present purposes. Some analyses were
made in Part | of 16 of these runs. The objective was to select
10 of the 1980 runs ?or the present project, emphasizing runs already

analyzed in Reference 11,

Selection of Data Runs

A simple tabulation for each run of headings and wave heights
from the log-data suggested that the contents of Tape 4 would be of
little interest (and was evidently of little interest in Reference 11).
Accordingly it was decided to try to read everything on 1980 Tapes 1,
2, 3, and 5. Some incompatability between the run format on the data
tapes and what is expected by the Stevens systems software was evident.
None of the five runs on Tape 5 could be recovered, nor could one run
on each of Tapes 1, 2, and 3. Three runs read were short or had been
aborted during the trials. Excluding these, the net practical result
was that just 15 runs were available from which to make a choice of
10 (Runs 2, 3, 4, 5, 7, 8, 11, 13, 14, 15, 16, 17, 18, 20, and 21).

The 1980 trials included two pieces of data of interest in the
context of the Recommendations of Part | that data under calm
conditions would be of interest. The first was Run 10, which was
apparertly taken in seas of 1 foot height, and the other was Run 8

which was taken (mostly) at zero ship speed. Run 10 was unreadable,

*
1L Walden, D. A. and Noll, M. D., "Springing Research of a Great Lakes
Ore Carrier,'" Coast Guard Report No. CG-D-13-82, April 1981,
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but Run B was available so that this run was accepted as one of the

ten.

Preliminary spectral analyses were made of all 15 of the available
runs to aid in the selection. Runs 2, 7, 11, 17, and 18 showed little,
and in some cases negligible, wave induced stress response, and the
final selection on this basis boiled down té Runs 3, 4, 5, 8, 13, 14,

15, 16, 20, and 21. The log-data for these runs is summarized in
Tables B-la and B~1b. Also included are RMS bottom bending stresses

from the spectral amalyses to be described.

Preprocessing of Data

Two minor differences in data recording between the 1979 and
1980 trials exist. In the 1979 trials the calibrations were imbedded
in the data tapes, while they were not in the 1980 trials. The Coast
fuard furnished the only calibration required for the present analysis,
that for bottom bending stress, as 19.21 psi/computer count. The
other difference is that the records were 1800 seconds in length instead
of 1500, thus with the same sampling interval of 0.1 seconds, the 1980
time series were 18000 points In length. As in the case of the 1979
data a filtering and decimation scheme was employed to include as much
data as possible in an 8192 point array. The following operations were
carried out on the bending stress channel of the ten runs noted in
Table B-1:

1. Filter each time series with a recursive 6-pole sine-
butterworth low pass digital filter. The characteristics
of this filter include:

*0.1% or less attenuation of signal and
sensibly linear phase shift from D.C.
to 0.5 Hertz,

Nominal cutoff frequency 1.2 Hertz.

«98.5% or more attenuation of signal
between 2.85 and 5.0 Hertz.

=13
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2. Decimate the time series by using every other point.

The effect of these operations is fiirst to eliminate signal
content between 2.85 and 5.0 Hertz so as to minimize the possibility
of aliasing, and then to create a shorter time series which has a time
step of 0.20 seconds reather than 0.1 seconds, and a folding frequency
of 2.5 Hertz rather than 5.0 Hertz. The fi;st 213 points of the result-
ing series rcpresent 27.3 minutes of the original 30 minutes of data;
that is, a loss of 9% of the original data was accepted in order to

facilitate the projected analyses.

The practical result of this pre-brocessing step was ten new
data files. These pre-processed time series data were the starting

point in the subsequent analyses of the 1980 data.

Examination of Basic Time Domain Data

The first operation was to plot and examine the data for Run 8B,
the zero speed run, because the comments in the experimental log implied
that the ship had got up speed and changed course about 20 minutes into
the run. Figure B-1 is the result. There is clearly a radical increase
in stress level at around 24 minutes, and it seemed within reason to
assume that the last 5 minutes of the run were not at zero speed as
billed. Accordinly, the original record was re-filtered and decimated
according to the scheme used on the 1979 data, Appendix A. The effect
of this was to retain only the first 20 minutes of the record. Fig-
ure B-2 (s a plot of the bottom bending stress time history after this

revised pre-processing step.

Some of the other time histories of interest had been plotted in
the preparation of Reference 11, so that for present purposes only an
examination of each of the ten records near the time of maximum stress

was carried out, and all records appeared qualitatively reasonable.
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APPENDIX C

AUTOCORRELATION ANALYSIS OF RUN 8 OF THE 1980 TRIALS

Introduction

In Part | an inference was drawn from an autocorrelation
analysis that a small part of the springing stress response was nearly
periodic, perhaps the result of propeller excited vibration rather
than of wave action. This inference resulted in the recommendation to
look for some calm water data in the 1981 trials. As has been noted,
two runs of the 1980 trials were of interest In this context. One of
these runs was conveniently available and the opportunity was taken to
make a brief autocorrelation investigation of this run.

Autocorrelation Analysis of Run 8

Given the final form of the time history data for Run 8, Figure B-2,
the programming used in the autocorrelation analyses of Part | was
applicable without modification. These programs were applied to the
Run 8 bottom bending stress data to compute the normalized autocorrelation
function out to 200 lags of 0.75 second time intervals. The result is
shown in Figure C-1.

Commentary

Comparison of Figures B-1 through B-5 of Part | with the
present Figure C-1 indicates that the decay time of the autocorrelation
function is about as long at zero ship speed (very low or no propeller
revolutions) as it Is when the ship is proceeding in waves. There is
less indication of an almost periodicity shown in Figure C~1 than in
some of the records of Part |, but overall no radical qualitative
difference. Because the stress level in Run 8 is about a third of
that of the runs of Part | the present results does not rule out
propeller excited vibration as a8 cause of the long decay of the auto-

correlation function but suggests that it Is less likely than implied
in Part I,
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APPENDIX D

BASIC PROCESSING

introduction

In order to carry out comparisons with simulations as described
in Reference 2 it was necessary to carry out three basic data processing

steps on each of the 20 bottom bending stress time histories. These are:
1. Spectral Analysis

2. A filtering operation to derive from the given combined
stress time history, the time histories of ''wave induced"

and “'springing" stresses.

o o

3. A peak finding operation to define and store all the
maxima and minima of each of the three time histories
developed in Step 2.

Spectral Analysis

The analysis of each bottom bending stress time history was carried
out by the Fast Fourier Transform with frequency smoothing method outlined
in Reference 6*, and utilized in the cross-spectral analyses of Part I,
The sharp springing stress peaks in the present data require better resol-
ution than the present lengths of sample can supply with the desirable
30 or more degrees of freedom per spectral estimate so that more than the
usual compromise on analysis parameters was necessary. It was decided to
use 24 degrees of freedom per spectral estimate throughout the analyses.
This decislon results in 90% confidence bound multipliers on spectral
esimates of 0.66 and 1.73. In order to get this amount of stability,

12 adjacent values of the raw FFT spectrum must be averaged. Evaluation
of the average was carried out at intervals of 6 raw FFT's which produces

*6. Bendat, J. S. and Piersol, A. G., "RANDOM DATA: Analysis and
Measurement Procedures,'' John Wiley and Sons, Inc., 1971,
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a slightly smeared spectrum similar to that produced by the Tukey auto-
correlation method. The resulting frequency resolutions and statistical

bandwidths worked out as follows:

1979 Data, 1980 Data
Plus Run 8 (1980) (Excluding Run 8)
Delta Frequency 0.0307 RPS (.005 Hz) 0.023 RPS (0.0036 Hz)

Statistical Bandwidth 0.0614 RPS (.01 Hz) 0.046 RPS (0.0073 Hz)

The resulting 20 bottom bending stress spectra are shown in the
top part of Figures D-1 through D-20 which are grouped at the end of
this appendix. The spectral estimates are shown as crosses and these
are connected by straight lines. Spectral densities for frequencies
greater than 3 radians/second were generally much smaller than the
smallest shown on the plots and have been omitted. Spectral areas are

equal to the sample variance.

The numerical values of spectral density shown in Figures D-1
through D-20 are essentially the input data to the time domain simulator
of Reference 2. An additional piece of information is required and that
is a "cut-off" frequency which separates the frequencies associated with
"springing'" from those associated with ''wave induced'' stresses. The
cutoff frequencies were selected by inspection and are indicated in
the Figures by vertical dashed lines typically located at 1.9 radians/

second.

Development of Springing and Wave Induced Stress Time Histories

The details of the method of separating the combined stress into
its springing and wave induced components are contained in Reference 2.
Briefly, the method utilized is ''Fast Convolution' type filtering. The
cutoff frequency defines ideal low and high pass filters which are
applied in the frequency domain to the direct Fast Fourier Transform
of the data. The inverse transform then yields the filtered time
histories. (This is the primary reason for the decimation of the orig-
inal data into 8192 (2!3) point time histories.) In the present case

11-22
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virtually the same programs were used to produce the filtered time

histories as were used in Reference 2.

In addition to confirming that the original time history contains
no obvious nonsense, it is comforting to check the filtering operation
graphically. To this end a ''representative'' two minute sample of each
time history was plotted. These results are contained in the lower
part of Figures D-1 through D-20. In each figure the maximum combined
stress excursion found in the sample is centered in the two minute
frame. Positive stress excursions mean increasing tension, zero stress

is the sample mean.

Generation of Maxima and Minima ..

Given the filtered time histories,the last step in the basic
processing is to find and store all the maxima and minima in each record
for later use. This was done in accordance with the programs and
conventions of the '‘Data Base Generator'' described in Appendix C to
Reference 2, so that at the conclusion the raw statistics for each
of the 20 runs were stored in exactly the same form as the simulation

results.

The peak finding operation is somewhat sensitive to noise. The
analyses of Reference 2 indicated that this was not a problem with
typical 1979 data. To confirm that the operation was successful with
the 1980 data, half cycle count analyses were performed on Runs 3, 8,
and 15 in accordance with the description of Reference 2. The results
are included herein as Figures D-21 through D-23, and indicate that
the 1980 data is no different than the 1979 data in-so-far as noise is
concerned. The results also confirm that the bottom bending stress is

reasonable statistically symmetric.

Commentarz

Nothing really unexpected qualitatively appears in the o2ectra
or the time histories. The typical spectrum involves a shacp p .k at

11-23
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the springing frequency, and typically a relatively low level of wave
induced stress. This is probably to be expected since no exceptionally
severe waves were encountered in either trial program. In so far as the
relative magnitudes of springing and wave induced stress are concerned,
Run 8 most  closely resembles the most severe conditions measured on

the CORT (Interval 43, May 1973), Reference 3, but the rms stress for
Run 8 is about a tenth as great. In all cases results for groups of

runs which were taken the same day are qualitatively the same.
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APPENDIX E

SIMULATION OF DATA

Time Domain Simulations

As noted in Appendix D, the spectral densities shown in Figures D-1
through D-20 are the essential Input data to the numerical simulation
system of Reference 2. Indeed, the files from which the spectra were
plotted were in the required form for the simulation. A '"cut-off"
frequency to separate wave induced and springing frequency components
Is noted in the figures. Two speciflications not previously mentioned
which were incorporated in the input fileé were thé codes for number of
points and the delta-time for the simulation. These were selected to be
8192 points at At of 0.15 seconds. This is the combination recommended
in Reference 2 and results in time domain samples just over 20 minutes in
length. Once this much input data is available for each run, up to
30 statistically independent 20 minute time domain samples of combined,
springing and wave induced stress can he simulated in accordance with

the programs documented in Reference 2.

Generation of Maxima and Minima

The "'data base generator'' program documented in Reference 2
more or less automatically produces files of maxima and minima of each
simulated record once the simulated digital time histories are available,

and this program was of course used in the present Instance.

Simulation of Data for Subsequent Analysis

The overall objective was to attempt further qualification of the
simulation by comparison of statistics from the simulation with those
derivable from the full scale data. That which was available from the
full scale data for present purposes was twenty 20 or 25 minute runs--
essentially twenty short term samples from twenty conceptually infinite

populations. |t appeared reasonable for present purposes to mimic this
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Ft situation and produce one short term simulation corresponding to each of

the 20 ful)l scale spectra which were available. |In this regard the fact
that the simulations of Reference 2 are pseudo-random had to be taken
Into account. In effect, if all twenty simulations were made by enter-
ing the prbgrammed random number sequence at the same point, very sim-
Ilar short term statistics would result for the many runs in the set

where the spectra are qualitatively and quantitatively similar. This

of course would distort purely statistical comparisons, and the situ-
- ation was avoided by using a different entry point in the random number
!- sequence for each simulation. What was in fact done was to assign
programmed entry points 1 through 20 to 1979 Run 74, etc., through 1980
Run 21, with the final result that the maxima and minima from a twenty

minute simulation of each of the spectra shown in Figures D-1 through

D-20 was made available. As far as can be determined, each of the

simulations is statistically independent of any of the others.
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APPENDIX F

STATISTICAL INDEPENDENCE OF MAXIMA

Introduction

Virtually any of the available statistical inference procedures
which may be brought to bear upon the probleh of comparing the statistics
of maxima from the simulations with those from observed data require that
the sample being considered be a random sample from the population. The
raw material for the-analysis was ordered sets of all the maxima and
minima in each of the real and simulated récords.' It is clear from an
inspection of any of the springing stress records in Figures D-1 through
D-20 that succeeding maxima must be correlated in-some way and thus that
the sample formed by all the maxima in a record cannot be considered to

be random in the required sense.

The '"Run'' Test

The required sense is that each element of the sample be statistically
independent of any other element, that Is, the probability structure of

the (_j+l)th

element of the sample in no way depends upon the value of the
The ''Run'' test (Reference 6) Is a standard non-parametric statistical
procedure used to indicate the presence of trends or sequential correlation
in a given sample. In this test it Is hypothesized that each observation
Is independent of Its neighbors. Under this hypothesis the probability

of a sample point being greater or less than the sample median does not
change from observation to observation. This makes possible the con-
struction of sampling distribution for the number of ''runs'' of data
greater than or less than the median. With this in hand the sample size
determines a confidence interval on the number of runs which should be
contained in the data. In performing the test on a given sample, the
number of runs of data above and below the median is computed and com-
pared with the confidence interval. |f the number of runs in the sample

is within the interval the test is passed, which Is to say that the
hypothesis of statistical independence is accepted. All the run testing
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to be noted was performed at the conventional 5% level of significance.
This simply means that the test is designed in such a way that a 5%
probability is accepted that the independence hypothesis will be re-

jected when it is In fact true.

Application to Short Term Stress Maxima and Minima

Counting both the real and simulated data, the three components of
stress, and the fact that minima exist when multiple maxima are present,
there are 240 ordered samples In the present data sub-set. Some 96%
of these samples fail the run test at the 5% leve)l of significance--

a result not at all surprising. The way around this is the same as
noted in References 12* and13*. Essentially the run test is repeated
for decimated sampies which are produced when only every jth sample
element is used (j=1,2....). From these results it is possible to find
an increment, Jc' such that when every (Jc)th sample element is used

to form a decimated sample, that sample will pass the run test at the
5% level of significance, The value of Jc found for each sample is
then taken as a specification in the sense that it is assumed that the
result of a JCth decimation will be a random sample. There is no
guarantee that this procedure will always lead to success, but previous
experience with real and contrived data suggests that it elimates the

worst effects of serial correlation.

*12. Miles, M.D., ""On the Short-Term Distribution of the Peaks of Combined
Low Frequency and Springing Stresses,' Hull Stresses in Bulk
Carriers in the Great Lakes and Gulf of St. Lawrence Wave
Environment, Soclety of Naval Architects and Marine Engineers,

T & R Symposium $-2 (1971).

*

13. Dalzell, J. F. et al, "Examination of Service and Stress Data of
Three Ships for Development of Hull Girder Load Criteria,"
$SC-287, Ship Structure Committee, 1979, AD-A072910.
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Summary of Run Test Results

The essential results of all the run tests performed are summar-
ized in Table F-1. The numbers given are the decimation specification,
Jc. For each data run there are naturally 12 sets of data; maxima and
minima for each of the three components of stress, for both the observed

data and the simulation.

Several comments may be made about the contents of the table.
First, the decimation specification for the maxima of a run seldom
differ by more than dne from the specifications for the corresponding
minima. This holds for both the real data and the simulation. As far
as the run tests are concerned, both the real aqd'simulated data are
statistically symmetric. Since the simulation is a statistically
symmetric process by the nature of its basic assumptions the result

is at least half that expected.

It Is clear that the general nature of the simulated time histories
paralliels that of the real ones. Decimation specifications for wave
induced stress are nearly constant over both the simulated and real
data sets. There is more variability in the specifications for springing.
A brief inspection of the springing spectra suggests that the run to run
variability is in the correct direction, the narrower the spectrum the
larger the increment. |t is believed that the results from the springing
simulation are not significantly different from those from the real
springing data. Of the 20 comparisons for springing maxima, 6 specifi-
cations are the same, and in the remaining 14 the specification for
the simulation Is larger than that for the real data in exactly half the
cases. The numbers for the combined stress data are quite strongly in-
fluenced by the relative magnitudes of wave induced and springing stresses.
It is thought that the specifications for combined stress observation and
simulation are not significantly different in 17 out of the 20 runs. The
three runs where something Is different are 77, 102 and 15. Why the wide
disparity between observation and simulation occurs in these cases could not
be determined. The time histories look alike--perhaps these are cases where
the indpendent assumption was rejected when it was true (or vice versa).
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APPENDIX G

COMPARISONS OF STATISTICS FROM
REAL DATA AND SIMULATIONS

Introduction

With the problem of statistical independence within each of the
240 ordered sets of maxima and minima approximately taken care of by
the decimation procedure just described, it remained to compare the
statistics of observation and ‘simulation. A reasonable overall approach
appeared to be as follows. The statejoffarf statistical model which
has been adopted for the combined stress response is that the stress is
a linear response to zero mean ergodic Gaussian-wave excitation. These
assumptions being made, It follows theoretically that the stress is also
a zero mean ergodic Gaussian process, and is statistically symmetric.
The theoretical probability density function of the maxima of such a
process is known (Referencellr for example). Accordingly, the hypothesis
was made that the density of maxima of real data follows the theoretical
and the remainder of the work essentially involved testing this hypothesis

in a number of ways relative to both real and simulated data.

The Hypothesized Probability Density

The theoretical probability density of maxima (in the notation of
Reference 14) is as follows:

p(n) = - [c Exp [-n2/2621 + VI"eZ n Exp [-n2/2]
/2

« ¢ In /1-¢%)/ex i} (6-1)

*
14, Cartwright, D. E., and Longuet-Higgins, M. S., '"The Statistical

Distribution of the Maxima of a Random Function,'! Proc. Royal
Society, A, 237, 1956.
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where:

n = reduced variate
= X/o
X = the (dimensional) maxima of the process
o = the RMS of the process (square root of variance)

¢Z = spectrum broadness parameter
a

I Exp [-t2/2] dt

¢(a)

The maxima and mlnim; of the theoretical process are statistically sym-
metric so that if the minima are denoted by Y, the reduced variate becomes
n = -Y/o. When ¢ approaches Qnity (zero) the dénslty approaches the
normal (Rayleigh). .

Parameter Fitting

in order to make statistical comparisons the analytical expression

must be fitted to the data. Two approaches are available. The parameters

o and ¢ are functions of the Oth. Z"d, and kth moments of the spectrum:
2 o
o m
e2= 1 -m/mm {6-2)
2 Oy

and mo- I w" S(w) dw

where S({w) is the spectrum.

The second apprach involves functions of the sample of maxima (Reference 14.

Given a sample of N maxima, Xl, Xz....Xn:

Q
L]

M - 2M2/n
2 1

™
[¥)
»

(n = bo)/(n - 2p) (6-3)

©
[ ]
4
- N
~
x
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The approach used in fitting the RMS parameter, o, varied according
to the stress component. In the case of the combined stress, o from
the approach given in Equation G-2 Is given in Tables A-1 and B-! and
these were the values used for both simulated and real data. The second

approach (tquation G-3) was used for springing and wave induced stresses

since it was desired to produce some measure by which the simulations
could be compared to the real maxima. The results of this latter process
S are summarized in Table G-1. All estimates shown were made from the

- decimated samples dictated by the analysis of the preceeding appendix.
t‘ It is clear that the; differences In the estimates of 0 from simulation
and observation are relatively small--sample to sample variations in

the RMS computed from spectra of samples of the present length are

typically of the magnitude of the differences shéwn. It is also clear
that the differences between the estimates of maxima and minima are
exceedingly small in both simulation and observation, further evidence

of statistical symmetry.

The approach used In fitting the broadness parameter was that
using the samples of maxima and minima, Equation G-3. This method was
utilized for all three components of stress. The results are summarized
in Table G-2. Estimates for observation and simulation are generally
of the same magnitude, but with some glaring exceptions. The method,
Equation G-3 Involves subtraction of two numbers of roughly the same
magnltude in the present case and it Is suspected that considerable
scatter results. Something like the same magnitude of variation was
experienced when similar estimates were made for the maxima and minima

of a large number of stress records in Reference 13.

'"Goodness of Fit'" Tests

The basic question it was desired to answer next was:

" Could the maxima and minima from the real data have
been drawn from a population having the theorectical
density function, Equatlon G-17

With respect to the objective of comparing simulation and real data,

e’ 11-56
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TABLE G-1
VALUES OF SPRINGING AND WAVE INDUCED
3! RMS STRESS DEDUCED FROM THE
SAMPLES OF MAXIMA AND MINIMA

, SFRINGING STRESS WAVE INDUCED STRESS
o MAXIMA MININA ) MAXIMA MINIMA
: YEAR RUN 08BS. SIM. 0BS. SIM. OBS. SIM. 0BsS. SIM.
- 1979 74 0.69 0.72 0.48 0.73 0.57 0.52 0.56 0.51
b 7% 0.85 0.7¢ 0.85 0.78 0.64 0.66 0.63 0.66
' 7?7 0.81 0.76 0.81 0.77 0.68 0.72 0.71 0.74
9 0.61 0.89 0.81 0.87 0.40 0.38 0.40 0.40
3 100 | 0.85 0.79 0.85 0.79 0.55 0.57 0.51 0.54
3 101 0.97 1.13 0.97 1.12 0.65 0.61 0.59 0.64
102 0.80 0.83 0.80 0.83 0.52 0.51 0.50 0.50
103 0.88 0.92 0.87 0.93 0.44 0.41 0.44 0.43
Y 116 0.79 0.73 0.61 0.72 0.58 0.60 0.58 0.60
117 1.00 1.02 1.00 0.99 0.52 0.52 0.52 0.53
1980 3 0.95 0.85 0.93 0.86 0.62 0.61 0.61 0.62
4 0.92 0.82 0.91 0.61 0.65 0.67 0.69 0.66
S 1.12 1.22 1.12 1.22 0.57 0.61 0.56 0.62
8 0.22 0.22 0.23 0.22 0.27 0.29 0.27 0.28
13 0.77 0.76 0.73 0.76 0.58 0.58 0.58 0.59
14 0.78 0.72 0.79 0.75 0.54 0.32 0.53 0.54
15 0.90 1.01 0.84 1.00 0.61 0.64 0.43 0.62
16 0.90 0.86 0.91 0.85 0.61 0.59 0.62 0.56
* 20 0.48 0.46 0.47 0.46 0.30 0.31 0.30 0.31
21 0.47 0.40 0.46 0.40 0.26 0.29 0.26 0.28
f—-
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the question comes to whether or not standard statistical test procedures

can detect any significant difference between the two.

There were two goodness of fit tests applied to all the data,
and a third, largely graphical test, to about half the data. The
first steps in applying the tests have been described: decimation
and the fitting of parameters,

The first test is the conventional Chi-Square Test, Reference 6.
In this test, the parameters of the hypothesized distribution are fitted
to the sample data, the data are sorted inte class intervals and the
sample chi-square statistic computed in .the usﬁa] way. All tests were
performed using the equi-probability class Interval method. In this
approach, the boundaries of the class intervals are chosen so that the
expected sample frequency is the same in all intervals (and equal to
1/(number of class intervals). The number of class intervals was
chosen according to the sample size according to an extrapolation of
recommendations given in Reference 6 for the optimization of Chi-Square
tests at the 5% level of significance. The expected number of sample

points per class interval resulting from this method is as follows:

Expected Number of Sample
Points Falling in Each

Sample Size Class interval
200 13
100 8
50
20

To evaluate the adequacy of the fit, an evaluation was made of
the percentage point of the Chi-Square distribution with (number of
class intervals - 3) degrees of freedom corresponding to the sample
Chi-Square statistic.
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The second test was the Kolmogorov-Smirnov test as outlined in
Reference lgﬂ in this test the maximum deviation between the sample
distribution and the hypothesized distribution is computed. A statis-
tic, approximately Chi-Square distributed with 2 degrees of freedom,
Is formed Sy multiplying the squared maximum deviation by four times
the sample size. The percentage point of the Chi-Square distribution
with 2 degrees of freedom corresponding to this statistic is then

evaluated, and thls, in turn, is used to Interpret the test.

The results of these tests are summarized in Tables G-3 through
G-5. Table G-3 pertalns to combined stress, Table G-4 to springing
stress, and Table G-5 to wave induced stress. The number of points
in the decimated samples is included in each case. The results of
the tests are given as the ''level of significance' which would have
had to be chosen in the test design in order that the hypothesis be
accepted that the data could have been drawn from the theoretical
population. These tests are statistical hypothesis tests and it may
be in order to discuss some of the caveats before interpreting the

results.

No hypothesis test can iIndicate with absolute certainty that
something is true or false, |In all cases, there is a "level of
significance' of some sort designed into the test. The level of
significance can be interpreted as the probability of rejecting a
hypothesis on the basis of an Individual sample when it is really
true. Unfortunately, a designed zero level of significance corresponds
to an automatic acceptance of the hypothesis regardless of its truth.
The usual philosophy is to design the test for a 5 or sometimes 10%
probability of failure, and to make pass/fail deteriminations rigor-
ously on this basis for each individual case. |If an individual case

is failed at the nominal level of significance, the meaning of the failure

*
15. Ochi, M. K. and Bolton, W. E,, "Statistics for Prediction of Ship
Performance in a Seaway,' International Shipbuilding Progress, 1973.
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TABLE G-4
RESULTS OF THE CHI-SQUARE AND

KOLMOGOROV-SMIRNOV GOODNESS OF FIT TESTS

APPLIED TO THE OBSERVED AND SIMULATED

SPRINGING STRESS MAXIMA AND MINIMA

Ea i . i A
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is assessed in terms of the level of significance at which the test
would be passed. Thus if a particular sample fails at the 5% tevel

of significance but would have passed had the test been designed for

4%, the failure is not considered too significant. If the test could
only be passed if the test had been designed for 0.1% level of signifi-
cance, the failure must be considered highly significant, Conversely,
1f the tests could be passed If the design had been for an 80% level

of significance it would be nearly impossible to reject the hypothesis--
in terms of the contents of the tables the higher the number the better
the fit. For the conventional 5% level of slignificance design only

cases where the numbers given are below 5% would be considered failures.

it may be noted that if repeated tests of independent samples
truly drawn from a hypothesized population are'm;de at the 5% level of
significance, it would be expected in the long run that the rate of
failure would approach 5%. Extrapolating this a bit, if it is hypo-
thesized that one of the present stress components always follows
the theoretical density and tests are made on many samples the failure
rate should be roughly 5% if the hypothesis is always true, and a very

much larger rate if the hypothesis is not always (or never) true.

Returning to the results in Tables G-3 through G-5 it may be
noted that all the passing levels of significance below 5% have been
boxed in. These are the tests which were failed at the 5% level of
significance. A great number of the tests pass at very high levels
of significance. In the 240 Kolmogorov-Smirnov tests which were per-
formed, only one failure (Table G-4) is noted. Out of the 2L0 Chi-
Square tests performed 15 were failed at the 5% level of significance,
a rate of 6%. Considering the number of failures of all the Chi-Square
tests on the simulated data, the seven failures noted translate to

a rate of 5.8% versus a failure rate of 6.7% for the real data.

If any particular column In the tables is considered, the
expected number of failures would be one. However it would not be

at all unusual in a relatively small number of tests to experience
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twice the nominal failure rate even if the hypothesis was always true.
in this context It is worth noting that in twc columns of the tables
three failures are noted. One of these two is that for observed
combined stress minima, Table G-3. The other is that for the simulated
wave induced stress maxima, Table G-5. The simulated stresses are
supposed to follow the theoretical distribution. The fact that the
detailed incidence of failures for a part of the simulation is perhaps

a bit higher than expected is possibly due to imperfections in the

test procedure--specifically the approach to the estimation of broadness

parameter.

The results in the tables suggest two things. First, the fit
of real data to the theoretical distribution is statistically indis-
tinguishable from the fit of simulated data. éécond,the hypothesis
that the maxima and minima of the real data fit the theoretical density

should be generally accepted.

There is third type of test of ,oodness of fit which is essenti-
ally graphical. This is to plot the sample probabilities on a suitable
probability paper and compare the sample points to the straight line
which is the best fit to the sample. Since the theoretical density
contains two parameters, only one of which can be used to form a non-
dimensional variate, there are an Infinite number of probability papers
possible for this distribution--one for each conceivable choice of
broadness parameter, €2. However, if the necessary graphical work is
automated, it is not difficult to prepare a new probability paper for
the fitted value of broadness parameter for each sample. This course
was taken in the present instance and applied to a portion of the
available samples. The results are Included In Figures G-1 through
G-28, which are bound at the end of this appendix.

Each figure pertalns to either the maxima or minima in the
decimated samples produced for comblined, springing, and wave induced
stress. Since this effort was intended largely to confirm the findings

Jjust noted it was decided to apply the procedure to half the real data,
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choosing either maxima or minima according to which appeared to be
the worst fits to the distribution. in the event the fits of both
maxima and minima were done for 1978 Runs 77 and 117, and 1980 Runs 8
and 15. Data from only two simulated runs were plotted, but in each

case both the maxima and minima were included. The figures where a

comparison of observed and simulated results can be made are Figures G-7
through G-9 for Run 101, and Figures G-22 through G-25 for 1980 Run 15,

In any probability paper what is being plotted is the value of
reduced variate which corresponds to the sample probability, as a

function of the dimensional value of the variate. The theoretical

distribution is thus always a straight line in the present case because

of the definitions, Equation G-1. In the present plots the reduced
variate scale is shown on the right, and the p obability scale to the
left. The horizontal scale is the dimensional variate when maxima
are involved, and the negative of the sample minima when minima are
indicated. The sample distribution, shown as square symbols, is that
derived from the class intervals used in the Chi-Square tests pre-
viously described. Thus the spacing of points along the horizontal
axis varies because of the equi-probability approach to determining
class intervals. The sample extremes are plotted as plus signs in
each case. Following Reference 16* the probabilities assigned to the
largest and smallest values in a sample of N are N/(N+1) and 1/(N+1)

respectively.

In the graphical approach to goodness of fit it is necessary
to provide some way of indicating the significance of the inevitable
deviations between the sample probabilities and thz theoretical

straight line. The '"'902 control curves' shown on the plots are the

approach to this problem noted in Reference 16, which was derived from

t

the asymptotic distribution of the n h highest value in a sample.

*
16. Gumbel, D. E., '"Statistics of Extremes,' Columbia University
Press, New York, 1958.
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Between probability levels of 0.1 and 0.9 the 90% contro! curves are
formed by adding and subtracting a quantity, &, from the value of
sample variate corresponding to the fitted theoretical distribution
at probability level P, and § Is defined as follows:

5o 165 /PR
p(n,) N

where: p(n*) = theoretical probablliity density corresponding to Ny

3
*
]

the reduced vgrlate corresponding to probability P.

Q
]

sample standard deviation (RMS)

N

sample slze.

The 90% control curves are extended above and Seiow probability levels
of 0.9 and 0.1 by drawing straight lines to the 90% confidence bounds
on the sample extremes. Once all the graphical work is done, the
results are interpreted quite simply., I1f the sample probabilities
{excluding extremes) all fall within the 90% control curves it is
accepted that the deviations between sample and theory are not
statistically significant, and thus that the sample may reasonably

be supposed to come from the hypothesized distribution.

Conclusions based upon Figures G-1 through G-28 are somewhat
in the eye of the beholder. It is believed however the the graphical
results bear out the numerical results indicated previously. There
are two exceptions in the 84 plots shown. It is difficult to be
convinced that the springing minima for observed data, Run 102
(Figure G-10) fit the theoretical distribution well enough to pass
the numerical tests at the 5% level of significance. Precisely the
same difficultly is presented by the graphical result for simulated
minima of combined stress, Run 15 (Figure G-25). Again, there is at

least one oddity in both the observed and the simulated data.
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Analysis of Sample Extremes

The extremes of each sample of maxima and minima were noted in
passing in the discussion of the graphical goodness of fit tests.
In the present context there can be ilttle interest in the smallest
value of a maximum unless it is negative and of the same magnitude as
the largest positive maximum. Nowhere in the current data is this true
and accordingly only the largest values of each sample were further
analyzed.

.

As in all previous analyses the questions of interest are:
Are the extremes statistically symmetrical,
are the differences between observation
statistically significant and could- the ob-
served sample extremes reasonably have been
experienced in a sample drawn from the theor-
etical population of maxima of Gaussian

processes?

The statistical questions were approached by working out the 90%
confidence bounds on the largest in a sample of the decimated sizes
indicated in Tables G-3 through G-5, assuming the theoretical proba-
bility density of Equation G-1, the fitted values of broadness para-
meter, Table G-2, and the general expression for the probability
density of the largest member in a sample, Reference 16. Similar to
the hypozihesis tests previously mentioned, it is expected that the
sample extremes should in a long run of independent samples be included

within the confidence bounds so constructed in 9 out of 10 samples.

Tables G-6 through G-8 summarize the sample extremes for maxima
and minima and indicate as well whether the extreme was within the 30%
confidence bounds. Table G-6 summarizes the combined stress results,
Table G-7 those for springing stress, and Table G-8 the results for the
wsave induced stress extremes. The columns which serve to indicate if
the extreme fell within the 90% confidence bounds contain a ''Y'" to

indicate yes that it did, and an ''"N-High'' or ""N-Low'" to indicate that
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SUMMARY OF SPRINGING STRESS SAMPLE EXTREMES
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it did not and that the sample extreme value was higher than the upper
bound or lower than the lower bound. ''Low'" indications for minima are
meant in the algebralc sense--the sample extreme was further away from

the sample mean than was expected when '‘Low'' is noted.

Considering all 240 of the sample extremes noted in Tables G-6
through G-8, just over 90% were found to lay within the 90% bounds.
Similarly, 88% of the simulated extremes are within the bounds, as
are 92% of the real extremes. One out of ten extremes is on average
expected to lay outside the bounds even when the sampling is truly
form the hypothesizéd populatfon. Twice this number is not uncommon
when relatively small numbers of samples-are Involved. The detailed
results in each of the individual columns of the tables are thus
fairly well in line with expections, with the éxéeption of the simu-
lated combined stress maxima, Table G-6. The slightly higher than
expected number of simulated combined stress extremes which are out

of bounds may in part be due to the use of the same estimate of RMS

combined stress in both real and simulated data, or in the relatively

crude approach to estimation of broadness parameter.

Considering the size of the 90% confidence bounds (which may be
noted graphically in Figures G-1 through G-28) the differences are very
slight between the magnitude of extreme positive and negative stresses
in the same run. The differences between the simulated and real ex-
tremes are generally of the same or smaller magnitude than half the
width of the 902 bounds. In effect, within the sample size dictated
by the existing observations, the difference between simulated and

f , observed extremes appears statistically insignificant.
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