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I. INTRODUCTION

The ability to predict structural response in the vicinity of a large and

sudden energy source is dependent upon definition of the loads, the behavioral
characteristics of the geological material surrounding the structure, the

mechanism for transferring loads from the geological material to the struc-

ture, and finally the characteristics of the structure. The basic objective

of this research project is to provide an improved understanding of load

transferral from one medium to another or, more specifically, the modeling of

structure-media (concrete-soil) interactions. However, to address this prob-

lem it is essential that good constitutive models be available for both soil

and concrete. The formulation of such a model is discussed in Section II, and

the research efforts that are needed to improve the model are described.

The plasticity formulation used for this study is amenable to the

incorporation of rate effects in several ways. One method is described in

"* Section III, and theoretical results for a loose sand are presented. The

model shows a smooth behavior with respect to the two parameters that are used

to incorporate rate effects. The a~proach is therefore believed to be

adequate for now, especially in light of the paucity of experimental data.

This plasticity formulation involves a parameter that can be interpreted

as the shear capacity of a material under zero mean pressure. With a slight

modification, this parameter can be used to provide tensile cutoff. As indi-

cated in Section IV, the algorithm is numerically stable for such an applica-

tion. When this parameter is allowed to drop to zero, the incorporation of

fracture into the model becomes a realistic possiblity.

Concrete and many geological materials exhibit softening, a phenomenon

that causes severe numerical problems because it represents a state in which

* the stiffness of a system ceases to be positive definite. If models such as

the one described in this report are to be used in large-scale computer codes,

rrobust and efficient algorithms must be available to handle both dynamic and

static loading conditions. Static loading conditions are especially diffi-

cult; this problem is discussed briefly in Section V.

I3h



The report concludes with a brief summary of the research problems

associated with this project. Also discussed in Section VI are the particular

areas on which this research will focus as the work continues.
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.II PLASTICITY MODEL

The current version of the plasticity model is described in Appendix A.

Of particular note is the use of a new third invariant that allows the limit

surface and the flow surface to be described adequately with straight lines.

This formulation automatically leads to a good representation of limit

stresses with smooth hardening and softening features. The model has also

been used to provide comparisons for a variety of paths and materials other

than those shown in Appendix A. Detailed comparisons with a weak concrete

will be presented in a future report.

One of the fundamental assumptions implicit in the theory is that at

the limit state, some measure of inelastic strain will assume the same value

for all stress paths. The current measure involves a path length in the space

of the first and third invariants of inelastic strain. It is found that, for

example, predictions of strain at the limit state for uniaxial stress and pure

shear are off by a factor of 2, whereas for other paths the predicted strains

are within 5 percent of the experimental values. These results indicate the

need for a better measure of inelastic strain, or damage, and some effort will

be expended on this task. There is a distinct possibility that the use of a

single measure is too simplistic and that two or more parameters will have to

be used.

The use of the third invariant without the second invariant fixes the

shape of the flow surface in the pi-plane. The flow law is associated in this

space, and for the majority of paths considered, the assumption is good.

However, for certain proportional loading paths it appears that a nonassoci-

ated law may be required. An attempt will be made to identify closely the

conditions under which the associativity assumption must be relaxed.

Little thought has been given to the formulation of softening within

the model. However, because softening can be controlled through the relation

involving the slope of the flow surface and the inelastic strain measure,

alternate relations for simulating observed softening phenomena will be

- . considered.
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III. RATE EFFECTS

The formulation given in Appendix A is rate-independent. A conventional

method of incorporating rate effects is to use an overstress approach in which
,..t:".the rate is related to the amount by which a measure of stress exceeds the

same measure under rate-independent conditions. Thus, the strain rate is

governed by the measure of stress. An alternate approach, which is the one

adopted here, specifies the yield surface in terms of a measure of inelastic

strain and its rate. Here, the stress is governed by the measure of strain

that is used. The choice of one approach over the other is largely a matter

of preference because the experimental data that would provide the basis for a

selection do not exist.

-i
The slope parameter, y, is a function of inelastic measure of strain, ei

A viscoplastic theory is obtained if Y is replaced by a parameter, Yr' that

depends on strain rate as well. It is assumed that the following separable

form is adequate:

y 1- A tanh (e/eo) (1)

in which A is an amplification factor, e is an inelastic strain rate, and e0

denotes a reference strain rate. Sample runs were performed on a loose sand

for which experimental data on the static case are available (Ref. 1). Fits

to these data are shown in Figure 1 for the cases of triaxial compression and

triaxial extension. These tests were performed in a cubical triaxial appara-

tus at constant confining stresses (03 = 5882 Pa). In triaxial compression

the intermediate principal stress, 02, is held equal to the confining stress

(02 - 03), whereas in the triaxial extension test the intermediate and major
principal stresses in compression are equal (02 = o). These tests represent

the extreme values of the intermediate principal stress. The static compari-

son Is good except in the case of the volumetric strain associated with triax-

ial extension.

A reference strain rate of 1.0 was chosen for , and e was arbitrarily

fixed at a value of 0.75. The effect of changing A was evaluated numerically.

The resu' ,- are - ,,n in Figure 1, which illustrates that the response changes

smoothly w' this amplification factor so that fitting experimental data

7
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12 12

Experiment

--

LA

4A=0.4 4 .

A = 0.2
*A 0

0 0
0 0.025 0.050 0.075 0.100

Axial strain

*0.10 e Experiment

Ai0.

r0.05

Au 0.2

0

0 0.025 0.050 0.075 0.100

Axial strain

(a) Triaxial compression.

Figure 1. Theoretical predictions for a range of rate effects and static
experimer al results (Ref. 1) for loose sand.
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should be relatively straightforward. The present formulation indicates

significantly more dilatation with a strain rate effect. Whether or not this

indication is realistic remains to be seen.

The only data that involve strain rates for soils in the range of inter-

est to this study are the uniaxial strain data for a given stress rate (Refs.

2 and 3). These data will be used to evaluate parameters A and eo as an

application for the model during the next phase of this research. More

effort will be expended on the formulation of a suitable experimental program

that will provide the data needed for both concrete and geological materials.

10
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IV. LIMITATIONS ON TENSILE STRESS

The existing formulation is limited to the case of positive mean pressure

IL because not all of the implications associated with the new third invariant
for tensile stresses have been investigated. However, as a preliminary inves-
tigation to determine whether the model could handle tensile cutoff, a flow

rule with y= = 0 or 0= -L - s for P 4 0 was assumed. The strains for

uniaxial tension are shown in Figure 2, where the positive strain and stress

axes denote compressive behavior. As the uniaxial stress is increased, the

corresponding strain also increases and the lateral strains indicate contrac-
tion in the classical Poisson effect. When the cutoff stress, as, is

reached, the plasticity model automatically yields increasing strain with no

further increase in stress, while the lateral strains remain fixed. The

uniaxial strair, behavior is in accordance with cracking phenomena, but the

stress and lateral components of strain should drop abruptly to zero.

Predicted stress-strain behavior for a biaxial tensile path with

c2 0.5 oais shown in Figure 3. Elastic behavior is observed until the state

L = -a s (which corresponds to a, = as and a2 = 0.5a s ) is reached. For
additional straining along the xl-axis, the stresses remain constant while the

lateral strains exhibit a slight amount of extension. This behavior is not a

2, good physical representation, but it may be a reasonable approximation for

postcrack i ng behavior.

A shear tensile path defined as al = -02, with a3 0 , is plotted in
Figure 4. The material behaves elastically until L = -as or 01 = as and

02 = - s , after which the stresses remain constant, the tensile strain con-
tinues to increase, and the other strains do not change. This is a realistic

representation of physical behavior.

These examples indicate that with a minor modification to the flow sur-

face, tensile cutoff can be represented within the existing procedure. The

algorithm remains stable as one strain continues to increase in a monotonic

fashion. However, the approach is too simplistic to represent cracking

because most data seem to indicate that cracking is initiated when the maximum

principal stress, rather than the mean stress, reaches a critical value.

. .. . . . _ • , - . - . . - . - °,. . . - . •
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The prediction of reasonable strains in the cutoff region can be attrib-

uted to the fact that the stress, as, remains finite. On the other hand, a

more realistic representation for stresses is obtained if as drops to zero;
thus, the requirements for stress and strain appear to set up conflicting

demands on the model. It is believed that the issue can be handled neatly by

noting that with a nonassociated flow rule, a considerable degree of flexibil-

ity is available. Thus it is proposed that the flow condition and the poten-

tial function be modified to the following forms:

4 = -L(a) + YP - a

* * * *(2)
* = -L o + YP - o

in which is set equal to a for the beginning state. Then if a crack is

predicted according to some criterion, a will be reduced to zero, which will

yield an appropriate stress field, while as will be increased, which will

yield an appropriate displacement field. This condition can be accomplished

with very little modification to the existing algorithm.

Even this approach will not yield the directional properties associated

with cracking. To obtain these properties, it is proposed that the more gen-

eral form of * and *, in which the tensor a is used instead of asL be-sinvestigated. The questions to be answered are (1) whether the approach is

feasible, and (2) if it is feasible, whether the procedure offers any advan-

tages over the use of a cracking algorithm.

15/16



V. NUMERICAL SOLUTION PROCEOURES

A constitutive model that yields correct response features, including

softening for large strains, provides a means of using less conservative

designs based on the actual energy-absorbing capacity of frictional materials.

These response features involve stress paths that go beyond the limit state.

S To predict behavior into this regime, a robust solution algorithm is required.
Several exist for dynamic problems. The reason is that the mass matrix

remains positive definite; consequently, it is not difficult to obtain numeri-

cal approximations to the acceleration from the equation of motion. However,

the situation is quite different for softening behavior with problems that

* involve static loads or those that reflect transition from a dynamic to a

static state. An example of the latter case is a structural member subjected

" to an impulse sufficiently large to force the response into the softening

regime. For either case the tangent stiffness matrix ceases to be positive

definite, and conventional solution procedures are no longer applicable.

Alternate algorithms are available, but convergence and efficiency are matters

of concern.

One approach that has considerable appeal is dynamic relaxation (Ref.
4), which is an explicit iterative method for obtaining static solutions. It

is based on the fact that the static solution is the steady-state part of the
transient response for a temporal-step load, and it uses the familiar dynamics

equations with damping. The amount of damping is based on the critical damp-

ing factor associated with the fundamental frequency, which in turn is related

to the lowest elgenvalue of the tangent stiffness matrix. If this lowest

elgenvalue is zero or negative (strain softening), the damping factor is zero.
For this reason the numerical solution converges very slowly under these con-

ditions. For more conventional strain hardening, the procedure yields a solu-

tion with an efficiency similar to that obtained by using conventional matrix

equation solvers.

• -Padovan (Ref. 5) has recently developed a procedure that involves the

use of limitations on a norm of the displacement and applied load vectors.

17



With this measure he is able to track the local nature of the response (hard-

ening or softening) and place suitable limitations on increments in either

force or displacement to ensure accuracy and convergence. The procedure has

been applied to a variety of problems (Ref. 6), but it is not clear whether

the algorithm is suitable for use in a large-scale computer code. Neverthe-

less, the approach appears to be a distinct improvement over existing methods,

and it must be considered seriously.

Quasi-Newton methods, of which BFGS is a special case, are also being

applied to problems of this type (Refs. 7 and 8). These methods involve var-

ious techniques for numerically updating the Jacobian, not necessarily at

every step, to provide an appropriate Newton step for minimizing a functional.

Both local and global strategies are used to ensure convergence, and various

steps are taken to preserve symmetry and sparsity. Also, the step size and

options for backtracking are chosen for optimal efficiency. Although these

concepts are still in a developmental mode as far as engineering computations

are concerned, it is believed that many of them will prove to be directly

applicable to engineering problems that exhibit softening.

An avenue that seems to hold considerable promise, but which apparently

has not been explored, is the combination of some of the concepts of Padovan

and the quasi-Newton procedures with dynanic relaxation. Because of its com-

putational simplicity for large-scale problems and because basic equations of
dynamics are used, the dynamic relaxation procedure has considerable appeal to

engineers. Furthermore, it forms a natural procedure for making the transi-

tion from dynamic to static problems, even in a softening regime. Because

slow convergence is a critical matter for large problems, this would seem to

be a particularly productive research area in light of the need for reliable

and efficient numerical algorithms.

18
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VI. RESEARCH TOPICS

The primary aim of this project to date has been to determine the feasi-

bility of using a simple plasticity model for frictional materials. It is

believed that enough evidence has been accumulated to demonstrate conclusively

that features such as strain hardening, shear enhanced compaction, dilatation,

strain softening, and limit states evolve naturally from the model. An asso-

ciated numerical algorithm is also functioning and appears to be reliable and

fairly efficient.

The primary problem associated with the model is the accuracy of the

strain predictions. For many paths, strains are within ±10 percent of the

experimental values for all stresses, which is considered more than adequate

for engineering analyses involving these materials. On the other hand, pre-

dicted strains at the limit state for some paths differ from experimental

values by a factor of 2. This discrepancy is not acceptable and can be

attributed to the choice of a particular inelastic strain invariant. One

objective of the continuing effort will be to examine closely the available

experimental data in order to determjne whether a better invariant can be

defined. The objective is to define an invariant in such a way that the value

of the invariant at the limit state is the same for all paths.

Preliminary calculations involving strain rate effects have been per-

formed. This exploration will continue, as will the accumulation of experi-

mental data--especially those data for multiaxial states of stress that show

general trends. The objective here is to attempt to identify the functional

form involving strain rates for flow surfaces that is best suited for matching

experimental data. To enhance the experimental data base, an experimental

program for concrete will be defined, and then a testing program will be

implemented.

A potential cracking model that fits in with the plasticity formulation

rhas been identified. If this approach should prove feasible, one constitutive

relation and algorithm would handle both the compressive and the tensile

19
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behaviors of frictional materials. The computational advantages would be

considerable. Furthermore, the formulation would provide a natural framework

for handling soil-structure interfaces. The anisotropic feature that is auto-

matically present with the existence of a crack could be exploited to test

postulates on how shear and normal stresses interact at an interface. Again,

carefully controlled laboratory data will be sought to provide guidelines on

suitable approaches.

The representation of strain softening has generally been overlooked in

determining the enerqy-absorption capabilities of frictional materials.

Because most numerical algorithms cannot cope with softening, an artificial

limit stress is often used instead of the actual one. With such an approach,

there is no way to accurately ascertain whether an approach is conservative,
and a great deal of engineering judgment is required. Strain softening is

controlled through the use of an inelastic strain invariant in the plasticity

model; hence, a method of matching data is available. This aspect of the

model will be explored to a limited extent to determine exactly what data are

required and why.

Ultimately, any good constitutive relation will be used in large-scale

computer codes. Because the plasticity model can accomodate strain softening,

which is a localized feature, it becomes feasible on a modeling basis to cap-

ture softening on a global scale. One example is the response to failure of a

beam subjected to a lateral load that is displacement-controlled. No cur-

rently available equation solver handles such problems routinely. The tangent

stiffness method becomes singular, and the dynamic relaxation procedure is too
inefficient for application to engineering problems. A numerical algorithm

that could handle this problem, as well as dynamic problems, is needed. Moni-

toring of the literature will be continued so that new developments can be

investigated as the need arises.

Although several specific topics have been addressed in this section,

they are all unified around the single theme of developing accurate models for

simulating soil-structure interaction. This focus will be maintained, with

special emphasis on strain invariants, rate effects, and cracking.

20
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APPENDIX A*

A THIRD-INVARIANT PLASTICITY THEORY FOR
FRICTIONAL MATERIALS

Howard L. Schreyer
Dept. of Mechanical Engineering

University of New Mexico
Albuquerque, NM 87131

1 October, 1982

ABSTRACT

A nonassociated plasticity theory is given for frictional materials in

terms of the first and third invariants of stress and inelastic strain. Fea-

tures such as strain hardening, strain softening, dilatation, and compaction

are exhibited. Limit states and the Ko-condition are interpreted in a natural

manner with the theory. Comparisons of predictions with experimental data for

limit states and deformation paths are given for several materials.

*This appendix is a reproduction of a professional paper accepted for pub-
lication in Journal of Structural Mechanics. Thus, it is a self-contained
document with its own internally consistent numbering system for equations,
references, and figures and with a format prescribed by the publisher.
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I. INTRODUCTION

The conventional theory of plasticity has a long history of successful

use in applications involving metals. The theory is well-founded on a phys-

ical and a mathematical basis with numerous applications to engineering

problems through the use of computer programs. This wealth of experience

and familiarity has led to numerous attempts to apply the theory to fric-

tional materials such as concrete, rock, soils, ice, and snow. Although

there is no fundamental reason why the theory of plasticity should be appro-

priate for these materials, there are now several formulations that provide

correct behavioral characteristics. Unfortunately many of these relations

are so complicated that their use is limited to the simplest engineering

applications. This paper is the result of an attempt to formulate a model

that captures essential response characteristics without recourse to a large

number of parameters or special conditions. The introduction of a new third

invariant leads to a plasticity theory that appears to be natural for fric-

tional materials in the same sense that the von Mises formulation works so

well for a wide class of metals.

Drucker and Prager (1] generalized the Mohr-Coulomb hypothesis for slip

to a conical yield function consisting of a linear combination of the first

and second invariants. This function was then used to provide upper and

lower bounds for the critical height of a vertical bank with certain impli-

cations concerning sliding surfaces and volume expansion (dilatation). This

theory of perfect plasticity is too idealized to adequately represent the

behavior of soils so the concept of work-hardening was applied. To account

for volumetric compaction under hydrostatic loads and to control the amount
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of dilatation, a cap was placed on the open end of the cone by Drucker, Gib-

son, and Henkel [2]. Modifications to this model have been made over the

years and the fact that the approach is still in use [3] is testimony to the

insight provided by these papers.

Inevitably, as more experimental data became available, the limitations

of the assumed shape for the yield surface became apparent. In the p1-plane

the circular shape of von Mises must be replaced by a more triangular shape

as expressed by the parametric form of Willam and Warnke [4). This general

shape is also obtained if the third invariant of stress is used, either

directly as suggested by Lade [5] and Vermeer [6]. or indirectly through the

use of the Lode angle as exemplified by the work of Mroz, Norris, and Zien-

kiewicz [7] and Hsieh, Ting. and Chen [8]. More sophisticated versions

involving multiple surfaces have been proposed [9-12] primarily to handle

cyclic loading in a smooth manner consistent with experimental data. Of

course, numerous rate type models have also been suggested for frictional

materials [e.g.. 13-15], but the requirement of a large number of material

parameters has prevented their adoption to any significant scale.

The majority of these latter models are similar in that they involve

all three stress invariants and that results are presented in a plane

involving the first and second stress invariants. To a certain extent this

has produced a degree of complexity that is not present in the original for-

mulations of References 1 and 2. Although computers provide the luxury of

accommodating several parameters, limits on storage are quickly reached for

many engineering applications so that there is still a great need for formu-

lations that capture essential response features but remain simple in form.

2
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Lade and Duncan [16] observed that the limit state for a cohesionless

soil can be represented without the use of the second invariant and Lade

[17] showed recently that concrete also falls in this category. This sug-

gests that a natural plasticity formulation for frictional materials should

involve only the first and third invariants rather than all three. Lade [5]

has developed this idea to a certain extent but he transforms all of his

results into conventional spaces, which is done, naturally enough, to facil-

itate communication and comparison with previous work. However, it is

believed that in attempting to use conventional concepts, the natural ele-

'" gance of the theory is obscured. Here an attempt is made to present a the-

ory in as simple a mathematical form as possible with some comparison with

data to illustrate that qualitatively correct response features are obtained.

2. LIMIT SURFACES AND STRESS PATHS

Limit surfdces for concrete, rock, soils, ice, and snow depend on ttle

first invariant of stress, or mean pressure, and are known. as -rictinedf

materials in contradistinction to most metals. These surfaces also depend

on a measure of shear which can be expressed through the second and third

invariants of stress. The conventional approach has been to express a limit

surface in terms of the mean pressure and the second invariant of the stress

deviator

P--I tr c
..,: (1)

Strd
"2
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with modifications provided by incorporating a third invariant as dictated

by experimental observations. Lade and Duncan [16] and Lade [17] have shown

that if a particular form of the third invariant is used, the second invari-

ant is not required in the expression for a limit surface for at least par-

ticular classes of soils and concrete. A modification of their approach is

proposed to utilize this feature, which may hold for all frictional

materials.

With the use of a shift in stress, a, a convenient definition for a

third invariant is

L - [det (a - ) det (as] (2)
- s ~S

in which the second term in the brackets is included to make L equal to zero

for a state of zero stress. Analogous to the square root that is often used

with the second invariant, a cube root is introduced to provide the dimen-

sion of stress. For principal stresses 0a, (a, as and an isotropic

assumption for the shift stress, a - a I, the first and third invariants-S S -

reduce to

(3)

L - - [(1 a - ) (a1 - s (as ) + 0:/"."S - sS

A limit point is the point on a prescribed stress or strain path at

which the state of stress is stationary with respect to increments in

strain. If such points for a variety of paths are plotted in stress space,

the result of interpolating between the points is a limit surface (often

called a failure surface). Limit points for concrete, granite, marble,

K- dense and loose sands, and clay are shown in Figure 1. A reasonable fit to

these points is postulated to be the line
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20

,I Low-strength concrete (as 1.9 MPa), Ref. 19

W, High-strength concrete (a . 3.7 MPa), Ref. 18

15

L 10

00.8

0 5 10 15 20

P/as

(a) Low- and high-strength concrete.

4Figure 1. Limit curves for frictional materials.
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400

0 Granular rock, Ref. 20
* Naxos marble, Ref. 20

300

- 0.92

* 1 00-

CS 2 MPa

0 100. 200 300 400 500

P (MPa)

(b) Granular rock and marble.

Figure 1. Continued.
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0.4

A Grundite clay, Ref. 21
o Loose sand, Ref. 16 0.90
* Dense sand, Ref. 16 1

0.3

.64

r'U
0.2-

.'"0. _a s  0
0.1

0 0.1 0.2 0.3 0.4 0.5 0.6

P (MPa)

(c) Clay and sand.

Figure 1. Concluded.
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L - yLP - (4)

L-°s

described with two parameters consisting of a limit slope, yL' and the

intercept on the L-axis represented by the shift stress, a . The fits

are remarkably good considering the elementary formulation. The scatter

that is present is not unusual for these materials and indicates the need

for probabilistic theory if a proper engineering analysis is to be performed.

The use of a limit surface in the P-L space suggests that this might

also be a convenient space to formulate flow surfaces for use with the the-

ory of plasticity. However, this is an unconventional space and the charac-

ter of simple stress paths is not intuitively obvious. Also, there is con-

siderable benefit to be able to relate back to other formulations and to

show the potential advantages of working in this space.

In principal stress space, consider a transformation to stresses

defined by

qa - (2cu - - ea)/,J" (5)

qV (- r + 02 +z 0. org /

The qs-axis defines the direction of hydrostatic pressure and the qx -

qa plane is called the p1-plane. Stress paths and limit surfaces are fre-

quently shown in the p1-plane and such a plot is included for the sake of

completeness.

,7-" To illustrate stress paths in the P-L space, let denote a positive,

monotonically increasing parameter. Then a series of conventional load

paths are defined as follows for P 0:
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(a) Hydrostatic compression

01 Oa -a

P CL L + a '
;.%a s 5

q. 0 qa 0

(b) Uniaxial compression

0 2 a ( ,,Ols, 0

P .a./3 L - 1()a 2 i/"

CI- - /V2- q - a f'6-

(c) Triaxial compression (hydrostatic compression to P -o

followed by uniaxial compression)

02=- -CLo - a. 0. -a s M -Mo Go > .

P -ao + a./3 L- [(aco + a a)(a.o +a) a S  a

s5 5

c a/,'7 qa 2 MW/6

(d) Triaxial extension (hydrostatic compression to P . ao fol-

lowed by uniaxial release)

CIS - 02 -a.o Os - - +. 4- a. 0.0 > C.

P - ao a./3 L - [(a.o -a. a )(ao a) -a Cji

j q- 0 qa - 2/v6

(e) Biaxial compression

Ox m , -a. as - 0

P - 2a./3 L = ((a. s a )n a s /s

qa 0 qz .2a./vl
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(f) Pure shear (hydrostatic compression to P - ao followed by

shear)

-,I

P - 0 La - -(Xo u )

qx- 2 'W q- 0

These paths are shown in Figure 2 for a s 1 and in the p1-plane of

Figure 3.

The representation of the limit surface in the p1-plane is shown in

Figure 3 for various values of mean pressure. For low values of P the char-

acteristic triangle with rounded corners is obtained, and for large P the

surface becomes circular, which is a feature that is generally observed for

frictional materials.

Lade associates a with limiting tensile behavior. The formulation
s

here suggests an alternate interpretation. Consider the pure shear loading

path with c.0-a0 and .- a . Then La -a and, since this is a point on
5 5

the limit surface (actually by design). a can be interpreted as the

limit stress of a material under pure shear with zero mean pressure.

A glance at the stress paths shown in Figure 2 shows that the paths

fall between the hydrostatic path and the limit surface. In other words,

conventional stress paths fall within a relatively narrow band in this

space, which is simply a reflection of the similarity of response curves

observed for this class of materials. Certain stress paths, such as triax-

lal compression, become almost tangent to the limit surface, so it is not

surprising that experimental data for limit states show considerable scat-

ter. For large values of P. slightly different values for -L yield rel-

atively large differences in L and these differences can be magnified even

further if the limit points are plotted in a different space.
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40
a

a. Hydrostatic compression
b. Uniaxial compression
c. Triaxial compression
d. Triaxial extension

-7-: 30 e . Biaxial compression /
f. Pure shear

L 20 00

0
a 10 20 30 40

P

Fi gure 2. Stress paths and flow surfaces in the P-L plane.
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401
q2

d

2' P-50

20

-20-

a. Hydrostatic compression
b. Uniaxial compression
c. Triaxial compression

-40 d.Triaxial extension

f. Pure shear

-40 -20 0 20

Figure 3. Stress paths and limit surfaces in the Pi plane.
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A uniaxial strain path is one of the conventional experimental paths

used for soils. As the strain is increased, the lateral stresses approach a

factor. Ko, times the applied stress and this is called the "Ka condi-

tion.0 In the P-L space this path depends on the material, but it is rea-

. sonable to suppose that the path asymptotically approaches the limit sur-

face. For an applied stress a- -a, and if . >> a , then in the KoS

condition aa - -Kam and

P - (1 + 2Ko)

(6)

L -L K

so that at the limit surface

3 Ko0
YL 1 + 2Ko (7)

The implication is that if Ko is known for a particular material, an

estimate for yL is available and vice versa. For example, if Ko =

0.40 then yL - 0.90. Also, the limiting case of Ko - L, L 1

might be used to represent liquefaction.

3. FLOW SURFACES AND FLOW RULES

For the development of a plasticity relation, the initial flow surface

can be developed from the point of deviation from linearity on stress-strain

curves. Then this yield surface can be assumed to evolve out to a limit

surface to represent the strain hardening phase of deformation. Strain

softening can be obtained by letting the flow surface collapse in a con-

trolled manner.
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Since the limit surface is conveniently represented by a line in a

space involving the third invariant, a flow surface of a similar nature can

be postulated as follows:

.' - yP - L - (8)
S

in which y is a strain-hardening function with the restriction - - C

A surface * - 0 defines the flow state and is shown as a dotted line in

Figure 2. For stress states above this line, * < 0, which represents an

elastic state and * > 0 is not permitted.

A general hardening description is obtained by allowing the flow sur-

face to rotate toward the limit line, i.e., to let y decrease with some

measure of inelastic strain to the value yL' Then, with further defor-

mation, the flow surface rotates back and this represents strain softening.

The specific character of a material is expressed in the functional form for

y. Some materials exhibit very little softening in which case - would

increase only slightly after reaching the limit state. Extreme softening is

obtained by allowing y to increase significantly after the limit state.

Most plasticity formulations for frictional materials are presented in

terms of the first and second invariants of stress. For convenient compari-

sons, the flow surface of Equation (8) is shown in Figure 4 for q2 - 0 and

various values of y. For y > 1 rather conventional elliptical shapes

are automatically obtained together with a general hardening behavior

that would be extremely difficult to develop in the P -V/7 plane. This is
2

another example that indicates that the use of a .Aird invariant is natural

for frictional materials. For large P the slope of the hydrostatic path is

unity, so if y > 1 the flow surface does not intersect the hydrostatic

path. This is reflected as a curve in the p -. /T plane that does not inter-
2

."

V,

" 3 7



/7 qa 0 y 1.00

10

0o 10 20 30

P

* Figure 4. Flow surfaces in the P-41 plane.
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sect the P-axis and is a consequence of the simplest possible assumption

that the flow surface is a straight line in the P-L plane.

U. One of the fundamental difficulties with a plasticity formulation is

that appropriate measures of deformation must be selected for use in a

strain hardening law. If these measures are chosen to be the inelastic

strain tensor, e1. then the theory is usually too complicated to be of

much practical use, so a positive definite invariant, e , is often adopted.

If a reference value, eo, can be associated with a limit state for all paths.

a hardening law that provides the appropriate characteristic features is

given by

° '- 
n

Y- yo.- (yo - sin 2( .- ) (9)

°e

where yo is the value of y that defines the initial yield surface. The

exponent, n, merely controls the rate at which y changes with e-i

-i
In metal plasticity, e is often chosen to be the path length associ-

ated with the second invariant of the inelastic strain deviator. Here. both

volumetric and shear effects are important, so it is postulated that an

appropriate invariant is a path length involving all three invariants:

" o de' + b~de' + b3del (10)

where s is a monotonically increasing load parameter, bz and bs are material

constants, and

de = tr (do
t

id id 1/2

de =[tr (deld deid)]

i i 1/3
de3 = Idet(de')I
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represent inelastic volumetric and shear increments based on the inelastic

id
strain tensor and its deviator, e Such a formulation has proved to be

useful, at least for particular cases of sand and concrete, but it must be

considered as a preliminary form for illustrative purposes.

If an associated flow rule is adopted, then

d d k a (12)

for a monotonically increasing parameter X with the increment d&. obtained

by satisfying the consistency condition, * , C. However, in agreement

with many other investigators, such a flow rule yields an excessive amount

of dilatation, so the use of a potential function, 0*, instead of * is

required in Equation (12). After an investigation of several stress paths,

a modification to y was deemed sufficient and hence

" y* P - L - a (13)

was chosen with the nonassociated parameter y* given by the simple additive

relation

y* y b1 (14)

where the constant bi depends on the material. The implication

of Equation (13) is that the flow rule is associated with respect to L but

not with respect to P.

In terms of principal stresses, the flow law yields the following

expression for the inelastic volumetric strain increment:

" d)d&z
o 3 ( - a ) ) -aV -+ (( - a)

9: (CO - s ) (a, - a ) -( 15)

° s4

".: 40



**2* -7. -.

The value of y- that gives the transition point between dilatation and

compaction is found by satisfying the condition d e I - 0. For example, under

uniaxial compression with the stress parameter c. defined previously, this

value is

t*" 1 + (16)

and if cL >> a then

(17)

which provides some general guidance as to how the function y* should

behave if experimental data are available for the path. For hydrostatic

compression. yt* - 1. and since compaction is always observed for such a

state, the restriction y* > 1 is imposed in Equation (14).

Additional insight into the required behavior for V* is obtained by

considering uniaxial strain. Since compaction is obtained for this path,

y* must be greater than y,*. However, at the Ka condition, the slope

of the mean pressure-volumetric strain curve is very steep which implies

very small increments in inelastic deformation. Since the uniaxial strain

*. .. component equals the volumetric strain for this case, y* must be greater

than but close to y. The use of the Ko stress state and Equation (15)

yields

2 + K. 18
1(18

which gives y* . 1.09 for Ko . 0.4. This is the type of information thatt

is useful for determining the parameters bi, ba and ba.

i--4
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4. COMPARISON WITH EXPERIMENTAL DATA

To demonstrate the flexibility of the model two materials with consid-

erably different response characteristics were chosen. The first is a high-

strength concrete that exhibits relatively little compaction but a consider-

able amount of dilatation. The second is a material similar to sand but

with a large amount of porosity so that severe compaction but little dilata-

tion is exhibited. For both cases, data were obtained from hydrostatic and

- triaxial compression tests. The plots of the triaxial results show stress

and strain measured relative to a0 and eo which denote the maximum value

for stress and strain, respectively, obtained in the initial hydrostatic

part of the path.

Results for the high-strength concrete tested by Green and Swanson [18]

are shown in Figure 5 with the following material parameters used for

predictions:

E - 35,000 MPa (Young's Modulus) - 0.25 (Poisson's ratio)

-o - 1.57 L - 0.80

-i
a -3.7 MPa e ,O.OSS n 0.30

s 0

b- 0.35 b2 - 4.0 ba - 2.0

Plots of mean pressure versus volumetric strain in Figure Sa show both

shear enhanced compaction and dilatation. Too much dilatation is predicted

for the uniaxial stress path and the discrepancy is even greater on the plot

* of stress versus strain shown in Figure 5b. This is a consequence of using

-i
the measure, e , for all limit states. Predictions for the other paths are

0

quite reasonable.

The second example involves foundry core which was first proposed by

Grady [22] as a material for simulating cemented sand with material data

obtained by Waterways Experimental Station. Since the density is relatively
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Hydrostat -

J/ co= 13.8 MPa

30 / -

20 ao 0 6.9 MPa

10 /
0. 0

- -Experimental, Ref. 18

-Theoretical

0 -0.1 -0.2 -0.3 -0.4 -0.5

Volumetric strain, %

(a) mean pressure versus volumetric strain.

b Figure S. Experimental and theoretical response curves for a high-strength
concrete.
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low (1460 kg/ma). Forrestal proposed a modification to the method of

sample preparation which raised the density to 1820 kg/m. This density is

similar to that of dry porous tuff at the Sandia Tonapah Test Range where

densities range from 1620 to 2000 kg/m. The experimental data given here

-were obtained by Terra Tech [23] for pressures up to 400 MPa on material

prepared at the Sandia National Laboratory foundry. Porosity was 30 per-

cent. Material properties used for predictions are given as follows:

E - 1090 MPa i - 0.22

YO - 1.06 L 092

-to s -1.5 MPa ec - 0.55 n , 1.6

ba .0.15 b -0 ba - 3.5

The experimental results shown in Figure 6 are composite curves from

two or more tests with difference bars shown to indicate the extent of vari-

ation that was observed among samples. Some of the difference between

experimental and theoretical results in Figure 6a is due to the restriction

imposed by the functional form of Eq. (9). Part of the discrepancies for

the triaxial response paths of Figure 6b can be attributed to the use of the

-i
strain invariant e and the assumption that the limit state is reached at

the same value of e no matter what path is followed. However the results

are certainly adequate for engineering analysis since the variation in field

properties is considerably more than that displayed by these test samples.

Overall, correct response features are displayed with a rather elementary

model for an extremely compressible material.
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5. CONCLUDING REMARKS

This theory has been developed under rather restrictive conditions.

Only paths defined by monotonically increasing stress or strain for positive

: mean pressure have been considered. Cyclic and rate effects have not been

included although it is readily apparent that kinematic hardening and a rate

sensitive flow surface can be incorporated in the theory.

This is one of a large number of investigations-concerning the applica-

tion of plasticity theory to frictional materials. However, in many

instances the complexity of the models precludes their use for analysis and

even for numerical computations. Since frictional materials are notorious

for displaying experimental data with large scatter and for being extremely

inhomogeneous in the field, it makes no sense from an engineering viewpoint

to attempt to refine a model just to provide a close match to experimental

data for all stress paths. In the same context, however, for general appli-

cations It is certainly necessary to have the capability for predicting cor-

rect response features which include shear enhanced compaction, dilatation.

- hardening, and softening. The actual degree of refinement that is required

is a matter of Judgement based on the particular application.

The initial workers in this field, as exemplified by the work in Refer-

ences 1 and 2. were attacking essential problems with a minimum degree of

complexity. It is in this spirit that this model has been developed. The

fundamental concepts are not new. By using stress invariants the theory is

completely general and satisfies the principle of material frame indiffer-

ence. By eliminating the second invariant, the theory is simplified consid-

erably but essential response characteristics are still predicted. Funda-

mental features such as the limit state and the Ko condition are displayed

inherently by the model. Compaction and dilatation are controlled by the
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parameter f* in the nonassociated flow rule while hardening and softening

are controlled with -y. Some familiarity with the P-L space leads to

natural interpretations that are in accord with experiment.

': To the limited extent that the theory provides a natural description of

physical phenomena using the clearest mathematical structure, this paper is

offered as an expression of gratitude to Professor E. F. Masur, who has pro-

vided numerous examples of elegant research for others to emulate.
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