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ABSTRACT

This report outlines our research activities for the period of the AFOSR
grant. It is not intended to give a detailed description of our work. Such
details are described in our publications and cited references. The report,
however, defines the scope of our research on the unsteady aerodynamics and
the stability analysis of turbomachine components aﬁd its relevance to ongoing
technological developments in turbomachine design.

The main topic of our research is the unsteady aerodynamics of lifting
airfoils subject to three-dimensional gusts. However, the mathematical
methods we have developed for this purpose, evolved into a general theory for
unsteady vortical and entropic distortions of potential flows. This theory
can be also applied within the approximation of the rapid distortion theory of
turbulence to study the change in turbulence characteristics near the
stagnation point of a bluff body.

The mathematical theory was applied to study the aerodynamics of 1ifting
airfoils subject to three-dimensional gusts. For low Mach numbers, an
integral equation was derived and a numerical scheme was developed for its
solution. A1l previous gust analyses correspond to particular cases of our
present work. We have therefore compared our results with previous linear and
nonlinear theories. These results show significant three-dimensional and
nonlinear effects.

Finally, we have carried out a comparison between our previously
developed theory for highly loaded cascades with data from experimerts being
conducted by Frank Carta at United Technologies Research Center. The results

show excellent agreement between our analysis and the experimental data.




I. INTRODUCTION

The present research is mainly motivated by the ongoing technological
developments in turbomachine blading systems. The new design trends in engine
technology tend toward increased thrust per unit engine weight, more fuel
efficiency, and more engine stability at various operating conditions. The
performance of the engines ,is greatly enhanced by higher blade loading and
increased flow speed. This creates many new problems in fluid mechanics,
aerodynamics, structural design,iﬁnd aeroelasticity.

Our research relates to the stability of the engine components such as
blades and guide vanes. These structural components are subject to heavy
aerodynamic loads and produce large air turning inside the engine from one
stage row to another. In addition to those desired high aerodynamic loads
acting upon rotor and stator blades, there are unwanted fluctuating loads that
produce flutter and forced vibrations of turbomachinery blades.

Indeed, flows in turbomachines are highly nonuniform. Their irregular
patterns initially result from inlet distortion and inlet turbulence as they
enter the engine. Subsequently flow interaction with rotors and stators
produces more irregular flow patterns characteristic of each stage of the
machine. For example, Figure 1 shows a schematic representation of flow
behind a rotor blade row. We notice the formation of secondary flows
migrating outwardly from the hub, the development of blade surface viscous
boundary layers which extends behind each blade, and the formation of tip and
hub swirling vortices.

Figure 2 shows a stator blade in the wake of a rotor. The velocity
profile behind the rotor has periodic irregularities due to viscous wakes and
swirling vortices particularly at the tip. Because of the periodic nature of

a rotor blade row, it is proper to assume that the velocity defect and the
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swirling vortices have essentially the same perjodic structure as the rotor

itself. This irregular but periodic flow pattern is moving with a velocity Up
with respect to a stator blade. The stator blades are hence subject to a
vortical wave called a gust. This phenomenon was first noticed by Kemp and
Sears [1]. Usually, the irregularities in the flow are small compared to the
mean flow velocity. That is, if Uy is a characteristic of the velocity defect
and U, is the mean flow velocity, then Uy/U, << 1. Thus, the gust is a
vortical wave essentially convected by the mean flow.

Figure 3 shows a schematic decomposition of the gust into longitudinal
(chordwise) and transverse components. There is also a spanwise component

which is perpendicular to the plane of the figure. The three components of

the gust are all significant and for a 1ifting airfoil (loaded blade) they are
strongly coupled together by the mean flow around the airfoil as we have shown
recently in [2].

The main objective of the present research is to formulate an aerodynamic
theory for a three-dimensional agust interacting with loaded airfoils, and to
develop mathematical and numerical procedures to calculate the fluctuating
pressure and forces acting upon those airfoils.

Although our work is motivated by turbomachine technoloay, we should note
that our research is of a basic nature and aims at advancing and extending our

knowledge and understanding of unsteady flows as they interact with airfoils H

and blades.




I1. GENERAL OUTLINE OF OUR RESEARCH ACTIVITIES

The primary objective of the present research is to calculate the
unsteady forces acting upon lifting airfoils subject to three-dimensional
gusts. However as we formulated the mathematical problem we found as a
spin-off that the theory can be extended to a general splitting theorem for
the velocity field of unsteady vortical and entropic distortions of potential

flows.

Hence we developed a general mathematical theory for study%ng the

interaction of non-uniform unsteady flows with bodies. A particular
application of the theory is the problem of a three-dimensional gust
interacting with an airfoil or a cascade of airfoils. Other important
applications can be found in the field of aeroacoustics and fan and helicopter
noise. Our theory can also be readily applied under certain conditions, to
investigate the change in turbulence characteristics particularly near
stagnation points and its effects on boundary layer stability.

We are applying our mathematical theory to essentially two problems.
First we studied the three-dimensional ghst past an airfoil with camber,
thickness and mean-flow incidence. Second, we are presently investigating the
change in turbulence characteristics near the stagnation point of a bluff body
and an airfoil.

Finally, we have carried out a comparison of our previously developed
theory of an oscillating cascade of highly loaded blades with the ongoing

experimental results of Frank Carta at United Technologies Research Center.




III. UNIFORMLY VALID SPLITTING OF UNSTEADY VORTICAL

AND ENTROPIC DISTORTIONS OF POTENVIAL FLOWS

In many aerodynamic problems one deals with nearly inviscid large
Reynolds number flows past solid bodies. For streamlined bodies such as
airfoils, the flow is well approximated by a potential flow except of course
in the boundary-layer and in the limited region where separation occurs. For
bluff bodies, the separated region extends into the wake and the potential
flow is only valid outside the wake. The problem we are concerned with here
is when small disturbances are added upstream which will produce distortion in

the flow field. Two important cases arise

(i) Large Structure Disturbances
This is the case where the length 2' and the velocity u' defining
the scale of the disturbance, and the length £ and the velocity Us

characterizing the flow upstream are such that

2'/2 >>1 or 0 (1)

é3.<< (%L) <1,

where Re = Uy 2/v 1s the Reynolds number. This is the case of
disturbances produced in turbomachines by rotor-stator interaction,
and in general the case referred to by aerodynamicists as the gust
problem.

Small Structure Disturbances

This 1s the case where

1
Re 2 << % << 1 and%!.E <<% « 3z ]




This is the case of small structure turbulence interacting with a body.
However, the integral scale &' is assumed larger than the boundary layer
thickness so that no direct coupling between the incident disturbance and the
viscous boundary-layer will occur.

In both cases a linear inviscid theory can be developed to model the
flow.

If the body is a flat plate at zero incidence, then there is a complete
uncoupling between the mean flow and the disturbance. The mathematical
treatment reduces to a Laplace equation for an incompressible flow and was
carried out first by Sears [3]. For two-dimensional compressible flows and
oblique gqusts the problem can be reduced to solving a Helmholtz equation as
shown by Graham [4]. For a cascade, an integral equation formulation was
first developed by Lane and Friedmann [5]. Whitehead [6] gave detailed
numerical calculations for arbitrary interblade phase angle. Atassi and Hamad
[7] extended the cascade theory to three-dimensional disturbances in subsonic
flows.

For a lifting airfoil the coupling between the mean flow and the
disturbance is very strong as shown by Goldstein and Atassi [8] for a
two-dimensional gust and by Atassi [2] for a three-dimensional gust.

For a bluff body, Hunt [9] treated the interaction of incident
disturbance with a circular cylinder by generalizing the "rapid distortion
theory of turbulence" developed by Batchelor and Proudman [10] and Ribner and
Tucker [11]. These theories predict changes occuring in turbulent flows that
are distorted by solid obstacles.

Let us review the mathematical methods developed to deal with this

general class of unsteady vortical disturbances.




1. Traditional Splitting of the Velocity Field

-
In this case the unsteady velocity u 1is split into a solenoidal

->
component ug and an irrotational component V¢

> >
h=u, + 9. (1)

Introduce the vector A such that V:A =0 and such that
ﬁs = vxk . (2)

This leads to three Poisson equations
vk =-3 (3)

where » 1is the vorticity which can be determined using Cauchy's solution

[12,p. 276] which depends on the Lagrangian coordinates of a fluid particle.

The function ¢ satisfies the equation

D D ¢ v-(p.u.)
- o 1 0 1 . = 0s |
L(@) E It (—z—c UF-) - "—po v (Dov¢) ——-———po (4)
0

The operator L defined in (4) is a second-order linear convective wave

operator with non-constant coefficients. Note that

D
0 _ 9
ot = 5t *0 7

is the 1inearized material derivative, and py, Co represent the density and

speed of sound of the mean flow field, respectively.

This method 1eads to three Poisson's equations and an inhomogeneous wave

equation (4). For an incompressible flow (4) reduces to Laplace equation.




2. Goldstein's Splitting of the Velocity Field

Instead of splitting the velocity field into solenoidal and
>
irrotational fields, Goldstein [13] splits u 1into a known vortical solution

—
= =4
—
]
>
Q
-

(3,0) J (5)
J Xy

x

and an irrotational field V¢ satisfying

-(PouH
L (¢) = V-lou) (6)
°o
EY
Here a represents the Lagrangian coordinates of a fluid particle and Aj
are the disturbance components upstream.

The advantage of Goldstein's splitting lies in the fact that the

mathematical problem has been reduced to solving equation (6). So instead of

four partial differential equations we have only one single equation.

The method has been applied successfully by Goldstein and Durbin [14] to

flows with no stagnation points.

3. Flows with Stagnation Points

Practically, all flows past airfoils and obstacles have a stagnation
point on the body. In this case the Lagrangian coordinates used in both the
traditional and the Goldstein's splittings have a singularity. As a result
the vorticity ; and the vortical velocity ;(H) are both singular along all
surfaces of the body and its wake. In fact we have proved the following
result:

"For a flow past a body with a stagnation point, hoth the traditional
and Goldstein's splittings lead to a singular and indeterminate vortical
solution along the body surface. The boundary-value problem for the

potential part of the disturbance would then have to satisfy singu1ar and
indeterminate Neumann's boundary conditions at the body surface.




This singular and indeterminate behavior all along the surface of the
body is a major difficulty for analytical and numerical solutions to the gust
problem and to the analysis of turbulent flows. In fact, we can even state
that unless the solution is regularized, the treatment will be incorrect.

In order to illustrate the effect of the stagnation point, we consider the
airfoil shown in Fig. 4. The mean flow streamlines are also shown. Figures 5
to 12 show the streamwise and normal components of the vorticity and the
vortical velocity for an inftial harmonic normalized disturbance at 45° to the |
mean flow. The reduced frequency ki = 4. The choice of a large reduced
frequency is made to illustrate the full variation of the vorticity and
vortical velocities over the airfoil surface. Because of the singular behavior
at the airfoil surface, we only considered the streamlines y = * 0.01. The
abscissa s is the length of the arc along the airfoil. The origins =0
correpsonds to the stagnation point location, and the other two vertical lines |

correspond to the trailing edge on the pressure side and the suction side. The

amplification of the streamwise component of the vorticity and the normal
component of the vortical velocity are quite marked. They will become, of
course, infinite for y = 0 as we move closer to the surface of the ai .oil.
The phase of all the components will be indeterminate at the airfoil surface.
Hence, if one uses the traditional method of solution, Eqs. (3,4) will

have singular and indeterminate inhomogeneous terms. On the other hand if one

uses Goldstein's method, the vortical solution ;H is singular and
indeterminate along the surface of the airfoil and Eq. (6) will have to
satisfy singular and indeterminate boundary conditions all along the airfoil

surface and its wake. :




4. Uniformly Valid Splitting of the Velocity Field

Our mathematical procedure can essentially be summarized by the

following theorem :

"The velocity field

At e

SR L g, os

| g A o

where ¢ satisfies the equation

D, .
g ¢ =0

and the boundary condition

EH + %% = 0, on Airfoil and Wake,

is regular and has the remarkable property that its streamwise and normal

components vanish at the body surface and its wake. The singular and

&>
indeterminate character of u(H) is eliminated."

Hence we propose the following mathematical method for all problems

involving vortical and entropic distortions of potential flows. ]

6 = G(R) + V¢ » (7)

-

(8)

A de




>
With homogeneous conditions for u(R) along the tangent and the principal

normal of the body surface and its wake if any, and

L o) = = 9 a(R)

(9)
o 0

with the conditions

%%- = 0 along body surface and
Ve + 5(R) = prescribed upstream conditions.

More details about this splitting were given in [15] and will be soon
published in [16].

General expressions for ;(R) were also derived for flows that exist for
all times for three-dimensional disturbances past two-dimensional and
axisymmetric bodies.

5. Incompressible Flows

For an incompressible flow Eq. (9) reduces to

w2y = - v.5(R) (10)

and hence the problem reduces simply to solving a Poisson's equation.
For a two-dimensional body, 1t is possible to consider a Fourier

expansion spanwise, and the preceding equation reduces to

(v2 + kg) ¢ = - RAL) (11)
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where V2 is the 2-D Laplace operator and k3 is the wave number in the span

direction. This equation is called a Klein-Gordon equation [18] and usually
it occurs in studies of oscillations in resisting media. Thus, one should
expect a smaller fluctuating pressure for fhree-dimensiona1 oblique gust than
for two-dimensional gusts. These results will be further discussed in our

study of the gust problem.

IV. LIFTING AIRFOILS SUBJECT TO THREE-DIMENSIONAL PERIODIC GUST

The gust problem is illustrated in Figure 2. The disturbance as seen by
a blade can be expanded in a Fourier series. Therefore without loss of
generality, we can treat the case of a harmonic disturbance of the form

i[kx - U_t]
u =Re X" e

(12)

The general theory can be developed as an application to our splitting
theorem and the mathematical problem is reduced to finding the regular
vortical velocity ;(R), and then solving equation (9) subject to upstream
condition (12) and homogeneous condition along the airfoil surface. In
addition one should account for the effect pf vortex shedding in the wake
which here will be represented by a vortex sheet.

The early treatments of the gust problem dealt, of course, with flat
plate airfoils. These are the so-called l1inearized theories which we briefly

review here since they will be used for comparison with our present work.
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1. Linear Theories for Airfoils and Cascades in Nonuniform Motions

The aerodynamics of flat plate airfoils subject to a gust have been
extensively developed at all flow regimes. They constitute an important
reference case for our present work, and our experience in linear unsteady

aerodynamics is of great help for pursuing the present nonlinear problem.

Although the linear treatment brings about considerable simplification of
the mathematical analysis, the only closed form analytical solution for the ,
fluctuating 1ift and moment is that of Sears [3] for the flat plate in
incompressible flow subject to a transverse gust. For compressible subsonic
flows, an integral equation is commonly used in the analysis. For a single
airfoil we have an equation derived by Possio [18], and for a cascade the
treatment was first made by Lane and Friedman [5]. Detailed numerical
methods were given by Whitehead [6,19], and numerical codes are now commonly
used for two-dimensional gusts interacting with flat plates and cascades.

The case of an obliquely propagating gust interacting with a flat plate
would be the linear counterpart of the three-dimensional gust interacting with
a lifting airfoil we propose to investigate. This is because the third
longitudinal component of the gust does not induce any fluctuating forces when
the 1ift coefficient of the airfoil is zero. Filotas [20], Mugridge [21], and
Graham [22] using different formulations studied the response function of a
flat plate to an oblique gust.

For a cascade of flat plate airfoils, Atassif and Hamad [7] derived
similarity rules for three-dimensional gusts in compressible flows. Atassi
and Hamad also developed a computer code for the aerodynamics of swirling
flows interacting with cascades and applied their results to determine the

level of noise generated by tip vortices. _
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The most significant features of linear theories are given below:

(i) Single Flat Plate Airfoil

The unsteady 1ift depends on the two wave numbers ki in the

flow direction and k3 in the span direction. Note that k; is also the reduced

frequency. Figure 13 shows the real and imaginary parts of the lift
coefficient L for the spanwise wave number k3 = 0.0, 0.2, 0.4, 0.6, 1.0, 2.0,

and 3.0. The reduced frequency is varied along each curve from O to 5. The

Mach number is 0.8. The wave number k2 in the transverse direction was

factored out since in the linear case it does not affect the solution.
Figure 13 underscores the importance as well as the complexity of the

three-dimensional effects. The essential features of the 3-D gust are:

° At low reduced frequency, the unsteady 1ift increases
as the mean flow Mach number increases.

L The obliqueness of the gust significantly reduces
the magnitude of the unsteady 1ift at low reduced
frequency.

] The 1ift function does not decrease with increasing
k3 when k1 ~ k3.

(14) Cascade of Flat Plate Airfoils

The cascade introduces a large number of parameters such as

v

the spacing d/c, the stagger angle x, and the interblade phase angle which

depends on the ratio of the wave length of the disturbance to the cascade

spacing.
The essential features of the 3-D gust interacting with a linear cascade are:

° The resonance effect that is the conditions at which
the unsteady 11ft vanishes. This effect occurs even
at very large spacing as shown in Figure 14, As the
Mach number increases, the cascade 11ft suddenly 7
collapses while that of a single airfoil is not affected.

e T - IR B . il

5 e e o

[ ] The cascade effect is more pronounced at large Mach number.
This effect is 11lustrated in Figure 15 showing the unsteady
pressure for an airfoil and.a cascade at M = 0.8,




2. Nonlinear Theory for a 2-D Gust

Figure 16 shows schematically a 1ifting airfoil subject to a
transverse and longitudinal gust. For this problem the important parameters
are the reduced frequency ki, the transverse wave number kz, as well as the
mean flow round the airfoil. The most interesting physical feature of this
problem is the coupling between the mean flow and the oncoming vortical
disturbance. This coupling distorts the wave length of the gust as it
interacts with the airfoil. The theory was developed by Goldstein and Atassi
(8], and more detailed results for cambered airfoils at finite incidence to
the mean flow were given by Atassi [23,24].

Figure 17 shows the variation of the real and imaginary parts of the 1ift
function L for three different airfoils having the same mean loading. The
reduced frequency is varied from 0 to 10, and the gust angle was taken to be
45° (k1 = k). The magnitude F of the ratio of the unsteady 1ift acting on
the airfoils of Figure 17, to the Sears function is plotted in Figure 18
versus the reduced frequency. This clearly shows the significant nonlinear
effects. One can single out the following nonlinear effects on the gust
response function:

(1) The coupling between the mean potential flow and the

unsteady oncoming vortical disturbance depends in a
complex manner on the meanflow incidence, the geometry
of the airfoil and the gust angle. It {s not possible
to characterize these effects by a simple parameter such
as loading. This is clearly seen in Figures 17 and 18
where we took three airfoils having the same loading.
(1f) The effect of the longftudinal gust is strongest at low

reduced frequency. The unsteady 1ift is significantly
reduced because of the airfoil loading.

(111) At high reduced frequency, the response functfon does not

decay but seems to tend toward a periodic function of
finite amplitude.




3. Nonlinear Theory for a 3-D Incompressible Gust

For an incompressible flow Eq. (9) reduces to

w2y = - v (R) (13)

and hence the problem reduces simply to solving Poisson's equation. Note
however that because of vortex shedding in the wake, the solution will have a
discontinuity A¢ , whose expression we have derived in [2].

In our review of linear theories we noted that an 1ntegra1‘formu1ation

has been used for a single airfoil and a cascade. The numerical calculations

can be significantly simplified by transforming the differential governing

equations into singular integral equations. In fact for a cascade of

oscillaitng airfoils, we have used such an integral formulation in [25-29].
For the present problem Eq. (13) can also be transformed into an integral

equation. Details will be given in [30], and lead to

e | @R~ vy v6 av

n

1 36 1 3G
'tréf¢ﬁd5+2'n_£f“ﬁdsw’ (14)

. -
where u(R) and ¢ are functions determined using our splitting theorem and
G 1s a Green's function. The two surface integrals in (14) are over the
afrfoil (cascade) surface B and the wake sheet W.

Note that if we can determine the Green's function G for (13) such that

3G
W 0 along B

then ¢ 1s given in terms of surface and volume integrals of already known

functions.
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The first problem and certainly the easiest to which the present theory
is applied is the case of 3-D gust acting upon an airfoil of infinite span.
In this case, the potential function ¢ of the mean velocity and the
streamfunction y can be read11y.determined. We consider Joukowski airfoils in
the present study. This class of airfoils is very popular and the expressions
for ¢ and ¢ can be obtained in closed-form analytically.

First we have to construct our regular vortical solution ;(R). We take

>
for Lagrangian coordinate a Lighthill's drift function A , the

streamfunction ¢ and the ordinate z 1in the span direction. A was defined
in [31] and its difference between two points on a streamline is equal to the

time it takes a fluid particle to traverse the distance between those points.

(1) Numerical Scheme

In the present case, the integral equation (14) reduces to the

form

L o-no=H (15)

where the operator

> aKo(r)
Lolx) = ’f\¢ T ds, (16)

> > > .
where r = Ix - xgl, dS = ldxgl, Ko s the modified Bessel function of order

zero, and gﬁ- is the derfvative in the normal function to the airfoil

surface. The contour integral is taken along the airfoil A. The
inhomogeneous term H contains a double integral and a 1ine integral of known

functions and depends on an arbitrary constant.




Two conditions will be imposed on the solution:
o The solution should satisfy Kelvin's theorem.

e The solution should satisfy the Kutta condition.

The first condition can easily be satisfied by imposing the requirement that ¢

is continuous at the trailing edge. The second condition means that the

pressure is continuous at the trailing edge, it can be written as

K ()= alikge+ 101 1-¢ =0 (17)

where Cy is a constant depending on the vortical solution of the gust wave.

As we examine Eq. (15), we see that the homogeneous equation

AL () -7 =0 (18)

has an eigenfunction ¢, corresponding to the eigenvalue = of the operator

X ., and hence the solution to (15) is not uniaue. However, the solution

will be unique by imposition of condition (17). From the practical point of

view, a discretization of (15) will lead to a singular system of linear

algebraic equations. If we relax one of these equations and replace it by

(17), the resulting system will sti1l be close to singular, and very difficult

to sclve with precision. This situation is common when one attempts to solve

equations where the desired solution is multivalued to account for the 1ift.

However, usually the equation is Laplace's equation, and instead of K, we

have 2nr. In this case the eigenfunction ¢, corresponding to = is a

constant. In [27], we were able to use this property to solve the system of

linear equations. Here a more elaborate scheme is required.

1. Solve the homoijeneous eigenvalue for the Hermitian operator.
*

Let yo be such an eigne?unction.
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2. Solve the modified integral equation.
(L.~ vK)¢ = H o (19)

It can be shown that (19) is equivalent to (16) and (17), and it has a unique

solution. This integral equation has been sslved by collocation. The airfoil

contour has been divided into N sections and the value of the potential
function has been assumed to be constant over each section. Then the
requirement for the integral equation to be satisfied in a set of N
mid-section points gives us the system of N linear algebraic eqdations for N
unknown values of the potential function; Also numerical representation of

the Kutta condition is needed. This has been done by replacing the value of

the derivative of the potential function of the trailing edge by a ratio of
two finite differences. Such approximation requires closer spacing of the
collocation points at the trailing edge region. Similar spacing has been
applied also for the leading edge region where potential function gradients
are unusually large.

The unsteady pressure along the airfoil surface is given by

This expression contains the derivative of the potential function. However,
the potential function is known only in a discrete set of points of the
airfoil surface. Finite difference behavior for the derivative approximation
cannot be used, because it leads to discontinuous pressure distribution.
Therefore spline interpolation of the potential function has been made which
gives continuous derivatives along the airfoil surface. The first

calculations showed that for the third-order polynomial spline much more
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collocation points are needed to insure considerable smoothness of the
pressure distribution for the desired accuracy. For that reason the

exponential spline has been used instead of the polynomical spline.

(ii) Results

As an application of our theory we have chosen a typical Joukowski
airfoil with camber, thickness, and incidence to the mean flow. The airfoil
geometry is shown in Figure 4. It has 0.1 camber, 0.1 thickness, and is
placed at 10° incidence to the mean flow. This airfoil is subjéct to a
sinusoidal gust characterized by three wave numbers, the reduced frequency,
k1 = 1.0, k2 = 1.0, and k3 = 1.0

Drift Function

The drift function A was used as a Lagrangian coordinate along a
streamline. This enabled us to integrate the vorticity equation. However, &
which represcats the time increment as we move along a streamline, is rather a
complicated function of the fluid particle position. Figure 19 shows a
three-dimensional plot of D = A - ¢ , where ¢, is the mean potential velocity
function versus the coordinate x and the streamfunction y . The lines
stretching from left to right correspond to constant x, while those stretching
in the x-direction correspond to constant y (along the same mean streamline).
Note that far from the airfoil, located between -1 and +1, there are two
plateaux for D at different levels because of the circulation round the
afrfoil. At streamliines closer to the suction side of the airfoil there is a
significant decrease in the value of D until we get very close to the ai}foil,
then the effect of the stagnation point begins to be felt and as a result D
increases sharply to become infinite at the stagnation point and remains
infinite along the airfoil surface and its wake. On the other hand at

streamlines close to the pressure side of the airfoil surface D increases




monotonically as we move along a streamline. It also increases as we move

closer to the airfoil until it becomes infinite at the stagnation point and
the airfoil surface and its wake. The case y = 0 corresponding to the airfoil
surface is not plotted because of the singular behavior of D.

It is this behavior of the drift function that produces the singular
behavior of the vorticity at the airfoil surface. The regular vortical

velocity, however, does not have this singular behavior.

-+
The Vortical Velocity u(R)

The expression of the vortical velocity ;(R) is determined
analytically. The analytical expression, however, depends on the drift
function and the potential and stream function ¢ and yg . These three
quantities are explicitly known only numerically in terms of Cartesian
coordinates. In order to illustrate the result of our regularization
procedure we have plotted in Figures 20 and 21 the magnitudes of the
streamwise and normal components of G(R), versus x and yo respectively.
Again, the lines stretching from left to right correspond to ze¢sstant &, while
those stretching in the x-direction correspond to constant ¢ {along the same
mean streamliine). These figures clearly show that both the streamwise and
normal components of ;(R) vanish at the airfoil surface as predicted by the
theory. The normal component U, exhibits, however, very strong gradient near
the airfoil surface, while the streamwise component Uy has a rather smooth
behavior.

The Potential Function ¢

The function ¢ is a solution to the integral equation (14) which
after modification became equation (19). Figures 22 and 23 show plots of the
real and imaginary part of ¢ versus the airfoil arc length counted from the

pressure side trailing edge. The vertical solid lines at S = 1.97 and 2.02
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correspond to the locations of the stagnation points. Note that ¢ is
essentially a smooth curve, with strong gradients only in the stagnation point
area.

The Unsteady Pressure

The unsteady pressure is the material derivative of ¢. Figures 24
and 25 show plots for the real and imaginary components of the unsteady
pressure for two different airfoils also plotted on these figures. For a
thin airfoil at zero-incidence (Fig. 24), the unsteady pressure is most
important near the leading edge. This result is similar to that of the flat
plate case where the pressure is infinite at the leading edge. For a 10%
thickness airfoil, the real component of the pressure in-phase with the gust
velocity does not exhibit large values near the leading edge, while the
imaginary out-of-phase component has a large peak in this area.

It is of course not possible to draw a conclusion about the behavior of
the pressure from the present results. More studies are needed to determine
the essential features of the unsteady pressure in terms of the many
parameters entering the problem.

The Unsteady Lift

The present theory is the most general aerodynamic analysis for an
arbitrary shaped airfoil subject to three-dimensional gust. It contains all
previously studied cases such as that of Sears [3], the nonlinear 2-D second
order theory [8], and Graham [22] oblique gust theory for a flat plate
airfoil. Therefore we started by comparing our results with the linear theory
of Graham and our second order theory.

We first calculated the real and imaginary parts of the 1ift for a flat
plate afrfofl subject to an oblique gust with a spanwise wave number k3 = 1.0.

Figure 26 shows the imaginary part of the 1ift (out-of-phase component) versus

o o 10 ARSI B arm e - e
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the real part of the 1ift (in-phase component) for different values of the
reduced frequency kj. Because we cannot take a zero-thickness airfoil, we
have considered a 5% thickness airfoil. Our results are plotted in a similar
way to the flat plate case and indicate an excellent agreement up to reduced
frequencies of order 2. Above kj = 2, a slight difference in the phase of the
1ift appears to exist between the linear theory and ours. This could be
attributed to the 5% thickness of our airfoil. However, it could also result
from a reduced accuracy in the numerical scheme as kj increases to larger
values. A further investigation of the high frequency case is underway to
clarify this point.

The second comparison we have carried out was with our previous results
{24]. In [24] we have derived an analytical formula for the 1ift of a
cambered airfoil at incidence to the mean flow and subject to a
two-dimensional gust. Figure 27 shows the result of the second order theory
(SOT) compared with our present (PRT) calculation for a 5% thickness airfoil.
Again, we see an excellent agreement up to a reduced frequency of order 2.
Figure 28 shows similar results for the same airfoil but with 5° angle of
attack.

These comparisons show clearly the good accuracy of our computed results.
Figure 29 shows the three-dimensional effect of the gust, where we have
compared the 1ift resulting from a 2-D gust with that resulting from a
three-dimensional gust k3 = 1, the reduced freguency ki was varied from 0.25
to 2.5 . The gust transverse wave number is k2 = k; . It is noted that kj
has a very significant effect on both the magnitude and the phase of the 1ift
Tow frequency. In fact for ki between 0.25 and 0.5, both magnitude and phase
of the 3-D gust are almost constant. This result is in harmony with certain

results given by Graham [25] and in fact should be expected in view of the




fact that the airfoils considered departs only very slightly from a flat

plate airfoil.

The comparisons we have carried out with the 2-D linear Sears results,
3-D linear Graham calculations, and our previously developed 2-D nonlinear
theory, are not yet complete. For example, it is very important to determine
the validity of the 2-D nonlinear theory as the mean lift of the airfoil is
increased. This, of course, can now be done by a more detailed comparison of
our present work which encompasses all previous cases as just a. particular
case assigned to certain parameters. An investigation comparing all these

theories is being carried out.

V. COMPARISON BETWEEN THEORY AND DATA
FOR HIGHLY LOADED OSCILLATING CASCADES

We have previously developed under AFOSR sponsorship an aerodynamic
theory for oscillating airfoils in cascade with arbitrary airfoil and cascade
geometry. The airfoils could have translational and rotational oscillations
with circumferential modes modeled as an interblade phase angle in the
oscillatory motion. The theory was published in [27]. The analysis was later
applied to calculate turbine blade flutter in [28] and [29]. The results
clearly show that coupled bending and torsional modes could produce flutter at
typical operating conditions for highly loaded blades. In an "Overview of
NASA/AF/NAVY Symposium on Aeroelasticity of Turbine Engines [32], Professor
Sisto noted the importance of this result and stated that "Experimental
confirmation of the validity of this conclusion should be anticipated by the
R&D community," [p.7].

At UTRC, Dr. Franklin Carta has been investigating the pressure

distribution on oscillating cascades in pitching oscillation. Dr. Carta's
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research is sponsored by NASA Lewis Research Center. The above results

encouraged us to cooperate for a comparison between theory and experiment.

Or. Carta visited us at Notre Dame and provided us with details regarding his
experimental condition. The geometry of his airfoils and the cascade
parameters are given in Table 1. We carried out a study of his cascade for

: interblade phase angles varying from 0 to 360°. Similar comparisons were also
carried out with Verdon and Caspar [33], also from UTRC, using a purely

numerical code. The results were presented in [34].

Figure [30] shows essentially this comparison for a reduced frequency,
k = 0.122 and four values of the interblade phase angle o . The results show
excellent agreement between our analysis, Verdon and Caspar numerical code,

and the experimental data. Note, however, the strong deviation of the real

part of the pressure in the Verdon/Caspar results near the trailing edge.
This deviation is caused by the difficulty of accurately capturing the
singular behavior in the unsteady pressure at a sharp trailing edge with a

finite difference scheme.

VI. FUTURE PLANS

Our past and present work under AFOSR sponsorship has always covered a

- e A

broad range of topics which have evolved from the initially stated objectives.
This 1s particularly true for the period covered by the present report.

(1) We started out to study the aerodynamics of afrfoils subject to
three-dimensional unsteady vortical disturbances. A problem of
great interest in aerodynamics and aeroelasticity.

(11} This led us to develop new mathematical methods which apply to large
structure disturbances acting upon streamlined bodies with wakes
such as airfoils and blades in turbomachines subject to rotor-stator
interaction or inlet distortion.

(111) Later we generalized the mathematical procedure to cover the equally
important cases of small structure turbulence disturbances

interacting with streamlined and bluff bodies. This is known as the
rapid distortion theory of turbulence.
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(iv) The mathematical theory led to a uniformly valid splitting theorem

for unsteady vortical and entropic disturbances of potential flows.

(v) This led us to initiate an investigation to study the change in
turbulance near the stagnation point of a flow. A problem of great
interest in studying the stability of a flow as it interacts with a
body.

The above shows the broad scope of our research interests which essentially

are in the following areas:

. Unsteady aerodynamics of airfoils and cascades

] Flutter and stability analysis of airfoils, cascades
and assembled systems

. Mathematical methods: analytical and numerical

[ ] Unsteady flows

OQur future plans are therefore determined by ongoing state-of-the-art

developments in the aerodynamics and the stability analysis of turbomachine

systems and their relevance to technological developments.

Essentially, these are the problems we shall be pursuing and developing

in the near future:

1'

Three-Dimensional Vortical Disturbances Acting Upon Loaded Airfoils

We shall complete the analytical analysis of the aerodynamics of an
airfoil of arbitrary geometry subject to 3-D gust. This will include a
parametric study of the unsteady forces in terms of the airfoil geometry,
the mean flow incidence, and the frequency and the direction of the gust
as defined by the three wave numbers. The comparison with linear 3-D
theories and nonlinear 2-D theories will also be completed. This study

shgu1d determine the significant parameters affecting the aerodynamics of
a 3-D gust.

Interaction of Swirling Vortices with Loaded Airfoils

In turbomachines, major upstream disturbances are produced either by
viscous wake defects or by swirling vortices usually emanating from
upstage tips. It is important for the designer to know which effect
produces higher fluctuating 1i1ft and whether a design shape optimization
can reduce the unwanted fluctuations in the forces. This study can be
carried out as an application to our general thaory of a 3-D gust.




High Frequency 3-D Disturbances Acting Upon Loaded Airfoils at

High Subsonic Mach Numbers

This is the case closest to operating conditions for high-speed
machines. The treatement of the general problem requires significant
mathematical and numerical efforts. However, if one assumes the reduced
frequency to be high, a simplification of the mathematical equation
governing the problem can be brought about and leads to a formulation
similar to the one we have developed for a low-Mach number.

3-D Vortical Disturbances Acting Upon Loaded Cascades

Depending on the solidity, the cascade effects can be very
important. Even for a small solidity, resonance effects can take place
in a cascade. The extension of our theory to a cascade of airfoils can
be done with no difficulty except for the added computational time due to
define the mean flow of the cascade. The incorporation of high Mach
number and high frequency to the cascade analysis will be a very
jmportant contribution to a more accurate evaluation of flutter and noise
generation in turbomachines.

Change in Turbulence and Pressure Fluctuation Near a Stagnation Point

As a spin-off of our splitting theorem, we can study the change in
the characteristics of a turbulent flow near the stagnation point of an
airfoil or a bluff body. This is important to determine the stability of
a flow as it interacts with the body. Separation and boundary-layer
stability are affected by the level of turbulence and the pressure
fluctuation near a stagnation point.

Aeroelastic Characteristcs of Loaded Blade Disc Assemblies

A11 present aeroelastic stability studies of blade disc assemblies
use simplified aerodynamic codes developed from linear unsteady
aerodynamic theories wherein the blades are approximated by flat plates.
Our previously developed theory for loaded cascades oscillating with
circumferential modes showed significant changes in the stability
boundary from the results of flat plate cascades. We feel that a study
is needed to incorporate a more realistic aeroelastic model with our
aerodynamic theory. Such a study will define a aore accurate flutter
boundary for loaded blade disc assemblies.
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Angle of Attack a = 0.0785398 = 4.5°

THICKNESS = 0.0601266 Chord
CAMBER = 0.0218513 Chord
GAP/CHORD = 0.7500880
STAGGER = 0.959930

REDUCED FREQUENCY = 0.122000

o = INTERBLADE PHASE ANGLE

TABLE 1. United Technologies Cascade Parameters
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FIGURE 1. SCHEMATIC REPRESENTATION OF FLOW BEHIND A ROTOR BLADE ROW
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] | | I
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k,=0.4

CUTOFF = 0.93!
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- MACH NUMBER

FIGURE 14, COMPARISON BETWEEN THE LIFT OF A SINGLE AIRFOIL
AND A CASCADE OF VERY LARGE SPACING. RESONANCE
OCCURS AT M = 0,931,




UNSTEADY PRESSURE

5.0 : ] :
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|_'F.r:{o.ssm SINGLE <
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4.0 45°
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FIGURE 15, COMPARISON BETWEEN THE AERODYNAMIC PRESSURE
DISTRIBUTION ALONG A SINGLE AIRFOIL AND A
CASCADE BLADE. THE INTERBLADE PHASE ANGLE = 2.
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FIGURE 24. UNSTEADY PRESSURE

REAL (SOLID LINE) AND IMAGINARY (DASHED LINE)
JOUKOWSKI AIRFOIL: CAMBER=0.05 THICKNESS=0.05
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FIGURE 25. UNSTEADY PRESSURE
REAL (SOLID LINE) AND IMAGINARY (DASHED LINE)
JOUKOWSKI AIRFOIL: CAMBER=0.4 THICKNESS=0.{
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A1l publications listed below are authored by Professor H. Atassi. Only
co-authors are listed.

“Three-Dimensional Periodic Disturbances Acting Upon Airfoils in Cascade",
Aeroelasticity in Turbomachines, Ed. P. Suter, Juris-Yerlag Zurich, pp.
383-398, 1981, '

"Stability and Flutter Analysis of Turbine Blades at Low Speed”,
Aeroelasticity in Turbomachines, Ed. P. Suter, Juris-VYerlag Zurich, pp.
187-201, 1981.  Co-author T.J. Akai.

In Preparation

"Regularization of Goldstein's Splitting of Unsteady Vortical and Entropic
Distortions of Potential Flows," Invited paper, 19th Annual Meeting, Society
of Engineering Science, October 27-29, 1982, Rolla, Missouri.

"A Uniformly Valid Splitting of Unsteady Vortical and Entropic Disturbances of
Potential Flows."

"Three-Dimensional Periodic Vortical Distrubances Acting Upon an Airfoil,"
Co-author J. Grzedzinski

IX. INVITED LECTURES

These are lectures given by Professor H. Atassi on topics related to the
present AFOSR grant.

"Unsteady Aerodynamics of Lifting Airfoils," NASA Lewis Research Center,
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